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ABSTRACT

SCORCH (Simulations and Constructions of the Reionization of Cosmic Hydrogen) is a new project to study the
Epoch of Reionization (EoR). In this first paper, we probe the connection between observed high-redshift galaxies
and simulated dark matter halos to better understand the primary source of ionizing radiation. High-resolution N-
body simulations are run to quantify the abundance of dark matter halos as a function of mass M, accretion rate M,
and redshift z. A new fit for the halo mass function dn/dM is ~20% more accurate at the high-mass end. A novel
approach is used to fit the halo accretion rate function dn/dM in terms of the halo mass function. Abundance
matching against the observed galaxy luminosity function is used to estimate the luminosity—mass relation and the
luminosity—accretion-rate relation. The inferred star formation efficiency is not monotonic with M nor M, but
reaches a maximum value at a characteristic mass ~2 x 10'' M, and a characteristic accretion rate
~6 x 10> M, yr~! at z =~ 6. We find a universal EoR luminosity—accretion-rate relation and construct a
fiducial model for the galaxy luminosity function. The Schechter parameters evolve such that ¢, decreases, M, is
fainter, and « is steeper at higher redshifts. We forecast for the upcoming James Webb Space Telescope and show
that with apparent magnitude limit mag = 31 (32), it can observe =11 (24) unlensed galaxies per square degree per
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unit redshift at least down to M, at z < 13 (14).

Key words: cosmology: theory — dark ages, reionization, first stars — galaxies: high-redshift —

large-scale structure of universe — methods: numerical

1. INTRODUCTION

Cosmic reionization is a frontier topic in cosmology with
plenty of scientific richness for theoretical and observational
explorations. The epoch of reionization (EoR) is uniquely
marked by the emergence of the first luminous sources: stars,
galaxies, and quasars in the first billion years. It is possibly the
only time that luminous sources directly and dramatically
alter the state of the entire universe, converting the cold and
neutral intergalactic medium (IGM) into a warm and highly
ionized one. Studying the EoR will reveal how the first
generation of stars, galaxies, and black holes formed and
evolved. It can also provide complementary constraints on
cosmological parameters similar to studies of the cosmic
microwave background (CMB). See Loeb & Furlanetto (2013)
for a recent review.

Current observations suggest that reionization was already in
significant progress by z ~ 9 and must have ended by z ~ 6.
The photoionization and photoheating of hydrogen leaves
many observable imprints. Neutral hydrogen can be detected
through 21 cm radiation from radio observations (e.g., Bow-
man & Rogers 2010; Parsons et al. 2014), in absorption as the
Ly« forest (e.g., Fan et al. 2002, 2006), and also through Ly«
scattering of high-redshift galaxies (e.g., Kashikawa
et al. 2006; Ouchi et al. 2009). Free electrons will scatter
CMB photons and produce patchy Thomson scattering (e.g.,
Dvorkin & Smith 2009; Su et al. 2011; Natarajan et al. 2013),
kinetic Sunyaev—Zel’dovich temperature anisotropy on arcmi-
nute scales (e.g., Sunyaev & Zeldovich 1970; Zahn et al. 2012;
Sievers et al. 2013), and polarization anisotropy at low
multipoles (e.g., Kogut et al. 2003; Hinshaw et al. 2013;
Planck Collaboration et al. 2015). Heating of the IGM affects
the thermal broadening of the Lya forest (e.g., Theuns
et al. 2002; Cen et al. 2009; Lidz & Malloy 2014). Ongoing

and upcoming observations will provide multi-wavelength
constraints on the uncertain timing and duration of the EoR.

Current theory suggest that large-scale, overdense regions
near radiation sources are generally reionized earlier than large-
scale, underdense regions far from sources. Three main
approaches are used to model the EoR (e.g., Trac &
Gnedin 2011). Cosmological simulations combining N-body,
hydro, and radiative transfer (RT) algorithms are the most
accurate, but also most expensive approach to solve the
coupled evolution of the dark matter, baryons, and radiation
(e.g., Gnedin 2000; Trac et al. 2008; Gnedin 2014; Norman
et al. 2015). RT post-processed on saved N-body or hydro
simulated data can be more cost effective while capturing
important features of nonlinear structure formation (e.g., Ciardi
et al. 2003; Iliev et al. 2006; McQuinn et al. 2007; Finlator
et al. 2009; Aubert & Teyssier 2010). Semi-analytical/
numerical methods provide an approximate and efficient
approach to explore the vast parameter space of reionization
(e.g., Furlanetto et al. 2004; Zahn et al. 2007; Santos
et al. 2010; Mesinger et al. 2011; Battaglia et al. 2013b).
Recently, there is renewed emphasis on using radiation-
hydrodynamic simulations to model the complex astrophysics
of sources and sinks and using semi-numerical methods to
make theoretical predictions and mock observations. These two
approaches in tandem provide our best option in making
forward progress in synergy with observations.

SCORCH (Simulations and Constructions of the Reioniza-
tion of Cosmic Hydrogen) is a new project to study the EoR
and provide useful theoretical tools and predictions to
facilitate more accurate and efficient comparison between
observations and theory. To build a robust theoretical
framework, we need to further investigate how the distribu-
tion and properties of radiation sources and sinks affect the
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complex reionization process. The RadHydro code (Trac &
Pen 2004; Trac & Cen 2007) will be used to produce N-body
+ hydro + RT simulations with subgrid physics modeled
using the latest observations and simulations. Mock observa-
tions will be constructed by mapping higher-resolution,
smaller-volume radiation-hydrodynamic simulations onto
lower-resolution, larger-volume N-body simulations (e.g.,
Battaglia et al. 2013a, 2013b; Natarajan et al. 2013; La Plante
et al. 2014).

Currently, there are ~1500 galaxy candidates observed in
the redshift range 6 < z < 10 from Hubble Space Telescope
observations (e.g., Grogin et al. 2011; Koekemoer et al. 2011;
Windhorst et al. 2011; Ellis et al. 2013; Illingworth et al. 2013;
Schmidt et al. 2014). The galaxy luminosity function is well fit
by a Schechter function and the redshift dependence of the
parameters have been quantified (e.g., Bouwens et al. 2014;
Finkelstein et al. 2014; Oesch et al. 2014; Bouwens et al.
2015a). However, it is unclear what the physical origin for the
evolution is and how is it connected to the growth of structure,
particularly that of dark matter halos. The abundance of dark
matter halos are accurately quantified using N-body simulations
(e.g., Jenkins et al. 2001; Tinker et al. 2008), but previous work
related to the EoR (e.g., Lukié et al. 2007; Reed et al. 2007)
have not extensively studied atomic cooling halos (T > 104K,
M > 108 M) capable of hosting high-redshift galaxies.
Similarly, the growth of dark matter halos have also been
measured using N-body simulations (e.g., Wechsler et al. 2002;
Fakhouri & Ma 2008; Correa et al. 2015b), but generally for
higher mass and at lower redshift.

In Paper I, we quantify the connection between observed
high-redshift galaxies and simulated dark matter halos in
order to better understand the abundance and evolution of the
primary source of ionizing radiation. Section 2 describes the
N-body code and halo finder used to simulate and locate dark
matter halos. Sections 3 and 4 describe how the abundance of
dark matter halos as a function of mass M, accretion rate M,
and redshift z are quantified. In Sections 5 and 6, we use the
abundance matching technique to estimate the luminosity—
mass relation and the luminosity—mass—accretion-rate rela-
tion and infer the star formation efficiency. In Sections 7 and
8, we make predictions for the high-redshift galaxy
luminosity function and forecast galaxy counts for the
upcoming James Webb Space Telescope (JWST). Section 9
discusses the implications of our results on cosmic reioniza-
tion and Section 10 concludes with a summary of major
results. We adopt the concordance cosmological parameters:
Qm = 0.27, 9 = 0.73, Q, = 0.045, h = 0.7, 05 = 0.8, and
ng = 0.96.

2. N-BODY SIMULATIONS

N-body simulations are run using a new particle—particle—
particle-mesh code (P°M; e.g., Hockney & Eastwood 1981)
containing updated algorithms. The gravitational potential is
decomposed into short and long-range components using a
Gaussian kernel following Bagla (2002). The long-range
potential is computed using a particle-mesh algorithm where
Poisson’s equation is efficiently solved using Fast Fourier
Transforms. Particles are assigned to a mesh using the
triangular-shaped-cells scheme to reduce mesh anisotropy.
The short-range force is computed for particle—particle
interactions using direct summation, which is only moderately
expensive at high redshifts when the large-scale structure is not
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highly clustered. Adaptive time stepping is performed using the
kick-drift-kick scheme from Springel (2005).

Dark matter halos are found using a new hybrid finder that
has two major components. First, a friends-of-friends (FoF;
e.g., Jenkins et al. 2001) algorithm is used to locate the peaks of
halo candidates. A linking length » = 0.08 times the mean
interparticle separation is chosen to pick out only the inner
regions and prevent over-merging (e.g., Cohn & White 2008).
For each peak, the particle with the minimum value of the
density-weighted gravitational potential p¢ is chosen as the
center.

Second, a spherical overdensity (SO; e.g., Lacey & Cole
1994) algorithm is used to measure halo properties. A halo with
mass Ma within radius Ra has an average density that is factor
of Apy times the average matter density p,, such that

4
My = 27 (Dnatopu ) RA- M

Throughout the paper, M and R refer to M,y and R,
respectively. Halos are allowed to overlap, but if two
candidates have centers within the larger halo’s radius, one
candidate is chosen as the primary halo and the other is
considered a subhalo. The primary halo is the one that satisfies
more of the following criteria: larger masses and more negative
potentials within Ryoy and Rsg9. Only halos with at least 400
particles (1/ J400 = 0.05) are counted to avoid resolution
effects and ensure completeness near the low-mass end of each
simulation.

The halo finder is run “on the fly” every 20 million cosmic
years. This time interval is comparable to relevant timescales
such as the halo dynamical time and the mass accretion
timescale at high redshifts. In constructing the halo merger
trees, every particle is tracked rather than just the most-bound
particle in identified halos. We use both forward and
backward linking to carry out a two-step process in
progenitor-descendent matching. First, for a given progenitor
of mass M, at a given time 1,, its descendent of mass M; from
a previous time f#; is the one that contributes the largest
weight, which is defined to be the sum of the gravitational
binding energy from particles in the progenitor that once
belonged to the descendent. Second, the selected descendent
may contribute particles to other halos, but the weighted
contribution must be less than what it gave to the main
progenitor. The mass accretion rate is calculated as

M, — M,

M )
h— 14

@

Since it is more difficult to robustly measure accretion rate than
mass, only halos with at least 2500 particles (1/+/2500 = 0.02)
are used.

Table 1 lists the N-body simulations used to quantify the
abundance of halos as a function of mass, accretion rate, and
redshift. Box sizes in the range 10 < L/(Mpc h~1 < 400 are
chosen to focus on atomic cooling halos and two realizations of
each box size are run to reduce sample variance. The nine
largest box-size simulations are necessary to reach convergence
at the lowest M of interest, while the two smallest box-size
simulations are for convergence at the lowest M. Each
simulation contains 2048 dark matter particles and has a
particle mass resolution 8.72 x 10°(L/100)3 M h~!. The
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Table 1
N-body Simulation Parameters

Name L my, € Zinit Mhalo,min Macc.min

(Mpc A™") (Moh™ (kpc i) (Moh™) (Moh™")
NB_L10_N2048 10 8.72 x 103 0.31 350 3.49 x 10° 2.18 x 107
NB_L15_N2048 15 2.94 x 10* 0.46 350 1.18 x 107 7.36 x 107
NB_L25_N2048 25 1.36 x 103 0.76 300 5.45 x 107 3.41 x 108
NB_L35_N2048 35 3.74 x 10° 1.07 300 1.50 x 108 9.35 x 108
NB_L50_N2048 50 1.09 x 106 1.53 300 4.36 x 108 2.73 x 10°
NB_L75_N2048 75 3.68 x 10° 2.29 300 1.47 x 10° 9.20 x 10°
NB_L100_N2048 100 8.72 x 10° 3.05 250 3.49 x 10° 2.18 x 10'°
NB_L150_N2048 150 2.94 x 107 4.58 250 1.18 x 10'° 7.36 x 10'°
NB_L200_N2048 200 6.98 x 107 6.10 200 2.79 x 10'° 1.74 x 10"
NB_L300_N2048 300 2.36 x 108 9.16 200 9.42 x 10 5.89 x 10"
NB_L400_N2048 400 5.58 x 108 12.2 150 2.23 x 10" 1.40 x 10'?

Note. Two realizations of each PM N-body simulation containing 2048> dark matter particles are run using 2LPT initial conditions. Dark matter halos are found with
a hybrid algorithm and have an average density p,,,, = 2007,,. For calculating the halo mass and accretion rate functions, the minimum masses correspond to 400 and

2500 particles, respectively.

gravitational softening length is set to 1/16th of the mean
interparticle spacing. Initial conditions are generated using
second-order Lagrangian perturbation theory (2LPT; Scocci-
marro 1998) with a linear transfer function from CAMB (Lewis
& Bridle 2002). The starting redshift zj,;; is chosen such that
the perturbations, ;s ~ 0.01, are still linear.

3. HALO MASS FUNCTION

The halo mass function in differential form is defined as the
comoving number density n(>M, z) of halos of mass M per
unit mass dM. In extended Press—Schechter theory (EPS; e.g.,
Bond et al. 1991; Lacey & Cole 1993), it is generally expressed
as

dn podIno™!
an PodMT 3
M f(U)M M (3)

where p, is the comoving average cosmic density, o is the rms
fluctuation of the smoothed linear density field, and f (o) is the
o-weighted distribution of random-walk barrier-crossings. For
a continuous density field, the variance of the density
fluctuations is calculated as

(M, 2) = [Pk, DIW k, M) PRk, “@

where P (k, z) is the linear power spectrum extrapolated to
redshift z and W (k, M) is the Fourier transform of the spherical
tophat window function of radius R = [M/(4/3mp,)]'/3.
Following Warren et al. (2006) and Tinker et al. (2008), the
barrier-crossing distribution function is parametrized as

F(o) = A[l n (%)a]w/“z, ()

where A sets the overall amplitude, a and b set the slope and
amplitude of the low-mass power law, and c¢ sets the
exponential decrease scale.

Missing large-scale power due to finite box sizes are
corrected using a similar procedure to Reed et al. (2007). An

effective variance is calculated as

o2 (M, z) = Y |6k, 2)PIW (k, M), (©6)
k

where 6 (k, z) is the Fourier transform of the linear overdensity
field extrapolated to redshift z. An effective mass Mg is
calculated by finding the mass in Equation (4) which would
yield a variance equal to o%. The effective quantities Mg and
oefr are used instead of their normal counterparts to calculate
the halo mass function.

We combine all of the simulations and bin the halos to
calculate the discrete halo mass function,

(N

AN _i Wi
AVAM ~“V.AM

i l

Each binned halo is given a weight w = M /M, such that total
mass in any given mass bin is conserved. Since simulations
with different box sizes have different minimum masses, the
effective volumes V differ for the various mass bins.

Figure 1 shows the differential mass functions and barrier-
crossing distribution functions at z = 6, 8, and 10. The mass
functions have a generic shape with a low-mass power-law and
a high-mass decaying tail. The function f (o) shows no redshift
dependence after correcting for finite box-size effects. Since
our box sizes are reasonably large for the mass and redshift
ranges considered, the corrections are typically small, only
~10% at z = 10 and ~1% at z = 6 for moderate masses.

The middle panels of Figure 1 show a comparison with the
best-fit results from Tinker et al. (2008), which are calibrated
for the mass range 10'! < M/(Moh™') < 10" and redshift
range 0 < z < 2.5. As suggested in their paper and through
personal communication, we use a maximum redshift z = 2.5
in their equations for the redshift evolution of the fitting
parameters to obtain A = 0.156, a = 1.36, b = 2.54, and
¢ = 1.19. The agreement is remarkably good overall
considering the extrapolation in both mass and redshift. It is
better at lower masses and at lower redshifts, but differences of
~20% are seen at the high-mass end where bright high-redshift
galaxies are expected to reside.

Since f (o) has a universal form for the scales and redshifts
considered, we choose to fit the z = 6 results only because of



THE ASTROPHYSICAL JOURNAL, 813:54 (14pp), 2015 November 1

2

%HH‘ T \\HH‘ T \\HH‘ T \\HH‘ T \\HH‘ i
P28 @ @ 8 0o zZ=6 A
i . ]
—~ 0 509 8o, oz =8 -
= r 20504 b
a0 r 2,050 a z =10 A
kol r A le) o 1
N R a0 o —
c r a O o © B
r A ]
z 4 L s ©O o e u} =
4L 5 ]
& Tt 2 %0 "o ]
- r o) o ]
-6 o o0—|
e H‘w@ -
£ 025 F YYIILL @@@%m E
S 0 Fa6606688R88R808 07 3
<025 F =
:HHl J—F llHlM J—F llLHM J—F llLHM J—F llHlM l:
E N T TTHTW T TTTHW T TTTHW T TTTHW T:
z 0.25 & =
e E E
~ 0 foogoao6etagegdessilo —mr@%i
= E 242330 Q5 E
<-0.25 & E
:HH‘ L1 \\HH‘ L1 \\HH‘ L1 \\HH‘ L1 \\HH‘ 1 3

108 109 1010 Lot 1012

M [Mgh]

Figure 1. Left: the differential halo mass function at z =
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6 (blue squares), 8 (green circles), and 10 (red triangles) from a series of N-body simulations (top).

Comoving number densities are in units of Mpc—3#* and halo masses are in units of M h~!. The simulation results are in good agreement overall with the best-fit
results from Tinker et al. (2008), but differences of ~20% are seen at the high-mass end (middle). For our new fit, the residuals are typically S5% across the mass and

redshift ranges of interest (bottom). Right: the barrier-crossing distribution function f (o) has a universal form for the scales and redshifts considered. The variable o

—1

increases monotonically with mass. Poisson error bars are shown if they are larger than the data point symbols.

the larger range and higher signal-to-noise. Furthermore, the
parameters a and b are kept unchanged because the simulated
halo catalogs do not sample the high-o (low-mass) power law
portion of the function. The best-fit barrier-crossing distribution
function is

o \ 136 .
f(U) = 0.150[1 =+ (m) :|e—1_14/(,-' )

The bottom panels of Figure 1 show that the residuals for the
new fit are <5% across the mass and redshift ranges of interest.
The larger deficits at the highest mass and particularly at higher
redshifts arise because we cannot perfectly correct for the
missing large-scale power in finite simulation boxes. In the
exponential tail of the halo mass function, a small mass change
can lead to a relatively large change in the number density.
While we have started the simulations at high enough initial
redshifts such that the second-order displacement corrections
are themselves small, starting at even high redshifts may reduce
the mass deficits.

The halo mass function can be calculated for any
cosmological model given the linear power spectrum. For our
set of cosmological parameters, the tophat variance can be fit to
<2% accuracy for 107 < M /(M h~") < 10" with

0.18
M
108 Mhl) @

o () =D ()] 0.11 + 0.()77(
where D(z) is the linear growth factor. Note that a double
power law plus a constant term can accurately fit the entire
mass range spanning mini-halos (M ~ 10° M_h~') to massive
clusters (M ~ 10" M h™Y).

4. MASS ACCRETION RATES

The halo accretion rate function in differential form is
defined as the comoving number density n(>M, z) of halos
with accretion rate M per unit accretion rate dM. In principle,
its functional form in terms of accretion rate and redshift can be
motivated with EPS theory. Alternatively, we take a novel
approach and express it as

dn  dn dM

dM  daM dM’
where dn/dM is the differential mass function (Equation (3)).
The advantage of using this functional form is that the redshift
dependence of the halo mass function is already well known.
To use Equation (10), we need to understand how mass and
accretion rate are related and be able to calculate the derivative
dM /dM.

Figure 2 shows how the mass accretion rate depends on mass
at z = 6, 8, and 10. The average accretion rates for the mass
range 103 < M < 10'3 and redshift range 6 < z < 10 are well
fit by

1.06 25
. M 1 +z
M) =021 M, yr~! ( ) .
(M) oY (108M<~7) 7

The residuals are typically <5% across the mass and redshift
ranges of interest. The larger deficits at the highest masses and
particularly at higher redshifts are related to those seen in the
halo mass function in Figure 1 since the accretion rates are also
affected by the missing large-scale power in finite simulation
boxes.

Our mass power-law slope of 1.06 is slightly shallower than
the value of 1.1 from Fakhouri et al. (2010) and slightly steeper
than the linear mass dependence from Correa et al.
(2015a, 2015b). We find similar results for M > 10'° M,

(10)

(1)
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Figure 2. Left: the average mass accretion rates at z = 6 (blue squares), 8 (green circles), and 10 (red triangles) are accurately fit by a (M) oc M9 (1 + z)?3 relation
(top). The SO halo rates are generally higher than the FoF halo rates from Fakhouri et al. (2010), but there is better agreement in the overlap mass range M > 10'° M,
(middle). For our new fit, the residuals are typically <5% across the mass and redshift ranges of interest (bottom). Right: the variance and skewness also have power-
law relations with mass, but with slightly shallower slopes and weaker redshift dependences. The statistical uncertainties in the binned mean values are shown if the

error bars are larger than the data point symbols.

where our mass range overlaps with theirs, but our accretion
rates become relatively larger (smaller) at lower mass because
of the shallower (steeper) slope. We all find the same redshift
power-law slope of 2.5 at high z. Fakhouri et al. (2010)
measure accretion rates from N-body simulations, but they use
a FoF halo finder instead. Since the ratio of M»yy and Mg is
neither constant with mass nor redshift, it is not surprising to
find differences between Mago and Mpop. Their fit is done at low
redshift z ~ 0 and it is not clear how well their best fit
compares to their own data for 6 < z < 10. Correa et al.
(2015a, 2015b) use EPS theory and N-body simulations to
derive and measure the mass accretion history, respectively.
They find a linear dependence on mass from their analytical
work and assume this same mass dependence when fitting the
numerical results. Thus, it is not clear if the latter would have
had a slightly higher mass power-law slope. Nonetheless, there
is overall good agreement between all of the results given the
differences in details.

The distribution of mass accretion rate at any given mass is
positively skewed. The best-fit relations for the variance
py = ((M — (M))?) and skewness p1; = (M — (M))3) are

1.0 1.1
M 14z
12 =028 M, yr! ( ) , 12
Hy oY 108M@ 7 ( )
1.0 0.6
M 14z
13 =042 M, yr! ( ) ) 13
s oY 105 M., 7 (13)

Equations (11)—(13) can be used with, for example, an
Edgeworth expansion to model the probability distribution
function of accretion rates at a given mass and redshift.
Mergers are responsible for the positive tail of the distribution.
Thus, the similarity in mass dependence and difference in

redshift evolution between <M),u12/ 2 and u;/ 3 reflect those

HH‘ T T \\HH‘ T T T TTTTT T T T TTTTT T T \\HH‘
-8 g i
o~ %4 b zZ=6 -
L Q o i
L Q § 5 oz=28 i
E [ 28qg sz =10 7
w —2 A OO —

— A OO
S 28 f
=] - A OB 5 B
<l L A0 4 i
74 - [m] —
L O o B
L O o _
76 — o —
Hld 1 1 llHHl 1 lllHHl 1 lllllHl 1 lllllHl 17
:THW T T TTTHW T TTTTHW T TTTTHW T TTTTHW T:
. 025 - -
£ A6 8888 8050 0gag s IS S I
o r BREEgE g0 8 % 3
< C %% i
~0.25 $ =
:HH | | \\HH‘ | | \\HH‘ | | \\HH‘ | | \\HH‘ \:
1 10t 10? 103 104
M [My/yr]

Figure 3. Differential halo accretion rate function at z = 6 (blue squares), 8
(green circles), and 10 (red triangles) from a series of N-body simulations (top).
Comoving number densities are in units of Mpc > and mass accretion rates are
in units of M, yr~'. The halo mass function and the halo accretion rate function
are similar in shape, with each having a low-end power law and a high-end
exponential decline. The latter can be predicted from the former using
Equations (10) and (14). The residuals are typically <10% for the mass and
redshift ranges of interest (bottom). Poisson error bars are shown if they are
larger than the data point symbols.

between the average accretion rate and the average merger rate.
See Fakhouri et al. (2010) for recent work on halo merger rates.

Figure 3 shows the abundance of dark matter halos as a
function of mass accretion rate at z = 6, 8, and 10. The halo
accretion rate function and the halo mass function are similar in
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shape, with each having a low-end power law and a high-end
exponential decline. We can model the halo accretion rate
function using Equation (10) and by combining the halo mass
function with the best-fit mediating mass,

M 0.91 1 +z 24
. (14)
Mg yr! 7

M: 4.2 X 108 M@[

The bottom panel of Figure 3 shows that the residuals for the
best fit are typically <10% for the mass and redshift ranges of
interest. The larger deficits at the highest M and particularly at
higher redshifts are related to those seen in the halo mass
function in Figure 1 since the accretion rates are also affected
by the missing large-scale power in finite simulation boxes.
Note that Equation (14) is not simply obtained from
Equation (11) because the distribution of accretion rate at a
given mass is skewed. However, they both have the convenient
property of separable power-law dependences on M, M, and z.

The halo accretion rate function does not have a simple
redshift dependence according to Equation (10). For a given
accretion rate, both the mediating mass and its derivative
increase at lower redshifts. This is a consequence of accretion
slowing down as seen in Figure 2. In contrast, the halo mass
function at a higher mass decreases in amplitude because more
massive halos are rarer in hierarchical structure formation. We
expect the redshift dependence in Equations (11)—(14) to hold
for redshifts z 2 6 relevant to the EoR. However, our single
redshift power law scaling is not appropriate at lower redshifts.
McBride et al. (2009) have shown that a more complex scaling
is required to parametrize the entire mass accretion history.
More work is required to examine the validity and accuracy of
extrapolating our results to lower redshifts.

5. ABUNDANCE MATCHING

Abundance matching is performed by equating the number
density of galaxies to the number density of halos in differential
form,

dngal _ dnpae dX

) (15)
dLyy dX dLyy
or in cumulative form,
ngal(>Luvs 2) = Nhao (>X, 2). (16)

If X is taken to be the halo mass M, then we infer the
luminosity—mass relation Lyy (M, z). This procedure does not
account for scatter in the mass-to-light ratio and the relation
should be interpreted as an average luminosity for a given
mass. If X is taken to be the mass accretion rate M, then we
infer the luminosity—accretion rate relation Lyy (M, 7). This
procedure accounts for the episodic nature of star formation
and scatter in the mass-to-light ratio. Furthermore, it is more
logical since the star formation rate should be more highly
correlated with the halo growth rate rather than halo mass.

The galaxy luminosity function is generally parametrized
with a Schechter function in luminosity form,

¢(Luv) = @(LLUV) exp(%), (17)

* *

TrAc, CEN, & MANSFIELD

or in magnitude form,
¢(MUV) =(0.41n10) (;S*[ 100»4(1"1**Muv)]‘“rl
 exp [ 100404 | (18)

where ¢, is an overall normalization, L, is a characteristic
luminosity, M, is a characteristic magnitude, and « is the slope
of the faint-end power law. The conversion between UV
magnitude and luminosity is given by the standard AB relation,

Lyv
Myy = —-2.510 . 19
o & ( 4.487 x 10 erg s~! Hz“) (19

The cumulative galaxy luminosity function is obtained by
integrating Equation (17) analytically to get the incomplete
gamma function ¢, L, I'(1 + «, Lyy/L,). The cumulative halo
mass function and mass accretion rate function do not have
simple analytical forms, but are easily obtained by numerical
integration.

Bouwens et al. (2015a) have made the most recent
measurements of the high-redshift UV luminosity functions.
For three redshift samples with (z) ~ 5.9, 7.9, and 10.4, there
are 867, 217, and 6 galaxy candidates observed, respectively.
For reference, their best-fit Schechter parameters are:

(z) 59, ¢, =50x10"% M, =—-2094, a =—187
)~ 79, ¢, =21x 1074 M, =-2063, a=-2.02
(z) ~ 104, ¢, =80 x 1075, M, = —20.92, o= —227
z— 104, ¢, =30 x 104, M, = —20.92, a = —2.27

where ¢, has units of comoving Mpc . Note that the last entry

above is not a best fit to the galaxy counts, but an extrapolation
of the luminosity functions from lower redshifts. They allowed
the parameters log ¢,, M,, and « to vary linearly with z and
fitted the galaxy counts in the redshift range 4 < z < 8 in order
to estimate the results for higher redshifts. Using the derived
redshift dependence, they were able to fix M, and « and then fit
for ¢, at (z) ~ 10.4. We note that M, = —20.92 at z ~ 10 is
rather bright considering that the best-fit characteristic
magnitude changed from —20.94 to —20.63 for z ~ 6-8.
Furthermore, the extrapolation from a different redshift range
5 < z < 8yields M, ~ —20.22 (Bouwens et al. 2015b), which
is more in line with the best-fit values for z ~ 6-8.

To estimate upper and lower bounds on a given galaxy
luminosity function, we vary the three Schechter parameters
using their uncertainties, add the weighted Schechter functions
to the Myy-¢ grid, and calculate the 68% confidence level. For
the weight, we use a trivariate Gaussian likelihood that assumes
uncorrelated errors. However, there is degeneracy between the
parameters and their errors are correlated. To prevent over-
estimating the confidence region, we reduce the errors in the
Schechter parameters to 2/3 of their original values. This
procedure allows us to match the 1o errors in the binned
measurements of the galaxy luminosity function. A more
rigorous statistical analysis would require using the full
likelihood for the galaxy luminosity function fit, which is not
available.

Figure 4 shows how the UV luminosity and magnitude
depend on mass and accretion rate at z ~ 6, 8, and 10 (i.e., 5.9,
7.9, and 10.4). The shaded curves are illustrative of the 1o
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Figure 4. Left: the UV magnitude as a function of halo mass for z & 6 (blue), 8 (green), and 10 (red) from abundance matching Lyy and M. The shaded curves are
illustrative of the 10 (68%) uncertainty in the currently observed galaxy luminosity functions and are truncated at the star formation limit. Right: the UV magnitude as
a function of mass accretion rate from abundance matching Lyy and M. The luminosity—accretion relation is more consistent with no redshift evolution than the
luminosity—mass relation for the redshift range 6 < z < 10. The luminosity monotonically increases with mass and accretion rate, but the effective power-law slopes
suggest that the relations should be fit with, for example, triple power-law functions (bottom).

(68%) uncertainty in the current galaxy luminosity function.
Our error analysis is able to capture the trend of increasing
uncertainty at higher redshifts. Neither the luminosity—mass
relation nor the luminosity—accretion-rate relation is repre-
sented by a single power law, but appears to be composed of
several power law portions.

To qualitatively understand the shape of the luminosity—
mass and luminosity—accretion-rate relations, we also plot their
effective power-law slopes in the bottom panels of Figure 4.
The cumulative galaxy and halo number densities can be
written in effective power form as ngy (L) oc LI,
Mhato (M) o< M +Peit and npyo (M) oc M' 7=, The luminosity—
mass and luminosity—accretion-rate relations can be written as
Lyy o Mt and Lyy o< M. From Equation (15), the slopes
are related through

dinLyy  dlnnye / dInngg 1+ By

Ot = . (20)
dinM dinM d In Lyy 1+ e
dlIn
ot = dIn LUV _ dIn nh.alo ngal _ 1 + Yeft ) (21)
dinM dinM dlI‘lLUV 1 +Oéeff

At low Lyy, M, and M, where the galaxy luminosity function
and halo mass and accretion rate functions are approximately
power laws (efr = @, Beir & —2, Y ~ —2), the effective
power-law slopes of the luminosity—mass and luminosity—
accretion-rate relations are approximately constant O A2
eerf =~ —1/(1 + «). At intermediate scales, the halo mass and
accretion rate functions deviate from their power law forms
before the galaxy luminosity function does, both Ger and
become more negative, and both b and e increase. As the
galaxy luminosity function deviates from its power law form,
Qeff becomes more negative, and both & and e decrease

again. At the very bright and massive end, both the galaxy and
halo number densities are exponentially decreasing, but such
that aegr < Gegr and qegr < 7, Tesulting in Oerr and e being
approximately constant. The effective power-law slopes
suggest that both relations can be fit with, for example, a
triple power law,

a b—a c—b
X X X
Lyv = Ly| — 1+ — 1+ — , 22
o O(Xa)( Xb) ( X) 22

where L is an overall amplitude, a, b, and c are three power-
law slopes, and X,, X;, and X, are three characteristic scales.

For the luminosity—mass relation, brighter galaxies are found
in more massive halos at any given redshift as expected from
the abundance matching procedure. At any given mass,
brighter galaxies are found at higher redshifts and this is a
consequence of the relative evolution of the galaxy luminosity
and halo mass functions. Our results are similar to Kuhlen &
Faucher-Giguere (2012), where they performed abundance
matching using older fits to the galaxy luminosity function and
halo mass function.

For the luminosity—accretion-rate relation, brighter galaxies
are found in halos with larger accretion rates at any given
redshift by construction. The z ~ 6-8 results are remarkably
very similar for the entire accretion rate of interest. In fact, the
luminosity—accretion-rate relation is consistent with no evolu-
tion for the redshift range 6 < z < 10 when taking into
account the current uncertainties in the galaxy Iuminosity
functions. In Section 7, we show that our results at z ~ 10 are
consistent with the binned measurements of the galaxy
luminosity function (e.g., Oesch et al. 2014; Bouwens et al.
2015a).
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The luminosity—accretion-rate relation at z =~ 6 can be fit
with a triple power law,

M 1.15
— 25 -1 -1
LUV =15 x 10 erg s Hz W)

M )().25
|1+ —

3.5 M yr!
M ~0.95
|1+ — ,
1000 M, yr—!
(23)
M
— 0.63 log M
3.5 M, yr!
+ 238 log M)
1000 M, yr~!

Because of the degeneracy between the triple power law
parameters, we choose to fix the low, middle, and high—M
slopes at 1.15, 1.40, and 0.45, respectively based on Figure 4.
There are still degeneracies between the amplitude and the
characteristic accretion rates. The residuals for the fit are <5%
across the accretion rate range of interest. If we assume no
evolution in the luminosity—accretion-rate relation, then
Equations (23) and (24) can be used as a universal EoR
template to construct a fiducial model for the evolution of the
galaxy luminosity function as discussed in Section 7.

6. STAR FORMATION EFFICIENCY

To better understand the high-redshift galaxy—halo con-
nection from abundance matching, we examine the implica-
tions of the inferred luminosity—mass and luminosity—
accretion rate relations on the star formation rate and
efficiency. The star formation rate M, can be estimated from
the UV luminosity using the standard relation from Madau
et al. (1998):

Y LUV -1
M. = (8 x 10%7 erg s~! Hzl)M@ e 3
assuming a Salpeter initial mass function (IMF) truncated at 0.1
M, and 125 M. The normalization is uncertain and depends
on the stellar IMF and formation history, but we adopt this
commonly used relation to allow a wider comparison with
other work.

We calculate the star formation efficiency in different ways
for the two abundance matching results. In the case of the
luminosity—accretion-rate relation, the star formation efficiency
is defined as

M
EM = —, 26
n= (26)
where the baryonic mass accretion rate,
. Q-
My = —2M (1 + z)*3, (27)
O
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is calculated assuming the cosmic baryon fraction. In the case
of the luminosity—mass relation, we assume no information
about accretion rates and define the efficiency as

= M; , (28)
Mb/tdyn
where the baryonic mass consumption rate,
32G Py |/
M _ (&M)( phdlo) x (1 4+ Z)I'S, (29)
tdyn Qmn 3

depends on the redshift-dependent halo dynamical time.
Equation (29) can be considered the three-dimensional (3D)
analog of the observed Schmidt—Kennicutt relation and is often
used in semi-analytical models and cosmological simulations
of galaxy formation. The star formation efficiency is expected
to range from ~0.01 to ~0.1, but keep in mind that the
normalization is uncertain.

We impose a star formation limit based on the criterion that
galaxies form in dark matter halos where the gas cools
efficiently through atomic transitions. For a minimum virial
temperature Tp;, = 10* K, the minimum mass for a halo to host
a galaxy is defined as

3/2 -172
QkTmin 4 _
Miin (2) = (—) (_phalo)

pumyg G 3
16 x 108 o, [ Do mh” 1/2(1 5 Z)3/2 (30)
' “\ 200 0.132 7 :

where the mean atomic mass is set as p = 0.6 for a fully
ionized intrahalo medium. For our fiducial model assuming a
universal EoR luminosity—accretion rate relation, the corre-
sponding limiting magnitude can be fit with the linear relation,

Myysp(z) = —10.0 — 0.35(z — 6). (€1))

Thus, we truncate all relevant curves in our figures at the star
formation limit.

Figure 5 shows the inferred star formation efficiencies from
abundance matching Lyy with M and with M. The uncertain-
ties in the efficiencies correspond to the those in the
luminosity—mass and luminosity—accretion-rate  relations
shown in Figure 4. The efficiency is not monotonic with mass
nor accretion rate at any given redshift, but has a maximum
value at a characteristic peak scale near where the galaxy
luminosity function transitions from a power law to an
exponential decline. This peak occurs at a characteristic
mass ~2 x 10" M, and a characteristic accretion rate
~6 x 102 M yr~!at 7 = 6.

The dependence of the star formation efficiency on mass and
accretion rate has a physical explanation. The reduced
efficiency at higher M and M is consistent with relatively
inefficient atomic cooling and cold gas accretion in larger
halos. The atomic cooling rate is relatively low at T > 10° K
(e.g., Sutherland & Dopita 1993) and this coincides with the
observed peak mass and accretion rate. The reduced efficiency
at lower M and M is consistent with feedback effects from
photoheating and supernova. Smaller halos are more severely
affected by feedback because of the lower binding energy,
which scales as M3/3. It is possible that the assumed Schechter
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Figure 5. Left: the star formation efficiency as a function of halo mass for z ~ 6 (blue), 8 (green), and 10 (red) from abundance matching Lyy and M. The shaded
curves are illustrative of the 1o (68%) uncertainty in the currently observed galaxy luminosity functions. Right: the star formation efficiency as a function of accretion
rate from abundance matching Lyy and M. The results are consistent with no evolution for the redshift range 6 < z < 10.

form for the galaxy luminosity function, in particular the
bright-end exponential decline and the extrapolated faint-end
power law, may not be accurate and therefore would bias the
inferred star formation efficiency. However, there is support for
the nonmonotonic efficiency, which has been observed at lower
redshifts (e.g., Guo et al. 2010; Leauthaud et al. 2012; Behroozi
et al. 2013b).

We find that the star formation efficiency €, inferred from
abundance matching Lyy and M is more consistent with having
no redshift evolution than the efficiency ¢y inferred from
abundance matching Lyy and M. Behroozi et al. (2013a) have
also found that there is lack of evolution in the star formation
efficiency ej; for the redshift range 0 < z < 8. Finkelstein
et al. (2015) have shown that the stellar baryon fraction
increases at higher redshifts over the range 4 < z < 8, but this
is consistent with both of our abundance matching results and
does not obviously favor one particular scenario. Our results
suggest that the star formation rate evolves more like (1 + z)>
rather than the commonly assumed (1 + z)!- scaling from the
3D analog of the Schmidt—Kennicutt relation. More precise
measurements of the galaxy luminosity function and a more
rigorous statistical analysis are required to strengthen this
argument.

We note that the comparison of the exponential tails in the
galaxy and halo abundances is very sensitive to the value of M,
in the Schechter luminosity function. In Figure 5, the star
formation efficiency curves are shifted to higher M and M
because having M, = —20.92 at z ~ 10 is rather bright
considering that the best-fit characteristic magnitude changed
from —20.94 to —20.63 for z ~ 6-8. Recall that the
extrapolation of the observed galaxy luminosity functions from
a different redshift range 5 <z < 8 yields M, ~ —20.22
(Bouwens et al. 2015b). With this fainter characteristic
magnitude, we expect the peaks in the star formation efficiency
e in Figure 5 (right) to be even more aligned.

The efficiency at z =~ 6 can be fit with a triple power law,

L \0.IS
ex=1.1x 1072 M
M@ yr71
v 0.25
|1+ —
3.5 M, yr!
. ~0.95
x M) 32)
1000 M, yr—!

Equation (32) corresponds to the best fit for the luminosity—
accretion-rate relation in Equation (23). This universal EoR
template can be used in semi-analytical calculations and
cosmological simulations to model star formation in high-
redshift galaxies during the EoR. Recently, Mashian et al.
(2015) have also applied the abundance matching technique to
calibrate a relation between star formation rate and halo mass.
They find a double power law scaling relation for
M > 10'°M_, which is consistent with our results when the
same mass range is considered.

7. GALAXY LUMINOSITY FUNCTION

To understand how the abundance of galaxies as a function
of luminosity and redshift is connected to the abundance and
growth of dark matter halos, it is informative to relate the
galaxy luminosity function to the halo accretion rate function
and the luminosity—accretion-rate relation. The luminosity
function in magnitude form can be calculated as

dn dM

=———" (33)
dM dMyvy

o (Myv, z)

where dn/dM is obtained using Equation (10). Since the
luminosity—accretion-rate relation and the star formation
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Figure 6. Galaxy luminosity function at z ~ 6 (blue), 8 (green), and 10 (red)
for our fiducial model assuming a universal EoR luminosity—accretion-rate
relation. The binned observational measurements at z ~ 6 (blue squares), 8
(green circles), and 10 (red triangles) from Bouwens et al. (2015a) and at
z =~ 10 (yellow triangles) from Oesch et al. (2014) are shown for comparison.
The luminosity functions match at z &~ 6 by construction and are in very good
agreement at z ~ 8. At z &~ 10, our fiducial model is still consistent with the
highly uncertain observations.

efficiency are consistent with no evolution for the redshift
range 6 < z < 10, it is intriguing to predict the galaxy
luminosity function using the universal EoR template for
Myy (M) given by Equation (24). If more precise measure-
ments of the luminosity function from upcoming observations
clearly deviate from this fiducial model, then it would point to
exciting, additional astrophysics in star and galaxy formation.

Figure 6 shows the predicted galaxy luminosity function at
z & 6, 8, and 10 for our fiducial model. The shaded prediction
curves reflect the 1o (68%) uncertainty in the luminosity—
accretion rate relation. The binned observational measurements
at6 < z < 10 from Bouwens et al. (2015a) and at z ~ 10 from
Oesch et al. (2014) are shown for comparison. Our results
match at z & 6 by construction and are in very good agreement
at z ~ 8. At z =~ 10, our model generally has larger amplitude
than the few observational data points. This explains the
apparent redshift dependence in the luminosity—accretion rate
relation (Figure 4) and the star formation efficiency (Figure 5).
However, our model is still consistent with the highly uncertain
observations. Thus, the luminosity—accretion rate relation
(Equation (24)) and the star formation efficiency (Equa-
tion (32)) are highly consistent with no evolution and can be
used as universal EoR templates for the EoR. Mashian et al.
(2015) and Mason et al. (2015) have also predicted similar
evolution for the galaxy luminosity function by relating
observed star formation rate to halo mass.

Table 2 shows the best-fit Schechter parameters for our
fiducial model for the redshift range 6 < z < 15. At higher
redshifts, the normalization ¢, decreases dramatically, the
characteristic magnitude M, is more positive (fainter), and the
faint-end slope « is more negative (steeper). While there are
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Table 2
Galaxy Luminosity Function Parameters

2 b, M, a

6 49 x 1074 —20.92 —1.88
7 3.6 x 107 —20.76 —1.94
8 24 x 107 —20.61 —2.01
9 1.5 x 1074 —20.46 —2.08
10 8.9 x 1073 —20.32 —2.15
11 5.0 x 1073 —20.18 —2.22
12 2.7 x 1073 —20.04 —2.30
13 1.4 x 1073 —19.91 —2.38
14 7.0 x 107° —19.78 —2.45
15 3.4 x 107° —19.64 —2.53

Note. The best-fit Schechter parameters for our fiducial model. The normal-

ization ¢, has units of Mpc 2.

degeneracies between the best-fit parameters, all three must
vary with redshift to have a good fit. Note that the differences:

Alog ¢(z) = log ¢(z) — log ¢ (6),

AMyy (z) = Myvy (2) — Myv(6),
and
Aa(z) = a(z) — a(6)

are more general and can be applied to estimate the evolution
of the galaxy luminosity function when a different calibration
at z ~ 6 is used. For better accuracy, we suggest repeating the
abundance matching procedure using the new galaxy lumin-
osity function and the halo accretion rate function.

We can explain the redshift dependence of the Schechter
parameters by considering what happens to the halo accretion
rate function (Figure 3) with increasing redshift. The overall
amplitude of the halo accretion rate function decreases and the
normalization ¢, also decreases accordingly. The characteristic
accretion rate, at which the halo abundance undergoes
exponential decline, shifts to lower values. Correspondingly,
the characteristic luminosity L, decreases and the characteristic
magnitude M, becomes more positive (fainter). Halos at a
given accretion rate are rarer and the slope of the halo accretion
rate function becomes steeper. Consequently, the faint-end
slope o becomes more negative.

If more precise measurements of the galaxy luminosity
function find different amplitudes at higher redshifts compared
to our fiducial model, then it could be due to a number of
reasons. It may simply be that the galaxy luminosity function at
Z =~ 6 used to calibrate our model may be overestimated or
underestimated given the current measurement errors. Or
perhaps it is due to additional astrophysics in star and galaxy
formation. Lower metallicity and less metal cooling could lead
to a larger Jeans mass for molecular clouds and therefore result
in a more top-heavy IMF. Less photoheating and less Jeans
smoothing of the IGM at an earlier stage in reionization could
result in more efficient gas accretion and star formation. This
would affect the formation and abundance of dwarf galaxies
and lead to different values for the faint-end slope. More
accurate measurements are required to understand the depen-
dence of the star formation efficiency on mass, accretion rate,
and redshift and to shed light on the galaxy formation process.
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Table 3
Forecast of Galaxy Counts for JWST
Z M3, M3, n(<Ms;) n(<Msy) dN (<Ms,)/dz dN (<M3,)/dz
6 —17.9 —16.9 5.1 x 1073 1.3 x 1072 50000 130000
7 —18.3 -17.3 2.4 x 1073 6.8 x 1073 21000 60000
8 —18.6 —-17.6 9.7 x 1074 32 x 1073 7800 26000
9 —18.9 —-17.9 3.5 x 107 1.4 x 1073 2600 9900
10 —-19.2 —18.2 1.2 x 1074 53 x 107* 760 3500
11 —-194 —18.4 34 x 1073 1.9 x 107* 210 1200
12 -19.6 —18.6 8.7 x 107° 6.1 x 10~* 49 340
13 —-19.8 —18.8 2.1 x 1076 1.8 x 1073 11 94
14 —20.0 —19.0 42 x 1077 5.0 x 1076 2 24
15 —20.2 —19.2 7.8 x 1078 1.2 x 107°© 0.4 6

Note. The absolute magnitude M, corresponds to an apparent magnitude limit myp = x. Cumulative comoving number density n(<Mag) has units of Mpc ™ and
cumulative galaxy count per angular area per unit redshift dN (<Mp)/dz has units of deg’z.
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Figure 7. Cumulative number of galaxies brighter than myy per square degree
per unit redshift at z = 6 (blue), 10 (green), 13 (yellow), and 15 (red) for our
fiducial model. JWST has the sensitivity to observe unlensed galaxies at least
down to M, (black x) at z S 13 (15) with apparent magnitude limit (gray)
map =~ 31 (32).

8. FORECAST FOR JWST

Future observations with the JWST will provide an exciting
and important window to the EoR. It will allow more precise
measurements of the galaxy luminosity function, particularly at
lower luminosities and higher redshifts. According to Wind-
horst et al. (2014, and through personal communication), JWST
has the sensitivity to reach AB apparent magnitude map ~ 31
with deep observations and even map ~ 32 with ultra deep
observations. They have suggested the strategy of observing a
large number of deep fields and a much larger number of
medium-deep surveys on gravitational lensing foreground
targets.

Figure 7 and Table 3 show the forecast based on our fiducial
model for the evolution of the galaxy luminosity function.
From z = 6 to z = 15, the limiting absolute magnitude Mg gets
brighter by ~2.3 mag as the luminosity distance increases by a
factor of ~2.8. The comoving number density of observable

11

galaxies n(<Myg) drops by about 4-5 orders of magnitude.
The number of observable galaxies per square degree per unit
redshift dN (<Myg)/dz changes similarly since the differential
comoving volume dV/dz only changes by a factor of ~2.2.
Mashian et al. (2015) and Mason et al. (2015) have also made
similar forecasts for JWST using their predictions for the
evolution of the galaxy luminosity function.

JWST has the sensitivity to observe 211 (24) unlensed
galaxies per square degree per unit redshift at least down to M,
at z < 13 (14) with deep (ultra deep) observations. It will be
able to probe some portion of the faint end at lower redshifts,
but it is still about 8 (7) magnitudes away from the expected
star formation limit. At z 2 13 (14), JWST will mainly probe
the exponential tail of the luminosity function, where the rarity
of galaxies will make them difficult to find. With apparent
magnitude limit mapg &~ 32, it can actually reach M, at z ~ 15.
Note that our forecasted counts will increase or decrease
depending on how the actual galaxy luminosity function at
z & 6 compares to the one used to calibrate our fiducial model.

Our fiducial model for the evolution of the galaxy luminosity
function and the corresponding forecast for JWST are for our
assumed cosmological parameters. If a different cosmological
model is considered, then the results at z ~ 6 would remain the
same since this is where the calibration is done, but the higher
redshift results would change. For example, consider what
happens if 2, or gy is increased. The ratio of the halo accretion
rate function at redshift z > 6 relative to that at the pivot z =6
will increase. As a result, the amplitude of the galaxy
luminosity function and forecast for JWST at higher redshifts
will also increase compared to our fiducial predictions.

9. DISCUSSION

The reionization history is determined by the evolving
abundance of escaped ionization photons, which depends on
the UV luminosity function, the spectral energy distribution,
and the radiation escape fraction of high-redshift galaxies. Only
a small fraction of the ionizing photon budget comes from
currently observable galaxies with Myy < —17 and at z < 10.
In order to calculate the total budget, we need to extrapolate the
luminosity function to fainter magnitudes and higher redshifts.
With our fiducial model, we can more confidently integrate the
luminosity function because of the well-behaved and physically
motivated evolution in the Schechter parameters.



THE ASTROPHYSICAL JOURNAL, 813:54 (14pp), 2015 November 1

10 Myy < Myygr =
My, < —10 ]
r Myy < Myyjusr
(R SRR
= =
g C
>~ L
~ [
A | -
~=
c L
0.1 &
Ool ‘ Il ‘ L Il ‘ Il Il ‘ Il

Figure 8. Cumulative ionizing photon count per hydrogen atom from our
fiducial model. The galaxy luminosity function is integrated down to the star
formation limit (blue) and to the commonly assumed limit Myy = —10 (red
dotted). Also shown is the contribution probed by JWST with apparent
magnitude limit myy ~ 31-32 (gray).

Figure 8 shows our prediction for the cumulative ionizing
photon number density,

Tmax dt
ny(>z) = f Ny (2)| —| dz, (34)
z Z
where the photon production rate density is calculated as
Migine .
oy (2) = fM 6 (Muv, 2)N, (Muy )dMyy. (35)
bright

A galaxy with Population II stars produces ionizing photons at
a rate given by (e.g., Bruzual & Charlot 2003; Schaerer 2003)

Lyv

ny ~ 1045-9*0-4Muv S71 ~ 1025.2 571 : -
erg s~ Hz~

). (36)

For the integration limits, we choose zm.x = 25 and
Myrighy = M, — 5. For My, we choose the star formation
limit given by Equation (31) or the commonly assumed limit
Myy = —10 (e.g., Bouwens et al. 2012; Robertson et al. 2013)
for comparison. We also show the contribution probed by
JWST with apparent magnitude limit myy ~ 31-32.

Our fiducial model for the galaxy luminosity function at
6 <z <8 is in very good agreement with current observa-
tions. At z = 10, it generally has higher amplitude but
shallower faint-end slope than the highly uncertain, best-fit
observations. Increasing (reducing) the ionizing photon
production rate at higher redshifts would hasten (delay) the
start of reionization and lengthen (shorten) its duration.
Subsequently, this would affect integrated measurements of
electron scattering on the CMB such as patchy Thomson
scattering, kinetic Sunyaev—Zel’dovich temperature anisotropy,
and polarization anisotropy. However, there is still no tension
with current EoR constraints since we poorly understand how
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the radiation escape fraction varies with halo mass, galaxy
luminosity, and redshift.

We impose a physically motivated star formation limit based
on the criterion that galaxies form in dark matter halos where
the gas cools efficiently through atomic transitions. For our
fiducial model, we find Myv sp =~ —10 at z = 6, but it becomes
more negative (brighter) with increasing redshift. This also
reduces the ionizing photon production rate at higher redshifts
compared to calculations using the commonly assumed limit
Myy = —10 at all redshifts. Careful consideration is necessary
when integrating the galaxy luminosity function down to the
faintest limit, especially if the faint-end slope is steep. For
example, if we extrapolate the fitting formula for the evolution
of the Schechter parameters from Bouwens et al. (2015a) and
integrate down to the commonly assumed magnitude limit, then
the photon counts increase by more than an order of magnitude
at high redshifts.

The cumulative photon count per hydrogen atom reaches
unity at z &~ 10 and therefore, reionization is completed below
this redshift since we have yet to account for the radiation
escape fraction. Assuming reionization ended at z > 6, the
luminosity-weighted radiation escape fraction is constrained by
(fuie) > 0.1. The lower limit is actually higher than this because
additional photons are required to balance recombinations in
the clumpy IGM. Since we observe radiation escape fractions
fose ~ 0.01 at z ~ 3 (e.g., Shapley et al. 2006), this suggests
that the escape fraction should vary with redshift. In addition,
the average number of recombinations per hydrogen atom is
<10 because the escape fraction cannot exceed unity by
definition. While these are only basic constraints, they already
help to narrow down the parameter space of reionization. In an
upcoming paper for the SCORCH project, we will make more
robust constraints on the radiation escape fraction and
hydrogen clumping factor.

In large-scale reionization simulations with box sizes
>50 Mpc k!, radiation sources are often identified with dark
matter halos from N-body simulations, with properties modeled
using simple scaling relations. The source luminosity L is
assumed to be proportional to the halo mass M through the
light-to-mass ratio, which can be constant (e.g., Iliev
et al. 2006), have mass dependence (McQuinn et al. 2007),
or have both mass and redshift dependence (e.g., Trac &
Cen 2007). However, in all three cases the luminosity is
deterministic, without any scatter to account for the episodic
nature of starbursting galaxies. In an upcoming paper for the
SCORCH project, we will use a physically motivated and
observationally constrained approach for modeling galaxy
formation in large-scale reionization simulations. Using the
luminosity—accretion rate relation, we can study the effects of
episodic star formation on the distribution and morphology of
Hu regions.

10. CONCLUSIONS

SCORCH is a new project to study the EoR and provide
useful theoretical tools and predictions to facilitate more
accurate and efficient comparison between observations and
theory. In this first paper, we probe the connection between
observed high-redshift galaxies and simulated dark matter
halos in order to better understand the distribution and
evolution of the primary source of ionizing radiation. A series
of 22 high-resolution N-body simulations shown in Table 1 is
used to quantify the abundance of dark matter halos as a
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function of mass M, accretion rate M, and redshift z. The
abundance matching technique is used to connect the
distribution of observed high-redshift galaxies to the distribu-
tion of simulated dark matter halos. The major results are as
follows.

1. The halo mass function dn/dM can be calculated using a
self-similar barrier-crossing distribution function f (o)
given by Equation (8). The new fit is ~20% more
accurate at the high-mass end where bright galaxies are
expected to reside.

2. The distribution of mass accretion rate at any given mass
is positively skewed. The average accretion rate (M),
variance [,, and skewness ji; as functions of mass and
redshift are quantified by Equations (11)-(13).

3. The halo accretion rate function dn/dM is related to the
halo mass function through a mediating mass relation,
and can be calculated using Equations (10) and (14). Both
halo abundance functions are similar in shape, with each
having a low-end power law and a high-end exponential
decline.

4. The luminosity—accretion relation Lyy (M, z) is more
consistent with no redshift evolution than the luminosity—
mass relation Lyy(M, z) for the redshift range
6 < z < 10. The former is quantified with a universal
EoR template given by Equations (23) and (24).

5. The star formation rate M evolves more like (1 + z)*°
rather than the commonly assumed (1 + z)! scaling.
More precise measurements of the galaxy luminosity
function and a more rigorous statistical analysis are
required to strengthen this argument.

6. The star formation efficiency ¢ is not monotonic with
mass nor accretion rate, but reaches a maximum value at
a characteristic mass ~2 x 10'' M, and a characteristic
accretion rate ~6 x 102 M, yr~! at 7z~ 6. A corre-
sponding template for the efficiency as a function of
accretion rate is given by Equation (32).

7. The faintest magnitude corresponding to the star forma-
tion limit is Myy sp =~ —10 at z = 6, but it becomes more
negative (brighter) with increasing redshift. The redshift
dependence is given by Equation (31).

8. The fiducial model for the galaxy luminosity function is
constructed from the halo accretion rate function and the
luminosity—accretion-rate relation using Equation (33).
The evolution of the Schechter parameters are shown in
Table 2: ¢, decreases, M, is more positive (fainter), and «
is more negative (steeper) at higher redshifts.

9. Forecast galaxy counts for JWST are shown in Table 3.
JWST has the sensitivity to observe 211 (24) unlensed
galaxies per square degree per unit redshift at least down
to M, at z < 13 (14) with deep (ultra deep) observations.
It will also be able to probe some portion of the faint end
at lower redshifts.

The numerical fits for the abundance matching results:
luminosity—accretion-rate relation, star formation efficiency,
Schechter luminosity function parameters, and JWST forecasts
are based on the current galaxy luminosity function at z ~ 6.
When updated observations are available, we suggest repeating
the abundance matching procedure using the new galaxy
luminosity function and the halo accretion rate function.
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