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ABSTRACT

We introduce a new project to understand helium reionization using fully coupled N-body, hydrodynamics, and
radiative transfer simulations. This project aims to capture correctly the thermal history of the intergalactic medium
as a result of reionization and make predictions about the Lyα forest and baryon temperature–density relation. The
dominant sources of radiation for this transition are quasars, so modeling the source population accurately is very
important for making reliable predictions. In this first paper, we present a new method for populating dark matter
halos with quasars. Our set of quasar models includes two different light curves, a lightbulb (simple on/off) and
symmetric exponential model, and luminosity-dependent quasar lifetimes. Our method self-consistently reproduces
an input quasar luminosity function given a halo catalog from an N-body simulation, and propagates quasars
through the merger history of halo hosts. After calibrating quasar clustering using measurements from the Baryon
Oscillation Spectroscopic Survey, we find that the characteristic mass of quasar hosts is ~ ´ -M h M2.5 10h

12 1

for the lightbulb model, and ~ ´ -M h M2.3 10h
12 1 for the exponential model. In the latter model, the peak

quasar luminosity for a given halo mass is larger than that in the former, typically by a factor of 1.5–2. The
effective lifetime for quasars in the lightbulb model is 59Myr, and in the exponential case, the effective time
constant is about 15Myr. We include semi-analytic calculations of helium reionization, and discuss how to include
these quasars as sources of ionizing radiation for full hydrodynamics with radiative transfer simulations in order to
study helium reionization.
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1. INTRODUCTION

Helium reionization is an important epoch in the universe’s

history, and the most recent large-scale transition of the

intergalactic medium (IGM). During the epoch of hydrogen
reionization, the first stars and galaxies emitted photons capable

of ionizing hydrogen and singly ionizing helium (whose

ionization energies are 13.6 and 24.6 eV, respectively).
However, the spectra of these first sources did not contain a

sufficient number of high-energy photons capable of doubly

ionizing helium, which requires a much larger ionization

energy (54.4 eV). Consequently, helium was predominantly
singly ionized following hydrogen reionization until a burst of

quasar activity at redshifts z6 2. Quasars are thought to

be the first objects to emit an appreciable number of photons
capable of doubly ionizing helium. However, because the birth

of quasars requires additional time for structure to form and

sufficient mass to assemble inside dark matter halos, this period
of evolution occurs later in the universe’s history.

Recent and upcoming efforts to look for quasars include the
Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III

(Dawson et al. 2013), the Hyper Suprime Cam of the Subaru

telescope (Kashikawa et al. 2015), and DESI (Schlegel
et al. 2011). There are currently about 420,000 unique quasar

objects (Flesch 2015), with this number projected to increase

by an order of magnitude after the conclusion of the next

generation of experiments. This rich set of observations allows
us to characterize quasars to an unprecedented level of

accuracy, and better characterize their properties. This is

especially true at high redshift (z 6), where there are
currently few observations. Determining quasar properties at

high redshifts is helpful for understanding the growth of

structure, as well as providing observations of reionization
through measuring their absorption spectra.

Observations have shown that quasar activity peaks between
z2 3 (Warren et al. 1994; Schmidt et al. 1995). The

Gunn–Peterson trough (Gunn & Peterson 1965) of helium has
been detected at >z 3 (Jakobsen et al. 1994; Zheng et al. 2008;
Syphers & Shull 2014), implying that some fraction of helium
was still present as He II at these redshifts. Helium absorption
then transitions to becoming patchy, with extended regions of
absorption and transmission in the He II Lyα forest (Reimers
et al. 1997), and seems to be completed by ~z 2.7 (Dixon &
Furlanetto 2009; Worseck et al. 2011), which coincides with
the peak in quasar activity. However, to observe the Gunn–
Peterson trough of He II, the sight line must be free of any
intervening Lyman-limit systems. This means that the number
of observations for these measurements is rather small
(of ( )10 ).
When discussing helium reionization, it is important to

understand the properties of the ionization sources, such as
quasars’ lifetimes and light curves. On the theoretical side of
the problem, there are some predictions for quasar properties,
but also a fair degree of uncertainty. By treating quasars as
accretion disks around super-massive black holes (SMBHs),
one can show that the maximal conversion efficiency ò for
converting mass to luminosity is ~ 0.3 (Thorne 1974).
Further, for matter accreting onto an SMBH at the Eddington
limit (Eddington 1926), one obtains an exponential increase in
mass and luminosity with a characteristic timescale (called
the Salpeter e-folding time) of t = 45 Myr for = 0.1
(Salpeter 1964; Wyithe & Loeb 2003). Cosmological simula-
tions that seek to capture the relationship between quasars and
their galaxy hosts have treated quasar activity as being the
result of a major-merger event between two galaxies (Springel
et al. 2005; Hopkins et al. 2006, 2008), or a cold-flow accretion
of gas onto the central SMBH (Di Matteo et al. 2012).
However, there is no definitive evidence that quasars accrete
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exclusively at the Eddington limit, or are limited to a single
episode of highly luminous activity.

Observations can also help us understand the physics of
quasars, though typically at larger scales than theory or
simulation. Since the entire rise and fall of quasar number
density spans a time of roughly 109 years, the quasar lifetime
must be shorter than this (Osmer 2004). At the other extreme,
observations of the quasar proximity zone show that quasar
lifetimes should be at least 105 years (Martini 2004). This
timescale corresponds to the photoionization timescale of
relatively high-density neutral hydrogen systems observed to
be ionized in the IGM, and so the lifetime of the quasar must be
at least this long in order to maintain the highly ionized level of
these systems observed in the Lyα forest. Further constraints
are difficult to obtain, and usually rely on indirect methods such
as quasar clustering measurements (e.g., Porciani et al. 2004;
Porciani & Norberg 2006; White et al. 2012). Estimates made
using these methods yield values for the quasar lifetime that are
10–100Myr, with most values being ∼30Myr, which is
comparable to the Salpeter e-folding time. Further, there are
few definitive constraints on quasar light curves (though see
Hopkins & Hernquist 2009).

For the universal populations of quasars, the major pieces of
data are their number density as a function of luminosity and
redshift (i.e., the quasar luminosity function (QLF) ( )f L z, ,
e.g., Schmidt & Green 1983; Boyle et al. 2000; Ross
et al. 2013), and their spatial clustering (Outram et al. 2003;
Porciani et al. 2004; White et al. 2012). These observations can
constrain scaling relations between quasars and their hosts
(e.g., Conroy & White 2013), or used to calibrate subgrid
models for simulations (e.g., Feng et al. 2014). However, as
mentioned above, the properties of individual quasars are
difficult to extract from these observations, due to degen-
eracies. The imposed constraints are typically weak, and only
provide order-of-magnitude precision.

Cosmological simulations are an ideal tool for furthering our
knowledge about this portion of the universe’s history. Helium
reionization leaves a lasting impression on the thermal history
of the IGM: the relative hardness of quasar spectra means that
there is a large degree of photoheating of the IGM while
reionization is occurring. Thus, it is important to include
hydrodynamics in simulations, in order to include the effects of
baryonic physics. Additionally, due to the relatively long mean
free path of far-UV and soft X-ray photons when looking at
helium reionization, it becomes important to include radiative
transfer calculations in simulations. Thus, semi-analytic
calculations that assume a sharp reionization front are typically
poor approximations of the physical situation. Even 1D
radiative transfer codes are not realistic enough to calculate
the inhomogeneous reionization process, especially when
reionized regions begin to overlap. Due to the highly biased
nature of quasar sources, this is typically early in the
reionization process. Therefore, 3D radiative transfer calcula-
tions are essential for capturing the complicated physics of
helium reionization. As mentioned earlier, the large degree of
thermal heating argues for simulations in which the hydro-
dynamics calculations are coupled to the radiative transfer
ones. This work builds on and extends previous investigations
of helium reionization, which either were semi-numerical
(Furlanetto & Oh 2008; Dixon et al. 2014) or applied radiative
transfer in post-processing (McQuinn et al. 2009, 2011;
Compostella et al. 2013, 2014).

Our approach to helium reionization uses simulations, with
N-body, hydrodynamics, and radiative transfer solved simulta-
neously. An essential first step of this calculation is to
understand the sources of reionization, and ensure that their
properties match the observations as nearly as possible. To this
end, we use the observed QLF from the SDSS and the
COSMOS survey across various redshift epochs (Masters et al.
2012; McGreer et al. 2013; Ross et al. 2013,
hereafter M12, M13, and R13) and the clustering measure-
ments from BOSS (White et al. 2012) to inform the properties
of individual quasars for our simulation input. By using these
two constraints, as well as a formalism for populating dark
matter halos with quasars that we will outline below, we are
able to select simulated quasar hosts that agree well with the
latest observational constraints. Specifically, matching the QLF
means that we have an observationally accurate number of
ionization sources, and matching the clustering measurements
means our topology of reionization (e.g., the size and overlap
of reionized regions) will be similar to the actual reionization
process. The clustering can also have an effect on the spatial
correlations present in the radiation field, which can affect the
baryon acoustic oscillation (BAO) measurement from the Lyα
forest.
This first paper of the series discusses the way in which we

create sources for our simulations of helium reionization. In
Section 2, we describe our simulation strategy, and how we
construct a quasar catalog from an N-body halo catalog. In
Section 3, we explain how we modify our quasar properties in
order to match recent observations. In Section 4, we explore
implications of our findings for quasar populations. In
Section 5, we discuss implications for helium reionization.
Finally, in Section 6, we summarize our presentation and lay
out future directions. Throughout this work, we assume a
ΛCDM cosmology with W = 0.27m , W =L 0.73, W = 0.045b ,
h=0.7, s = 0.88 , and =Y 0.24He . These values are consistent
with the WMAP-9 year results (Hinshaw et al. 2013).

2. MODELING QUASARS AS RADIATION SOURCES

2.1. Radiation-hydrodynamic Simulations

When modeling helium reionization, we employ the
RadHydro code, which includes N-body, hydrodynamics, and
radiative transfer calculations simultaneously. The code
includes a particle mesh (PM) solver for gravity calculations,
a fixed-grid Eulerian code for solving hydrodynamics, and
radiative transfer solved by performing ray-tracing. For more
details on the hydrodynamics portion of the simulation code,
see Trac & Pen (2004). For more details regarding the
RadHydro code and its application to hydrogen reionization,
see Trac & Cen (2007) or Trac et al. (2008).
The simulation strategy we employ for our exploration of

helium reionization consists of two steps. First, a high-
resolution N-body simulation is run for a given set of initial
conditions. Halos are found on-the-fly using the friend-of-
friends algorithm, and a corresponding catalog of spherical
overdensity halos are saved at even steps in cosmological time
(Trac et al. 2015). Then, using the same initial conditions, a
medium-resolution simulation using the RadHydro code is run.
In order to provide accurate sources of ionizing photons for the
radiative transfer calculations, it is necessary to convert the
halo catalogs produced from the first simulation into quasar
catalogs for the second simulation. Since the resolution of the
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RadHydro simulations is comparatively low (typically a hydro
grid unit is 10–100 -h 1 kpc), the simulations are not able to
accurately capture the subgrid, galaxy-level physics to include
quasars directly. Thus, either a halo-level scaling relation or
observational constraint is needed in order to create a
physically reliable sample. Rather than having to rely on
scaling relations that require several steps to convert between
halo mass and quasar luminosity, we use abundance matching
to calculate luminosity as a function of mass, and then use
observations to create a population with the proper
characteristics.

In order to calibrate the proper quasar properties to use, a
suite of 10 N-body P3M simulations with =L 1 -h 1 Gpc and
20483 dark matter particles were run, which corresponds to a
particle mass of = ´ -m h M8.72 10p

9 1 . The total volume is

thus 10 ( -h 1 Gpc)3; the BOSS measurement of the two-point
correlation function in White et al. (2012) has an effective
volume of 9.8 ( -h 1 Gpc)3, so the volumes are comparable.
Then halo finding was performed which produced the
associated halo catalog snapshot every 20Myr between

z2 10. Since only comparatively massive halos serve as
hosts for the bright quasars of interest, the simulations have a
sufficient resolution to capture the required number of halos.

2.2. Quasar Light Curves

The first step in our model construction is to define the
properties of individual quasars. The two most important of
these are the light curve (i.e., L(t)) and the quasar lifetime. The
most common model found in the literature for the light curve
of quasars is the so-called lightbulb model, in which a quasar
emits radiation at a constant luminosity for a lifetime tq before
turning off. Though largely unphysical, this model has the
convenience of being simple to implement in calculations. A
further simplification is typically made in which it is assumed
that tq is independent of luminosity, so that this quantity
becomes a universal property.

A more realistic model of the light curve is to assume an
exponential form. This type of model can be motivated
physically by noting that it corresponds to Eddington accretion
onto the central SMBH. Several variations on this version
include an exponential ramp-up to some peak luminosity
followed by abrupt turn-off, a symmetric exponential about
some peak luminosity, or an exponential ramp-up with a
power-law fall-off in luminosity (Hopkins & Hernquist 2009;
McQuinn et al. 2009). While these models are more physically
motivated, they are slightly more complicated. The approach
we outline below is able to reproduce a given luminosity
function for quasar light curves of this form.

Specifically, we consider here two classes of quasar light
curves: the “lightbulb” model and “exponential” model,
defined as:

( ) ( ) ( ) ( )= Q + - Q - +L t L t t t t t t2 2 , 1q qlb peak 0 0

( ) ( ∣ ∣ ) ( )t= - -L t L t texp , 2exp peak 0

where ( )Q t is the Heaviside theta function and t0 is the time

when the quasar reaches its peak luminosity Lpeak. In the

exponential case, the parameter τ can be treated as a free

parameter in a manner analogous to tq in the lightbulb case.

Nevertheless, we relate τ to tq, which we will describe in more

detail in Section 2.4.

Another consideration is the quasar lifetime itself, which in
general need not be a universal property of all quasars. We
have parameterized quasar lifetime as a function of luminosity
using a power-law form:

( ) ( )=
g⎛

⎝
⎜

⎞

⎠
⎟t L t

L

L10
, 3q 0 10

where we vary the values of t0 and γ. We explore models in

which t10 10 year7
0

9 , and g-0.25 0.10. Positive

values of γ imply that brighter quasars have longer lifetimes

compared to dimmer ones, and g = 0 is the case of a universal

lifetime for all quasars.

2.3. Triggering Rate

We have discussed considerations for the individual quasars
(i.e., light curves and lifetimes), and we wish to connect them
to the universal quasar population (i.e., the QLF). In order to do
so, we use the concept of a triggering rate ˙ ( )n L z,peak , which
dictates the differential number density of quasars that reach
their peak luminosity Lpeak as a function of luminosity and
redshift per unit logarithmic luminosity. Using the formalism
outlined in Hopkins et al. (2006), we distinguish between the
peak luminosity of a quasar Lpeak and the instantaneous
luminosity at which it is measured for the construction of the
QLF L, and relate the two with the triggering rate ṅ.
Essentially, the triggering rate must be convolved with the
light curve of the quasars, since the measured luminosity
function reflects a given quasar’s current luminosity L rather
than its intrinsic peak luminosity Lpeak. The result of this
convolution is the observed QLF from the intrinsic triggering
rate:

( )
( )

˙ ( ) ( )òf =L z
dt L L

d L
n L z d L,

,

log
, log . 4

peak
peak peak

As explained in Hopkins et al. (2006), ( )f L is the QLF (i.e., the

comoving number density of quasars per logarithmic bin in

luminosity), and the quantity ( )dt L L d L, logpeak is the

amount of time that a quasar spends in a logarithmic luminosity

bin. Essentially, the triggering rate can be thought of as

analogous to the halo mass function, though with the light

curve convolution to account for changes in quasar brightness.

In simple cases of the light curve the triggering rate can be

solved for analytically: in the case of a lightbulb light curve,

( )dt L L d L, logpeak is a delta function at =L Lpeak, and so the

triggering rate is proportional to the QLF:

˙ ( ) ( ) ( )f=n L z
t

L z,
1

, . 5
q

lightbulb

In the case of an exponential light curve as defined in

Equation (2), we have

˙ ( )
( )

( )
t
f

=
=

n L z
d L z

d L
,

1

2

,

log
, 6

L L

exp

peak

where the factor of 2 arises because a quasar will be observed at

a luminosity L while its luminosity is increasing and then

decreasing. In practice, the QLF is typically reported in

magnitude units rather than luminosity. One common conven-

tion is to report the quasar’s absolute i-band magnitude at
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z=2, ( )=M z 2i . This quantity is then converted to the

specific luminosity at 2500Å, ÅL2500 , in cgs units

(erg s−1Hz−1
) by using Equation (4) of Richards et al. (2006):

[ ( )

( )] ( )

Å

p
=- =

+ + +

⎜ ⎟
⎛

⎝

⎞

⎠
L

d
M zlog

4
0.4 2

48.60 2.5 log 1 2 , 7

i10
2500

2

10

where = = ´d 10 pc 3.08 1019 cm. To find the approximate

bolometric luminosity, the relation of Shen et al. (2009) can be

used to convert ( )=M z 2i to luminosity in erg s−1:

( ) ( )= = -M z L2 90 2.5 log .i 10

One should note that this relation is approximate, and depends

on the assumed spectral energy distribution (SED) of the

quasar. Equation (4) is soluble for a few classes of light curves,

such as the ones explored here.

2.4. Abundance Matching

The technique of abundance matching has already been
applied to populations of galaxies with great success (e.g.,
Simha et al. 2012; Hearin et al. 2013), and has also been
discussed in the context of quasars (e.g., Martini &
Weinberg 2001; Porciani et al. 2004; Croton 2009). However,
we wish to extend the techniques mentioned above to include
different quasar light curves and lifetimes. The methods we
outline below are also fairly general, and can be extended to
include semi-analytic models as well. We start with the Ansatz
for abundance matching of galaxies, namely that the most
luminous galaxies are found in the most massive halos. This
makes intuitive sense: more massive halos have more dark
matter and baryonic matter to eventually convert to stars.
Specifically, halo mass is highly correlated to the luminosity in
the red bands, which shows the percentage of older
stellar mass.

For quasars, we have a similar situation where the most
luminous quasars are found in the most massive halos.
However, in this case the situation is slightly more complicated
because quasars have a lifetime which is much shorter than the
period from the halo’s formation to the activation of the quasar.
Thus, we need to introduce a factor to account for the fact that
not all halos host an active quasar. If we assume that the
fraction of halos hosting an active quasar is universal (i.e.,
independent of halo mass or quasar luminosity), we can express
abundance matching for quasars, assuming a lightbulb light
curve, as:

( ) ( ) ( )f > = >L f n M . 8on halo

Expressed this way, fon is simply the fraction of halos of a mass

M that host an active quasar. Alternatively, we could define this

fraction in terms of the quasar lifetime:

( )
( )

( )
( )=f L z

t L

t z
, , 9

q

H
on

where in some models tH(z) is formulated as the halo lifetime

(Martini & Weinberg 2001), or the Hubble time (Conroy &

White 2013). We follow Conroy & White (2013) and use the

Hubble time. As we shall see, though, the exact choice for tH(z)

does not strongly affect the results. For the redshifts of interest,

for a uniform value of =t 30 Myrq , this implies

that –~f 0.1% 1%on .

We can generalize the procedure of abundance matching to
different light curves by using the triggering rate. In integral
form, we can write abundance matching as equating the
cumulative number of quasars above a particular peak
luminosity given by the triggering rate with the cumulative
number of halos given by the halo mass function. The total
number of halos which should host quasars within a time
interval Dt is:

˙ ( )

( )

( )
( )

* *

*

*

*

*
*

*

*
*

ò ò

ò ò

ò

=

=
D

D

¥

D

¥

¥

n L d L dt

dn L

d M

d M

d L

dP

dt
d L dt

t

t

dn M

d M
d M

log

log

log

log
log

log
log . 10

t L

t L

H M

halo

halo

This form of our abundance matching equation becomes the

central mechanism by which we are able to equate quasar

luminosity with host halo mass. In this construction, we have

implicitly used the mass-to-light ratio d M d Llog log to

convert halo mass to quasar luminosity. Additionally, we have

introduced the factor dP dt to represent the probability that an

individual halo will host a quasar. We have set this quantity to

be equal to t1 H . Thus, for the case of a lightbulb light curve

and a universal quasar lifetime, this formalism reduces to

Equation (8). Formally, this expression is an expansion of

˙ ( )*n L z, about z that is first-order accurate to Dt tH (Hopkins

et al. 2006). Thus, so long as the time-steps between

determining the triggering rate are small compared to tH
(defined either as the Hubble time or the halo lifetime, both

several orders of magnitude longer than the typical quasar

lifetime), this expression should reproduce the target QLF.
In the exponential case, we are free to choose the parameter

τ in any way that we like, as long as it is constant with respect
to L (though it may vary with Lpeak). We have chosen τ such
that ˙ ( )n Lpeak is the same between the lightbulb and exponential
cases for all luminosities. We accomplish this by equating
Equations (5) and (6), and solving for τ in terms of tq. The
expression involves the ratio of the QLF and its derivative. This
means that when we perform abundance matching, the same
implicit mass-to-light ratio is used in the two cases. Since the
halo mass function is the same between the two cases (due to
the same population of halos being used), and the functional
form of ṅ is the same, we must have the same form of
d M d Llog log . This has the advantage of allowing us to
apply certain intuition from the lightbulb case to the less
straightforward exponential case. The downside to this
approach is that when exploring the parameter space of quasar
lifetimes tq in the lightbulb case, it is not immediately obvious
how this translates to the exponential time constant τ, since we
effectively have different values of tq for different luminosities.
For instance, even in cases where tq is independent of
luminosity, τ still changes as a function of L. However, the
benefits of being able to interpret the results of the exponential
case using the intuition provided by the lightbulb case
outweigh the downsides of not exploring parameters in τ
directly.
The general procedure is as follows.

1. The halo mass found from the halo catalog at redshift zcat
is read and converted to an expected number density in a

4
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particular cosmology using the universal mass function
described in Tinker et al. (2008). The fitted form of the
mass function is used rather than the empirical one from
the catalog in order to decrease the variation in number
density at the high-mass end, since these quasars are
disproportionately important for the reionization process.

2. Using Equation (10), the halo number density is
converted to an expected quasar number density using a
specified QLF.

3. The quasar magnitudes are binned into equal intervals in
magnitude DM , such that the expected triggering rate
˙ ( ) ˙ ( )¼ + Dn M z n M M z, ,cat cat is found, which is con-
verted from a number density to a total number ˙ ( )N M
using the volume of the simulations.

4. Within each magnitude bin, each quasar is assumed to
have an equal probability of becoming active. Each
quasar candidate is randomly turned on with probabil-
ity ˙ ( )N M1 bin .

5. To ensure that the volume self-consistently follows the
merging of the underlying host halos, the quasars are
propagated forward using a halo merger tree. By design,
the halo catalog snapshots are made at times that are
shorter than the expected lifetimes of the quasars. This
approach allows for halos hosting quasars to be tracked
throughout the simulation. In most cases, an active quasar
from time step -i 1 in a progenitor halo passes to the
single descendent halo at time step i. Additionally, this
halo hosting an active quasar is not eligible to host a new
quasar. This approach covers the majority of halos for the
majority of time steps. However, there are several special
cases related to merger events worth discussing. Speci-
fically, when two progenitor halos merge into a single
descendent and one of them is hosting an active quasar,
the descendent halo inherits the active quasar. If a single
active progenitor halo splits to form two descendent
halos, the larger halo retains the quasar. In the case of a
merger between two active quasar halos, only the larger
quasar survives. These cases represent a comparatively
low number of instances of our total population
evolution, and do not strongly influence our conclusions.

2.5. The Quasar Luminosity Function

Throughout this work, we use a series of QLFs as
determined at different epochs. For relatively low-redshift
( z2 3), we use the QLFs as determined by R13 from the
BOSS survey, specifically the high-z stripe 82 sample (S82)
form which includes luminosity evolution and density evol-
ution (LEDE). Above a redshift of 3, the QLF has been
measured at ~z 3.2 and ~z 4 by M12 using data from
COSMOS.1 At ~z 5, the QLF has been measured by M13
using data from the SDSS.2 Although these works use slightly
different values for cosmological parameters from the ones
assumed here, the impact on the reported quantities is minimal.

In order to span the different epochs over which the
luminosity function has been measured, it is necessary to
combine the different data sets. All of the data sets fit to a
double power law form of the QLF, written as:

( ) ( )
( )( ) ( )( )

*

* *

f
F =

+a b+ - + -
M

10 10
, 11

M M M M0.4 1 0.4 1

where Φ is the comoving number density of quasars of

magnitude M per unit magnitude, *f is the normalization of the

QLF, α is the faint-end slope of the luminosity function, β is

the steep-end slope (which is reversed from the parameteriza-

tions of M12), and M* is the so-called break magnitude where

the luminosity function transitions from the faint-end to the

steep-end. In most formulations at high-redshift, redshift

evolution is incorporated by a change in *f , M*, or both, that

is linear in redshift. For the data from R13, the evolution is

given by the equations:

( ) ( ) ( )* *f f= + -z k zlog log 2.2 , 1210 10 0 1

( ) ( ) ( )* *= + -M z M k z 2.2 . 13i 0 2

For the data in M13, there is linear evolution in *flog10 as

well, given as:

( ) ( ) ( )* *f f= + -z k zlog log 6 . 1410 10 0 1

To combine the R13, M12, and M13 data sets into a single
set of quantities, we first assume that the results from R13 are
accurate for redshifts z 3.5. This is the nominal limit of the
LEDE fits, and though there are small differences between the
fit QLF and the binned data, overall the fits are excellent. To
incorporate the results at higher redshifts, we cast the four
parameters of the QLF ( *f , M*, α, and β) as quantities that
have linear evolution in redshift. We define these parameters
as:

( ) ( ) ( )* *f f= + -z c z alog log 3.5 , 1510 10 0 1

( ) ( ) ( )* *= + -M z M c z b3.5 , 150 2

( ) ( ) ( )a a= + -z c z c3.5 , 150 3

( ) ( ) ( )b b= + -z c z d3.5 . 150 4

These parameterizations are applied to redshifts where >z 3.5.

The constant values are defined to be equal to the values of R13

at z=3.5, and the values for the slopes (c1–c4) are allowed to

take on a range of values. The range is generally chosen such

that the values for the different parameters brackets the range of

best-fit values provided by the highest redshift (M13) data. The

fiducial values for the slopes are taken to be ones that

reasonably reproduce the high-redshift measurements. Table 1

shows the fiducial values for the slopes, as well as the range of

values for the parameters at ~z 5 used in the parameter space

exploration in Section 5. For a complete discussion on selecting

the parameters for the QLF, see Appendix A.
Table 1 lists the parameters that we include from the

measurements of R13, M12, and M13. The values from M12
are not included in the fitting procedure directly, and serve
primarily as a consistency check due to their comparatively
large error bars. The parameters from M13 are determined at
~z 5, and the ones from M12 are determined at ~z 4 and
~z 3.2. Note that the authors of M13 provide three

independent fits to their data, which are all incorporated into

1
Additionally, the QLF at ~z 4 has also been measured by Glikman et al.

(2011) and Ikeda et al. (2011). As noted in M12, the normalization of the QLF
of Ikeda et al. (2011) is comparable, whereas the normalization of Glikman
et al. (2011) is larger than the others by a factor of ∼4. M12 notes that the
difference can be caused by contamination of the faintest-magnitude bins from
dwarf stars and high-redshift galaxies. In the following analysis, we use the
results from M12.
2

An upper limit for the QLF at ~z 5 was found by Ikeda et al. (2012), which
is consistent with the results of M13.
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the final QLF parameterization. (See Appendix A for more
details.) For the measurements from R13, whose fiducial LEDE
model includes redshift evolution in *f and M*, the model is
valid over a range of redshift, from z2.2 3.5. For the
purposes of generating our quasar catalogs, we are interested in
exploring the QLF until z=2. For the sake of simplicity, we
simply extend the LEDE model from R13 to this redshift.
Although the LEDE fit is ostensibly not valid below z=2.2,
we expect helium reionization to be largely finished by this
redshift, and so the precise form of the QLF at ~z 2 is not of
fundamental importance to our study. Also, for the value ofM*,
it is necessary to convert to a single magnitude system. As
explained in Section 2.3, we use ( )=M z 2i , the absolute i-band
magnitude at z=2. The QLFs of M12 and M13 use M1450,
which is related to ( )=M z 2i by ( )= = -M z M2 1.486i 1450

(Richards et al. 2006; Ross et al. 2013, Appendix B). Note that
this conversion assumes that the quasar SED follows a power-
law with an effective spectral index of a = 0.5 (using the
convention that ( )n nµn

a-f ). Modifying the spectral index α
changes the magnitude conversion, so care must be taken when
converting between magnitude systems. See Appendix A for
further discussion.

Figure 1 shows the combined QLF from R13, M12, and M13
(which at this epoch is essentially that of R13), as well as two

different quasar models at ~z 2.4. We can see that there is
generally very good agreement between the constructed quasar
catalog and the target luminosity function, as should be
expected. The differences between the constructed catalogs and
target luminosity function are typically on average 5%, which
is comparable to or smaller than the uncertainties in the
luminosity function itself at these redshifts. At high luminos-
ities ( -M 28i ), though, there are some comparatively large
differences that can arise between the predicted and empirical
luminosity functions. This deviation is largely due to Poisson
shot-noise introduced by the rarity of the objects. For objects in
this luminosity range, there are typically only a few objects
( ( )10 ) in the entire 1 ( -h 1Gpc)3 volume. At the dim end of
the QLF, there can be insufficient halos of a particular mass
given the mass resolution of our simulation. The minimum halo

Table 1

A List of The QLF Parameters of the Data Sets Incorporated

Data Sets z ( )*flog10
a *M0

b k1
c k2 α β

R13 2.2–3.5 - -
+5.93 0.01
0.02 - -

+26.57 0.02
0.04 -0.6890.027

0.021 -0.8090.166
0.033 - -

+1.29 0.03
0.15 - -

+3.51 0.18
0.09

M12 3.2 - -
+6. 58 0.79
0.26

−27.03±0.68 L L −1.73±0.11 −2.98±0.21

M12d 4 - +7. 12 0.62
−27.13±2.99 L L −1.72±0.28 −2.6±0.63

M13e 5 - -
+8.47 0.24
0.20 - -

+28.70 0.33
0.27

−0.47 L - -
+2.03 0.14
0.15

−4.00

M13 5 - -
+7.63 0.25
0.30 - -

+27.34 0.49
0.60

−0.47 L −1.50 - -
+3.12 0.41
0.28

M13 5 - -
+7.93 0.03
0.03

−27.88 −0.47 L −1.80 −3.26

Notes.
a
*f has units of Mpc−3 mag−1.

b
( )* = = = -M M z M2 1.486i0 1450 .

c
k1 and k2 are defined for models with redshift evolution in Equations (12)–(14).

d
The authors of M12 provide a value for *f

0
at ~z 4 where the reported error is greater than the value itself. Since this value must be positive, the resulting lower-

bound is unphysical. We reproduce the value and upper-bound here for completeness, but do not include this value directly when determining the values of the QLF.

See Appendix A for further details.
e
In M13, the authors provide three fits, each with at least one parameter held constant. Values without error ranges indicated correspond to the parameters held fixed

for a particular fit.

Table 2

A List of the Parameters Used in Equations (15a)–(15d)
Based on the Data Listed in Table 1

Parameter Fiducial Value Parameter Range

*flog10 0
−6.82 L

c1 −0.790 [ ]- -1.10, 0.536

*M0 −27.6 L

c2 −0.238 [ ]-0.716, 0.170
a0 −1.29 L

c3 −0.324 [ ]- -0.493, 0.140

b0 −3.51 L

c4 0.0333 [ ]-0.327, 0.260

Note. These provide a fit to the luminosity function through redshift, and

ensure that the abundance of quasars matches observations as nearly as

possible. For additional details on the parameters and the fitting procedure, see

Appendix A.
Figure 1. A comparison of the composite quasar luminosity functions from the
SDSS+COSMOS measurements (Masters et al. 2012; McGreer et al. 2013;
Ross et al. 2013) to our abundance matching method, plotted with Poisson error
bars. The two different quasar models (defined in Table 3) are offset from each
other for visual clarity. The agreement is excellent for comparatively dim
quasars which are more common, but there is some discrepancy for bright
objects. The reason for this disagreement is primarily due to Poisson noise,

since these objects are rare even for the large (1 ( -h 1 Gpc)3) simulation volume.
At low luminosity in the exponential case, the completion limits of dark matter
halo hosts at this mass become noticeable. See Section 2.4 for further
discussion.
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mass is = ´ -M h M4.36 10halo,min
11 1 . Since quasars with

-M 25i are most important for this study, this does not
affect our results significantly.

Throughout most of the following analysis, we focus our
attention on several models in particular, parameterized in
terms of t0 and γ as in Equation (3). The first four of these
models have particularly good agreement with the BOSS
measurements. The last two are included to demonstrate how
the clustering signal changes as a function of t0 for a fixed
value of γ: models L1, L3, and L4 all have the same γ value.
We summarize these models in Table 3.

3. CLUSTERING MEASUREMENTS

3.1. Two-point Correlation Function

By construction, our method matches the input QLF at all
redshifts, regardless of the individual properties of the under-
lying quasar population. However, we are not guaranteed to
match the observed clustering of quasars. Changing the implicit
mass-to-light ratio of Equation (10) through changing the
quasar lifetimes will affect how halos are populated with
quasars. In general, longer quasar lifetimes lead to quasars of
the same luminosity being matched into hosts of larger masses.
Since their hosts are more biased, this leads to quasars of the
same luminosity showing a larger clustering signal. This is true
at all luminosities. We want to match the clustering because it
can affect the topology of reionization. There can also be
spatial correlations present in the radiation field as a result of
reionization, which are important for making measurements of
the BAO from the Lyα forest (e.g., White et al. 2010; Slosar
et al. 2013).

Here, we explore how to include clustering measurements
from the two-point correlation function in our quasar catalog.
Recent results from the BOSS survey for the clustering of
quasars in the redshift range of interest are presented in White
et al. (2012). The above work examines the clustering signal of
quasars in both 2D-projected and 3D-redshift-space correlation
functions at intermediate scales ( s3 25 -h 1 Mpc). The
authors also introduce luminosity cuts to make the results more
robust. For the purposes of this comparison, we consider their
selection for which they imposed luminosity cuts on both the
bright and faint ends, so that only objects with
- -M25 27i were considered across the entire redshift
range (Sample 4 as defined by the authors). For a fair
comparison, we impose similar cuts on our object selection. We
also examine the redshift evolution of the results, and compare
against the high-z/low-z samples (Samples 5 and 6) as well.
See Appendix B for further discussion of these different
redshift samples.

We explore the parameter space of available quasar models

by examining the lightbulb and exponential light curves

defined in Equations (1) and (2), as well as luminosity-

dependent quasar lifetimes defined in Equation (3), parameter-

ized by t0 and γ. For each combination of parameters, we

construct a quasar catalog in the manner described above.3

Then, we extract from this catalog all objects that satisfy the

magnitude constraints at the central redshift of the survey

z=2.39. This redshift represents the average redshift of

quasars chosen in the BOSS sample; the actual quasar objects

span in redshift from < <z2.2 2.8. However, as noted in

White et al. (2012), the redshift evolution of the signal is weak.

Thus, extracting objects from our quasar catalogs at a single

redshift rather than a range should have little effect on our

overall conclusions. We measure the monopole of the two-

point correlation function using the “natural estimator” ξ:

( )
( )

( )
( )x =

á ñ
á ñ

-s
DD s

RR s
1, 16

where ( )á ñDD s is the average number of quasar pairs from the

quasar catalog separated by a real-space distance of

[ ]- D + Ds s s s2, 2 , and ( )á ñRR s is the number of pairs

of points at the same separation drawn from a distribution with

Poisson noise.

3.2. Calculating c2 Values

In order to quantify the statistical uncertainty in our catalog,

we ran a suite of 10 N-body simulations with different initial

conditions. We then performed our abundance matching

procedure on each of the different simulations, including

several realizations for each volume. Since our abundance

matching procedure stochastically determines which halos

should be hosting active quasars at a given time step, we create

several quasar catalogs for each individual halo catalog, using a

different initial random seed (three realizations per volume for

these results). Additionally, we have augmented the effective

number of samples by including redshift space distortions

along the different principal axes of the simulation. This

strategy gives us a total of 90 samples for which to measure the

clustering signal. The best estimate for the correlation function

( )x s for a given radial bin si is given by averaging over all of

the individual estimates xk:

¯ ( ) ( ) ( )åx x=
=

s
N

s
1

. 17i

k

N

k i

1

We then estimate the covariance between the radial bins by

computing the entries of the covariance matrix Cij. We compute

Table 3

A List of the Parameters of Some Quasar Models Considered

Model Name Light Curve ( )tlog year10 0
a γ

L1 Lightbulb 7.75 0

L2 Lightbulb 8.25 −0.125

E1 Exponential 7.25 0

E2 Exponential 7.75 −0.15

L3 Lightbulb 7 0

L4 Lightbulb 8.5 0

Note.
a
t0 and γ as defined in Equation (3).

3
There are several extreme models where the number of objects is

significantly fewer than the number predicted by the QLF. This is not a
failure of our methodology, but rather instances of there being too few halo
objects of a given mass to host quasar objects. In essence, fon is so small that we
reach the resolution limits of the simulation. In these cases, we add particles
from a second-order Lagrangian perturbation theory (2LPT) simulation of the
same initial conditions at the same redshift in order to define a set of “random”

particles that are still representative of the underlying matter distribution. We
randomly sample from these particles in order to fill out the catalog to the
expected number. This ensures that we do not measure a statistically significant
clustering measurement when the catalog is clearly unphysical.
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the entries of the covariance matrix as (Zehavi et al. 2005):

( ( ) ¯ ( ))( ( ) ¯ ( )) ( )å x x x x= - -
=

C
N

s s s s
1

. 18ij

k

N

k i i k j j

1

The correlation matrix entries for our model L1 is plotted in

Figure 2. Notice that the diagonal entries dominate, which

means that the bins are mostly independent of each other and

dominated by shot-noise (Valageas et al. 2011; White et al.

2012). Implicitly, the samples have been treated as being

independent, and this is almost surely not the case. Although

the 10 volumes as a whole can be treated as being statistically

independent, the different realizations based on the same halo

catalog are likely correlated. Further, the projections of peculiar

velocities along different axes for the same realization are also

likely to produce correlated results. However, producing a

sufficient number of independent realizations to decrease the

noise in the covariance matrix is computationally infeasible.

Further, the variance in the clustering signal among quasar

catalog realizations for a given ( )gt ,0 pair is comparable to

small displacements in the t0–γ parameter space, so it is

necessary to include this source of uncertainty. Since we are

interested only in finding models that are consistent with the

BOSS measurements which have their own set of observational

uncertainties, we feel that this approach produces sufficiently

accurate results.
Once the entries of the covariance matrix have been

computed, the difference vector ( ) ( ) ( )d x xº -s s si i imodel BOSS

is calculated. The correlation function xBOSS is fit to a power

law: ( ) ( )x = bs s sBOSS 0 , where the authors have fixed the value
of b = -2. In order to investigate the impact this choice has on
the conclusions, we performed fits on the correlation function
measured from our quasar catalogs using two different
parameterizations: one where the best-fit value of s0 was found
when fixing b = -2, and another where the value of s0 and β
were both fit. In the length scales used for our analysis
( s3 25), the deviation of β from the fiducial value of −2

was small, typically less than 5%. Furthermore, the values for

s0 were also largely similar between a fixed slope or a varying

one, with deviations typically less than 1%. Thus, the choice to

set b = -2 does not strongly bias the results presented here, or

the values reported in xBOSS.
When comparing one of the quasar models with the BOSS

results, the c2 value of the model is then given by:

( )c d d= -C . 192 T 1

To define the model that fits the BOSS observations best, we

want to minimize the c2 value of the model. A two-

dimensional space in t0 and γ is constructed for both of the

light curves, and this space is explored using regular grid

points. Following the analysis of White et al. (2012), a c2

distribution with nine degrees of freedom is assumed. Using

this distribution, the c2 value for a particular model is

converted to a confidence interval. An equivalent sn value is

computed based on the confidence interval ( s1 if the enclosed

probability is 0.683, s2 if it is 0.955, etc.). This statistic

demonstrates how “consistent” a particular model is with the

BOSS observations.
Figure 3 shows the clustering measurements for several of

our well-fitting models compared to the BOSS measurements.

The values of these models are given in Table 3. In general, as

t0 increases at a fixed value of γ, the clustering signal increases

as well. Compare specifically the L3, L1, and L4 models,

which have the same value of γ but have respectively

increasing values of t0. Mathematically, this behavior can be

seen from the form of Equation (10): for the same luminosity

and mass functions but a larger value of µf tqon , quasars of the

same luminosity will shift to more massive host halos. Since

the clustering signal increases with the mass, it follows that

increasing t0 will increase the clustering signal. For similar

reasons, increasing values of γ for constant values of t0 are also

associated with a stronger clustering signal, since this also

effectively increases the quasar lifetime tq.

Figure 2. The correlation matrix for the L1 model. Note how the matrix is
dominated by the diagonal entries, which is to be expected for shot-noise
dominated measurements. The small off-diagonal terms suggest that the
covariance matrix has converged numerically, and should be stable when
inverting. This type of structure is seen in all models considered.

Figure 3. The quasar two-point correlation function from White et al. (2012),
compared to several models whose parameters are described in Table 3. All
measurements were made at the same values of s, but are offset from each other
for visual clarity. The shaded error regions on the measurements from BOSS
are the reported 1σ error bars, and the error bars on the models are the square
root of the diagonal elements of the covariance matrix. Note that for the same
value of γ, increasing t0 leads to a larger clustering signal (compare L3, L1, and
L4 in order of increasing t0). See the text for additional details.
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3.3. Characteristic Luminosity and Lifetime

Figure 4 shows the c2 values in the two-dimensional
parameter space t0 and γ, as defined by Equation (3), for the
different light curves. The region of good agreement between
the BOSS measurements and our models takes on a linear
relationship between ( )tlog10 0 and γ. Such a relationship can
be parameterized as:

( ) ( ) ( )g= +t t Llog year log year . 2010 0 10 eff 0

The parameters teff and L0 can be thought of as a characteristic

timescale and a characteristic luminosity, respectively. From

the functional form of our power-law for quasar lifetime in

Equation (3), L0 can be interpreted as changing the normal-

ization luminosity. This is the luminosity at which all models

have the same lifetime, regardless of the value of γ. In other

words, the characteristic luminosity of the power law becomes:

( ) ( )= -L L Llog 10 , 2110 eff 0

where L0 is defined in Equation (20). The parameter teff is the

characteristic time because all models have this same lifetime at

the luminosity Leff.
For the lightbulb model, the best-fit values are

( ) =tlog year 7.7610 eff and ( ) =L Llog 13.2910 eff . (See
Table 4 for evolution of these parameters with redshift.) The
characteristic luminosity inferred from this value is

=L L10eff
13.29 , which has a corresponding magnitude of

= -M 27.2i . This value is not surprising, given that quasars
were selected for the clustering measurements near this
magnitude range. More interesting is the value of

( ) =tlog year 7.7710 eff , which gives a characteristic lifetime

of =10 59 Myr7.77 . This is a quasar lifetime that is slightly
longer than those typically quoted in the literature (Yu &
Tremaine 2002; Porciani et al. 2004; Yu & Lu 2004; Conroy &

White 2013), which are closer to the Salpeter e-folding
timescale or shorter (∼45Myr for a quasar accreting at
Eddington luminosity and a mass conversion efficiency of
= 0.1). Although teff is slightly higher than these values, it is

within a factor of 2.
In the exponential model, the best-fit values for teff and Leff

defined in Equation (20) are ( ) =tlog year 7.1810 eff and
( ) =L Llog 13.0510 eff . This luminosity implies a slightly

dimmer characteristic luminosity ( = -M 26.6i ). As discussed
in Section 2.4, there is not a single τ for all quasars for a given
value of teff: *»L L quasars have t » teff , with brighter
quasars having t > teff . However, the difference between τ and
teff does not differ by more than a factor of 2 in either direction,
and so to a good approximation t ~ teff , especially for the
luminosity range used to match the clustering measurements.
Compared to the lightbulb case, the quasars with an
exponential light curve have a shorter characteristic lifetime
of 15.1 Myr. The characteristic lifetime is smaller for the
exponential than in the lightbulb case because quasars do not
shut off entirely after a single lifetime, so the time that a quasar
is “bright enough” to be included within the luminosity cuts is
longer than its lifetime teff. This lifetime is about a third of the
Salpeter e-folding timescale, which implies that if quasar light
curves are roughly exponential, the combination of the
measured QLF and the clustering measurements favors quasars
that either radiate at luminosities dimmer than their Eddington
ratio ( <L L 1edd ), have a mass-conversion efficiency that is
less that the fiducial value ( < 0.1), or both. Unfortunately,
since our model does not track the underlying physics present,
we are not able to distinguish between these two cases.
The reason for the different best-fit values between the two

models can be understood as follows. By construction, we have
fixed the lifetime of the exponential quasars such that their peak
luminosity-to-mass ratio is the same as in the case of the
lightbulb for a given choice of t0 and γ. (See Section 2.4 for
more details.) However, the mass-to-light ratios for the two
light curves are significantly different. This is due to the fact
that the observed luminosity for an exponential quasar can be
much smaller than its peak luminosity. A particular luminosity
range is selected for the clustering measurements, but the
clustering of these quasars is tied to their peak luminosity rather
than the observed one. Thus, quasars will tend to have higher
clustering at a given luminosity in the exponential case

Figure 4. A comparison of the parameter space exploration in terms of the
parameters t0 and γ from Equation (3). Both the parameter space for the
lightbulb model (Equation (1)) and exponential model (Equation (2)) are
shown. The dashed lines represent the best linear fits to the data for a particular
light curve. The class of models that are consistent with the BOSS
measurements at s1 and s2 correspond to the darkly and lightly shaded
regions. In general, we find that for the exponential model, shorter lifetimes are
preferred (smaller values of t0 for the same γ). Since we abundance match
against the quasar’s peak luminosity, and the quasar spends comparatively little
time at or near the peak luminosity, we effectively increase the clustering signal
for lower luminosity quasars.

Table 4

A List of the Best-fit Parameters for Our Quasar Model
as a Function of Redshift

Redshift Selection zeff Light Curve *Leff
a,b *teff

c

High-zd 2.51 Lightbulb 12.92 7.62

Exp 12.40 7.14

Fiducial 2.39 Lightbulb 13.29 7.77

Exp 13.05 7.18

Low-z 2.28 Lightbulb 13.17 7.84

Exp 13.15 7.29

Notes.
a
Leff and teff as defined in Equations (20)–(21).

b
( )* =L L Llogeff 10 eff .

c
( )* =t tlog yeareff 10 eff .

d
The high-z and low-z samples examine the evolution of these parameters with

redshift. See Appendix B for further discussion.
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compared to the lightbulb, since they spend comparatively little
time at or near their peak luminosity. This luminosity selection
includes quasars with a higher peak luminosity than the chosen
range (and thus a higher clustering signal), so we must also
include quasars that have lower mass hosts to match the
average clustering signal. This means that there is a larger
spread in host mass compared to the lightbulb case. This
behavior explains why the characteristic luminosity is slightly
smaller for the exponential model compared to the lightbulb:
there is an increased number of low-luminosity quasars
occupying high-mass hosts.

Figure 5 shows the range of quasar lifetimes as a function of
model parameter γ. The quasar lifetime is broadly similar
across different model choices. The exponential model has a
lower overall value due to the effect discussed above, i.e., that
quasars from a higher peak luminosity will be included in the
sample, bringing along a higher clustering signal. Since this is
true for nearly all the quasars in the sample, there is an overall
decrease in the selected lifetime of quasars. The large
difference in the span of quasar lifetimes is due to the way
that we have defined the quasar lifetime in the exponential
model. As discussed in Section 2.4, the exponential lifetime τ
is selected such that the same relationship between host mass
and quasar peak luminosity exists in the exponential case as in
the lightbulb case. Even in a model where for the lightbulb tq is
independent of L (i.e., when g = 0), the exponential model
parameter τ does have luminosity dependence. In general,
quasars with luminosities above L* will have a lifetime longer
than an equivalent luminosity in the lightbulb case for the same
choice of t0 and γ in Equation (3), and those with low
luminosities will have a shorter lifetime. This choice for our
model leads to the spread in lifetimes of a factor of ∼5, as seen
in the case of g = 0. For models in which g > 0, there is a
widening in the range of values. This is due to the fact that
brighter quasars live longer than dimmer ones. Since our choice
of quasar lifetime already enforces this difference, these models

see an increased effect. Conversely, for g < 0, there are
competing effects between brighter quasars being less long-
lived due to the choice of γ, but still simultaneously living
longer than their lightbulb counterparts due to the choice of tq.
The latter effect wins out, and these quasars end up having a
significantly larger spread than in the lightbulb case. Note that
the contours in this figure are smooth compared to Figure 4
because these are results lying along the best-fit line, and the
figure shows the range in values rather than a single number
(i.e., the c2 value) that fluctuates as a function of position in t0
and γ.

4. DISCUSSION

4.1. Mass-to-light Ratio

The combination of the QLF and clustering measurements
produces an important set of constraints on the space of
potential quasar models. Here we investigate the implications
of these models. One important implication is the mass of a
typical halo for a given quasar luminosity. It is trivial to predict
this for the case of a lightbulb model, but less straightforward
for the case of the exponential model. Here the peak luminosity
Lpeak is used to define the mass-to-light ratio, since this is the
quantity used in our abundance matching approach. This ratio
defines a typical mass for quasars, which can be compared with
results of previous analysis (e.g., Martini & Weinberg 2001;
Shen et al. 2007; White et al. 2012).
Figure 6 shows the luminosity of quasars as a function of the

mass of the host halo for the lightbulb and exponential models
for all combinations of t0 and γ. This plot shows the mass-to-
light ratio of the entire catalog. The weight assigned to the
luminosity as a function of mass ( )L Mpeak for a particular

model i is given by a c2 likelihood. We also find the±1 and 2σ
values that enclose 68% and 95% of the likelihood.

Figure 5. The range of quasar lifetimes for models with the best-fit values of t0
as a function of γ, based on the linear relationship extracted in Equation (20).
The solid regions show the span in quasar lifetimes, while the dashed line
shows the median value within a given model. Note that the median value is
fairly constant across all quasar lifetimes. Thus we are able to characterize a
quasar model reasonably well using the characteristic lifetime. The comparative
large spread in quasar lifetime in the exponential case is due to our method of
selecting tq, rather than reflecting a truly large spread in the data. See the text
for additional details.

Figure 6. A comparison of the mass-to-light ratio between the different quasar
models. We have computed this ratio for each model in our parameter space,

and weighted their contribution by their corresponding c2 value. The lines
show the median value by weight and the shaded regions show so1 and s2 .
Note that for a given luminosity, a quasar in the exponential model is found in a
halo with a smaller mass. This is due to the fact that quasars with a peak
luminosity significantly greater than the observed one are included in the
luminosity range selected for the clustering measurements. These hosts have a
higher clustering signal than quasars with a peak luminosity in the luminosity
selection. This means we must also select lower-mass objects as well. See the
text for additional details.
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Figure 7 shows the mass range as a function of the model
parameter γ. Note that the range is essentially constant with
respect to γ. By averaging the median mass across all values of
γ, a characteristic mass for the two models can be defined. This
characteristic mass is ´2.5 1012 -h M1 for the lightbulb

model, and ´2.3 1012 -h M1 for the exponential model.
These values are broadly consistent with previous studies of
quasar clustering measurements (e.g., Porciani et al. 2004;
Croom et al. 2005; Lidz et al. 2006; Porciani & Norberg 2006;
White et al. 2012). Since in all models the same clustering
signal of the quasars is being selected, there is an implicit
requirement for the hosts to lie within a certain mass range.
Additionally, the mass range in the exponential case is
significantly larger than that of the lightbulb model. This is
again related to the fact that due to the light curve, quasars with
a higher clustering signal are included within the luminosity
sample, and so there must also be lower-mass hosts included as
well to balance the average clustering strength. There is a
significantly larger spread above the median mass than below.
The reason for this asymmetry is due to the difference in
number density: since the high-mass objects are rarer, a
comparatively smaller range in low-mass halos is necessary to
make the clustering signal equivalent to the lightbulb case. See
Section 3.3 for further discussion.

In the case of the lightbulb model, the halo mass that
corresponds to the selected luminosity range of quasars is
relatively tightly constrained. For the models that agree with
the BOSS measurements at s1 , the average halo mass ranges
from 1.35×1012 to 4.93×1012 -h M1 for hosts of quasars
within the magnitude cutoff. For the exponential model, there is
a much larger range in halo mass: for the collection of models
that agree at s1 , the mass ranges between 6.69×1012 and
5.85×1013 -h M1 , almost an entire order of magnitude
(compared to about half an order of magnitude for the lightbulb
model). Also note that the mass range is much larger than in the
lightbulb case. This fact can be explained by noting that there is
evolution in the mass-to-luminosity ratio during the lifetime of

the quasar. Further, the e-folding time for these models is
comparatively long, with typical values being t » 40 Myr.
This means that there are high-mass hosts included in the
sample of quasars chosen for the clustering measurements
whose quasars are not at their peak luminosity. Since these
hosts have a bias larger than the value preferred by the BOSS
measurements, this sample must necessarily include hosts
which have a smaller clustering signal, so that on average, the
total bias agrees with BOSS.
There is a systematic shift upward in the mass of the

exponential case compared to the lightbulb. This shift is related
to the difference in parameter space discussed in Section 3.1.
Due to their exponential change in luminosity, the quasars are
not typically found near their peak luminosities. Thus, even
though by construction the peak quasar luminosity as a
function of halo mass is the same for the two models, the
effective luminosity for a given mass is reduced in the
exponential case due to the light curve evolution. In other
words, quasars of the same luminosity in the two different
models are found in more massive hosts in the exponential
case. This leads to a systematic shift in the preferred mass range
for clustering measurements. To sum up: the increased spread
in halo host mass for the exponential model compared to the
lightbulb is due to inclusion of highly biased hosts in the
measurement being balanced out by lower-mass ones, and the
systematic shift toward higher mass is due to the effective
increase in the mass-to-luminosity ratio related to evolution of
quasar luminosity.

4.2. Mass Function and Duty Cycle of Halo Hosts

To observe the effect that different points in parameter space
have on the halo host properties, the mass function of halos
hosting an active quasar has been calculated for the fiducial
redshift selection. (For the high- and low-redshift selections,
see Appendix B.) Figure 8 shows the total halo mass function
as well as the mass function of halos hosting quasars within the
luminosity range - -M25 27i . From this analysis, the

Figure 7. The selected mass range for our different models. For the lightbulb
case, there is a relatively narrow range in mass. Since the clustering of quasars
is fixed as a function of luminosity, there is a very tight relationship between
observed luminosity and underlying host mass. In the exponential case, the
range is much more extended. Since the mass-to-light ratio is fixed to be the
same for the peak luminosity, the evolution within the model means that there
will be quasars with higher peak luminosity (and higher-mass hosts) selected
by the evolution.

Figure 8. The halo mass function for halos hosting quasars vs. the total halo
population for certain models as defined in Table 3. In the case of the lightbulb
model, there is a roughly constant value of ∼1% of halos hosting quasars as a
function of halo mass. For the exponential, there is a constant active fraction at
the high-mass end, but then the fraction falls off below the median halo mass.
This is again related to the fact that there are more halos included at low mass
in order to reproduce the average clustering signal.
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duty cycle of halo hosts can be extracted, i.e., the fraction of
active halos divided by the total number of halos. As discussed
in Section 2.2, in the lightbulb model the duty cycle can be
directly related to the quasar lifetime at that luminosity.
However, here the duty cycle is defined simply as the active
fraction of halos.

Figure 8 compares the case of the lightbulb and the
exponential light curves. When the halo mass function of
active halos is examined in the two different cases, it can be
seen that the mass range of hosts spanned by an individual
model is quite different. In the lightbulb case, there is a very
small range in host mass compared to the exponential case.
This difference can be explained in terms of which hosts are
included in the clustering measurements. In the lightbulb case,
since the luminosity is constant as a function of quasar lifetime,
the only evolution in the relationship between mass and
luminosity comes from mass accretion, which makes up a small
fraction of total halo mass over the timescales for which
quasars are active. As such, with an essentially static relation-
ship, there is a very strong correlation of mass to light. For a
specific model, there is only about a factor of 2 in halo mass
included for the quasars in the selected magnitude range. When
looking at the duty cycle of quasar hosts, one can see that the
fraction is typically 0.5%–1%, with little evolution with mass
within a model.

Conversely, in the exponential model, there is evolution for
individual halos in the mass-to-light relationship. Most
importantly, this implies that massive halos will be included
when selecting quasars at a specific luminosity. Since they are
more highly clustered (and more biased), smaller, less biased
halos must also be included in order to create an average bias
consistent with the BOSS measurements. This has the effect of
extending the mass range of halos included in the mass
function. Note that within a single model, there is a much larger
span in halo mass: in some cases, the span is more than an
order of magnitude in halo mass. Additionally, the duty cycle is
comparable in magnitude to the lightbulb case, though slightly
smaller: the ratio of active halos to total halos ranges from
0.05%–1%. There also seems to be a trend in the evolution of
the duty cycle: there is a central “typical mass” for a given
model, and the duty cycle decreases in both directions. A
similar trend was found by White et al. (2012).

Note that one result of this measurement is the fact that the
mass range of host halos is significantly more extended in the
exponential case than the lightbulb case. Thus, one way to
break the degeneracy between the lightbulb and exponential
models would be to measure the mass range of underlying host
halos, perhaps through using gravitational lensing to indepen-
dently find the mass of the dark matter halo (Courbin
et al. 2012). If the range of masses for quasar hosts is
extended, then there would be observational evidence favoring
an exponential model (or a model with evolution in the quasar
light curve) as opposed to the lightbulb model.

5. PREDICTIONS FOR HELIUM REIONIZATION

One very important prediction that we can make from our
quasar catalog is the redshift of helium reionization. In order to
understand in detail the implications for helium reionization,
we need to run full hydrodynamic plus radiative transfer
numerical simulations. However, we can perform a semi-
analytic calculation in order to find a rough estimate of the
redshift of reionization by computing the fraction Qi of the

universe’s volume that has been reionized (also called the
volume-filling fraction), where Qi=1 represents a totally
reionized universe (e.g., Madau et al. 1999; Furlanetto &
Oh 2008):

˙
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dL
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where n̄He is the number density of neutral helium, n̄e is the

number density of electrons, ˙gN is the production rate of

ionizing photons for an individual quasar, ( )a TA is the

recombination coefficient, and ¯ º á ñ á ñC n ne e
2 2 is the clumping

factor of the ionized IGM. The minimum luminosity of the

integral decreases as redshift decreases, in keeping with

modeling and observations (Richardson et al. 2012; Shen &

Kelly 2012; Cen & Safarzadeh 2015; Sijacki et al. 2015). The

clumping factor measures the effective distribution of gas

inside the scale of volume being averaged (or resolution in the

case of simulations). Note that these calculations assume a

primordial helium mass fraction of =Y 0.24He . Following the

arguments in the appendix of Kaurov & Gnedin (2014), we

choose the case A recombination coefficient, which assumes

that photons emitted from recombination are not reabsorbed by

a neutral atom, increasing the recombination rate.4 It is

assumed that initially, all of the hydrogen in the IGM has

been ionized, and all of the helium is singly ionized. To

compute the photoionization rate of an individual quasar ˙gN ,

the SED of Lusso et al. (2015) is used to convert the specific

luminosity at 2500Å to that at 912Å. It is then assumed that

quasars have an SED that follows a power law ( )n nµn
a-L

for values of Ål < 912 . The fiducial value chosen is a = 1.7,

also based on observations of the rest-frame UV spectra of

quasars from Lusso et al. (2015). This calculation includes all

photons with frequencies in the range 54.4eV nh 1keV.
Photons above this energy have a mean free path of helium

ionization comparable to the Hubble distance.
Although the two different quasar light curves explored

above have different individual properties, both are constrained
by the global properties fixed by the QLF. We find that if
instead of the statistical calculation outlined above, we use the
number of ionizing photons computed directly from the quasar
catalogs, the result differs only by a few percent. Therefore, it is
much more straightforward to use Equation (22). This approach
also permits the use of other QLFs in the calculation, so it is
possible to explore what effect this has on the results.
Figure 9 shows the ionization fraction as a function of

redshift computed from Equation (22). In the first panel, there
is a comparison of the choice of QLF used in the calculation.
Included are the QLF used in the main body of this work, the
composite QLF composed of the ones from R13, M12, and
M13 (the SDSS+COSMOS) as explained in Section 2.5, and
the QLF from Hopkins et al. (2007) (hereafter referred to
as HRH07). All other calculations presented use the composite

4
Although the arguments presented in the cited work are in the context of

hydrogen reionization, the same arguments can be applied equally well to
helium reionization. Essentially, the authors argue that the photons redshift out
of resonance with the thermally broadened spectral line before they encounter
the edge of the ionized region or a Lyman-limit system. Although the
ionization fraction of helium might be slightly lower inside an “ionized region”
than a comparable hydrogen one, the difference is not significant enough to
change the overall conclusion.
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QLF, but then change various other parameters. Note that for
the prediction of reionization time using HRH07, both the QLF
and the SED are different from the fiducial comparison case. In
the figure, the shaded region shows the range of predicted
values for the volume-filling fraction Qi at a given redshift z by
jointly varying the parameters of the QLF over the range
specified by Table 2. Interestingly, the late-time ionization level
is less sensitive to the variation in parameters at early redshift,
due to the interplay between the source and recombination
terms present in Equation (22). At redshifts z 3.5, the source
term becomes the same for all histories, since the QLF
transitions to that of Ross et al. Further, the recombination rate
is proportional to the ionized fraction, so histories that had
higher ionization levels at z 3.5 will have higher levels of
recombination. Since the recombination time is much shorter
than the total timescale of the reionization calculation, all
histories converge on a similar redshift of total reionization

(Qi=1). Nevertheless, the variation in ionization fraction at
early times can have important implications on the topology of
ionized regions and the thermal history of the IGM, so such
differences may in principle be detectable.
In the second panel of the plot, the specific luminosity of

individual objects at 912Å L912 is varied. One way to achieve
this variation is the change the UV SED template used for
quasars. Once the specific luminosity L2500 is calculated from
the observed magnitude according to Equation (7), the quasar
SED can be used to find L912. In the fiducial approach, we use
the SED template from Lusso et al. (2015), which assumes a
UV spectral index of a = 0.61 for Å Ål2500 912 . An
alternative choice for an SED is one from Shang et al. (2011),
which provides a composite quasar SED template by combin-
ing observations in different frequency ranges to create a single
spectrum. Shang et al. (2011) divide the sample into radio-loud
and radio-quiet quasars. However, radio-quiet quasars compose

Figure 9. The volume-filling fraction Qi of doubly ionized helium defined in Equation (22). In each plot, we show the fiducial values we have forQi as a function of

redshift, which has the parameters a = 1.7, ¯ =C 3, and normalizing the luminosity at 912 Å following Lusso et al. (2015). This leads to a redshift of reionization of

~z 2.5, comparable to the redshift of ~z 2.7 suggested by observation of the helium Lyα forest. We show the change in Qi as a function of varying these parameters.
Top left: we compare the difference between using the composite QLF of SDSS+COSMOS (see Section 2.5 for more details) and the one in Hopkins et al. (2007).
The shaded region reflects differences in ionization level due to jointly varying the parameters over the ranges specified in Table 2. Top right: we change the UV SED

of the quasar, which affects the normalization at 912 Å. In addition to the SEDs from Lusso et al. (2015) and HRH07, we show the radio-quiet template from Shang

et al. (2011). Bottom left: we allow the EUV SED spectral index for l < 912 Å to vary from a1.4 2.0. Bottom right: we vary the clumping factor of the IGM,
from C̄1 5. See the text for additional details.
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~90% of high-redshift quasars found in the SDSS (Shen
et al. 2009). Thus, we only include the results of the calculation
using the radio-quiet template. This template provides the
relative specific luminosity at each frequency, and so can be
used to convert L2500 to L912. The effective spectral index for
this wavelength range for the radio-quiet quasar template is
a = 0.867. In addition, we show the impact of using the SED
from HRH07 (with the QLF from Section 2.5). Note that the
SED from HRH07 is outdated, and used only as a point of
comparison. More recent studies (e.g., Stevans et al. 2014;
Lusso et al. 2015) are largely inconsistent with the SED
of HRH07, and so it is presented here merely to emphasize the
importance that using the proper SED has on helium
reionization. Given this same specific luminosity L2500, the
predicted value of L912 from the SED of Lusso et al. (2015) is
higher than that of HRH07 by about a factor of 1.7, leading to
the earlier reionization time. The second panel of the plot
includes these to demonstrate the difference from using
different quasar templates.

In the third panel of the plot, the spectral indices are varied,
ranging from a1.4 2.0. Recent measurements from
Lusso et al. (2015) suggest that at high redshift and bright
magnitudes, the spectral index has a value of a = o1.7 0.6.
This is slightly softer than the average value of a = 1.6 from
Telfer et al. (2002). In order to explore some of the implications
of changing the spectral index, we vary its value as indicated.

The final panel explores a range of clumping values, from
C̄1 5. The precise value for the clumping factor for

helium reionization is very uncertain, as most studies on the
clumping factor are related to hydrogen reionization (see, e.g.,
Raičević & Theuns 2011; Kaurov & Gnedin 2014). In
Furlanetto & Oh (2008), the authors explored clumping factors
of C̄0 3. More recent results from numerical simulations
were calculated by Jeeson-Daniel et al. (2014), who found that
the clumping factor of helium ranges from C̄3 8 for the
redshift range of interest, depending on the ionization level of
the helium gas.

In Figure 9, each panel shows the fiducial evolution of Qi,
which is characterized by the values of a = 1.7, ¯ =C 3, the
SED of Lusso et al. (2015), and the composite SDSS
+COSMOS QLF. In this situation, the redshift of reionization
(i.e., when Qi=1) is ~z 2.5. This value is comparable to,
though slightly later than, the redshift suggested by recent
observations of ~z 2.7 (Dixon & Furlanetto 2009; Worseck
et al. 2011). However, a smaller volume-averaged clumping
factor C̄ or a larger amplitude in either the measured QLF or the
specific luminosity L912 could give an earlier redshift of
reionization. Specifically, assuming the fiducial model, chan-
ging the clumping factor to ¯ =C 1.7 would give ~z 2.7 as the
redshift of reionization. It should be noted that this calculation
is not wholly accurate for reionization, since it assumes a single
clumping factor for the entire IGM, which is almost certainly
not accurate for helium reionization, due to its very
inhomogeneous nature. Furthermore, this calculation does not
include secondary ionizations from energetic electrons (e.g.,
Shull 1979; Furlanetto & Stoever 2010), though these
interactions are likely unimportant for helium reionization
(McQuinn et al. 2009).

When comparing to the results of Furlanetto & Oh (2008),
we notice that the authors’ value for the redshift of reionization
is significantly earlier than the one that we have found. This is
largely due to a different QLF used, as well as a different

method for calculating a quasar’s EUV SED. The referenced

paper uses the QLF from HRH07, and assumes an SED that

gives more EUV radiation. This luminosity function has a

significantly larger amplitude compared to the results

from R13, up to an order of magnitude larger for low-

luminosity quasars at high redshift. (See Figure16 of Ross

et al. 2013.) Thus, accurate measurements and a proper

understanding of the systematics of the high-redshift QLF, as

well as the accompanying quasar SED, are essential for a

proper treatment of helium reionization.

6. CONCLUSION

We have provided a technique for populating dark matter

halos with quasars that matches a QLF by construction for

various light curve models of quasars. By using the triggering

rate of Hopkins et al. (2006) with the technique of abundance

matching, we are able to match the observed QLF of SDSS

Data Release 9 (DR9) (R13), COSMOS (M12), and high-

redshift SDSS data (M13). After applying this method to dark

matter halo catalogs generated from N-body simulations, we

have constrained a class of quasar models that reproduce the

clustering amplitude measured from the two-point auto-

correlation function of the BOSS survey (White et al. 2012)

at a redshift of z=2.39. The characteristic mass of the quasar

hosts is ´2.5 1012 -h M1 for the lightbulb model and

´ -h M2.3 1012 1 for the exponential model. The effective

lifetime as defined in Equation (20) of quasars is =t 59 Myreff

for the lightbulb model of quasars and =t 15 Myreff for the

symmetric exponential model.
One of the limitations of this approach is that we have

constrained the class of quasar models using a comparatively

narrow span in quasar luminosity. By matching the bias of

quasars with a different magnitude range, we would have a

different effective luminosity range for the bias calculation.

This would lead to a different slope in the parameter Leff, which

would allow us to break the degeneracy observed in Figure 4.

Having the ability to break the sample down into different

luminosity intervals would allow us to make tighter constraints

on the class of allowed models.
In future work, we plan to use the quasar models explored

here as sources of ionizing photons for studying helium

reionization using simulations containing hydrodynamics and

radiative transfer. These types of simulations will allow us to

accurately capture important physical characteristics related to

the IGM. Specifically, we are interested in capturing the

thermal history of the IGM as it relates to observations. In

upcoming simulations, we plan to compute the IGM equation

of state and produce synthetic Lyα forest fluxes. This will

allow us to tap into the wealth of observations available for the

Lyα forest, such as those currently available from BOSS (e.g.,

Lee et al. 2013), and from upcoming future surveys such

as DESI.
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APPENDIX A
FITTING THE PARAMETERS OF THE QLF

In order to construct a QLF informed by the observations at
all redshifts relevant to helium reionization, we have combined
the measurements of R13, M12, and M13. We will now briefly
summarize the relevant findings of each paper. In all three
results, the QLF is parameterized as a double-power law,
according to Equation (11). R13 uses quasars identified from
SDSS-III DR9, and provides a LEDE model in which the base-
10 logarithm of the QLF normalization, *flog10 , and the break
magnitude M*, evolve linearly with redshift, as parameterized
in Equations (12) and (13). The parameters α and β are fixed as
a function of redshift. Nominally, the LEDE fit is valid over the
redshift range z2.2 3.5. M12 uses data from the
COSMOS survey, and measures the four QLF parameters at
~z 3.2 and ~z 4. M13 uses quasars identified in SDSS data

in Stripe 82 (S82), and reports the four QLF parameters at
~z 5. For all three results, the parameters themselves and their

associated 1σ uncertainties are reported. In the M13 results, the
authors actually provide three different fits to the observed
results. In their fiducial result, they fix the value of β, and fit for
the three parameters *flog10 , M*, and α. In a second set of
parameters, the authors fix the value of α and find the best-fit
values for the other three quantities. Finally, the authors fix M*,
α, and β, and only fit for *flog10 . The best-fit values for the
parameters change significantly in some cases between the
different fits. More importantly, none of these fits seems to be
ruled out conclusively by the data presented in M13, and so we
incorporate all of the fits in our results.

As explained in Section 2.5, our goal is to combine the
observational data from different epochs. For redshifts z 3.5,
the parameters from R13 are used. At higher redshift, the
parameters are assumed to vary linearly in redshift. The
equations for the parameters are given in Equations (15a)–
(15d). The constant values are taken to be those of R13 at
z=3.5, and the slope of the redshift evolution is allowed to
take on a range of values. We will now discuss each of the four
parameters in turn.

For the parameter *flog10 , the fiducial value for the slope c1
is chosen to reproduce the average of the three reported values
of M13 at ~z 5. As discussed in M13, the fits from R13
extrapolated to ~z 5 do not reproduce the overall normal-
ization well, and predict too high a number density. Thus, a
steeper value than that of R13 is necessary. The range of values
for c1 are chosen to bracket the range of best-fit values reported
by M13.

For the parameter M*, the fiducial value of the slope c2 is
chosen to reproduce the average of the three reported values of
M13 at ~z 5. The slope is allowed to take on a range of values
that bracket the three reported values of M13. Also note that we
have converted between magnitude systems using

( )= = -M z M2 1.486i 1450 , which assumes a spectral index
a = 0.5. If instead the value of a = 0.61 is used, as suggested
by Lusso et al. (2015) and used in the calculations of Section 5,
then the conversion is ( )= = -M z M2 1.681i 1450 . Further, if
the SED from Shang et al. (2011) is used, the conversion is

( )= = -M z M2 2.139i 1450 . The reason for the differences is
that the K-corrections depend on the spectral index of the SED
(see Equation (3) of Richards et al. 2006). By extension, the
QLF can be affected when combining different data sets.
However, to be consistent with previous works that have

combined disparate data sets in this manner (e.g., R13
and M13), we use the conversion given by assuming a = 0.5.
For the parameter α, the fiducial value of the slope c3 is

chosen to reproduce the average of the three reported values of
M13 at ~z 5. As with the other parameters discussed, a range
of values is also explored which brackets all of the reported
values of M13. Further, the value of α is bounded to lie where
a > -2. For a -2, the QLF does not converge for low-
luminosity objects, and a cutoff luminosity must be specified
below which quasars do not contribute significantly to helium
reionization. To avoid defining such a cutoff luminosity, the
value of α is bounded. As a practical matter, the ultimate goal
of this project is to study helium reionization using full
numerical simulations, where the minimum resolved halo mass
will set the lower-limit of quasar luminosities.
Finally, for the parameter β, the fiducial value for the slope

c4 is chosen to reproduce the average of the values from M13 at
~z 5. The range of slopes is chosen to bracket the values

reported by M13. For the fiducial choice of slope, the value of
β does not vary significantly with redshift. This range of values
incorporates much of the parameter space constrained by M13,
without the values of β becoming arbitrarily steep. However,
the choice of β ultimately does not significantly affect the
ionization level predicted by Equation (22).
As a final note, the values of α and β at ~z 3.2 from M12

are nominally inconsistent with the combined results from R13.
However, when looking at the results for individual redshift
bins at ~z 3.2 (e.g., Figure 15 from R13), the uncertainties for
the R13 values are significantly larger, and the results are
largely consistent at 1σ. The values of *flog10 and M

* from
M12 at ~z 3.2 are consistent with the results from R13, and
those at ~z 4 are consistent with the linear redshift evolution
given by the requirement of matching the M13 data. Note that
in Figure 10, we do not plot the value of *flog10 at ~z 4
from M12, because the reported lower-bound of the error bars
is larger than the best-fit value, which must be positive. Despite
this fact, the best-fit value is very close to the fiducial linear
evolution given here.
Figure 10 shows the measured parameters as a function of

redshift, as well as the assumed high-z evolution for each
parameter. The solid lines and shaded regions show the best-fit
parameters from R13, and the individual points with error bars
show the results from M12 and M13. The dashed lines show
the fiducial choices for the parameters, which are chosen as
outlined above. The dotted lines show the full range of
parameters explored. The range of parameter combinations is
applied to helium reionization in Figure 9 in the top-left panel.
Note that, as discussed in Section 5, this uncertainty primarily
affects the early stages of reionization. Due to the recombina-
tion term in the calculation of the volume-filling fraction and
the fact that all reionization histories use the parameters of R13
at z 3.5, the high-z values for the QLF do not ultimately
affect the timing of reionization significantly; nevertheless, the
different reionization scenarios can leave unique observable
signatures on the IGM.

APPENDIX B
BIAS AS A FUNCTION OF REDSHIFT

In addition to reproducing the “fiducial” sample from the
BOSS results, the quasars from the constructed catalogs were
also partitioned by redshift into a “high-redshift” and “low-
redshift” sample in an analogous manner to the auxiliary BOSS
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samples. In the case of the BOSS results, the “fiducial” sample
is actually the combination of the “high-redshift” and “low-
redshift” samples, so these two data sets are statistically
independent of each other, but not the fiducial sample. For the
purposes of comparing with the quasar catalogs, however, it is
possible to compute ( )x s at distinct points in redshift, and
compare with the BOSS results. The central redshifts for the
high-redshift and low-redshift samples are z=2.51 and 2.28,
respectively. Then an analysis similar to the above is
performed, but at these additional redshifts. This procedure
yields further constraints on the bias as a function of redshift in
terms of the model parameters t0 and γ. Figure 11 is similar to

Figure 4, and shows how the selection of models varies as a
function of redshift. In general, we find that the choice of
parameters for our model t0 and γ evolves slightly with
redshift. In general, the BOSS measurements show an increase
in bias with decreasing redshift. In order to accommodate this
increased bias, the model parameters must vary slightly. In
general, the model favors quasars with increased lifetimes as
redshift decreases. Despite this evolution with redshift, the
relationship between ( )tlog10 0 and γ remains fairly linear, and
it is still possible to parameterize these models in terms of the
characteristic lifetime and luminosity factors teff and Leff as
defined in Equation (20).

Figure 10. A plot of the evolution of the QLF parameters as a function of redshift: the base-ten logarithm of *f (top left), the break magnitude M*
(top right), the faint-

end slope α (bottom left), and the steep-end slope β (bottom right). Best-fit values and associated 1σ errors from R13, M12, and M13 are represented as the solid lines
with shaded error regions, dark-gray triangles, and light-gray stars, respectively. For the M13 data, all three sets of parameters provided by the authors are plotted at
~z 5, slightly offset for visual clarity. The dashed lines for >z 3.5 show the fiducial evolution of the QLF, and the dotted lines show the bracketing ranges of values

explored. See the text in this appendix for further details.
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Table 4 summarizes the changes in best-fit parameters as a
function of redshift. Interestingly, these values change some-
what: as structure continues to build, models with increasingly
higher bias values are preferred. The fact that the best-fit values
change demonstrates that the passive evolution of an increased
clustering signal within a given model is not sufficient; rather,
this redshift evolution introduces additional constraints that we
can use to select the most appropriate model. Nevertheless, the
results are consistent with no redshift evolution. The results of
White et al. (2012) also suggest that redshift evolution is
minimal. Extending the clustering measurements to a larger
redshift range could provide important constraints on the
properties of quasar hosts.

APPENDIX C
BIAS AS A FUNCTION OF LUMINOSITY

We can also examine the dependence of bias as a function of
quasar luminosity. In the preceding analysis, we looked at the
fiducial luminosity selection of the BOSS measurements for
clustering,- -M25 27i . In order to break the degeneracy
in Figure 4, we explored the implications of measuring the
clustering of quasars with different luminosity cuts. We
examined a high-luminosity cut -M 27i , and a low-
luminosity cut - -M23 25i . Unfortunately, since the
simulation volumes are only 1( -h 1Gpc)3, there are an
insufficient number (∼400) of high-luminosity objects to
constrain the two-point correlation function.

When fitting the functional form of the two-point correlation
function, a power law is used:

( ) ( )x =
b⎛

⎝
⎜

⎞

⎠
⎟s

s

s
. 23

0

Fits to the function are made for cases where the exponent β is

allowed to vary, and others with a fixed value of b = -2 as in

White et al. (2012). In both cases, the clustering length s0
increases for larger values of the bias. To fit the best

parameters, the parameters s0 and β that minimized the

c d d= -C2 T 1 value were found, where δ is defined as the

difference between the average ( )x s and the functional form

and C is the covariance matrix, calculated in the same way as in

Section 3.2. These fits were made for the best-fit models

defined in Equation (20) using the values in Table 4.
Figure 12 shows the value of the correlation length fits s0 for

the fiducial luminosity cut - -M25 27i (solid lines) and
the low-luminosity cut- -M23 25i (dashed lines) for the
lightbulb and exponential models. The data are somewhat
noisy, owing to the comparatively large shot-noise error in the
correlation function measurement. However, there does seem

Figure 11. Parameter space evolution of t0 and γ from Equation (3) as a function of redshift for the lightbulb model (left) and the exponential model (right). As redshift
decreases, the space of preferred models shifts slightly toward those with higher intrinsic clustering. This is in addition to the passive evolution in clustering signal that
each individual model experiences, which constrains the space of applied models somewhat. Nevertheless, the results are consistent with there being no redshift
evolution.

Figure 12. The best-fit parameter s0 for the two-point correlation function in

the form ( ) ( )x = -s s s0
2 as a function of power-law index γ from Equation (3)

for the lightbulb and exponential cases using a fiducial (solid) and low-
luminosity (dashed) luminosity selection. The gray shaded region shows the
BOSS measurement for the fiducial luminosity cut. For the low-luminosity
quasars, we see opposite trends for the two models. For the lightbulb, more
negative values of γ mean that dimmer quasars have longer lifetimes, which
combined with abundance matching implies they have more massive hosts.
They therefore have larger values of s0 compared to more positive values of γ.
In the exponential case, larger values of γ show more clustering because the
bright quasars are longer lived, and are more likely to be included in the low-
luminosity cuts while they are below their peak luminosity. Since they are
abundance matched to more massive, highly clustered hosts, this leads to the
behavior seen. See the text for further discussion.
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to be a trend emerging: in the lightbulb case, for more negative
values of γ, the bias is larger, with the opposite trend for the
exponential case. In the lightbulb case, this can be explained by
noting, as in Section 3.2, that in abundance matching longer
lifetimes lead to a larger bias in the host halos. For negative
values of γ, less luminous quasars have longer lifetimes.
Subsequently these quasars are being hosted in more massive
halos. This means the clustering is stronger for large negative
values of γ, implying a larger value of s0.

In the exponential case, the opposite trend is observed due to
the presence of high-Lpeak interlopers. For positive values of γ,
brighter quasars have longer lifetimes, and are more likely to be
included in the low-luminosity selection. Since these hosts are
abundance matched to occupy more massive, more clustered
halo hosts, this leads to a stronger clustering signal, and a larger
value of s0. The evolution is not as strong as in the lightbulb
case, however. In principle, the clustering measurement in
different luminosity ranges could help break the degeneracy of
best-fit models.

Unfortunately, in practice this type of measurement might be
difficult to actually make. The change in bias between the
extreme values of γ is not very significant, and the
measurement is very noisy. The shaded gray region in Figure 12
shows the current 1σ bounds from the BOSS measurement,
which has a larger spread than the variation in s0 as a function
of γ. Nevertheless, this ratio is a possible way to break the
degeneracy between the different models.
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