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phase-field crystal model (M2PFC; Asadi and Asle Zaeem, Comput. Mater. Sci. 105 (2015) 110-
113) for face-centered cubic (FCC) metals at their melting point. The connection of M2PFC
model to the classical density functional theory is explained in this article. M2PFC model in its
dimensionless form contains three parameters (two independent and one dependent) which are
determined using an iterative procedure based on the molecular dynamics and experimental data.
The quantification process and computer simulations are performed for Ni and Al as two case
studies. The quantitative M2PFC models are used in series of numerical simulations to determine
the two-phase FCC-liquid coexisting and the bulk properties at the melting points of Ni and Al.
The calculated and predicted properties are the expansion in melting, elastic constants, solid-
liquid interface free energy, and surface anisotropy, which are also compared with their available

experimental or computational counterparts in the literature.
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1. INTRODUCTION

Using computational materials science to predict micro- and nano- structural patterns has
become more widespread amongst researchers mainly because of the recent advancements in
high performance computing and the elevated cost of conducting experiments. Modeling and
predicting structural patterns such as grain boundaries, dislocations, and defects in crystalline
materials are of significant interest to materials scientists because these phenomena control the
material properties. Therefore, design and engineering of structural patterns can possibly result in
manufacturing of crystalline materials with improved properties.

Conventional atomistic scale models such as molecular dynamics (MD) are powerful
methods to determine the structural patterns of materials at nano scale [1-5]. However, the
phenomena such as solidification and grain growth, which control the structural patterns at their
onset, essentially happen on diffusive time scales. On the other hand, most of the widely used
mesoscale computational models for this purpose, such as phase-field models [6-8], do not provide
atomistic resolution. Therefore, developing predictive atomistic models on diffusive time scales is
a key component in accurately predicating the structural patterns in materials.

One of the recently developed atomistic models acting on diffusive time scales is the phase-
field crystal (PFC) model [9-13]. PFC uses the crystal density field in its formulation as its order
parameter. In PFC model, the crystal density field is constant in the liquid state and a periodic
function in the crystalline state. Vacancy, dislocation, grain boundary, and two-phase solid-liquid
interface formations as well as elasticity and plasticity are naturally incorporated in the PFC
model. Consequently, PFC model can be used to calculate material properties such as solid-
liquid interface free energy and surface anisotropy, grain boundary free energy, and elastic
constants. Also, PFC can be used to quantitatively simulate problems such as solidification and
grain growth in materials which basically happen on diffusive time scales. So far, PFC model has
been used to simulate many phenomena in materials science including solidification [13-15],
elastic deformation [16], spinoidal decomposition[17], grain-boundary premelting[18], and
Kirkendall effect [19]. PFC model was also used to quantitatively simulate the two-phase solid-
liquid coexistence of Fe by determining the PFC model parameters based on MD data [20-24];
the calculated results for solid-liquid interface free energy and surface anisotropy, elastic
constants, and grain boundary free energy using PFC model were in reasonable agreements with

the experimental data.



Computational Materials Science 127 (2017) 236—-243

Some of the most technologically important materials such as Ni and Al have FCC crystal
structures in the solid state. Therefore, it is important to extend the concept of a diffusive
computational model such as PFC to fundamentally study and predict structural patterns of FCC
materials. Wu et al. [24] presented a quantitative PFC model with FCC ordering by modifying
the two-frequency Swift-Hohenberg (SH) equation [25] introduced by Lifshitz and Petrich [26].
Their model (two-mode PFC, or 2PFC) couples first two sets of crystal density waves

corresponding to [111] and [200] density wave vectors. 2PFC model was recently modified

(M2PFC) by the authors of this article [20, 27] to accurately minimize the free energy for the
stable FCC or BCC crystals. Gao et al. [28] used 2PFC model to simulate nanoscale grain growth
of FCC crystals. They simulated the grain growth, grain boundary with mismatch, and incoherent
grain boundaries using the 2PFC model. In addition, 2PFC and M2PFC models can be used to
simulate square lattice structures in two dimensions [27]. For instance, Adland et al. [29] used
2PFC model to study polycrystalline pattern evolution of square crystals. Wu et al. [24] provided
a method to quantify their 2PFC model parameters based on some MD data such as liquid
structure factor. They also calculated elastic constants and bulk modulus of Ni at its melting

point. While they calculated reasonable C,, (112.5 GPa comparing to MD calculation of 155.4
C

445

GPa), their calculations of C, and bulk modulus significantly deviated from MD-

25
calculated results. Nevertheless, quantitative PFC modeling of FCC-liquid structures has been
done only for Ni, and also the capability of PFC models in predicting melting point properties
such as expansion in melting, solid-liquid interface free energy and surface anisotropy have not
been tested for any FCC material. To quantitatively validate the PFC modeling capabilities, it is
necessary to calculatE these properties and directly compare them to their experimental
counterparts. The outcomes of the comparisons can help quantifying the accuracy of PFC models
in simulating solidification and grain growth problems for FCC crystals.

In this work, the connection between M2PFC model and the classical density functional
theory (CDFT) is explained in details. Then, an iterative procedure is presented to determine the
PFC model parameters for FCC materials at their melting point. As two case studies, the model
parameters are calculated for Ni and Al based on available MD and experimental data, and the
simulations and calculations are performed for these two materials. Bulk properties such as
expansion in melting and elastic constants at the melting point are calculated. Also, the two-

phase FCC-liquid coexisting problem is investigated using the quantified M2PFC model, and
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properties such as FCC-liquid interface free energy and surface anisotropy are determined for Ni
and Al. All the calculated properties are compared against their experimental or computational

counterparts to test the accuracy of the quantitative M2PFC model.

2. Model Formulation
2.1. Connection to CDFT
The Helmholtz free energy in CDFT as suggested by Ramakrishnan and Yussouff [30] can

be written as

Tp j dr {[1+n(r)]In[1+n(r)]—n(r)} —% j dr j dr'n(r)p,c® (| r = ('), (1)

where k, is the Boltzmann constant, 7" is the temperature, p, is the reference density,
n(r)=(p(r)—p,)/ p, is the number density, and ¢ is the two-point correlation function. The

first integral in Eq. (1) represents the ideal gas part of the free energy, and the second integral
represents the excess free energy; the external free energy part is omitted. The logarithmic term

in Eq. (1) can be approximated by a fourth-order polynomial as

[1+n(r)]In[1+n(r)]-n(r) = %n(r)2 - 5 —n(r) + n(r) (2)

where a and b are fitting parameters [23]. We approximate the excess free energy by expanding

the two-point correlation function in & space as
Ck)~C,+Ck* +Ck* +Ck° +Ck* (3)
where C(k) = p,c? (k) and C,,C,,C,,C,, and C, are constants. Substituting Egs. (3) and (2)

into Eq. (1) results in

il —jdr{—n(r)[l C,+C,V*—CV*+CV° - C.V*In(r)— n(r) + n(r) } ()
ksT py
If we assume
_$ e
n= s + e (5

where ¢ is a function related to the number density. Substitute Eq. (5) into Eq. (4) results in

—_jd {1¢(r)[1 C—“—+CV2 CV +CV° - CV]¢(V)+£¢(r4)4}. (6)
k,T p, Lo 4b Lo 12 p,
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The free energy in Eq. (6) is identical to the free energy of the M2PFC model, which is [31]

F={f(g)dr, (7)
]
where
¢( D q
[=5a+ g + V) +5]lg + VY +r]}¢<r>+ p(r)*, (®)
with the following substitutions made in Eq. (6):
a p P2
C, :1_5_/{ (’T[aM(r +q)+q)], G, =2kBLT[qf(ro+q3)+q§(rl+qi‘)],
== +ql)+r +r+2q0ql] C, =22 2+qf), CS:—M,
k T k,T k,T
3 3
=280 =41~ C, - o+ A )@+ gD ©)

k,T k,T
The standard time-evolution equation for conserved fields is valid for ¢ as

09() _ 12 OF

o Sp(r)” (10)

where M 1is the mobility constant. The dimensionless form of the M2PFC free energy may be

also obtained from Egs. (7), (8), and (10) as

F’ =jf*(¢)dx, (11)
Ia :@ —e+[(1+ V)2 + R Q7 + V) + R ]Iy (x) + W(:) , (12)
0 , OF"

a Sy "

where  is the dimensionless density field and

g=-alAq,, R,=1,/q5, 0 =9/4, R =rlqs,
w=0Jg/ gy, X=qpr, F=(g/ Xq))F, £ =tMAqs, (14)

It 1s worth mentioning that Egs. (11-13) are identical to those relations presented by Asadi
and Asle Zaeem [20] for dimensionless form of M2PFC model showing that M2PFC model can
be directly derived from CDFT.
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2.2. Formulation for FCC-liquid
M2PFC model in its dimensionless form (Eqgs. 11-13) have three model parameters, which

are: £, R,, and R,. In this section, we present some basic formulations of the model for FCC

and liquid phases and explore the relations between the model parameters. The liquid free energy

density is obtained by substituting the constant liquid density, ,, in Eq. (12), integrating over a

lattice cell, and dividing the resultant by the lattice volume as

/i =—[6—(1+Ro)(Q14+R1)]W7’+%- (15)

The dimensionless density field for FCC crystal including [111] and [200] density wave
vectors (Q, =v4/3)is
v =y, +84, cosqx cos gy cos gz + 2B (cos2gx +cos 2qy +cos 2gz), (16)

where y is the average dimensionless FCC density, 4 and B, are the density wave amplitudes

for [111] and [200] density wave vectors, respectively, and g =1/ 3. The free energy density in
the FCC phase is obtained by substituting Eq. (16) into Eq. (12), integrating over a lattice cell,

and dividing the resultant by the lattice volume as
16 A
Fre =Ae= 4 R)CG + RIZATA AR, — 6+ RR 43y ) 4

+3C3yw + R,R, %R1 —&)B} +T2ABy, +1444B? +54 4] +%B§ : (17)

We previously showed that R, = R/ (B> / A’) in order to exactly minimize f e atg=1/ 3

[20]. Minimizing f,. withrespectto 4, and B, results in two coupled equations as
Byl -c+R, (é +R)]A, +184 By, +36A4.B +274) =0,

By’ -c+R (é +R))IB, +12A47y +48A’B, +15B) =0. (18)

Egs. (18) should be numerically solved (for the given & and R, parameters) to determine A,

and B, . Furthermore, the coexisting solid and liquid densities (y, and y, respectively) can be
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determined using the standard common tangent line construction for the given & and R,

parameters.
In addition, the relations for the elastic constants can be obtained by applying isotropic,

biaxial and simple shear deformations on the FCC lattice cell as

(6 s D opropic = (X1 A+ 8), y 1 (1+6), 2/ (1+8)),

(X, 7, X) i = (1 (146), ¥/ (1=8),2)

(X35 ) gpeqr = (X +SY,3,2), (19)
where & is a small deformation. Comparing the free energy change due to the deformations in
Eq. (19) to the corresponding elasticity relations leads to the following dimensionless elastic

constants:

Cyy =5 [+ R)A + (5 +4R, +5R)B].

~ ~ 32 1
C,=C, = ?[(§+ R)A’ +RB?]. (20)

2.3. Model parameters determination
The liquid structure factor at the melting point for M2PFC model can be obtained by [31]
kBTM

S(k): 8 2 72\2 7282 4
PG & +3y7 (1K) + R [(4/3-k*) +R]

21)

where /€=k/q0, p, 1s the dimensional liquid density, and 7,, is the melting point. Liquid

structure factor can be also determined experimentally or using other computational methods
such as MD simulations. For illustration, the experimental liquid structure factor for Ni and Al
are shown by red dots in Fig. 1; they will be used as the target liquid structure factors in this
study. The calculated structure factors at the melting point in the present model (Eq. 21) for
R =-0.01, R =0 and R =0.01 are also depicted in Fig. 1. The model parameters for
determining the liquid structure factors from Eq. (21) are calculated using an iterative method

which is explained in the following paragraphs. It is worthy to note that the liquid structure
factor in the present model has a second peak located at +/4/3 times of the location of the first

peak. The height of the second peak is identical to the height of the first peak for R =0,
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increases as R, decreases, and decreases as R, increases such that the second peak vanishes for
sufficiently large R, parameters. The necessary relations to calculate all the PFC model

parameters for different materials (except for g and R, parameters which will be discussed

later) are determined by comparing the experimental liquid structure factor with the liquid

structure factor relation at Eq. (21).
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Fig. 1. Plot of the liquid structure factor at melting point in M2PFC model for R, =-0.01,

R =0and R, =0.01 versus the experimental counterparts [32]: a) Ni; experiment performed at

T= 1773 K, and b) Al; experiment performed at T= 943 K.
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First, the location of the first peak of the structure factor in M2PFC model (%, = lgmqo) is
determined by finding /gm at which the first derivative of S(k) is zero; ¢, is the location of the
first peak of the experimental liquid structure factor. The resulting equation to determine lgm is

(A=kD[(4/3-k) +R]+(4/3-kD[(1-k2) +R,]=0. (22)
This equation should be solved numerically for a given R, (R, is calculated as a function of R,).
Generally, lgm #1 (k, #¢q,) unlessR =0 which can be easily seen at Fig. 1. Also, increasing

(decreasing) R, from zero shifts the location of the first peak to the bigger (smaller) k values.
The second relation to determine the model parameters is obtained by equating the first peak of
the liquid structure factor in the PFC model, S(k,,) , and that of the experiments, S, (g,), as

kBTM
pAq[—e+3y] +[(1-k.)* +R][(4/3-k.) +R]

= SExp(qO)' (23)

To obtain the third relation, the second derivative of the correlation function in the Fourier

space (C(k)=1-1/S(k)) needs to be determined at the location of the first peak,
C"(k,)=S"(k,)/S*(k,), and the calculated values utilizing the structure factors of the M2PFC

model and experiments needs to be equated:

J— 6 ~ ~ - - -
—8’1;0’0’ ko[4(413—k)A—k)+(1—k2)* +(4/3—-k,)* + Ry + R 1=C}, (q,)- (24)

BT™M

Utilizing the relation ¢ =—a/ Aq; and Eqs. (23-24), we obtain

1= _ngp (g0)kT,, (25)
8y 0 k(441 3=k )1k ) +(1—k2)* +(4/3—k, )’ + Ry + R
2 7232 F2N2 kT,
e=3y; +[(-k,) +RJ(4/3-k,) +R]-——F"——. (26)
pl/lqOSExp(qo)

Consequently, all the parameters in M2PFC model (except for g and R,) are determined in

terms of q,, S;,,(¢,), C;

Exp

(90)> p,5 ¥,,and T,, using Eqgs. (22, 25, 26). It is worth mentioning

that & cannot be explicitly calculated from Eq. (26) because y;, is a function of ¢ (through the
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standard common tangent line construction). Thus, employing an iterative approach will be

necessary to determine ¢ from Eq. (26) for a given R,.
The relation for g is obtained by comparing the fluctuations of the solid density as

_ Aq Al _ Aq,B}

84552 > 87 55
P P Uy

; 27)

where u,,, and u,,, are the real solid density wave amplitudes related to [111] and [200] density
wave vectors, respectively. Also, g, and g, denote the parameter g as calculated using the

information for the first and second density wave amplitude, respectively. In order to determine

u,,, and u,,,, we fit a Gaussian function to the fluctuations of atoms in the solid as calculated by

the MD simulations explained in section II-F in Ref. [22]. Let’s denote the standard deviation of

the position of the atoms from their ideal location by u, where u, is averaged over all the atoms
in the simulation box; Then, the real solid density wave amplitudes are calculated as
u,,, =exp(—qe u2/2) and u,, =exp(—g; u’/2). Ideally, g, should be equal to g,, and the role
of R, parameter is to make g, as close as possible to g, by controlling A4 /B, ratio; 4, and B,
are calculated through the standard common tangent line construction. In this work, for the sake
of simplicity, we use the average of g, and g, equal to g . Therefore, all the parameters in the
M2PFC model (except R,) can be determined for specific materials by providing the liquid
structure factor, liquid density, melting point, and standard deviation of the position of the atoms
in the solid state. We still have the freedom of choosing R,, and we will use it to produce the
experimental elastic constants in the PFC model (explained in the next section) rather than fitting
to another data point on the experimental liquid structure factor. For example, R, parameter may

be used to lower the second peak of the liquid structure factor in the model or even making it to

disappear (similar to the experiments; see Fig. 1). However, the amplitude of the second solid
density wave vector ( B,) also decreases as R, increases such that for sufficiently big R, values

(necessary to vanish the second peak of the liquid structure factor) the effect of the second

density wave vector is negligible ( B, ~ 0) and M2PFC becomes identical to the one-mode PFC.

10
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3. Case Studies: Ni and Al
3.1 Model parameters

The required input material properties to determine M2PFC model parameters for Ni and Al
are listed at Table 1. The material properties q,, Sy, (9,), Cr,(4o) > U1y Uy ;> and T,, are
obtained from experiments [32], and u, is calculated using the modified embedded-atom method

(MEAM) interatomic potentials develop by Asadi et al. [33] in MD simulations.

Table 1. The input material properties for M2PFC model for Ni and Al

qO SExp (qo) ngp (qO) IOI TM ul‘

(1/A) (A% (atom/A’)  (K) (A)

Ni 3.114 2423 -6.426 0.0801 1728 0.1541
Al 2.706 2.476 -6.333 0.0530 934  0.1833

Following the iterative method which was discussed in details in section 2.3, M2PFC model
parameters &, y,, v, A, B,, and lgm , for a given R, parameter, can be determined using the

data provided in Table 1. For instance, these PFC model parameters for five different R, values

are calculated for Ni and listed in Table 2.

Table 2. The calculated Ni M2PFC model parameters for different value of R,.

R —0.02 -0.01 0 0.01 0.02
£ 0.016800 0.014899 0.013532 0.012878 0.013092

v, -0.093358 -0.086554 -0.080459 -0.075864 -0.073643
-0.092957 -0.086234 -0.080202 -0.075652 -0.073452

0.017491 0.016261 0.015178 0.014398 0.014078

v

® a0

s, 0.013817 0.012736 0.011737 0.010938 0.010465

E??‘z

0.982028 0.990962 1 1.008706 1.016424

11
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It is interesting to point out that /gm increases as R, increases, and /gm =1 for R, =0. Also, both
v, and y_ decrease as R, increases. Furthermore, both 4, and B, decrease by increasing R, ;
while B, constantly decreases toward zero, the decrement rate of A4, slows down for larger R,
values. This behavior suggests that B, vanishes for sufficiently large value of R, and M2PFC

model becomes identical to one-mode PFC model.

In Table 3, C,, and C,, elastic constants (C,, =C,,) and the expansion in melting (A}") for
Ni are reported for R =-0.02, -0.01, 0, 0.01, and 0.02 using the corresponding model
parameters listed in Table 2. The dimensional elastic constants are calculated using
C, =(Aq,’ /g)C, where C, are the dimensionless elastic constants determined at Eqs. (20).

The expansion in melting is calculated from the calculated dimensional solid and liquid densities.
The relation between the dimensional and dimensionless densities can be readily obtained from

Eq. (5) as

8
p=p 4y |20 9P (28)
g 2b

where a and b are defined in Eq. (9).

Table 3. The calculated elastic constants at melting point (C;, and C,,, in GPa) and

expansion in melting (AV, A’atom) for Ni wusing M2PFC model for
R, =-0.02,-0.01,0,0.01, and 0.02.

R, —0.02 —0.01 0 0.01 0.02

G, 90.96 127.17 173.37 228.08 282.06
C,* 26.02 36.82 51.11 68.94 87.86
AV® 0.2725 0.2355 0.2042 0.1793 0.1670

* Embedded-atom method (EAM) MD calculations [24]: C,, =1554, and C,, = 66.0-

bExperiment [33]: AV =0.54.

12
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The data listed in Table 3 show that, as R, increases elastic constants increase while the

expansion in melting decreases. Therefore, the variations of the elastic constants and expansion

in melting with the variation of R, may be used as criteria to select R, (and consequently all the
model parameters). First, it should be noted that the present model calculates the expansion in
melting for the considered FCC crystals to be approximately half of its experimental value.
Selecting bigger negative R, slightly increases the expansion in melting but significantly
decreases the elastic constants. So, selecting negative R, values is favorable to improve the
calculation of expansion in melting for Ni, but it cannot be used as the main selecting criterion.
Looking at the elastic constant calculations for Ni reveals that the MD-calculated C,, is achieved
by selecting a small negative R, while the MD-calculated C,, is obtained by selecting a small
positive R, . Since selecting a negative R, value also improves the calculation of the expansion in
melting, we use fitting to the target C; as our main criterion to select R,. Consequently, the
following procedure may be followed to systemically determine the optimized M2PFC model
parameters with minimum errors for a given material: 1) select an R, parameter, 2) use the
selected R, parameter in Eqs. (26-28) to determine ¢ by an iterative procedure (see section 2.3
for details), 3) use the calculated & to determine y,, yw , A, B,, andR,=R/(B./A})
parameters, 4) use all the calculated properties to determine C;, and compare it to the target
value, and 5) update the R, parameter based on the outcome of the comparison in step 4, and

repeat steps 2 to 5 until the desired accuracy is achieved.

The above-mentioned systematic procedure to determine M2PFC model parameters for solid-

liquid coexistence of FCC materials at their melting point results in the selection of R, =—0.004

for Ni. It should be noted that the present PFC model in its current form results in a significant

error in the calculation of C,, elastic constant because it calculates C,, =C,,; e.g. the MD-

calculated C}, for Ni is 124.7 GPa. Table 4 lists all the selected M2PFC model parameters for Ni

and Al. Since to the best knowledge of the authors, there are no reported elastic constants for Al

at its melting point in the literature, we selected the same R, value for Al

13
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Table 4. The selected M2PFC model parameters for Ni and Al corresponding to R, =—0.004.

3 l//l l//s As Bs k

m

Ni  0.014003 -0.082765 -0.082488 0.015582 0.012118 0.996393
Al 0.018478 -0.094869 -0.094452 0.017896 0.013897 0.996404

In Table 5, we compare M2PFC-calculated elastic constants and expansion in melting (using
the parameters reported in Table 4) with their available experimental or computational
counterparts in the literature. It is clear that the present model can be used to produce the

accurate C;, and C,, constants. Furthermore, the present model calculates the expansion in
melting approximately half of its experimental value. The input material property C;. (q,) is the
parameter which is mostly controlling the expansion in melting and one may use bigger C}, (g,)

(and repeat the R, selection process) in order to improve the expansion in melting calculations.
In this fitting procedure, the liquid density is always equal to its target value, and the only other

factor affecting the expansion in melting is the solid density which can be calculated using Eq.

(28), or AV =1/p,—1/(p,+w,JAq}/g+pal/2b). In AV relation all the parameters are

material properties except for 7 \JA/gand a/b terms. y A/g is a negative quantity and its
absolute value decreases as Cy, (¢,) increases (smaller absolute value since C}, (g, ) is negative).

The a/bterm is a positive quantity and its value decreases as Cj, (¢,) increases but with a

lower rate than the decrement rate of y _/A/g term such that their competition results in higher

expansion in melting. It is worth mentioning that the liquid isothermal compressibility, that has a
direct relation to C,, is influencing the calculation of the expansion in melting through the
parameter a (see Eq. 9), as it was suggested in previous PFC works [23]; however, C, is not the
only factor controlling the expansion in melting in the present PFC model. The error in
calculating AV can be also explained by comparing the density profile of the PFC model to DFT
results as it was done in Ref. [23]. The present PFC model results in broader peaks for FCC
materials which results in overestimating temperature; thus, underestimating the expansion in
melting. It is worth mentioning that DFT uses the full structure factor in its formulation while the

present PFC model uses only two peaks of the structure factor in its formulations. One of these

14
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peaks must be the first peak as it has the biggest height, but the choice of the second peak is
arbitrary; i.e. we have used the first two peaks in the current formulation and parameter
determination procedure. Therefore, it is possible to underestimate, overestimate, or recover the
correct width of the density profile and contingently determine the expansion in melting by
varrying the choice of the second peak; e.g. the present PFC model which was previously
employed for BCC materials (Fe) results in calculating the correct expansion in melting by using

the first two peaks in its formulation [34].

Table 5. Elastic constants (C,, and C,, ) at melting point and expansion in melting (AV") for

Ni, Cu, and Al calculated using M2PFC model and the parameters reported in Table 4.

Ni Al
present PFC* Exp./MD  present Exp./MD

C,, (GPa) 1537 112 1554° 40.1 -

C,, (GPa) 449 331  1247° 118 -

C,, (GPa) 449 331  66.0° 11.8 -

AV (A’/atom) 0214 - 0.54° | 0418 1.14¢

* Two-mode PFC model by Wu et al. [24].
® Embedded-atom method MD calculations [24].
¢ Experiments reported in [33].

3.2.  FCC-liquid coexistence

The time-evolution equation of M2PFC model (Eq. 12) is of tenth order in spatial
derivatives. In order to solve this tenth-order partial differential equation (PDE), four auxiliary
functions (P, R, S, and T') are defined such that the tenth-order time-evolution PDE is

reduced to the following system of five second-order PDEs:

aa—l/::Vz{[(l+R0)(16/9+Rl)—g]z//+2[R1 +R,+28/91P+[R,+ R +73/91R+(14/3)T + S +y’},

P=Vy, R=V’P, S=V’R, T=V’S. (29)

15
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Periodic boundary conditions are used in all directions and the model parameters listed in
Table 4 are used for Ni and Al, accordingly. The FCC-liquid coexisting structures consisting of
mxmxn periodic lattice cells are constructed in order to determine FCC-liquid interface free
energy and anisotropy for Ni and Al. The normal to the FCC-liquid interface plane (direction
related ton) is either [100] or [110] direction. The value of 7 is typically much greater than m
to minimize the pressure at the normal direction; e.g. m=2 and n=70 when [100] is the
normal direction. Initially, the central half of the atoms are solid (Eq. 16) and the rest is liquid (
v =v,). Then, system of PDEs in Eq. (29) is solved for a sufficiently long time until the total
free energy of the system remains constant and a two-phase FCC-liquid structure is achieved. In
the concept of finite element method, cubic elements with implicit adaptive time stepping and
backward-Euler method is used to solve the system of PDEs in Eq. (29). For all the simulations,
the length of the cubic elements is 7 /4 which has been shown to be sufficient for the
convergence of the results for M2PFC model [31]. As an example, the constructed two-phase
FCC-liquid structure of Ni is shown in Fig. 2 where the normal direction is [110] (only the right-

half section near the interface is shown).

Fig. 2. The schematic of the coexisting two-phase FCC-liquid structure for Ni.

The FCC-liquid interface free energy in dimensional units is calculated using

‘//l ‘//s l//l

= [ YT Vg, (30)
gQ W, —

where Q is the FCC-liquid interface area. For illustration, the free energy density pattern the

case of Al where the normal direction is [110] is depicted at Fig. 3.
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Figure 3. Free energy density (mJ/m?) pattern at the {110} interface of two-phase FCC (right)-

liquid (left) coexisting for Al.

The calculated FCC-liquid interface free energies for Ni and Al are reported in Table 6 along

with the anisotropy parameter & = (o0 —7110)/ 27,> Where y, is the average FCC-liquid

interface free energy. The results show that the present PFC model slightly underestimates
the interface free energies while predicts the anisotropy parameter in agreement with the
experiments. It is worth mentioning that most of the previous MD works [33, 35]

overestimated the interface free energy (with similar margin of errors). In the present model,
R, parameter can be used to recover the exact interface free energies (rather than fitting to
elastic constants) if one is interested in recovering the exact experimental interface free
energies. As a final note we should mention that we used the R, =-0.004 that was

determined for Ni to develop the model parameters for Al. It is possible to modify the
parameters for Al in order to reduce the error in calculating the solid-liquid interface free
energy of Al. Nevertheless, PFC modeling similar to any other computational model has
certain number of model parameters that can be used to fit for a certain number of properties.
The number of “unfitted” properties and their agreements with their experimental
counterparts determine the predictive capability of the model. For the case of M2PFC model,
interface free energies are the prediction of model and the amount of errors are reasonable
comparing to the discrepancies in the calculations of other predictive computational models;
e.g. MD calculations [33, 35]. Alternatively, extra parameters [36] or even extra terms [37]

can be added into the free energy of the model in order to exactly fit to the interface free
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energy; however, a careful attention must be devoted to not compromise the advantageous

features of the model.

Table 6. Comparison of the PFC-calculated FCC-liquid interface free energy (
V1000 V110> and 7, ) and anisotropy parameter (&, = (7,00 = 7110)/ 27, ) for Ni and Al with the

available experimental data in literature.

Element Method 70 (mJ/m®)  71o(mIm?) 70 (mim®) & (%)

Ni PFC® 208.1 201.5 204.8 1.6
Exp. -- - 255", 300° --
MD 224% 331¢ 310%-331.8° 1.2¢-1.4"

Al PFC® 73.4 712 72.3 1.5
Exp. -- - 93°108°  0.97%1.7"
MD 131 172! 149-172.6¢  13.8'

? Present calculations.

b Homogeneous nucleation experiment [38].
¢ Maximum supercooling experiment [39].

¢ EAM-MD calculations [40].

* MEAM-MD calculations [41]

"EAM-MD calculations [42].

¢ Experimental measurement for Al-Cu [43].
f‘Experimental measurement for Al-Si [44].
' EAM-MD calculations [45].

4. CONCLUSIONS
It was shown that M2PFC model, which is a two-mode PFC model, can be directly derived
from classical density functional theory. M2PFC was applied to FCC metals (Ni and Al as case

studies). The model contains two independent parameters (& and R;) which were determined
using an iterative procedure. Parameter & was used to determine FCC-liquid coexisting
densities, while parameter R, was used to calculate the solid elastic constants at the melting

point. It was shown that the calculated elastic constants have been significantly improved
comparing to the results of the previous two-mode PFC model for Ni. As a test for the

quantitative capability of the model, the solid-liquid interface free energy and anisotropy of Ni
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and Al were calculated. The calculated interface free energies were slightly lower than the
experimental counterparts (the error margins are similar to MD overestimations of interface free
energies). The anisotropy parameter of solid-liquid interface free energy for the model was in
agreement with the experiments. The presented parameters for M2PFC in this work can be used
in atomistic simulations of solidification and relevant phenomena for Ni and Al. In addition, the

procedure presented here can be used to develop PFC model parameters for other FCC materials.
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