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Abstract: This work deals with the quantification and application of the modified two-mode 

phase-field crystal model (M2PFC; Asadi and Asle Zaeem, Comput. Mater. Sci. 105 (2015) 110-

113) for face-centered cubic (FCC) metals at their melting point. The connection of M2PFC 

model to the classical density functional theory is explained in this article. M2PFC model in its 

dimensionless form contains three parameters (two independent and one dependent) which are 

determined using an iterative procedure based on the molecular dynamics and experimental data. 

The quantification process and computer simulations are performed for Ni and Al as two case 

studies. The quantitative M2PFC models are used in series of numerical simulations to determine 

the two-phase FCC-liquid coexisting and the bulk properties at the melting points of Ni and Al. 

The calculated and predicted properties are the expansion in melting, elastic constants, solid-

liquid interface free energy, and surface anisotropy, which are also compared with their available 

experimental or computational counterparts in the literature.  
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1. INTRODUCTION 

Using computational materials science to predict micro- and nano- structural patterns has 

become more widespread amongst researchers mainly because of the recent advancements in 

high performance computing and the elevated cost of conducting experiments. Modeling and 

predicting structural patterns such as grain boundaries, dislocations, and defects in crystalline 

materials are of significant interest to materials scientists because these phenomena control the 

material properties. Therefore, design and engineering of structural patterns can possibly result in 

manufacturing of crystalline materials with improved properties.  

Conventional atomistic scale models such as molecular dynamics (MD) are powerful 

methods to determine the structural patterns of materials at nano scale [1-5]. However, the 

phenomena such as solidification and grain growth, which control the structural patterns at their 

onset, essentially happen on diffusive time scales. On the other hand, most of the widely used 

mesoscale computational models for this purpose, such as phase-field models [6-8], do not provide 

atomistic resolution. Therefore, developing predictive atomistic models on diffusive time scales is 

a key component in accurately predicating the structural patterns in materials.  

One of the recently developed atomistic models acting on diffusive time scales is the phase-

field crystal (PFC) model [9-13]. PFC uses the crystal density field in its formulation as its order 

parameter. In PFC model, the crystal density field is constant in the liquid state and a periodic 

function in the crystalline state. Vacancy, dislocation, grain boundary, and two-phase solid-liquid 

interface formations as well as elasticity and plasticity are naturally incorporated in the PFC 

model. Consequently, PFC model can be used to calculate material properties such as solid-

liquid interface free energy and surface anisotropy, grain boundary free energy, and elastic 

constants. Also, PFC can be used to quantitatively simulate problems such as solidification and 

grain growth in materials which basically happen on diffusive time scales. So far, PFC model has 

been used to simulate many phenomena in materials science including solidification [13-15], 

elastic deformation [16], spinoidal decomposition[17], grain-boundary premelting[18], and 

Kirkendall effect [19]. PFC model was also used to quantitatively simulate the two-phase solid-

liquid coexistence of Fe by determining the PFC model parameters based on MD data [20-24]; 

the calculated results for  solid-liquid interface free energy and surface anisotropy, elastic 

constants, and grain boundary free energy using PFC model were in reasonable agreements with 

the experimental data.  
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Some of the most technologically important materials such as Ni and Al have FCC crystal 

structures in the solid state. Therefore, it is important to extend the concept of a diffusive 

computational model such as PFC to fundamentally study and predict structural patterns of FCC 

materials. Wu et al. [24] presented a quantitative PFC model with FCC ordering by modifying 

the two-frequency Swift-Hohenberg (SH) equation [25] introduced by Lifshitz and Petrich [26]. 

Their model (two-mode PFC, or 2PFC) couples first two sets of crystal density waves 

corresponding to [111]  and [200]  density wave vectors. 2PFC model was recently modified 

(M2PFC) by the authors of this article [20, 27] to accurately  minimize the free energy for the 

stable FCC or BCC crystals. Gao et al. [28] used 2PFC model to simulate nanoscale grain growth 

of FCC crystals. They simulated the grain growth, grain boundary with mismatch, and incoherent 

grain boundaries using the 2PFC model. In addition, 2PFC and M2PFC models can be used to 

simulate square lattice structures in two dimensions [27]. For instance, Adland et al. [29] used 

2PFC model to study polycrystalline pattern evolution of square crystals. Wu et al. [24] provided 

a method to quantify their 2PFC model parameters based on some MD data such as liquid 

structure factor. They also calculated elastic constants and bulk modulus of Ni at its melting 

point. While they calculated reasonable 11C  (112.5 GPa comparing to MD calculation of 155.4 

GPa), their calculations of 12C , 44C , and bulk modulus significantly deviated from MD-

calculated results. Nevertheless, quantitative PFC modeling of FCC-liquid structures has been 

done only for Ni, and also the capability of PFC models in predicting melting point properties 

such as expansion in melting, solid-liquid interface free energy and surface anisotropy have not 

been tested for any FCC material. To quantitatively validate the PFC modeling capabilities, it is 
necessary to calculatE these properties and directly compare them to their experimental 

counterparts. The outcomes of the comparisons can help quantifying the accuracy of PFC models 

in simulating solidification and grain growth problems for FCC crystals. 

In this work, the connection between M2PFC model and the classical density functional 

theory (CDFT) is explained in details. Then, an iterative procedure is presented to determine the 

PFC model parameters for FCC materials at their melting point. As two case studies, the model 

parameters are calculated for Ni and Al based on available MD and experimental data, and the 

simulations and calculations are performed for these two materials. Bulk properties such as 

expansion in melting and elastic constants at the melting point are calculated. Also, the two-

phase FCC-liquid coexisting problem is investigated using the quantified M2PFC model, and 
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properties such as FCC-liquid interface free energy and surface anisotropy are determined for Ni 

and Al. All the calculated properties are compared against their experimental or computational 

counterparts to test the accuracy of the quantitative M2PFC model. 

 

2. Model Formulation 
2.1.  Connection to CDFT  

The Helmholtz free energy in CDFT as suggested by Ramakrishnan and Yussouff [30] can 

be written as 

^ ` (2)
0

0

1[1 n( )]ln[1 n( )] n( ) ( ) (| |) n( )
2B

F d d d n c
k T

c c c � � � � �³ ³ ³ U
U

r r r r r r r r r r ,  (1) 

where Bk  is the Boltzmann constant, T  is the temperature, 0U  is the reference density,

0 0( ) ( ( ) ) /n U U U �r r  is the number density, and (2)c is the two-point correlation function. The 

first integral in Eq. (1) represents the ideal gas part of the free energy, and the second integral 

represents the excess free energy; the external free energy part is omitted. The logarithmic term 

in Eq. (1) can be approximated by a fourth-order polynomial as  
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where a  and b  are fitting parameters [23]. We approximate the excess free energy by expanding 

the two-point correlation function in k  space as 
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where (2)
0( ) ( )C k c kU  and 0 2 4 6, , , ,C C C C  and 8C  are constants. Substituting Eqs. (3) and (2) 
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where I  is a function related to the number density. Substitute Eq. (5) into Eq. (4) results in 
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The free energy in Eq. (6) is identical to the free energy of the M2PFC model, which is [31] 

( ) ,
V

F f dI ³ r           (7) 

where 
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with the following substitutions made in Eq. (6): 
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The standard time-evolution equation for conserved fields is valid for I  as 
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where M  is the mobility constant. The dimensionless form of the M2PFC free energy may be 

also obtained from Eqs. (7), (8), and (10) as  
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4
* 2 2 2 2 2

0 1 1
( ) ( )[ [(1 ) ][( ) ]] ( )
2 4

f R Q R � � �� � �� � �
\ \H \x xx ,   (12) 

*
2

*
F

t
w

 �
w
\ G

G\
,          (13) 

where \  is the dimensionless density field and 
8
0/ qH D O � , 4

0 0 0/R r q ,  1 1 0/Q q q   4
1 1 0/R r q , 

8
0/g q\ I O , 0q rx ,  * 2 13
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It is worth mentioning that Eqs. (11-13) are identical to those relations presented by Asadi 

and Asle Zaeem [20] for dimensionless form of M2PFC model showing that M2PFC model can 

be directly derived from CDFT. 



Computational�Materials�Science�127�(2017)�236–243�

6�
�

 

2.2.  Formulation for FCC-liquid   
M2PFC model in its dimensionless form (Eqs. 11-13) have three model parameters, which 

are: H , 0R , and 1R . In this section, we present some basic formulations of the model for FCC 

and liquid phases and explore the relations between the model parameters. The liquid free energy 

density is obtained by substituting the constant liquid density, l\ , in Eq. (12), integrating over a 

lattice cell, and dividing the resultant by the lattice volume as 
2 4

4
0 1 1[ (1 )( )]

2 4
l l

lf R Q R � � � � �
\ \H .                              (15) 

The dimensionless density field for FCC crystal including [111] and [200] density wave 

vectors ( 1 4 / 3Q  ) is  

8 cos cos cos 2 (cos 2 cos 2 cos 2 ),s s sA qx qy qz B qx qy qz � � � �\ \   (16) 

where s\  is the average dimensionless FCC density, sA  and sB  are the density wave amplitudes 

for [111] and [200] density wave vectors, respectively, and 1/ 3q  . The free energy density in 

the FCC phase is obtained by substituting Eq. (16) into Eq. (12), integrating over a lattice cell, 

and dividing the resultant by the lattice volume as 
2 4
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We previously showed  that 2 2
0 1( / )s sR R B A  in order to exactly minimize fccf  at 1/ 3q  

[20]. Minimizing fccf  with respect to  sA and sB  results in two coupled equations as 

2 2 3
0 1

1[3 ( )] 18 36 27 0
9s s s s s s s sR R A A B A B A� � � � � �  \ H \ , 

2 2 2 3
1 0

1[3 ( )] 12 48 15 0
9s s s s s s sR R B A A B B� � � � � �  \ H \ .     (18) 

Eqs. (18) should be numerically solved (for the given H  and 1R  parameters) to determine sA  

and sB . Furthermore, the coexisting solid and liquid densities ( l\  and s\ , respectively) can be 
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determined using the standard common tangent line construction for the given H  and 1R  

parameters.  

In addition, the relations for the elastic constants can be obtained by applying isotropic, 

biaxial and simple shear deformations on the FCC lattice cell as  

( , , ) ( / (1 ), / (1 ), / (1 ))isotropicx y x x y zo � � �[ [ [ ,    

( , , ) ( / (1 ), / (1 ), )biaxialx y x x y zo � �[ [ , 

( , , ) ( , , )shearx y x x y y zo �[ ,         (19) 

where [  is a small deformation. Comparing the free energy change due to the deformations in 

Eq. (19) to the corresponding elasticity relations leads to the following dimensionless elastic 

constants:  

 2 2
11 1 0 1

32 1 4[( ) ( 4 5 ) ]
9 9 9s sC R A R R B � � � �� , 

2 2
12 44 1 1

32 1[( ) ]
9 9 s sC C R A R B  � �� � .       (20) 

 

2.3.  Model parameters determination 
The liquid structure factor at the melting point for M2PFC model can be obtained by [31] 

8 2 2 2 2 2
0 0 1

( )
[ 3 [(1 ) ][(4 / 3 ) ]

B M

l l

k TS k
q k R k R

 
� � � � � � �� �U O H \

,    (21) 

where 0/k k q � , lU  is the dimensional liquid density, and MT  is the melting point. Liquid 

structure factor can be also determined experimentally or using other computational methods 

such as MD simulations. For illustration, the experimental liquid structure factor for Ni and Al 

are shown by red dots in Fig. 1; they will be used as the target liquid structure factors in this 

study. The calculated structure factors at the melting point in the present model (Eq. 21) for 

1 0.01R  � , 1 0R   and 1 0.01R   are also depicted in Fig. 1. The model parameters for 

determining the liquid structure factors from Eq. (21) are calculated using an iterative method 

which is explained in the following paragraphs. It is worthy to note that the liquid structure 

factor in the present model has a second peak located at 4 / 3  times of the location of the first 

peak. The height of the second peak is identical to the height of the first peak for 1 0R  , 
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increases as 1R  decreases, and decreases as 1R  increases such that the second peak vanishes for 

sufficiently large 1R  parameters. The necessary relations to calculate all the PFC model 

parameters for different materials (except for g  and 1R  parameters which will be discussed 

later) are determined by comparing the experimental liquid structure factor with the liquid 

structure factor relation at Eq. (21). 

 

 
Fig. 1. Plot of the liquid structure factor at melting point in M2PFC model for 1 0.01R  � ,�

1 0R  �and 1 0.01R  � versus the experimental counterparts [32]: a) Ni; experiment performed at 

T= 1773 K, and b) Al; experiment performed at T= 943 K. 
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First, the location of the first peak of the structure factor in M2PFC model ( 0m mk k q � ) is 

determined by finding mk�  at which the first derivative of ( )S k  is zero; 0q  is the location of the 

first peak of the experimental liquid structure factor. The resulting equation to determine mk�  is 

2 2 2 2 2 2
1 0(1 )[(4 / 3 ) ] (4 / 3 )[(1 ) ] 0m m m mk k R k k R� � � � � � �  � � � � .     (22) 

This equation should be solved numerically for a given 1R  ( 0R  is calculated as a function of 1R ). 

Generally, 1mk z�  0( )mk qz  unless 1 0R   which can be easily seen at Fig. 1. Also, increasing 

(decreasing) 1R  from zero shifts the location of the first peak to the bigger (smaller) k  values. 

The second relation to determine the model parameters is obtained by equating the first peak of 

the liquid structure factor in the PFC model, ( )mS k , and that of the experiments, 0( )ExpS q , as 

 08 2 2 2 2 2
0 0 1
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B M
Exp

l l m m
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q k R k R
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To obtain the third relation, the second derivative of the correlation function in the Fourier 

space ( ( ) 1 1/ ( )C k S k � ) needs to be determined at the location of the first peak,
2( ) ( ) / ( )m m mC k S k S kcc cc , and the calculated values utilizing the structure factors of the M2PFC 

model and experiments needs to be equated: 
6

2 2 2 2 2 2 20
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Utilizing the relation 8
0/ qH D O �  and Eqs. (23-24), we obtain 

0
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0 1 8
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B M
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l Exp
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q S q

 � � � � � �� �H \
U O
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Consequently, all the parameters in M2PFC model (except for g  and 1R ) are determined in 

terms of 0q , 0( )ExpS q , 0( )ExpC qcc , lU , l\ , and MT  using Eqs. (22, 25, 26). It is worth mentioning 

that H  cannot be explicitly calculated from Eq. (26) because l\  is a function of H  (through the 
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standard common tangent line construction). Thus, employing an iterative approach will be 

necessary to determine H  from Eq. (26) for a given 1R . 

The relation for g  is obtained by comparing the fluctuations of the solid density as  
8 2 8 2
0 0

2 2 2 2
111 200

, ,s s
A B

l l

q A q Bg g
u u

O O
U U

          (27) 

where 111u  and 200u  are the real solid density wave amplitudes related to [111] and [200] density 

wave vectors, respectively. Also, Ag  and Bg  denote the parameter g  as calculated using the 

information for the first and second density wave amplitude, respectively. In order to determine 

111u  and 200u , we fit a Gaussian function to the fluctuations of atoms in the solid as calculated by 

the MD simulations explained in section II-F in Ref. [22]. Let’s denote the standard deviation of 

the position of the atoms from their ideal location by ru  where ru  is averaged over all the atoms 

in the simulation box; Then, the real solid density wave amplitudes are calculated as 
2 2

111 0exp( u / 2)ru q �  and 2 2
200 1exp( u / 2)ru q � . Ideally, Ag  should be equal to Bg , and the role 

of 1R  parameter is to make Bg  as close as possible to Ag  by controlling /s sA B  ratio; sA  and sB  

are calculated through the standard common tangent line construction. In this work, for the sake 

of simplicity, we use the average of Ag  and Bg  equal to g . Therefore, all the parameters in the 

M2PFC model (except 1R ) can be determined for specific materials by providing the liquid 

structure factor, liquid density, melting point, and standard deviation of the position of the atoms 

in the solid state. We still have the freedom of choosing 1R , and we will use it to produce the 

experimental elastic constants in the PFC model (explained in the next section) rather than fitting 

to another data point on the experimental liquid structure factor. For example, 1R  parameter may 

be used to lower the second peak of the liquid structure factor in the model or even making it to 

disappear (similar to the experiments; see Fig. 1). However, the amplitude of the second solid 

density wave vector ( sB ) also decreases as 1R  increases such that for sufficiently big 1R  values 

(necessary to vanish the second peak of the liquid structure factor) the effect of the second 

density wave vector is negligible ( 0sB | ) and M2PFC becomes identical to the one-mode PFC. 
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3. Case Studies: Ni and Al 
3.1 Model parameters 

The required input material properties to determine M2PFC model parameters for Ni and Al 

are listed at Table 1. The material properties 0q , 0( )ExpS q , 0( )ExpC qcc , 111u , 200u , lU , and MT  are 

obtained from experiments [32], and ru  is calculated using the modified embedded-atom method 

(MEAM) interatomic potentials develop by Asadi et al. [33] in MD simulations.   

 

Table 1. The input material properties for M2PFC model for Ni and Al. 

 0q
(1/Å) 

0( )ExpS q
 

0( )ExpC qcc

(Å2) 
lU

(atom/Å3) 
MT

(K)  
ru

(Å) 

Ni 3.114 2.423 -6.426 0.0801 1728 0.1541 

Al 2.706 2.476 -6.333 0.0530 934 0.1833 

 

Following the iterative method which was discussed in details in section 2.3, M2PFC model 

parameters H , l\ , s\ , ,sA  sB , and mk� , for a given 1R  parameter, can be determined using the 

data provided in Table 1. For instance, these PFC model parameters for five different 1R  values 

are calculated for Ni and listed in Table 2.  

 

Table 2. The calculated Ni M2PFC model parameters for different value of 1R . 

1R  0.02�  0.01�  0  0.01 0.02  

H  0.016800 0.014899 0.013532 0.012878 0.013092 

l\  -0.093358 -0.086554 -0.080459 -0.075864 -0.073643 

s\  -0.092957 -0.086234 -0.080202 -0.075652 -0.073452 

sA  0.017491 0.016261 0.015178 0.014398 0.014078 

sB  0.013817 0.012736 0.011737 0.010938 0.010465 

mk�  0.982028 0.990962 1 1.008706 1.016424 
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It is interesting to point out that mk�  increases as 1R  increases, and 1mk  �  for 1 0R  . Also, both 

l\  and s\  decrease as 1R  increases. Furthermore, both sA  and sB  decrease by increasing 1R ; 

while sB  constantly decreases toward zero, the decrement rate of sA  slows down for larger 1R  

values. This behavior suggests that sB  vanishes for sufficiently large value of 1R  and M2PFC 

model becomes identical to one-mode PFC model.  

In Table 3, 11C  and 44C  elastic constants ( 12 44C C ) and the expansion in melting ( V' ) for 

Ni are reported for 1 0.02R  � , 0.01� , 0 , 0.01, and 0.02  using the corresponding model 

parameters listed in Table 2. The dimensional elastic constants are calculated using 
2 16

0( / )ij ijC q g CO �  where ijC�  are the dimensionless elastic constants determined at Eqs. (20). 

The expansion in melting is calculated from the calculated dimensional solid and liquid densities. 

The relation between the dimensional and dimensionless densities can be readily obtained from 

Eq. (5) as 
8
0

2
l

l
q a
g b
O UU U \ � �           (28) 

where a  and b  are defined in Eq. (9).  

 

 Table 3. The calculated elastic constants at melting point ( 11C  and 44C , in GPa) and 

expansion in melting ( V' , Å3/atom) for Ni using M2PFC model for 

1 0.02, 0.01,0,0.01, and 0.02R  � � . 

1R  0.02�  0.01�  0  0.01 0.02  

11C a  90.96 127.17 173.37 228.08 282.06 

44C a 26.02 36.82 51.11 68.94 87.86 

V' b  0.2725 0.2355 0.2042 0.1793 0.1670 

 
a Embedded-atom method (EAM) MD calculations [24]:

11 44155.4,  and 66.0C C  .  
b Experiment [33]: 0.54V'  . 
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The data listed in Table 3 show that, as 1R  increases elastic constants increase while the 

expansion in melting decreases. Therefore, the variations of the elastic constants and expansion 

in melting with the variation of 1R  may be used as criteria to select 1R  (and consequently all the 

model parameters). First, it should be noted that the present model calculates the expansion in 

melting for the considered FCC crystals to be approximately half of its experimental value. 

Selecting bigger negative 1R  slightly increases the expansion in melting but significantly 

decreases the elastic constants. So, selecting negative 1R  values is favorable to improve the 

calculation of expansion in melting for Ni, but it cannot be used as the main selecting criterion. 

Looking at the elastic constant calculations for Ni reveals that the MD-calculated 11C  is achieved 

by selecting a small negative 1R  while the MD-calculated 44C  is obtained by selecting a small 

positive 1R . Since selecting a negative 1R  value also improves the calculation of the expansion in 

melting, we use fitting to the target 11C  as our main criterion to select 1R . Consequently, the 

following procedure may be followed to systemically determine the optimized M2PFC model 

parameters with minimum errors for a given material: 1) select an 1R  parameter, 2) use the 

selected 1R  parameter in Eqs. (26-28) to determine H  by an iterative procedure (see section 2.3 

for details), 3) use the calculated  H  to determine l\ , s\ , sA , sB , and 2 2
0 1( / )s sR R B A  

parameters, 4) use all the calculated properties to determine 11C  and compare it to the target 

value, and 5) update the 1R  parameter based on the outcome of the comparison in step 4, and 

repeat steps 2 to 5 until the desired accuracy is achieved. 
The above-mentioned systematic procedure to determine M2PFC model parameters for solid-

liquid coexistence of FCC materials at their melting point results in the selection of 1 0.004R  �  

for Ni. It should be noted that the present PFC model in its current form results in a significant 

error in the calculation of 12C  elastic constant because it calculates 12 44C C ; e.g. the MD-

calculated 12C  for Ni is 124.7 GPa. Table 4 lists all the selected M2PFC model parameters for Ni 

and Al. Since to the best knowledge of the authors, there are no reported elastic constants for Al 

at its melting point in the literature, we selected the same 1R  value for Al. 
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Table 4. The selected M2PFC model parameters for Ni and Al corresponding to 1 0.004R  � . 

 H  l\  s\  sA  sB  
mk�  

Ni 0.014003 -0.082765 -0.082488 0.015582 0.012118 0.996393 

Al 0.018478 -0.094869 -0.094452 0.017896 0.013897 0.996404 

 

In Table 5, we compare M2PFC-calculated elastic constants and expansion in melting (using 

the parameters reported in Table 4) with their available experimental or computational 

counterparts in the literature. It is clear that the present model can be used to produce the 

accurate 11C  and 44C  constants. Furthermore, the present model calculates the expansion in 

melting approximately half of its experimental value. The input material property 0( )ExpC qcc  is the 

parameter which is mostly controlling the expansion in melting and one may use bigger 0( )ExpC qcc  

(and repeat the 1R  selection process) in order to improve the expansion in melting calculations.  

In this fitting procedure, the liquid density is always equal to its target value, and the only other 

factor affecting the expansion in melting is the solid density which can be calculated using Eq. 

(28), or 8
01/ 1/ ( / / 2 )l l s lV q g a bU U \ O U'  � � � . In V' relation all the parameters are 

material properties except for /s g\ O and /a b  terms.  /s g\ O  is a negative quantity and its 

absolute value decreases as 0( )ExpC qcc  increases (smaller absolute value since 0( )ExpC qcc is negative). 

The /a b term is a positive quantity and its value decreases as 0( )ExpC qcc  increases but with a 

lower rate than the decrement rate of /s g\ O  term such that their competition results in higher 

expansion in melting. It is worth mentioning that the liquid isothermal compressibility, that has a 

direct relation to 0C , is influencing the calculation of the expansion in melting through the 

parameter a  (see Eq. 9), as it was suggested in previous PFC works [23]; however, 0C  is not the 

only factor controlling the expansion in melting in the present PFC model. The error in 

calculating V' can be also explained by comparing the density profile of the PFC model to DFT 

results as it was done in Ref. [23]. The present PFC model results in broader peaks for FCC 

materials which results in overestimating temperature; thus, underestimating the expansion in 

melting. It is worth mentioning that DFT uses the full structure factor in its formulation while the 

present PFC model uses only two peaks of the structure factor in its formulations. One of these 



Computational�Materials�Science�127�(2017)�236–243�

15�
�

peaks must be the first peak as it has the biggest height, but the choice of the second peak is 

arbitrary; i.e. we have used the first two peaks in the current formulation and parameter 

determination procedure. Therefore, it is possible to underestimate, overestimate, or recover the 

correct width of the density profile and contingently determine the expansion in melting by 

varrying the choice of the second peak; e.g. the present PFC model which was previously 

employed for BCC materials (Fe) results in calculating the correct expansion in melting by using 

the first two peaks in its formulation [34]. 

 

 

Table 5. Elastic constants ( 11C  and 44C ) at melting point and expansion in melting ( V' ) for 

Ni, Cu, and Al calculated using M2PFC model and the parameters reported in Table 4. 

 Ni Al 

 present PFCa Exp./MD present Exp./MD 

11C  (GPa) 153.7 112 155.4b 40.1 -- 

12C (GPa) 44.9 33.1 124.7b 11.8 -- 

44C (GPa) 44.9 33.1 66.0b 11.8 -- 

V'  (Å3/atom) 0.214 -- 0.54c 0.418 1.14c 

a Two-mode PFC model by Wu et al. [24].  
b Embedded-atom method MD calculations [24].  
c Experiments reported in [33]. 

  
3.2. FCC-liquid coexistence 

The time-evolution equation of M2PFC model (Eq. 12) is of tenth order in spatial 

derivatives. In order to solve this tenth-order partial differential equation (PDE), four auxiliary 

functions ( P , R , S , and T ) are defined such that the tenth-order time-evolution PDE is 

reduced to the following system of five second-order PDEs: 

2 3
0 1 1 0 0 1{[(1 )(16 / 9 ) ] 2[ 28 / 9] [ 73 / 9] (14 / 3) },R R R R P R R R T S

t
\ H \ \w

 � � � � � � � � � � � � �
w

2 2 2 2, , , .P R P S R T S\ �  �  �  �      (29) 



Computational�Materials�Science�127�(2017)�236–243�

16�
�

Periodic boundary conditions are used in all directions and the model parameters listed in 

Table 4 are used for Ni and Al, accordingly. The FCC-liquid coexisting structures consisting of 

m m nu u  periodic lattice cells are constructed in order to determine FCC-liquid interface free 

energy and anisotropy for Ni and Al. The normal to the FCC-liquid interface plane (direction 

related to n ) is either [100]  or [110]  direction. The value of n  is typically much greater than m  

to minimize the pressure at the normal direction; e.g. 2m   and 70n   when [100] is the 

normal direction. Initially, the central half of the atoms are solid (Eq. 16) and the rest is liquid (

l\ \ ). Then, system of PDEs in Eq. (29) is solved for a sufficiently long time until the total 

free energy of the system remains constant and a two-phase FCC-liquid structure is achieved. In 

the concept of finite element method, cubic elements with implicit adaptive time stepping and 

backward-Euler method is used to solve the system of PDEs in Eq. (29). For all the simulations, 

the length of the cubic elements is / 4S  which has been shown to be sufficient for the 

convergence of the results for M2PFC model [31].  As an example, the constructed two-phase 

FCC-liquid structure of Ni is shown in Fig. 2 where the normal direction is [110]  (only the right-

half section near the interface is shown).  

 
Fig. 2. The schematic of the coexisting two-phase FCC-liquid structure for Ni. 

 

The FCC-liquid interface free energy in dimensional units is calculated using 
2 13

0 { ( )} ,l s
s l

s l s l

q f f f d
g
O \ \ \ \J

\ \ \ \
� �

 � �
: � �³ r         (30) 

where :  is the FCC-liquid interface area. For illustration, the free energy density pattern the 

case of Al where the normal direction is [110]  is depicted at Fig. 3. 
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Figure 3. Free energy density (mJ/m2) pattern at the{110}interface of two-phase FCC (right)-

liquid (left) coexisting for Al. 

 

The calculated FCC-liquid interface free energies for Ni and Al are reported in Table 6 along 

with the anisotropy parameter 1 100 110 0( ) / 2H J J J � , where 0J  is the average FCC-liquid 

interface free energy. The results show that the present PFC model slightly underestimates 

the interface free energies while predicts the anisotropy parameter in agreement with the 

experiments. It is worth mentioning that most of the previous MD works [33, 35] 

overestimated the interface free energy (with similar margin of errors). In the present model, 

1R  parameter can be used to recover the exact interface free energies (rather than fitting to 

elastic constants) if one is interested in recovering the exact experimental interface free 

energies. As a final note we should mention that we used the 1 0.004R  �  that was 

determined for Ni to develop the model parameters for Al. It is possible to modify the 

parameters for Al in order to reduce the error in calculating the solid-liquid interface free 

energy of Al. Nevertheless, PFC modeling similar to any other computational model has 

certain number of model parameters that can be used to fit for a certain number of properties. 

The number of “unfitted” properties and their agreements with their experimental 

counterparts determine the predictive capability of the model. For the case of M2PFC model, 

interface free energies are the prediction of model and the amount of errors are reasonable 

comparing to the discrepancies in the calculations of other predictive computational models; 

e.g. MD calculations [33, 35]. Alternatively, extra parameters [36] or even extra terms [37] 

can be added into the free energy of the model in order to exactly fit to the interface free 
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energy; however, a careful attention must be devoted to not compromise the advantageous 

features of the model. 

 

Table 6. Comparison of the PFC-calculated FCC-liquid interface free energy (

100 110 0, ,  and J J J ) and anisotropy parameter ( 1 100 110 0( ) / 2H J J J � ) for Ni and Al with the 

available experimental data in literature.  

Element Method 100J  ( mJ/m2) 110J ( mJ/m2) 0J  ( mJ/m2) 1H  (%) 

Ni PFCa 208.1 201.5 204.8 1.6 

Exp. -- -- 255b, 300c -- 

 MD 224d- 331d 310d-331.8e 1.2d -1.4f 

Al PFCa 73.4 71.2 72.3 1.5 

Exp. -- -- 93b,108c 0.97g,1.7h 

 MD 131i 172i 149i-172.6 e 13.8i 

a Present calculations.                                                     
b Homogeneous nucleation experiment [38]. 
c Maximum supercooling experiment [39].                 
d EAM-MD calculations [40]. 
e MEAM-MD calculations [41] 
f EAM-MD calculations [42].    
g Experimental measurement for Al-Cu [43].                
h Experimental measurement for Al-Si [44].                 
i EAM-MD calculations [45]. 

 
4. CONCLUSIONS 

It was shown that M2PFC model, which is a two-mode PFC model, can be directly derived 

from classical density functional theory. M2PFC was applied to FCC metals (Ni and Al as case 

studies). The model contains two independent parameters (H  and 1R ) which were determined 

using an iterative procedure. Parameter H  was used to determine FCC-liquid coexisting 

densities, while parameter 1R  was used to calculate the solid elastic constants at the melting 

point. It was shown that the calculated elastic constants have been significantly improved 

comparing to the results of the previous two-mode PFC model for Ni. As a test for the 

quantitative capability of the model, the solid-liquid interface free energy and anisotropy of Ni 
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and Al were calculated. The calculated interface free energies were slightly lower than the 

experimental counterparts (the error margins are similar to MD overestimations of interface free 

energies). The anisotropy parameter of solid-liquid interface free energy for the model was in 

agreement with the experiments. The presented parameters for M2PFC in this work can be used 

in atomistic simulations of solidification and relevant phenomena for Ni and Al. In addition, the 

procedure presented here can be used to develop PFC model parameters for other FCC materials. 
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