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DISCRIMINANT FORMULAS AND APPLICATIONS

K. CHAN, A.A. YOUNG, AND J.J. ZHANG

ABSTRACT. We solve two conjectures of Ceken-Palmieri-Wang-Zhang concern-
ing discriminants and give some applications.

INTRODUCTION

In algebraic number theory, the discriminant takes on a familiar form: given a
Galois extension L of the field Q and write Oy, = Z[a] = Z[x]/(f) where f is the
minimal polynomial (or the characteristic polynomial) of «, then we have

Apjg=[Itri=r))
i
where r1,...,7, are the roots of f. In noncommutative algebra, the discriminant
has long been used to study orders and lattices in a central simple algebra [Re].
Recently, it has been shown that the discriminant plays a remarkable role in solving
some classical and notoriously difficult questions:

(1) Automorphism problem, determining the full automorphism groups of
noncommutative Artin-Schelter regular algebras [CPWZ1, CPWZ2].

(2) Zariski cancellation problem, concerning the cancellative property of
noncommutative algebras such as skew polynomial rings [BZ].

(3) Isomorphism problem, finding a criterion for when two algebras are iso-
morphic, within certain classes of noncommutative algebras [CPWZ3].

Despite the usefulness of the discriminant in algebraic number theory, algebraic ge-
ometry and noncommutative algebra, it is extremely hard to compute, especially in
high dimensional and high rank cases. In [CPWZ1, CPWZ2], the authors made two
conjectures on discriminant formulas for some classes of noncommutative algebras.
Our main aim is to prove these two conjectures.

Let k be a base commutative domain and k£* be the set of invertible elements
in k. The discriminant of a noncommutative algebra A over a central subalgebra
Z C A, denoted by d(A/Z), will be reviewed in Section 1. Let ¢ € k* be an
invertible element in k and let A, be the g-quantum Weyl algebra generated by x
and y subject to the relation yxr = qry + 1. Our first result is

Theorem 0.1. Let q be a primitive n-th root of unity for some n > 2. Then the
discriminant of A, over its center Z(Ay) is

d(Aq/Z(Aq)) =cC (nm)"2((1 — q)”x"y” _ 1)71(71—1)
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where ¢ is some element in k> and m = H;:;(l +q+---+q"1). By convention,
m =1 when n = 2.

Theorem 0.1 answers [CPWZ2, Conjecture 5.3] affirmatively.

For n > 2, let W,, be the k-algebra generated by zi,...,z, subject to the
relations z;z; + z;2; = 1 for all ¢ # j [CPWZI1, Introduction]. This algebra is
called a (—1)-quantum Weyl algebra [CPWZ3, Introduction]. Let

223 1 - 1
1 222 - 1
M := : . .
1 1 - 222
Let Z denote the central subalgebra k[z?,--- ,22] C W,,. Our second result is

Theorem 0.2. Suppose 2 is invertible in k. Then the discriminant of W, over the
subalgebra Z is

d(W,/Z) = c (det M)2""
where ¢ is an element in k.

Theorem 0.2 answers [CPWZ1, Question 4.12(2)] affirmatively.

These results suggest that the discriminant has elegant expressions in some situ-
ations. Because of its usefulness, more discriminant formulas should be established,
see Example 6.4.

This paper contains other related results which we now describe. Let T be
a commutative algebra over k and let q := {¢;; € T* | 1 < i < j < n} and
A:={a;; €T |1<i<j<n} besets of elements in T. The skew polynomial ring
Tqlz1,- -+ ,xy] is a T-algebra generated by x1,- - ,z, subject to the relations

A generalized quantum Weyl algebra associated to (q,.A) is a T-central filtered
algebra of the form
T(x1,...,2Tn)

E0.2.2 Vilq, A) = —
( ) (a.4) (Tj2i — qijTiw; — ai; |1 < j)

such that the associated graded ring gr V,,(q,.4) is naturally isomorphic to the skew
polynomial ring Tg[x1, -, Z,]. Another way of constructing V,(q,.A) is to use an
iterated Ore extension starting with 7. To calculate the discriminant of V,,(q,.A)
over its center, one needs to determine the center of V,,(q,.4). The discriminant is
defined whenever V,(q,.A) is a finite module over a central subring Z [CPWZ2],
and it is most useful when V,,(q,A) is a free module over Z [CPWZ1]. Since
grVy(aq, A) ~ T4lz1, -+ ,x,] we have that grV,(q,.A) is a finite module over its
center if and only if each ¢;; is a root of unity. Using this, we can show that the
algebra V,(q, A) is a finite module over its center if and only if the parameters g;;
are all non-trivial roots of unity. Also, when the center of V,,(q, .A) is a polynomial
ring, V,(q,.A) is a finitely generated free module over its center. The following
useful result concerns the centers of V,(q,A) and Tq[z1,- - ,zy].

To state it, we need some notation. When g¢;; is a root of unity, there are two
integers k;; and d;; such that

Qij = exp(2ﬂ'\/ —1 kij/dij)7
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where d;; = 0(g;;) < 00, |kij| < dij and (k;j,d;;) = 1. Further, we can choose that
kij = —kj; since gj; = qigl. Let L; be the lem{d;; | 7 = 1,...,n}. Let Y be the
n x n-matrix (k;;L;/d;j)nxn. For each prime p, define Yp =Y ® F,. Let m be any
natural number. Let I, ,, be the set containing i such that L; € p™Z — p™+1Z.
Finally let Y, ,, be the submatrix of Y, taken from the row and columns with
indices i € I, .

Theorem 0.3. Suppose q;; is a root of unity and not 1 for all i < j.
(1) The center of Tq[z1,--- ,xn] is a polynomial ring if and only if it is of the
form T[zXr, -+ xEn] if and only if det(Y ) # 0 in F, for all primes p

and all integers m > 0 such that I ., # 0.

(2) If the center of Tylx1,--- ,x,] is the subalgebra T[zi',---  xkr], then the
center of Vi, (q, A) is the subalgebra T[z'", - - xEn] and V,(q, A) is finitely
generated and free over Tz, .- xkl»].

The above criterion can be simplified when n = 3 or 4 [Corollaries 5.4 and 5.5].
The point of Theorem 0.3 is that it provides an explicit linear algebra criterion
for when the center of Ty4[x1,---,x,] is isomorphic to a polynomial ring. One
interesting question after this is the following.

Question 0.4. Suppose that A := V,,(q,.A) is finitely generated and free over its
center Z. What is the discriminant d(A/Z)?

Theorems 0.1 and 0.2 answer this question for two special cases.

A secondary goal of this paper is to provide some quick applications. These
discriminant formulas have potential applications in algebraic geometry, number
theory and the study of Clifford algebras. In Section 8 (the final section), we give
some immediate applications of discriminants to the cancellation problem and the
automorphism problem for several classes of noncommutative algebras.

Let us briefly review some definitions. An algebra A is called cancellative if A[t] =
Blt] for some algebra B implies A = B. Let Aut(A) be the group of all algebra
automorphisms of A. Let A be connected graded. An algebra automorphism g of
A is called unipotent if

g(v) = v + (higher degree terms)

for all homogeneous elements v € A. Let Auty,;(A) denote the subgroup of Aut(A)
consisting of all unipotent automorphisms [CPWZ2, After Theorem 3.1]. When
Aty (A4) is trivial, Aut(A) is usually small and easy to handle. We will give a
criterion on when Aut,,;(A) is trivial.

Let A be a domain and F be a subset of A. Let Sw(F') be the set of g € A such
that f = agb for some a,b € A and 0 # f € F. Let D1(F) be the k-subalgebra of A
generated by Sw(F). For n > 2, we define D,,(F') = D1(D,,—1(F)) inductively, and
define D(F) = {J,;; Dn(F'). This algebra is called the the F-divisor subalgebra of
A. When F = {d(A/Z)}, D(F) is called discriminant-divisor subalgebra of A and
is denoted by ID(A). The main result in Section 8 is the following.

Theorem 0.5. Suppose k is a field of characteristic zero. Let A be a connected
graded domain of finite Gelfand-Kirillov dimension. Assume that A is finitely
generated and free over its center. If D(A) = A, then A is cancellative and
Autyni(4) = {1}.
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The above theorem can be applied to some Artin-Schelter regular algebras of
global dimension four in Examples 6.3 and 8.4. Further applications are certainly
expected.

This paper is organized as follows. Background material about discriminants is
provided in Section 1. We prove Theorem 0.1 in Section 2 and Theorem 0.2 in
Section 3. Sections 4-6 concern the question of when Ty[z1,--- ,z,] and V,(q, A)
are finitely generated and free over their centers and contain the proof of Theorem
0.3. In Section 7, we review and introduce some invariants related to discriminants,
locally nilpotent derivations, and automorphisms, which will be used in Section 8.
In Section 8, some applications are provided and Theorem 0.5 is proven.

1. PRELIMINARIES

In this section we recall some definitions and basic properties of the discriminant.
A basic reference is [CPWZ1, Section 1].

Throughout let k£ be a base commutative domain and everything is over k. Let A
be an algebra and Z be a central subalgebra of A such that A is finitely generated
and free over Z. A modified version of the discriminant was introduced in [CPWZ2]
when A is not free over Z; however, in this paper, we only consider the case when
A is finitely generated and free over Z. Let r be the rank of A over Z.

We embed A in the endomorphism ring End(Az) by sending a € A to the left
multiplication [, : A — A. Since A is a free over Z of rank r, End(Az) & M,«,(Z).
Define the trace function

(E1.0.1) tr: A — End(Az) & M,y (2) L2 Z

where tr,, is the usual matrix trace. The trace function tr is independent of the
choice of basis of A over Z.

Definition 1.1. [CPWZ1, Definition 1.3(3)] Retain the above notation. Suppose
that A is a free module over a central subalgebra Z with a Z-basis {z1,--- , 2.}
The discriminant of A over Z is defined to be

d(A/Z) = det(tr(ziz;))rxr € Z.

By [CPWZ1, Proposition 1.4(2)], d(A/Z) is unique up to a scalar in Z*. For
x,y € Z, we use the notation z =z« y to indicate that x = cy for some c € Z*.
So d(A/Z) =zx det(tr(zi2;))rxr as in [CPWZ1, Definition 1.3(3)]. The following
lemma is easy.

Lemma 1.2. Retain the notation as in Definition 1.1. Let (A, Z") be another pair
of algebras such that Z' is a central subalgebra of A" and A’ is a free Z'-module of
rankr. Let g: A — A’ be an algebra homomorphism such that

(i) 9(2) c 7.
(i) {g(z1), - ,9(zr)} is a Z'-basis of A’.

Proof. For any a € A, we denote o’ = g(a). Write az; = 22:1 ai;z; for all . By
applying g to the last equation, we have a'z = Z;Zl a;;2;. By definition (E1.0.1),
tr(a) = >, a; and

tr(g(@) = tr(a) = 3 af = 93 air) = g(tx(a))
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for all @ € A. By Definition 1.1 and the above equation,
g(d(A/)Z)) = g(det(tr(zi2;))rxr) = det(tr(zl’»z;))rw =zyx d(A')Z").
O

Let Z be a central subalgebra of A and consider an Ore set C' C Z. Then the
localization ZC~! is central in AC~!.

Lemma 1.3. Let Z be a central subalgebra of A. Suppose A is free over Z of rank
r. Then AC™" is free over ZC~' of rank r. As a consequence,

d(ACil/Zcil) =(zc-1)x d(A/Z).

Proof. Let {1, ,2-} is a Z-basis of A. Then it is also a ZC~!-basis of AC~1.
The consequence follows from Lemma 1.2. O

We will need the following result from [CPWZ2, Proposition 2.8]. We change
notation from k to 7" to denote a commutative domain in the following proposition.

Proposition 1.4. Let T be a commutative domain and let A = Tqlz1,--- ,xy).
Suppose Z :=T[z{",- -+ ,x%] is a central subalgebra of A, where the o are positive
integers.

(1) [CPWZ2, Proposition 2.8] Let r =[]}, ;. Then

n

d(A)Z) =px ([ 2 h)

i=1
(2) If n =2 and q12 is a primitive m-th root of unity and Z = Tz, 25|, then
d(A)Z) =px m2™ (@Tar)™(m=1).

(3) If gij = —1 for alli < j and a; = 2 for all i, then

n

d(A)2) =p= 2" (] e2)".

=1

Proof. Parts (2,3) are special cases of part (1). O

The next lemma is a special case [CPWZ2, Proposition 4.10]. Suppose Z is a
central subalgebra of A and A is free over Z of rank r < co. We fix a Z-basis of
A, say b:= {by = 1,ba,--- ,b.}. Suppose A is an N-filtered algebra such that the
associated graded ring gr A is a domain. For any element f € A, let gr f denote
the associated element in gr A. Let grb denote the set {grby, - ,grb,.}, which is a
subset of gr A.

Lemma 1.5. [CPWZ2, Proposition 4.10] Retain the above notation. Suppose that
gr A is finitely generated and free over gr Z with basis grb. Then

gr (d(A)Z)) =(gr 7y« d(gr A/ grZ).
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2. DISCRIMINANT OF A, OVER ITS CENTER

Let T be a commutative domain and ¢ € T* be a primitive n-th root of unity for
some n > 2. Let A, be the g-quantum Weyl algebra over 1" generated by = and y
subject to the relation yz = qzy + a for some a € T. This agrees with the definition
of A4 given in the introduction when T' = k and a = 1. It is easy to check that
the center of A,, denoted by Z(Ay), is T[z", y"], and that A, is free over Z(A,) of
rank n?. A Z(A,)-basis of A, is B := {z'y/ | 0 < i,j < n —1}. The aim of this
section is to compute the discriminant d(A,/Z(Ay)).

Let A’ be the T-subalgebra of A, generated by 2’ := (1 — ¢)z and y. Since
yr' = g’y + (1 — q)a and (1 — ¢) may not be invertible, there is no obvious algebra
homomorphism from A, to A’. Let Z’ be the subalgebra T'[(z')", y"] which is the
center of A’.

Lemma 2.1. Retain the above notation. Then
dA[Z') = (1—q)" " Vd(4,/Z(A,)).

Proof. Let tr' : A’ — Z' be the trace function defined as in (E1.0.1). We use this
trace function to compute the discriminant d(A’/Z’).

Let B' := {(2)'y'}o<ij<n—1. Then B’ is a Z'-basis of A’. Note that A’ and
Aq have the same ring of fractions and Z(A,) and Z’ have the same fraction field.
Since the trace function is independent of the choice of basis we have tr'(a) = tr(a)

foralla € A'. o o
Picking any two elements bs = zteyls and by = x'ty7* in B, we have corresponding
elements b, = (2/)*y?= and b} = (2/)"*y’t in B. Hence
tr/ (bLb]) = tr((1 — q)% T bsb;) = (1 — q)% T tr(bsby).
By definition, d(A’/Z") = det[tr’ (b} )y 1/ ep]. Hence we have
d(A'/Z") = det[(tr' (bb}))er b em]

= det[((1 — q)" " tr(bsbi))y, byes]

= (1= q)" det[(tr(bsbe))s, bres]

= (1 - )V d(Aq/Z(A,)),

where
N= Y (is+i)=2> ic=2n0+1+2+-+(n—1)=n’*(n—1).
all is,it all 7;3
The assertion follows. O

Following the above lemma, we first compute d(A’/Z"). We can re-write A" as
Tz, y)/(yz'—qx'y—(1—q)a) so that the positions of z’ and y are more symmetrical.

Let C = {(y™)" | i > 1}. Consider the localizations Z" := Z'C~! and A" :=
A'C~L. Let

1

= —ay ' =1 - @z — (ay ")y "t € A”.
Lemma 2.2. Retain the above notation. The following hold:

(1) yz" —gz"y = 0.

(2) A" := A'C~ is generated by T, (y™)~ %, 2 and y.

(3) ()™ is central and d2(A”/Z”) =(zm)x n2 ((z")nym)nn=1.
(4) d(A”/Z") =(zmyx n*" (1 — g)"a"y" — a)" (=1,
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Proof. (1) We have yz” — q2"y = y((1 — ¢)x —ay™) — q((1 — @)z —ay~ ')y = 0.

(2) This is clear.

(3) Since ¢™ = 1, (2”)™ commutes with y by part (1). By part (2), (/)"
commutes with every element in A”.

Consider an algebra homomorphism g : Ty[z1,x2] — A” determined by g(z1) =
" and g(z2) = y. Then the center of B := Tg[x1,22] is R := T[z}, 23] and
{zizd |0 <i,j <n—1}is an R-basis of B. It is clear that A” is free of rank n2
and A" =37, o, 1 (2)'y? Z". Hence {(2")"y’ | 0 < i,j <n—1}is a Z"-basis of
A”. Then the hypotheses of Lemma 1.2 hold. Applying Lemma 1.2 to g, we have
g(d(B/R)) =(zx d(A"/Z"). By Proposition 1.4(2), d(B/R) = n*"" (a7 )"~ 1.
Therefore, d(A"”/Z") =71 n2n ((z")rym)nin=1),

(4) In the following, we will denote ¢ = y=!, 2z = 2" and p = ¢~!. The
commutation relation between z’ and 1) is

(E2.2.1) Y’ = (1 — q)pz = (1 — q)(pxy — pap?) = pr'yp — (p — 1)arp?.

Recall that z = 2” = 2/ — aih. Write 2" = Y7 ¢;(2’)*" . Since 2" is central
(see part (3)), we have ¢; = 0 unless ¢ = 0,n. It is clear that ¢, = 1. Next we
determine cp. Since A” is a free module over Z” with basis {(2')47 | 0 < i,j <
n—1}, we can work modulo the right Z”-submodule W generated by (z')%)/ where
0<i<nand0<j<n. Let = denote equivalence mod W.

By induction, for ¢ = 1,...,n — 1, we have
(E2.2.2) Yo = pla’yt — (pb — 1)(ayp™).

Then ia’ = —(p' — 1)(aypi™h). For each 1 < j < n — 1, write

J
2 = Z Cz (z") it

i=0

Then 2’27 € W for all j < n—1 and 2’2"~ = (2/)". For each j, we have
PpImten=d = S0 @l (2 )i for some & € Z7, so

(E2.2.3) ' e W

for all j > 2. By the above computation and (E2.2.1)-(E2.2.3), we have
2= ()" = (2 —ay)z" T~ ()"
=22t — ()" —a !
= —ap(z’ — arh)z" 2
= —a(pz'y — (p— Day® — ay?)z"~?

= —a(—pa)y?2" "% — apa'p2" 2
= —a(—pa)?z" 2

= —a(—pa)(¥*z — ap*)z" "

= —a(—pa)(~p*a)y’2""?

= —a(-pa)(—p*a) -+ (" ey
_ (_a)np(nfl)n/z%[]n — _anwn-
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Therefore
2" = —a™Y" + ().
Hence ¢y = —a™ and 2™ = (2’)" — a"¢". Combining all the above, we have
(@")"y" = ()" —a™p")y" = (&)"y" = a" = (1= q)"a"y" — a™.
Part (4) follows from part (3) and the above formula. O

Lemma 2.3. The discriminant of A’ over its center Z' is
d(A//Z/) = n2n2((1 _ q)nxnyn _ an)n(n—l)'

Proof. Let g be the embedding of A’ into A” = A’C~!, viewed as an inclusion.
By Lemma 1.2, g sends d(A'/Z’) to d(A”/Z"). Combining with Lemma 2.2(4), we
have

d(AI/ZI) :(Z//)x g(d(A//Z(A/))) :(Z//)x d(AI//Z”)

n,.mn,n n)n(nfl)'

2
=(z'M)* TLQn ((l—q) r'y —a
Let ® be the element d(A'/Z){n2"" ((1 — q)"z"y™ — a™)"(®=D}~1 which can be
viewed as an element in the quotient ring of A’. By the above equation, ® is in
(Z"*. Since Z" = T[(2")",y*"], ® is of the form ay*" for some a € T* and

some s. By symmetry, ® is also of the form ()™ for some 3 € T* and some
t. Hence s =¢t =0, a = € T* and ® = o € T*. Therefore d(A'/Z') =

an? (1 — g)"z"y" — a™)"(=1) and the assertion follows. O
Now let
n—1
(E2.3.1) me=[[A+q+-+q7")
i=2

We can show that n = (1 — ¢)" " 'm by factoring the polynomial 2™ — 1 € T[x],
dividing by (z — 1), then substituting 1 for z as follows:

n—1

" —1= H(.’,E—ql),
=0
n—1 . " — 1 n—1 .
;(Ez: 7 _1 :Zznl(x_qz)u
n—1 . n—1 )
(B232) n=]J0-¢)=(-¢" ' [[0+g++¢H=(1-g" 'm,
i=1 =2

Now we are ready to prove the main result of this section, that also recovers
Theorem 0.1.

Theorem 2.4. Retain the above notation. The discriminant of A, over its center
Z(A,) is
d(Aq/Z(Aq) =rx (nm)" (L= q)"a"y" —a")" ",
Proof. Using Lemmas 2.1 and 2.3 and equation (E2.3.2), we have
(1 - )" " Dd(Ay/Z(4,)) =« (nm(1 = g)" )" (1 — @) a"y" — a")"" D).
Since A, is a domain, we obtain that

d(Aq/Z(Aq)) =1 (nm)"2((1 —q)"x"y" — an)n(n—l)'
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Remark 2.5.

(1) By [CPWZ2, Lemma 2.7(7)], the integer n in Theorem 2.4 is nonzero in 7.
However n and m may not be invertible in general.
(2) Theorem 0.1 is clearly a consequence of Theorem 2.4.

A slight generalization of Theorem 2.4 is the following.

Theorem 2.6. Let T be a commutative domain and q € T be a primitive n-th
root of unity. Let B be the T-algebra of the form

T(x,y)
(yz — qry = a,z" = b,y" = ¢)

where a,b,c € T. Suppose that B is a free module over T with basis {x'y’ | 0 <
i,j < n—1}. Then d(B/T) =px (nm)" ((1 — ¢)"a"y" — a™)"("=V where m is
given in (E2.3.1).

Proof. First note it is well-known and easy to check that T is the center of B.
Recall that A, is the algebra of the form T(z,y)/(yxr — qzy = a). There is
a natural algebra homomorphism g from A, to B sending x to 2 and y to y
and t € T tot € T. Then the hypotheses in Lemma 1.2 hold. By Lemma 1.2,
g(d(Aq/Z(Ay))) = d(B/T). Now the assertion follows from Theorem 2.4. O

3. DISCRIMINANT OF CLIFFORD ALGEBRAS

In this section we assume that 271 € k. We fix an integer n > 2.

Let T be a commutative domain and let A := {a;; | 1 <i < j < n} be a set of
scalars in T. We write aj; = a;; if i < j. Let V,,(A) be the T-algebra generated by
{x1,- -,z } subject to the relations

Tix; + X = Qij, Vi # j.

This algebra was studied in [CPWZ1, CPWZ3]. Some basic properties of V,,(.A)
are given in [CPWZ1, Section 4]. Let M; be the matrix

2{E% ai2 e A1n,
ag1 217% e a9on,
(E3.0.1) M =
ani  Qpa -+ 222
This is a symmetric matrix with entries in Z := T[z?,--- ,22]. We will define a

sequence of matrices M; later. Note that Z is a central subalgebra of V,,(A). If we
write M1 = (mijﬁl)an, then mij,1 = T4 + XTiTyj for all Z,j

The algebra V,,(A) is a Clifford algebra over Z. We will recall the definition of
the Clifford algebra associated to a quadratic form in the second half of this section.
In the next few lemmas, we are basically diagonalizing the quadratic form, which is
elementary and well-known in the classical case, see [La, Chapter I, Corollary 2.4]
for some related material. Since we need some explicit construction to complete
the proof of our main result, details will be provided below.

We will introduce a sequence of new variables starting with

Ti,1 = Ty, VZ::[,"',TL,
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and
Aij,1 = Qqg5, Vi #], and Qi1 = 25[:12, V1.
So we have Tj 14,1 + Ti1L5,1 = Q44,1 for all ’L,j Let
1

(E302) T1,2 = T1,1 and Ti2 = T5,1 — gﬂLlilei?ILl for all 4 Z 2.
Lemma 3.1. Retain the notation as above.

(1) Ti2X1,2 + T12T52 = 0 for all i > 2.
(2) 3:1272 = 1712,1 — ia%iﬁlxif for all i > 2.
(3) Xi,2%5,2 + Tj2X52 = Qjj,1 — %ali,lalj,leg for all 2 <i< ] <n.
(4) Let My be the matric (2,222 + T2%i2)1<ij<n- Lhen det My = det Mj.

(5) Let Cy = {z¥,};>1. Then the localization V,,(A)[CT '] is free over Z[Cy ]

with basis {xfb e xijb | ds =0,1}.

Proof. (1,2,3) Follows by direct computation.

(4) Let N be the matrix

1 00 --- 0

1 —2
—5012,177 1

—
o o

1 -2
—§CL1371113111 0 1

1 —2
—5(11”71:10111 o0 --- 1

By linear algebra and part (3), one can check that NM;NT = My. Since det N = 1,
we have det My = det M.

(5) First of all V,,(A) is free over Z with basis {3:‘11}1 . ~-3:Z”f1 | ds = 0,1}. In
the localization V;,(A)[C~!], this basis can be transformed to a basis {:vfb - -:CZ’)E |
ds = 0,1} by using (E3.0.2). O

After we have x; 2, define a;;2 to be x; 220 + xj 22 2 for all 4, j. Now we define
%55 and a;; s inductively.
Definition 3.2. Let s > 3 and suppose that z; ;1 and a;; s—1 are defined induc-
tively. Define
. 1 _ .
(E3.2.1) 5 :=@js-1, Vi<s and ms:= Ii,sfl—5@5711',571335_11,5_1, Vi > s.
Define a;j,s 1= x; s s + x5 s%;, for all 4, j.

Similar to Lemma 3.1, we have the following lemma. Its proof is also similar to
the proof of Lemma 3.1, so is omitted.

Lemma 3.3. Retain the notation as above. Let 2 < s < n.
(1) @ szjs + 5525 =0 for alli < j and i < s.
(2) @is =51 ifi<sandx}, =27 | — %aiu’sflxﬁl)s_l for alli> s.
(3) @i sTjs + TjsTis = Qijs—1 — %asfli,sf1asflj7571$;,2115,1 for all s < i <
Jj<n.
(4) Let My be the matriz (x; st s + Tj sTis)1<ij<n- Lhen det My = det M.
(5) Let Cs_1 be the Ore set {xfli :C%% e xii_sils_l i1 ie1>1- Then the localiza-

tion V;,(A)[C Y] is free over Z[C7Y,] with basis {x‘f}s eadn | dg = 0,1}
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We need two more lemmas before we prove the main result.

Lemma 3.4. Let T be a commutative domain. Let A be a T-algebra containing T
as a subalgebra, generated by x1,-- - , x, and satisfying the relations x;x; +x;x; =0
for alli < j and x? = a; € T. Suppose that A is a free module over T with basis
{ah ...z | dy =0,1}. Then

d(A/T) =« ([[@e)* " =2 ([](=2))

i=1 i=1

Proof. Let B =T_1[z1, -+ ,2,) and Z = T[2%,--- ,22]. Then B is a free module
over Z with basis {z{* ---z% | d, = 0,1}. Let g be the algebra map from B to A
sending T" to T', z; to x;. Then the hypotheses in Lemma 1.2 holds. By Lemma 1.2,
g(d(B/Z)) =px d(A/T). Note that d(B/Z) was computed in Proposition 1.4(3) to
be (T, (2%12))27171 as we assume that 2 is invertible. Now the assertion follows. [

Let A be an Ore domain and let Q(A) denote the skew field of fractions of A.
Let Z be the commutative subalgebra T[22, -+ ,22] C V,,(A). For each 1 <1 < n,

rn

let Z; be the subring of Q(Z) of the form Q(T[z%,--- ,x2, -+, 22])[z?].

Lemma 3.5. Retain the above notation.

(1) Nizy Zi = QD) (a7, -+~ ,27].
(2) Z[C;[1] C Z,, where Z[C;; 1] is defined in Lemma 3.3(5).

Proof. (1) This is an easy commutative algebra fact.

(2) By Lemma 3.3(2) and induction, each 27 , forall 1 <7 <nandalll <s <mn,
is in Q(T[at,---,23_4]). So Z[C,}1] C Zn.

O
Theorem 3.6. Suppose 2 is invertible. Let Z = T[z3%,--- ,22]. Then
A(V(A)/Z) =px (det Mp)2" "
where My is given in (E3.0.1).

Proof. Consider the variables {x;,}; defined in Lemma 3.3. By Lemma 3.3(5),
Vi (A)[C Y] is free over Z[C) 1] with basis {3:‘11715 --adn | dg = 0,1}. By Lemma
3.4, the discriminant d(V,(A)[C; %, ]/Z[C:,]) is of the form ([T7, (z2))*" " up to
a unit in Z[C*,]. By Lemma 3.3(4), we have

n

AVa(AC1]/Z1C1]) =TT = (det My)*™ = (det M)

2n71

By Lemma 1.3,

1

d(Va(A)/Z) =(z10-1 p)~ d(Va(A)[C1411/21C 1)) =(zic: )y~ (det My

Let ® be the element d(V,(A)/Z)~ (det My)2"". Then & € (Z]C;,])*. This
means that both ® and ®~! are in Z[C;*,] C Z,. By symmetry, ® is Z; for all
i. Thus ® € N, Zi = Q(T)[z?,--- ,22]. Similarly, ! is in Q(T)[x%, - ,22].
Therefore ®, @1 € Q(T).
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1

Write d(V,,(A)/Z) = ¢ (det M1)?*" where ¢ = @' € Q(T). It remains to show
c € Z*. Note that V,,(A) is a filtered algebra such that gr V,,(A) 2 T_y[z1, -, zp).
By Lemma 1.5,
grd(Vn(A)/Z) =z« d(grVa(A)/ gr Z).
The left-hand side of the above is ¢ ([T,_,(z2))>" " and the right-hand side of the
above is (I],_;(22))2"" by Proposition 1.4(3) (assuming 2 is invertible). Thus

c € Z* as required. O
Theorem 0.2 is a special case of Theorem 3.6 by taking a;; =1 for all 7 < j.
The algebras V,,(A) and W,, are special Clifford algebras. Now we consider a

Clifford algebra in a more general setting. Let T' be a commutative domain and V'

be a free T-module of rank n. Given a quadratic form ¢ : V' — T', we can associate

to this data the Clifford algebra

Tv)
(2% —q(z) [z € V)
Note that this ¢ is different from the parameter g in the definition of the g-quantum

Weyl algebra A, and the parameter set q in the V;,(q, A) and T4[z1, - ,z,]. Con-
sider the bilinear form associated to ¢,

C(V,q)

1
(E3.6.1) b(z,y) = 5(alz +y) —alz) —a(y))
for all z,y € V. If we choose a T-basis x1,...,x, for V and let
(E362) B = (blﬂ) = (b(xi,xj))an S ="

be the symmetric matrix which represents b with respect to this basis, then the
relations of C'(V,q) are

(E3.6.3) xixy + xjx; = 2b;;, for all i, 4.

Define det(q) to be det(B).
The following main result is a consequence of Theorem 3.6 and Lemma 1.2.

Theorem 3.7. Let A := C(V,q) be a Clifford algebra over a commutative domain
T defined by a quadratic form q:V — T. Pick a T-basis of V', say {z;}?_,. Then

n—1 —1

(E3.7.1) d(A/T) =px (det(zxj + ;) nxn)?  =px det(q)*"

Proof. Let b: V®2 — T be the symmetric bilinear form associated to the quadratic
form ¢. Let a;; = 2b(z;,x;) for all i < j and A = {a;j}i<icj<n. Then there
is a canonical algebra surjection 7 : V,(A) — C(V,q) sending x; — a; for all
i=1,--- ,nand t — t for all t € T, and the kernel of the 7 is the ideal generated
by {z? — b;}7,. Clearly, 7(T[z%, - ,22]) = T and the matrix (z;z; + Z;%;)nxn
equals M. Tt is easy to check that {29* ... 29 | d; = 0,1} is a basis of V,,(A) over
T[z%,--- ,22] and a basis of C(V,q) over T. The first equation of (E3.7.1) follows

from Theorem 3.6 and Lemma 1.2 and the second equation follows from the fact
that 2B = (z;2; + ;% )nxn and that 2 is invertible. O

In the rest of this section we briefly discuss “generic Clifford algebras” which
will appear again in Section 8. (This generic Clifford algebra should be called a
“universal Clifford algebra”, but the term “universal Clifford algebra” has already
been used).
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Fix an integer n. Let I be the set {(7,5) | 1 < ¢ < j < n} that can be thought
as the quotient set {(7,7) | 1 < 4,5 < n}/((¢,5) ~ (j,4)). Let w denote the
integer %n(n + 1). There is a bijection between I and the set of first w integers
{1,2,---,w}. Let T, be the commutative domain k[t¢; ;) | (i,7) € I] which is

isomorphic to k[t1,- - ,ty]. Define a Ty-algebra A, generated by {z1,--- ,x,} and
subject to the relations
(E3.7.2) iz +xjr; =2, V1<i<j<n.

Let V; = @, Tyz;. Define a bilinear form b, : Vy, @ Vg — Ty, by by(zs, ;) = t(; j)
and the associated quadratic form by ¢, () = by(z, x) for all = € V. The “generic
Clifford algebra” A, is defined to be the Clifford algebra associated to (Vy, q4). For
any Clifford algebra C(V, q) over a commutative ring 7', by comparing (E3.6.3) with
(E3.7.2), one sees that there is an algebra map A, — C(V, q) sending x; — z; and
t(i,j) — bij. Define degz; = 1 for all 4 and degt(; j) = 2 for all (i, j) € I. Then A,
is a connected graded algebra over k.

We also define some factor algebras of A;. Let J be a subset of {(7,5) | 1 <
i < j < n} and w; denote the integer w — |J|. Let Ty ; be the commutative
polynomial ring k[t; ; | (4,7) € I\ J], which is isomorphic to k[t1,-- - ,t,,]. Define

a T, j-algebra A, ; generated by {z1, - ,z,} and subject to the relations
2t 4, 1, 7) € I J,

(E3.7.3) iz + oz = 4 ) (f q) \
0, (1,7) € J.

Let V,; = @, Ty, jx;. Define a bilinear form by ; : V, ;5 @ Vg5 — Ty s by
tiqn (i,5) € T\ J.
by j(zi, i) = (@) ’ ’
9 (0, 23) {0, (i,5) € J.
by(x,z) for all z € V, ;. Then A, ; is the Clifford algebra associated to (V. s, qqg.7)-
If JCJ C{(i,j) |1 <i<j<n}, there is an algebra map A, ; — A, ; sending
t(i,j)a (Zv.]) ¢ J/a
0 (i,5) € J'\ J.
graded factor ring of A,.
In part (4) of the next lemma, we will use a few undefined concepts that are

related to the homological properties of an algebra. We refer to [Le, LP, RZ] for
definitions.

and the associated quadratic form by g, s (x) =

x; — x; and t( 5 — . In particular, Ay s is a connected

Lemma 3.8. Retain the above notation. Assume that k is a field of characteristic
not two. Let J' be subset of {(i,7) | 1 <i<j<n} and J = J \{(i0,j0)} for some
(0, Jo) € J".

(1) The Hilbert series of Ay is

(146"
Hy (t) =
y( ) (1 _ t2)w
where w = in(n+1).
(2) The Hilbert series of Ag s is
(146"
Ha, ,(t) = =gy

where wy = w — |J|.
(3) t(io.jo) 8 @ central regular element in Ay yr, and Ag 7= Ag 5/ (teiy.50))-
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(4) Ay and Ay y are connected graded Artin-Schelter regular, Auslander regular,
Cohen-Macaulay noetherian domains.

Proof. (1) Note that A, is a free module over T, with basis {z* - - -z | d, = 0,1}.
Recall degx; = 1 and degt(; j) = 2. We have

\ (140"
Hy,(t) = (14+t)"Hr, (1) = e
(2) The proof is similar. Use the fact Hr, ,(t) = m

(3) Tt is clear that t(;, j,) is central in Ay j and Ay ;= Ag 5/ /(tg,50)). So the
ideal (t;, ;o)) is the left ideal t;, ;,)Ag,s- and the right ideal Ay jt(;, j,). By parts
(1) and (2), the Hilbert series of (£(;, j,)) is tQHAg’J/ (t). So t(iy,j4) is regular.

(4) We only provide a proof for A,. The proof for A, ; is similar.

From part (3), Jar := {tu ) | 1 < i < j < n} is a sequence of regular central
elements in A, of positive degree. It is easy to see that Ay j,, (= Ag/(Jm)) is
isomorphic to the skew polynomial ring k_1[x1, - ,x,], which is an Artin-Schelter
regular, Auslander regular, Cohen-Macaulay noetherian domain. Applying [LP,
Lemma 7.6] repeatedly, A, has finite global dimension. Applying [Le, Proposition
3.5, Theorem 5.10] repeatedly, A, is a noetherian Auslander Gorenstein and Cohen-
Macaulay domain. By [Le, Theorem 6.3], A4 is Artin-Schelter Gorenstein. Since A,
has finite global dimension, it is Auslander regular and Artin-Schelter regular. [

Remark 3.9. Retain the above notation.

(1) Some homological properties of the algebra A, are given in Lemma 3.8. It
would be interesting to work out combinatorial and geometric invariants
(and properties) of A,. For example, what are the point-module and line-
module schemes of A,7 Definitions of these schemes can be found in [VVR,
VVRW].

(2) Another way of presenting A, is the following. Let S be a k-vector space
of dimension n. Define A4, to be k(S)/([z?,y] = 0|V z,y,€ S). By using
this new expression, one can easily see that the group of graded algebra
automorphisms of A, denoted by Autg,(A4,), is isomorphic to GLy, (k).

(3) Suppose n > 2. The full automorphism group Aut(A,) has not been de-
termined. It is known that Aut(A,) is not affine. For example, if f(t) is a
polynomial in ¢, then

Z; 1> 1,
Ty — 9 .
z1 + f([zr, 22)?)ze i =1,

extends to an algebra automorphism of A,.

(4) Tt seems interesting to study “cubic-algebra” k(S)/([z3,y] =0 |V x,y € 9)
and higher-degree analogues.

(5) The quotient division ring of Ay, denoted by Dy, is called the “generic Clif-
ford division algebra of rank n”. It would be interesting to study algebraic
properties or invariants of Dy.

4. CENTER OF SKEW POLYNOMIAL RINGS

To use the discriminant most effectively, one needs to first understand the center
of an algebra. In this section we give a criterion for when Tq[z1,- - , x,] is free over
its center and when the center of Tq[z1,- -+, x,] is a polynomial ring.
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Recall that T is a commutative domain and q := {¢g;; € T* |1 <i<j<n}isa
set of invertible scalars. Let P := Tq[z1,...,2,] be the skew polynomial ring over
T subject to the relations (E0.2.1). We assume that d;; := 0(g;;) < oo and write

(E401) qij = exp(2ﬂ'\/ -1 kij/dij)7
where |k;;| < d;; and (ki;,d;;) = 1. Note that, by our convention, ¢;; = qj;-l for
all 4, 5. Hence, we choose k;; = —k;; and d;; = dj;. We also adopt the convention

that if ¢;; = 1 then k;; = 0 and d;; = 1. In particular, k; = 0 and d;; = 1. We can
extend P to Plx7", ..., x; '], with an inverse for each z;, with the following expected
relations

xixfl

1 1 1 1

=x; = q;jl,T;l,Tj, and xz; x; " = qijxflxjfl.
We need to do some analysis to understand the center of P. Let 7; denote conju-

gation by z;, sending f — xi_lf;vi, and let £ = zj* -+ xir. Then

mi(€) = exp(2mV/—1efVs)¢
where Y € s0,,(Q) whose (i, j)-th entry is k;;/d;j, s is the column vector whose i-th
entry is s; appearing in the powers of &, and e; the i-th standard basis vector in
Q.
Lemma 4.1. Retain the above notation. Then £ is in the center Z(P) of P if and
only if Ys € Z".

Proof. Since P is generated by {z;}, £ € Z(P) if and only if 7;(§) = £ for all 4, if
and only if exp(2my/—1 e!Y's) = 1, if and only if el Y's € Z for all 4, and finally, if
and only if Ys € Z"™. (]

r, =1, z;z;

By choosing the standard basis for Q™, we can consider Y as a linear trans-
formation Q" — Q™ by sending s — Y's. Here we view Q" as column vectors
and Y as a left multiplication. We can restrict this map to Z"™ C Q" (embedded
via the standard basis) and compose with the quotient Q® — Q™ /Z"™ to obtain a
Z-module homomorphism Y’ : Z™ — Q" /Z™.

Lemma 4.2. Retain the above notation. Then & € Z(P) if and only if s € ker(Y”).

Proof. By lemma 4.1, £ € Z(P) if and only if Ys € Z™, which is equivalent to
Y’(s) = 0 by the definition of Y. O

Let D be the matrix (d;j)nxn and let L; be the lem of the entries in i-th row
of D, namely, L; = lem{d;; | j = 1,...,n}. Since D is a symmetric matrix, L; is
also the lem of the entries in i-th column. Observe that Z(P) contains the central
subring P’ := k[zl*,... xE»]. In other words, ker(Y’) contains the Z-lattice A

spanned by L;e; for i = 1,...,n. Therefore Y’ factors through

" — M :=7"/A =P Z/LZ.
i=1
For each s € Z", the i-th entry of Y'(s) is >_, ki;s;/dij € Q/Z, which is L;-torsion,
or equivalently, in L; 1Z.)7.. Therefore Y' induces a map

M—M =L '2/
=1
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Since M’ is naturally isomorphic to M, we can define an endomorphism
Y:M—M
by setting

Vs = (Y Li(kisi/dij))iz:-
j=1
In particular, Ye; = > i, (kijL;/d;;)e;. Sometimes we think of Y as a matrix
Y = (kijLi/dij)nxn = diag(L1, -+, L,)Y.
The following lemma is a re-interpretation of [CPWZ2, Lemma 2.3].

Lemma 4.3. Retain the above notation. The following are equivalent.

(1) The center Z(P) of P is a polynomial ring.

(2) Z(P)="P.
(3) ker(Y) = 0.
(4) Y is an isomorphism.
Proof. (1) < (2): One implication is clear. For the other implication, we assume
that the center Z(P) is a polynomial ring. By [CPWZ2, Lemma 2.3], Z(P) is of
the form T'[z{*,--- ,x%]. It is easy to check that L, | a; for all . Since Z(P) D F’,
a; = L; for all 7. The assertion follows.

(3) = (2): Let & := aj*---xi» € Z(P) and let s = (s;)?;. By Lemma 4.2,
s € ker(Y”). Since Y is induced by Y’, Y (s) = 0. By part (3), s =0 in M = Z"/A.
So s € A, which is equivalent to £ € P’. Therefore, Z(P) = P’ as desired.

(2) = (3): Let & := a5' -2 € P where s := (s;)"; € ker(Y) viewing as a
vector in M. By the definition of M, we might assume that each s; is non-negative
and less than L;. Since Y is induced by Y’, we have that s € ker(Y’). By Lemma
4.2, € Z(P). By part (2) and our choice of 0 < s; < L;, £ =1 or s = 0 as desired.

(3) < (4): This is clear since M is finite. O

The advantage of working with Y is that ker(Y) = 0 is equivalent to Y being
an isomorphism. Next we need to understand when Y is an isomorphism. For the
rest of this section we use ® for ®z and F, for Z/pZ.

Lemma 4.4. The morphism Y is an isomorphism if and only if ¥ ® F, is an
isomorphism for all primes p.

Proof. As a Z-module, M is finite, and it suffices to show that Y is surjective if
and only if Y ® I, is surjective for each prime p. This is clear since — ® I, is right
exact, so surjectivity of a map can be checked on closed fibers. O

Fix any prime p. Let M, = M ® F,, and 7,, =Y ® F,. For any e;, it L; ¢ pZ,
then the image of e; is zero in M,. We can therefore use {e;|L; € pZ} as a basis
of M,,. Consequently, M, is a vector space over I, of dimension at most n, and we
can write Y, as a matrix over F,. Next we will decompose the vector space M,
and the matrix Y.

For each positive integer m, let M), ,,, denote the subspace of M, generated by
{ei|L; € p™Z — p™T'Z}. Let Y be the endomorphism

Yo
My, — Mp — My — My m
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where the first map is the inclusion and the last map is the natural projection using
the given basis {e;|L; € pZ}. Then Y, can be expressed as the submatrix of Y’
taken from the row and columns with indices 7 such that e; € M, ,,,. For all but
finitely many values of m, M, ,, = 0, and in this case, Y, is a 0 x 0 matrix.
We adopt the convention that the determinant of a 0 x 0 matrix is 1. In general,
det(Y ) is in Fy,.

Lemma 4.5. The following are equivalent.
(1) The map Y, is an isomorphism.
(2) For all positive integers m, Y p ., is an isomorphism.
(3) det(Y,m) # 0 for all positive integers m.

Proof. Tt is clear that (2) and (3) are equivalent, so we need only show that (1) and
(2) are equivalent.

Let m > 0, and let i,j be such that L; € p™Z — p™*'Z and L; ¢ p™Z. Since
Lj =lem{dy; | k =1,...,n}, we have d;; ¢ p"Z, and k;;L;/d;; € pZ. Therefore,
the e;-component of Y ,e; is zero. We can extended this to show that for any
m >m' > 0, the M, ,,~-component of Y, (M, ) is zero, or equivalently,

Yo (Mpm) € €D Mpn =: Non.

n>m

This implies that, for any m > 0, Yp acts as an endomorphism on N,,. Since
each M, is finite dimensional, ?p is an isomorphism if and only if it acts as an
isomorphism on each subquotient Ny, /Nyp41 = Mp, . This action is already given

by Y p.m, so the assertion follows. 0

Combining all the lemmas in this section we have

Theorem 4.6. The center of the skew polynomial ring Tq[z1,- -+ ,xx] is a polyno-

mial ring if and only if det(Y p.m) # O for all primes p and all integers m > 0.

Theorem 4.6 is a slight generalization of Theorem 0.3(a) without the hypothesis
that q;; # 1 for all i # j. The definition of the matrices Y., is not straightforward,
so we give an example below. Hopefully, this example will show that this matrix is
not hard to understand.

Example 4.7. We start with the following skew-symmetric matrix with entries in
Q

0 4/27  2/9 0 2/3 3/5
—4/27 0 1/3 7/9 1/3 1/5
-2/9 -1/3 0 1/6 1/2  1/2

0 -7/9 -1/6 0 2/3 0
-2/3 -1/3 -1/2 -2/3 0 5/8
-3/5 —-1/5 -1/2 0 -5/8 0
One can easily construct g;; by (E4.0.1) and the skew polynomial ring Tq[z1, - - - , Z6]
by (E0.2.1), but the point of this example is to work out the matrices Y, for all
primes p and all m > 0. By considering the denominators of the entries of Y, one
sees that

(L1,Lo, Ly, Ly, Ls, Lg) = (3% -5, 3% -5, 2-3%, 2.3% 23.3, 23.5).

Y =



18 K. CHAN, A.A. YOUNG, AND J.J. ZHANG

This implies that Y, ,, is a trivial matrix (or a 0 x 0-matrix) except for p = 2,3, 5.
Next we consider

0 20 30 0 90 81
-20 0 45 105 45 27
-4 -6 0 3 9 9

0 -14 =3 0 120
-16 -8 —-12 —-16 0 15
-24 -8 =20 0 =25 O

Y = diag(Ly,-- -, Lg)Y =

Recall that M, ,, has a basis {e; | L; € p™Z — p™T'Z} and Y., is the square
submatrix of Y with indices {i | L; € p™Z — p™T1Z} and with entries evaluated in
F,.

For p = 2, Y3, are the following:

Y51 is the principle (3,4)-submatrix of Y, and

= 0 1
P (00

Y5 3 uses indices 5,6, and

= 0 1
P (00

For all m =2 or m > 3, ?21m is trivial.

Therefore, Y5 , is an isomorphism by Lemma 4.5.
For p =3, Y3 ,,, are the following:

7371 uses only index 5, and is the 1 x 1 zero matrix.
Y30 uses indices 3,4, and is the 2 x 2 zero matrix.
Y 3.3 uses indices 1,2, and

- 0 1
F- (0 )

For all m > 3, Y3, is trivial.

Since det(7371) = det(Yg)g) =0, Y3 is not an isomorphism by Lemma 4.5. Conse-
quently, the center of Tq[z1,- - ,x¢] is not a polynomial ring by Theorem 4.6.
For p =5, Y5, are the following:

Y'5.1 uses indices 1,2,6, and
o 0 0
Ysi=10 0
-1 -2

[eoll VRN

For all m > 1, 757,” is trivial.

It is easy to check that det(Y's5 1) = 0. Therefore Y5 is not an isomorphism.
For p > 5, ?p,m is trivial for all m > 0.
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5. LOW DIMENSIONAL CASES

We start with some easy consequences of Theorem 4.6 and then discuss the case
when n is 3 or 4.

Corollary 5.1. Suppose there are a prime p and an m > 0 such that M, ., is odd
dimensional. Then Y, is not an isomorphism. As a consequence, the center of
Tqlz1,- -+, 2y is not a polynomial ring.

Proof. If Y, is a skew-symmetric matrix of odd size, its determinant is zero (this
is true even when p = 2). The rest follows from Lemma 4.5 and Theorem 4.6. O

Corollary 5.2. Suppose there is a prime p such that My, is odd dimensional. Then
Vp is not an isomorphism. As a consequence, the center of Ty[x1, -+ ,xy] is not a
polynomial ring.

Proof. Since M, = @,._, My m, if it is odd dimensional, at least one M), ,, must
be odd dimensional. The assertion follows from Corollary 5.1. O

Corollary 5.3. Suppose, for each prime p, p | di; for at most one pair (i,7),
1 <i<j<n. Then Yp is an isomorphism for each p. As a consequence, the
center of Tq[z1,- -+ ,xy] is a polynomial ring.

Proof. If each d;; ¢ pZ, then each L; ¢ pZ, M, = 0 and Y, is trivially an isomor-
phism.

If d;; € p™Z — p™*'Z for some i,j and some positive integer m, and each of
every other term dy¢ ¢ pZ, then L;, L; € p™Z — p™T1Z, and each of every other
Ly ¢ pZ. This shows that Y, is a nonzero 2 x 2 skew-symmetric matrix (i.e.

det(Yp,m) # 0) and M, = 0 for each m’ # m. The rest follows from Lemma 4.5
and Theorem 4.6. O

Next we give simple criteria for Y to be an isomorphism in the cases where
n=3,4.

Corollary 5.4. The center of Tqlx1, 2, %3] is a polynomial ring if and only if
(dij, dir,) = 1 for all different i, j, k.

Proof. There are only three d terms — di2, di3, and das. If each (d;j,d;) = 1, then
no prime is a factor of more than one term in {d;;}. By Corollary 5.3, the center
of Tq[x1, x2, x3] is a polynomial ring.

Conversely, suppose that p is a prime such that d;;,d;x € pZ for some i, j, k.
Then L, Lo, Ly € pZ. This implies that M, has dimension 3. Hence, by Corollary
5.2, Yp is not an isomorphism. So Y is not an isomorphism. Therefore the center
of Tq[x1, 2, x3] is not a polynomial ring by Lemma 4.3. O

Corollary 5.5. The center of Tq[x1,x2, T3, z4] is a polynomial ring if and only if,
for each prime p, one of the following holds:
(a) Fach L; ¢ pZ.
(b) For some positive integer m, Y, ., is 4 X 4 with nonzero determinant.
(¢) There are distinct indices i, j, k,¢ € {1,2,3,4} and a nonnegative integer m
such that d;; € p™ T Z, dge € p™Z — p™ ' Z, and every other d term is not
in pmt1Z.
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Proof. Let P = Tqlx1,x2,x3,24]. By Lemmas 4.3 and 4.4, Z(P) is a polynomial
ring if and only if Y, is an isomorphism for all p. It remains to show that, for each
p, Y, is an isomorphism if and only if one of (a), (b), or (c) holds. Now we fix p,
and prove the assertion in three cases according to the shape of M,.

First we prove the “if” part.

(a) If each L; ¢ pZ, then M, = 0 and Y, is trivially an isomorphism. This
handles the case when M, = 0.

(b) If for some m > 0, Y, ,, is 4 x 4 with nonzero determinant, then every other
Y, (for all r #m) is a 0 x 0 matrix, and consequently, Y, an isomorphism. This
is the case when M, = M, ,, is 4-dimensional for one m.

(c) Assume the hypotheses in part (c¢). Let m’ > m be the integer such that
dij € pm/Z — pm/“Z. If m = 0, then d;; is the only d term divisible by p. Hence
Y pm' is a skew-symmetric 2 x 2 nonzero matrix and Y, is trivial for all r # m/.
Therefore Y, is an isomorphism. If m > 0, then Y, and Y, are both skew-
symmetric and 2 x 2, and (because kieLy/die ¢ pZ), nonzero. Furthermore, every
other ?p-,r is 0 x 0 for all » # m,m’. Therefore Yp is an isomorphism.

For the rest we prove the “only if” part.

Suppose that 7,, is an isomorphism. By Corollary 5.2, M, is even dimensional,
that is, dim M, = 0,2 or 4.

The dim M,, = 0 case coincides with the case when each L; ¢ pZ, so we obtain
case (a).

For the dim M,, = 2 case, at least one d;; € pZ, L;, L; € pZ, and no other d term
is a multiple of p, so 7p is necessarily an isomorphism. We can set m = 0, so that
dij € p™1Z, and all other dgp, ¢ p™T'Z. So we obtain (c).

All that remains is the dim M, = 4 case. We have that each M), is even
dimensional by Corollary 5.1. If dim M), ,, = 4 for some m, then Y, ,,, is 4 x 4 and
Y, is an isomorphism if and only if det(Y ) # 0. So we obtain case (b).

Finally, suppose there exist m’ > m > 0 such that dim M), ,,, = dim M), ., = 2.
Let i, j, k, £ be distinct such that L;, L; € p™ Z—p™ t'Z and Ly, Ly € p™Z—p™+1Z.
We must have that d;; € p™ Z C p™+1Z and every other d term is not in p™+!Z.
If die ¢ p™Z, then kMLk/dkg, kgkLg/dgk € pZ and Yp_’m is the 2 x 2 zero matrix,
yielding a contradiction. Therefore, di, must be in p™Z. So we obtain case (c)
again. O

6. CENTER OF GENERALIZED WEYL ALGEBRAS

Let T be a commutative k-domain. In this section we assume that q := {g;;} is
a set of roots of unity in 7" and A := {a;; | 1 <i < j < j} be a subset of T'. Define
the generalized Weyl algebra associated to (q,.A) to be the central T-algebra
T<I17 s ,CCn>
(Ij{Ei — qijxixj — aij | 7 7§ ]) '
Consider a filtration on V(q,.A) with degx; = 1 and dett = 0 for all ¢ € T'. Suppose
that

Vig,A): =

(E6.0.1) grV(q, A) is naturally isomorphic to Ty[x1, -+ , Tn].
Consider the hypothesis that
(E6.0.2) for any pair (4, 7), a;; = 0 whenever ¢;; = 1.
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Proposition 6.1. Suppose (E6.0.1) and (E6.0.2) and let A = V(q,.A). If the
center Z(gr A) is a polynomial ring, then so is Z(A), and Z(A) = Z(gr A).

Proof. If Z(gr A) is a polynomial ring, then Z(gr A) = T[z*, -, xE»] where L; =
lem{d;; | j=1,--- ,n} [Lemma 4.3]. Recall that d;; is the order of g;;.

First we claim that 7 is in the center of A. For each j, we have zx; = ¢;; &z +

a;j. If g;; = 1, then z; commutes with x; by hypothesis (E6.0.2), so x; commutes
with leZ If g;; # 1, then the order of ¢;; is d;;. The equation x;x; = ¢ijxix; + a4j
implies that z; commutes with 2, as each z;2% = qfak e+ (1+qi+- -+qu_l)aij.
Since d;; divides L;, x; commutes with leZ for all j # 4. This shows that xZLl is
central.

Since gr A is the skew polynomial ring T4[z1,- - , x|, it is easy to check that
grZ(A) C Z(grA). Since Z(grA) is generated by {xF'}7_ |, then induction on
the degree of element f € Z(A) shows that f is generated by z*. Therefore the
assertion follows. O

Proposition 6.2. Retain the above notation and suppose (E6.0.1). If a;; # 0 for
some i # j, then qirgjr = 1 for all k # 1 or j.

Proof. We resolve zjx;x; in two different ways,
(zrzj)rs = (gprjTr + ajr)v;
= grxj(Tes) + ajrw;
= qkxi(qirTiTr + aik) + 5T,
= QirGir(T2) Tk + QiR + ajpT;
= qrqit(¢ijTiT; + i) Tk + ¢jRGiT; + ajRT;
QkQik Qi TiTi Tk + ¢k QikQij Tk + @ik QikTj + A5 T;
and similarly,
ar(zjzi) = zr(qiTizs + aij)
= ij(Temi)T; + ai
= qij(qrxiTk + aip)xj + aijxy
= ijqirTi(ThT;) + ¢ijainT; + aiTy
= ijQikQikTiT; Tk + QijQikCikTi + ¢ijQikTj + Qi Tk

Comparing the coefficients of xj gives the result. O

When an algebra A is finitely generated and free over its center (as in the situa-
tion of Proposition 6.1), one should be able to compute the discriminant of A over
its center. We give an example here.

Example 6.3. Let A be generated by 1, x2, x3, x4 subject to the relations
r3x1 — 122 =0, x429 + x2x4 =0,

(E6.3.1) r3r9 — xox3 =0, w3x4 + x423 =0,
41 + 124 =0, X122 + 2271 = x% + xi.

This is the example in [VVR, Lemma 1.1] (with A = 0). It is an iterated Ore
extension, and therefore, Artin-Schelter regular of global dimension four.
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It is not hard to check that the center of A is generated by x?. This algebra is
a factor ring of the algebra B over T := kl[t] generated by x1, z2, 23,24 subject to
the relations
zr3xy — 2122 =0, T4%2 + 2224 =0,
(E632) 3Ty — T3 = 0, T3Tg + Tgx3 = 0,
41 + 124 =0, 21220 + 2217 = 1.

Note that gr B is a skew polynomial ring over 1" with the above relations by
setting ¢ = 0. The Y-matrix is

0o 12 0 1/2
~1/2 0 0 1/2
0 0 0 1/2

-1/2 —-1/2 -1/2 0

By Corollary 5.5(b), B has center T[xl, 23,23, 23). By the next lemma the discrimi-
nant of B over its center is 248(4z%23 —¢?)%21°2}°. By Lemma 1.2, the discriminant
of A over its center is 248(4x323 — (3:% +23))823021°. We will see in the next sec-
tions that D(A) = A. As a consequence of Theorem 0.5, A is cancellative and the
automorphism group of A is affine.

Lemma 6.4. Suppose the k[t]-algebra B is generated by {x1,x2,x3,x4} subject to

the siz relations given (E6.3.2). Then the discriminant of B over its center is
248(4g242 — 12)3210716.

Sketch of the Proof. It is routine to check that the center of B is
Z( ) - k[ ][I15I27$37$421]

The algebra B is a free module over Z(B) of rank 16 with a Z(B)-basis {z¢x5x52¢ |
a,b,c,d =0,1}. Let {z1,--- 216} be the above Z(B)-basis. Then we can compute
the matrix (tr(z;2;))16x16, which is

16 0 0 0 0 8t 0 0 0 0 0 0 0 0 0
0 16a 8t 0 0 0 0 0 0 0 0 0 0 0 0
0 8t 16b 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 16¢ 0 0 0 0 0 0 0 8¢t 0 0 0
0 0 0 0 16d 0 0 0 0 0 0 0 8dt 0 0

8t 0 0 0 0 « 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 16ac 0 8ct 0 0 0 0 0 0
0 0 0 0 0 0 0 —16ad 0 —8dt 0 0 0 0 0
0 0 0 0 0 0 8ct 0 16bc 0 0 0 0 0 0
0 0 0 0 0 0 0 —8dt 0 —16bd 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 —16cd 0 0 0 0
0 0 0  8ct 0 0 0 0 0 0 0 B 0 0 0
0 0 0 0 8dt 0 0 0 0 0 0 0 ¥ 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 16acd 8cdt
0 0 0 0 0 0 0 0 0 0 0 0 0 8cdt  16bcd
0 0 0 0 0 0 0 0 0 0 —8cdt 0 0 0 0

where o = —16ab + 8t2, f = —16abc + 8ct?,y = —16abd + 8dt?, § = 16abcd — Scdt?,
and a = 22,b = 23,¢ = 2%,d = 2. We skip the details in computing the above
traces. By using Maple, its determinant is 248 (42323 — +2)3216216. O

7. THREE SUBALGEBRAS

In this section we discuss three (possibly different) subalgebras of A, all of which
are helpful for the applications in the next section.

[=NeNoRolololelaleNo)

—8cd
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SMleNeNeloe]
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7.1. Makar-Limanov Invariants. The first subalgebra is the Makar-Limanov In-
variants of A introduced by Makar-Limanov [Mal]. This invariant has been very
useful in commutative algebra. For any k-algebra A, let Der(A) denote the set of
all k-derivations of A and LND(A) denote the set of locally nilpotent k-derivations
of A.

Definition 7.1. Let A be an algebra over k.

(1) The Makar-Limanov invariant [Mal] of A is defined to be
(E7.1.1) ML(4) = [ ker(d).

SELND(A)

(2) We say that A is LND-rigid if ML(A) = A, or LND(A) = {0}.

(3) We say that A is strongly LND-rigid if ML(A[ty,--- ,tq4]) = A for all d > 0.

The following lemma is clear. Part (2) follows from the fact that 0 € LND(A) if
and only if g~10g € LND(A).
Lemma 7.2. Let A be an algebra.

(1) ML(A) is a subalgebra of A.

(2) For any g € Aut(A), g(ML(A)) = ML(A).
7.2. Divisor subalgebras. Throughout this subsection let A be a domain con-
taining Z. Let F be a subset of A. Let Sw(F') be the set of ¢ € A such that

f = agb for some a,b € A and 0 # f € F. Here Sw stands for “sub-word”, which
can be viewed as a divisor.

Definition 7.3. Let F' a subset of A.
(1) Let Do(F) = F. Inductively define D, (F) as the k-subalgebra of A gen-
erated by Sw(Dp—1(F)). The subalgebra D(F) = U, 5o Dn(F) is called
the F-divisor subalgebra of A. If F is the singleton {f}, we simply write

D({f}) as D(f)
(2) If f =d(A/Z) (if it exists), we call D(f) the discriminant-divisor subalgebra
of A or DDS of A, and write it as D(A).

The following lemma is well-known [Ma2, p. 4].

Lemma 7.4. Let z,y be nonzero elements in A and let 9 € LND(A). If d(xy) =0,
then 0(z) = 0(y) = 0.

Proof. Let m and n be the largest integers such that 0™ (z) # 0 and 9"(y) # 0.
Then the product rule and the choice of m,n imply that

m—+n
m—+n n+m 7 m-+n—i n+m m n
o) = 3 ("5 Jowom i) = (Mo won) 20
i=0
So m + n = 0. The assertion follows. O

Lemma 7.5. Let F' be a subset of ML(A). Then D(F) C ML(A).

Proof. Let 0 be any element in LND(A). By hypothesis, d(f) = 0 for all f € F.
By Lemma 7.4, 9(x) = 0 for all z € Sw(F). So 0 = 0 when restricted to Dy (F).
By induction, @ = 0 when restricted to D(F'). The assertion follows by taking
arbitrary @ € LND(A). O
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Lemma 7.6. Suppose d(A/Z) is defined. Then the DDS D(A) is preserved by all
g € Aut(A).

Proof. By [CPWZ1, Lemma 1.8(6)] or [CPWZ2, Lemma 1.4(4)], d(4/Z) is g-
invariant up to a unit. So, if g € Aut(A), then g maps Sw(d(4/Z)) to Sw(d(A/Z))
and D1(d(A/Z)) to D1(d(A/Z)). By induction, one sees that g maps D, (d(A/Z))
to D, (d(A/Z)). So the assertion follows. O

We need to find some elements f € A so that 9(f) = 0 for all 9 € LND(A). The
next lemma was proven in [CPWZ2, Proposition 1.5].

Lemma 7.7. Let Z be the center of A and d > 0. Suppose A* = k*. Assume
that A is finitely generated and free over Z. Then O(d(A/Z)) = 0 for all 0 €
LND(A[t1,- - ,ta]).
Proof. Let f denote the element d(A[t1,--- ,t4)/Z[t1, -+ ,ta]) in Z[t1,- - ,t4]. By
[CPWZ2, Proposition 1.5], d(f) = 0. By [CPWZ1, Lemma 5.4],

f =i d(A)Z),
The assertion follows. g

Here is the first relationship between the two subalgebras.

Proposition 7.8. Retain the hypothesis of Lemma 7.7. Let d > 0. Then
D(A) C ML(A[tq,--- ,tq]) C A.

Proof. Tt is clear that ML(A[t1, - ,tq]) € A by [BZ]. Let f = d(A/Z), which
isin A C Afty, - ,tg]. By Lemma 7.7, f € ML(A[t1,--- ,tq]). Let D'(f) be
the discriminant-divisor subalgebra of f in A[ty,--- ,t4]. By Lemma 7.5, D'(f) C
ML(At1,- - ,ta]). It is clear from the definition that D(f) C D’(f). Therefore the
assertion follows. O

In particular, by taking d = 0, we have D(A) C ML(A).

7.3. Aut-Bounded subalgebra. In this subsection we assume that A is filtered
such that the associated graded ring gr A is a connected graded domain. Later
we further assume that A is connected graded. Since gr A is a connected graded
domain, we can define deg f to be the degree of gr f, and the degree satisfies the
equation
deg(zy) = degx + degy
for all z,y € A.
Definition 7.9. Retain the above hypotheses. Let G be a subgroup of Aut(A) and
let V' be a subset of A.
(1) Let x be an element in A. The G-bound of x is defined to be
degg(x) := sup{deg(g(z)) | g € G}.
(2) Let g be in Aut(A). The V-bound of g is defined to be
deg, (V) := sup{deg(g(x)) | z € V'}.
(3) The G-bounded subalgebra of A, denoted by S (A), is the set of elements
x in A with finite G-bound. It is clear that Sg(A) is a subalgebra of A

[Lemma 7.10(1)]. In particular, the Aut-bounded subalgebra of A, denoted
by B(A), is the set of elements x in A with finite Aut(A)-bound.
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The following lemma is easy, so we omit the proof.

Lemma 7.10. Retain the above notation. Let G be a subgroup of Aut(A).
(1) The set Ba(A) is a subalgebra of A.
(2) 9(Bc(A)) = Ba(A) for allg € G.

Here is the relation between the two subalgebras D(A) and S(A). Let V be a
subset of A. We say V is of bounded degree if there is an N such that deg(v) < N
for allv e V.

Proposition 7.11. Let A be a filtered algebra such that gr A is a connected graded
domain. Suppose that G C Aut(A) and F C A.
(1) If G(F) has bounded degree, then D(F) C Sa(A).
(2) If f € Ais such that g(f) =zcayx f for all g € G, then D(f) C Bg(A).
(3) Assume that A is finitely generated and free over its center Z. Let f =
d(A/Z), then D(A) = D(f) C B(4).

Proof. (1) We have Do(F) = F C Bg(A) by assumption and use induction on n.
Suppose that D,_1(F) C fc(A). Assume that D, (F) is not contained in Bg(A).
Then there exists « € D,,(A) such that G(z) does not have bounded degree. Since
D,,(A) is generated by Sw(D,,_1(A)) as an algebra, there is an f € Sw(D,—_1(4))
such that G(f) does not have bounded degree. By definition of Sw(D,,_1(4)),
there exists a nonzero f' € D,_1(A) and a,b € A such that f' = afb. Since
gr A is a domain, we have deg(g(f’)) = deg(g(a)) + deg(g(f)) + deg(g(b)) for all
g € G. Hence G(f’) does not have bounded degree, which is a contradiction. Hence
D, (F) C Bg(A) for all n > 1, therefore D(F') C fg(A).

(2) Since Z(A)* C Ag, we see that G(f) has bounded degree, hence part (2)
follows from part (1).

(3) The third assertion is a special case of part (2) by Lemma 1.2. O

Under the hypotheses of Propositions 7.8 and 7.11 (and assume that A is finitely
generated and free over its center Z), we have
D(4)
S
ML(A) B(A)
O
A

For the rest of this section, we assume that A is a connected graded domain and
that k& contains the field Q. An automorphism g of A is called unipotent if

(E7.11.1) g(v) = v + (higher degree terms)

for all homogeneous elements v € A. Let Auty,;(A) denote the subgroup of
Aut(A) consisting of unipotent automorphisms [CPWZ2, After Theorem 3.1]. If
g € Auty,;(A), we can define

(E7.11.2) log(g) := —Z (1 —g)".

i=1

S|

Let C be the completion of A with respect to the graded maximal ideal m :=
A>j1. Then C is a local ring containing A as a subalgebra. We can define deg; :
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C — Z by setting deg;(v) to be the lowest degree of the nonzero homogeneous
components of v € C. We define a unipotent automorphism of C' in a similar way
to (E7.11.1) by using deg,. It is clear that if g € Auty,;(A), then it induces a
unipotent automorphism of C', which is still denoted by g.

Lemma 7.12. Let A be a connected graded domain. Let g € Auty,;(A) and G
be any subgroup of Aut(A) containing g. Let B denote fc(A). Then log(g) |
is a locally nilpotent derivation of B. Further, g |p is the identity if and only if
log(g) |B is zero.

Proof. Let C be the completion of A with respect to the graded maximal ideal
m := A>;. Let g also denote the algebra automorphism of C' induced by g. Then
g is also a unipotent automorphism of C.

Since g is unipotent, deg;(1—g)(v) > deg; v for any 0 # v € C. By induction, one
has deg(1—g)"(v) > n+degwv for all n > 1. Thus log(g)(v) converges and therefore
is well-defined. It follows from a standard argument that log(g) is a derivation of
C (this also is a consequence of [Fr, Proposition 2.17(b)]).

Let v be an element in B := S5 (A). Note that g"(v) € B for all n by Lemma 7.10.
Since v € B, there is an Ny such that deg g™ (v) < Np for all n. If (1 — g)"(v) # 0,
then

(E7.12.1) deg(1—g)"(v) = deg(z <n> g'(v)) < Ny, for all n.
i
i=0
When n > Ny, the inequalities from the previous paragraph imply that
(E7.12.2) deg;(1 —¢)"(v) > n+degwv > N,
which contradicts (E7.12.1) unless (1 — g)™(v) = 0. Therefore
(E7.12.3) (1—-¢g)"(v) =0, foralln > Np.

By (E7.12.3), the infinite sum of log(g) in (E7.11.2) terminates when applied
to v € B, and log(g)(v) € A. By Lemma 7.10, log(g)(v) € B. Since log(g) is a
derivation of C, it is a derivation when restricted to B.

Next we need to show that it is a locally nilpotent derivation when restricted
to B. It suffices to verify that, for any v € B, log(g)" (v) = 0 for N > 0, which
follows from (E7.11.2) and (E7.12.3).

The final assertion follows from the fact that g is the exponential function of
log(g) and log(g) is locally nilpotent. O

Now we are ready to prove the second part of Theorem 0.5 without the finite
GK-dimension hypothesis.

Theorem 7.13. Let k be a field of characteristic zero and A be a connected graded
domain over k. Assume that A is finitely generated and free over its center Z in
part (2).

(1) If ML(A) = B(A) = A, then Auty,;(A) = {1}.

(2) If D(A) = A, then Auty,;(A) = {1}.
Proof. (1) By hypothesis, B := 3(A) equals A. Let g € Autyni(A). Then log(g) |5
is a locally nilpotent derivation of B by Lemma 7.12. Hence log(g) € LND(A).
Since ML(A) = A, LND(A4) = {0}. So log(g) = 0. By Lemma 7.12, g is the
identity.
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(2) Combining the hypothesis D(A) = A with Propositions 7.8 and 7.11, we have
ML(A) = B(A) = A. The assertion follows from part (1). O

8. APPLICATIONS

In this section we assume that k is a field of characteristic zero.

8.1. Zariski cancellation problem. The Zariski cancellation problem for non-
commutative algebras was studied in [BZ]. We recall some definitions and results.

Definition 8.1. [BZ, Definition 1.1] Let A be an algebra.
(a) We call A cancellative if A[t] = BJt] for some algebra B implies that A = B.
(b) We call A strongly cancellative if, for any d > 1, A[t1,...,tq] = Blt1,. .., t4]
for some algebra B implies that A = B.

The original Zariski cancellation problem, denoted by ZCP, asks if the polyno-
mial ring k[t1,--- ,t,], where k is a field, is cancellative. A recent result of Gupta
[Gul, Gu2] settled the question ZCP negatively in positive characteristic for n > 3.
The ZCP in characteristic zero remains open for n > 3. Some history and partial
results about the ZCP can be found in [BZ]. In [BZ], the authors used discrim-
inants and locally nilpotent derivations to study the Zariski cancellation problem
for noncommutative rings.

One of the main results in [BZ] is the following.

Theorem 8.2. [BZ, Theorems 3.3 and 0.4] Let A be a finitely generated domain of
finite Gelfand-Kirillov dimension. If A is strongly LND-rigid (respectively, LND-
rigid), then A is strongly cancellative (respectively, cancellative).

Now we have an immediate consequence, which is the first part of Theorem 0.5.
Combining with Theorem 7.13, we finished the proof of Theorem 0.5.

Theorem 8.3. Let A be a finitely generated domain of finite GK-dimension. Let
Z be the center of A and suppose A = k*. Assume that A is finitely generated
and free over Z. If A =D(A), then A is strongly cancellative.

Proof. Combining the hypothesis A = D(A) with Proposition 7.8, we have
A= D(A) € ML(Aftr, - 1) € A.

So ML(A[ty,- - ,ta]) = A, or A is strongly LND-rigid. The assertion follows from
Theorem 8.2. 0

Next we give two examples.
Example 8.4. Let A be generated by z1,-- -, x4 subject to the relations

T1To + Tox1 = 0, Toxg + x322 = 0,
(E8.4.1) r1x3 +x3x1 =0, w314 + 2423 =0,

2
T1T4 + T4T1 = T3, T2aTa + 2422 = 0.

This is an iterated Ore extension, so it is Artin-Schelter regular of global dimension
4. This is a special case of the algebra in [VVRW, Definition 3.1]. Set x? = y; for
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i=1,---,4. Then Z(A) = k[y1,¥2,Ys, ya]. The M;-matrix of (E3.0.1) is

2yp1 0 0 wuys
o 2 0 0
(aijlaxa =1 g 7 2y3 0
y3 0 0 2y

The determinant det(a;;) is fo := 4y2y3(4y1y4 — y3) by linear algebra. By Theorem
3.7, the discriminant f := d(A/Z) is f023. It is clear that y2,y3 € Sw(f) and
y1,Y4 € Sw(D1(f)). Thus x; € Sw(D2(f)) for all . Consequently, A = D(A). By
Theorem 8.3, A is strongly cancellative.

The next example is somewhat generic.

Example 8.5. Let T be a commutative domain, and A = C(V, q) be the Clifford
algebra associated to a quadratic form g : V' — T where V is a free T-module of
rank n. Suppose that n is even. Then the center of A is T [La, Chapter 5, Theorem
2.5(a)]. We assume that A is a domain with A* = k*. Let t1,...,t, be a set
of generators of T, and suppose that g(V) C (¢1---tw)T or det(q) € (t1--tw)T.
Then by Theorem 3.7 we have f := d(A/T) € (t; - -t,)2" . So ts € Sw(f) for all
s. This shows that T'C D(A) and then A = D(A) (as 2? € T). By Theorem 8.3, A
is strongly cancellative.

Remark 8.6. Let A be the algebra in Example 6.3. Using the formula for d(A/Z)
given in Lemma 6.4, it is easy to see that A = D(A). So A is cancellative by
Theorem 8.3.

8.2. Automorphism problem. By [CPWZ1, CPWZ2], the discriminant controls
the automorphism group of some noncommutative algebras. In this section we com-
pute some automorphism groups by using the discriminants computed in previous
sections. We first recall some definitions and results.

We modify the definitions in [CPWZ1, CPWZ2] slightly. Let A be an N-filtered
algebra such that gr A is a connected graded domain. Let X := {z1, -+ ,z,} be a
set of elements in A such that it generates A and gr X generates gr A. We do not
require deg x; = 1 for all 1.

Definition 8.7. Let f be an element in A and X' = {x1,- - , 2.} be a subset of X.
We say f is dominating over X' if for any subset {y1,--- ,yn} C A that is linearly
independent in the quotient k-space A/k, there is a lift of f, say F(X1, -+, X,),
in the free algebra k(Xy,---,X,), such that deg F(y1,--- ,yn) > deg f whenever
degy; > deg x; for some x; € X'.

The following lemma is easy.

Lemma 8.8. Retain the above notation. Suppose f := d(A/Z) is dominating over
X'. Then for every automorphism g € Aut(A), degg(z;) < degx; for all z; € X'.

Proof. Let y; = g(x;). Then {y1,---,yn} is linearly independent in A/k (as
{x1, -+ ,zn} is linearly independent on A/k). If degy; > dega; for some i, by
the dominating property, there is a lift of f in the free algebra, say F(X1, -, X,,),
such that deg F'(y1,- -+ ,yn) > deg f. Since g is an algebra automorphism,

F(yla"' 7yn) = F(g(xl)v"' ,g(In)) :g(F(Ila"' 7xn)) :g(f)
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By [CPWZ1, Lemma 1.8(6)], g(f) = f (up to a unit in Z). Hence

deg F(y1,- -+ ,yn) = degg(f) = deg f,
yielding a contradiction. Therefore deg g(x;) = degy; < degz; for all i. 0

We will study the automorphism group of a class of Clifford algebras, see Exam-
ple 8.5.

Example 8.9. Let A be the Clifford algebra over a commutative k-domain 7" as in
Example 8.5 and assume that n is even. Let {z1,--- , 2, } denote a set of generators
for A. We will use {x1,---,x,} for the generators of the generic Clifford algebra
Ay defined in Section 3. Then there is an algebra homomorphism from 4, — A
sending z; to z; for all 7. Since n is even, T is the center of A. Assume that A is a
filtered algebra such that gr A is a connected graded domain, so we can define the
degree of any non-zero element in A. Further assume that degt; = 2 (not 1) for all
i=1,--- ,wand degz; >2foralli=1,2,--- ,n. In particular, there is no element
of degree 1. Some explicit examples are given later in this example.

Recall that we assumed ¢(V) C (t1---tw)T. Let 2b;; = z;z; + 2;z;, then we
can write b;; = (¢ -- ~tw)Nb’ij for some N > 0. By Theorem 3.7, the discriminant
is f = d(A/T) = (T2, ts)Nd?"" where d' = det(20;)nxn- We need another
extra hypothesis, which is that

(E8.9.1) degd < N.

Let X' = {t;}}?*; and X = {z;}7.,|JX’. Then f is a noncommutative polynomial
over X’. We first claim that f is dominating over X’. Let {y;}*, be a set of
elements in A\ k. If degy; > 2 for some i, then deg[(TT"_; ys)Nd (y1, -+, vw)]?"
is strictly larger than the degree of f, as we assume that degd’ < N. This shows
the claim.

Now let g be any algebra automorphism of A and let y; be g(¢;) for all i. Then,
by Lemma 8.8, degy; = 2. It follows from the relations z;z; = b;; that degz; > 3.
Hence (gr A)s is generated by the ¢;’s. This implies that y; is in the span of X’ and
k. In some sense, every automorphism of A is affine (with respect to X’). It is a
big step in understanding the automorphism group of A.

Below we study the automorphism group of a family of subalgebras of the generic
Clifford algebra A, of rank n that is defined in Section 3. As before we assume n is
even. We have two different sets of variables ¢, one for A, and the other for general
A. Tt would be convenient to unify these in the following discussion. So we identify
{ta;) |1 <i<j<n} with {t;}%, via a bijection ¢. Here w = Fn(n+1) as in the
definition of A, [Section 3.

Let r be any positive integer and let By, be the graded subalgebra of A, gen-
erated by {t(; ;)} for all 1 <i < j <n (or {t;}}*,) and z; := 2;([];_; tx)" for all
t=1,2,---,n. Since By, is a graded subalgebra of A,, it is a connected graded
domain. This is also a Clifford algebra over T, := kl[t(; ;)] generated by {z;}j-,
subject to the relations

Zj2; + 2iz5 = 2(1_[ tk)2rt(i,j) =: 2b;;
k=1
from which the bilinear form b and associated quadratic form ¢ can easily be recov-
ered. In particular, ¢(V) C ([T, tx)* T, where V = &I ,T,z;. By the definition
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of Ay, degt; = 2. Then degz; = 1+ 4rw > 3. Now we assume that N := 2r is
bigger than 27 that is the degree of d’ := det(t(; ;)). So we have

n<r, orequivalently degd < N

as required by (E8.9.1). See also Remark 8.10.
Let g be an algebra automorphism of By 4. By the above dlscussmn g(t;), for

each i, is a linear combination of {¢;}}"; and 1. Using the relations 22 = by, we
see that degg(z;) = deg(z;) for all i. Thus g must be a filtered automorphism of
Bgya.

Since g preserves the discriminant f and f is homogeneous in ¢;, degg(t;) = 2.
Further, by using the expression of f and the fact that Ty is a UFD, g(¢;) can not
be a linear combination of ¢;’s of more than one term. Thus g(t;) = ¢;t; for some j
and some ¢; € k*. This 1mpl1es that there is a permutation o € S, and a collection
of units {c;};, such that g(t;) = cit,(; for all i. Since g is filtered (by the last
paragraph), ¢(z;) = Y ,_; dikzk + €; where d;i, e; € k. Applying g to the relation

w
zf =b; = (H ti)Nt¢(i)i), where N := 2r,
i=1

we obtain that

(Z dikzk)Q + 261'(2 dzkzk) H Cz z tqb (i,) )
k k

Since (3, dikzk)? € T, we have €;(}., dirzr) = 0. Consequently, e; = 0 and
g(z:) =Y r_, dikzx. Applying g to the relations

2i2j + z52; = 2b;; = 2(H ti)N%(iJ)’
i=1

and expanding the left-hand side, we obtain that

w

Z dikdji(zr21 + z121) = 2(1_[ Citi)Ng(taﬁ(i»j))'

k,l i=1

Hence d;;d;; is nonzero for only one pair (k,7). Thus there is a set of units {d;}?
and a permutation ¢ € S, such that g(z;) = d;zy(; for alli = 1,--- ,n. Then the
above equation implies that

Ht Mswawen = e Tt cotntowi
1=1 =1
for all 7, j. Therefore
(E8.9.2) oY (i), (7)) = o(e(i, 5))
and
(E8.9.3) did; = (] ei)™ s

for all 7, j.
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By (E8.9.2), o is completely determined by ¢ € S,. Let d; = di(T[;2; ¢i)™"
Then (E8.9.3) says that did; = ¢4 5)- So [[;2 ci = [Ti<i<j<ndidj. This means
that cy(; j)s and d;s are completely determined by d;s. In conclusion,

Auwt(By,) 2{pe Syt x{diek*|i=1,---,n} =S, x (k)"

In particular, every algebra automorphism of By, is a graded algebra automor-
phism.

Remark 8.10. As a consequence of the computation in Example 8.9, Aut(By,,)
is independent of the parameter r when r > n. In fact, this assertion holds for all
r > 0, but its proof requires a different and longer analysis, so it is omitted. On
the other hand, Aut(By,0) = Aut(A,) is very different, see Remark 3.9(3).

We will work out one more automorphism group below.

Example 8.11. We continue to study Example 8.4 and prove that every algebra
automorphism of A in Example 8.4 is graded. Some of unimportant details are
omitted due to the length.

Claim 1: m := A>; is the only ideal of codimension 1 satisfying dimm/m? = 4.
Suppose I = (z1 — a1, 22 — a2, T3 — az, T4 — a4) is an ideal of A of codimension 1
such that dimy I/I2 = 4. Then the map 7 : z; — a; for all i extends to an algebra
homomorphism A — k. Applying 7 to the relations of A in (E8.4.1), we obtain
that

araz = 0,a1a3 = 0,2a1a4 = ag, asasz = 0,asza4 = 0, az2a4 = 0.
Therefore (a;) is either (aq,0,0,0), or (0, az,0,0), or (0,0,0,a4). By symmetry, we
consider the first case and the details of the other cases are omitted. Let z; = 2; —aq;
for all i. Then the first relation of (E8.4.1) becomes

2129 + 2221 = (X1 — a1)xe + z2(x1 — a1) = —2a1x2 = —2a129.

So 2a1z2 € I%. Since dim I/I? = 4, a; = 0. Thus we proved claim 1.
One of the consequences of claim 1 is that any algebra automorphism of A
preserves m. So we have a short exact sequence

1 — Autyni(4) — Aut(A) — Autg,(4) — 1

where Aut,,(A) is the group of graded algebra automorphisms of A and Aut,,;(A)
is the group of unipotent algebra automorphisms of A.

Claim 2: If f is a nonzero normal element in degree 1, then B := A/(f) is
Artin-Schelter regular domain of global dimension three. By [RZ, Lemma 1.1],
B has global dimension 3. Since A satisfies the y-condition [AZ], so is B. As a
consequence, B is AS regular of global dimension 3 [AS]. It is well-known that every
Artin-Schelter regular algebra of global dimension three is a domain (following by
the Artin-Schelter-Tate-Van den Bergh’s classification [AS, ATV1, ATV2]).

Claim 3: If f € A; is a normal element, then f € kxy or f € kwxz. First
of all, both z2 and z3 are normal elements by the relations (E8.4.1). Note that
x;9 = n-1(g)z; for i = 2,3, where 1_; is the algebra automorphism of A sending
z; to —x; for all 7.

Suppose that f is nonzero normal and f ¢ kxs U kzs. Then the image f of f
is normal in A/(x3). Since A/(x3) is a skew polynomial ring, by [KKZ, Lemma
3.5(d)], f is a a scalar multiple of 2; for some i = 1,2, or 4. This implies that f is
either axy +bxs, or axs +bxs or axy+bxs for some a,b € k. If b =0, then f = z; or
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x4. The relation x124 4+ x421 = 3 implies that A/(f) is not a domain (as 23 = 0 in
A/(f)). This contradicts claim 2. So the only possible case is f = x5 (again yielding
a contradiction). Now assume that b # 0 (and a # 0 because f ¢ kxs U kxy). We
consider the first case and the details of the other cases are similar and omitted.
Since f = ax; + bxs, then relation x1x3 + x3z1 = 0 implies that 22 = 0 in A/(f),
which contradicts with Claim 2. In all these cases, we obtain a contradiction, and
therefore f € kxg or f € kxs.

Since A/(x2) is not isomorphic to A/(x3), there is no algebra automorphism
sending s to x3. As a consequence, any graded automorphism v of A maps
To — coxo and x3 — c3xs. Let g be any graded algebra automorphism of A. Let
g be the induced algebra automorphism of A/(z3). By [KKZ, Lemma 3.5(¢)], g
sends 1 — ci1x1 and x4 — c4x4 Or 1 — 124 and x4 — c4x1. Then, by using the
original relations in (E8.4.1), one can check that g is of the form

r1 — C1T1,T2 — C2X2,T3 —> C3T3,T4 —> C4T4
where cico = ¢3 = ¢f or
Tl — C1T4,T2 — C2X2,T3 — C3T3,T4 — C4T1
where cico = 3 = 3. So
Autg, (A) 2 {(c1,¢2,¢3,¢4) € ()" | 102 = ¢§ = i}

which is completely determined.

Claim 4: Autyn(A) is trivial. Recall that the discriminant of A over its center
is

d := (v3a5(4afa] — 25))".

By Example 8.4, the DDS subalgebra D(A) is the whole algebra A. The assertion
follows from Theorem 0.5.

Combining all these claims, one sees that Aut(A) = Autgy,(A) which is described
in Claim 3.

Remark 8.12. Ideas as in Remark 8.10 also apply to Example 6.3 and a similar
conclusion holds. The interested reader can fill out the details.
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