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DISCRIMINANT FORMULAS AND APPLICATIONS

K. CHAN, A.A. YOUNG, AND J.J. ZHANG

Abstract. We solve two conjectures of Ceken-Palmieri-Wang-Zhang concern-
ing discriminants and give some applications.

Introduction

In algebraic number theory, the discriminant takes on a familiar form: given a
Galois extension L of the field Q and write OL = Z[α] ∼= Z[x]/(f) where f is the
minimal polynomial (or the characteristic polynomial) of α, then we have

∆L/Q =
∏

i6=j

(ri − rj)

where r1, . . . , rn are the roots of f . In noncommutative algebra, the discriminant
has long been used to study orders and lattices in a central simple algebra [Re].
Recently, it has been shown that the discriminant plays a remarkable role in solving
some classical and notoriously difficult questions:

(1) Automorphism problem, determining the full automorphism groups of
noncommutative Artin-Schelter regular algebras [CPWZ1, CPWZ2].

(2) Zariski cancellation problem, concerning the cancellative property of
noncommutative algebras such as skew polynomial rings [BZ].

(3) Isomorphism problem, finding a criterion for when two algebras are iso-
morphic, within certain classes of noncommutative algebras [CPWZ3].

Despite the usefulness of the discriminant in algebraic number theory, algebraic ge-
ometry and noncommutative algebra, it is extremely hard to compute, especially in
high dimensional and high rank cases. In [CPWZ1, CPWZ2], the authors made two
conjectures on discriminant formulas for some classes of noncommutative algebras.
Our main aim is to prove these two conjectures.

Let k be a base commutative domain and k× be the set of invertible elements
in k. The discriminant of a noncommutative algebra A over a central subalgebra
Z ⊆ A, denoted by d(A/Z), will be reviewed in Section 1. Let q ∈ k× be an
invertible element in k and let Aq be the q-quantum Weyl algebra generated by x
and y subject to the relation yx = qxy + 1. Our first result is

Theorem 0.1. Let q be a primitive n-th root of unity for some n ≥ 2. Then the
discriminant of Aq over its center Z(Aq) is

d(Aq/Z(Aq)) = c (nm)n
2

((1− q)nxnyn − 1)n(n−1)
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where c is some element in k× and m =
∏n−1
i=2 (1 + q + · · ·+ qi−1). By convention,

m = 1 when n = 2.

Theorem 0.1 answers [CPWZ2, Conjecture 5.3] affirmatively.
For n ≥ 2, let Wn be the k-algebra generated by x1, . . . , xn subject to the

relations xixj + xjxi = 1 for all i 6= j [CPWZ1, Introduction]. This algebra is
called a (−1)-quantum Weyl algebra [CPWZ3, Introduction]. Let

M :=




2x21 1 · · · 1
1 2x22 · · · 1
...

... · · ·
...

1 1 · · · 2x2n


 .

Let Z denote the central subalgebra k[x21, · · · , x2n] ⊆Wn. Our second result is

Theorem 0.2. Suppose 2 is invertible in k. Then the discriminant of Wn over the
subalgebra Z is

d(Wn/Z) = c (detM)2
n−1

where c is an element in k×.

Theorem 0.2 answers [CPWZ1, Question 4.12(2)] affirmatively.
These results suggest that the discriminant has elegant expressions in some situ-

ations. Because of its usefulness, more discriminant formulas should be established,
see Example 6.4.

This paper contains other related results which we now describe. Let T be
a commutative algebra over k and let q := {qij ∈ T× | 1 ≤ i < j ≤ n} and
A := {aij ∈ T | 1 ≤ i < j ≤ n} be sets of elements in T . The skew polynomial ring
Tq[x1, · · · , xn] is a T -algebra generated by x1, · · · , xn subject to the relations

(E0.2.1) xjxi = qijxixj , ∀ 1 ≤ i < j ≤ n.

A generalized quantum Weyl algebra associated to (q,A) is a T -central filtered
algebra of the form

(E0.2.2) Vn(q,A) =
T 〈x1, . . . , xn〉

(xjxi − qijxixj − aij | i < j)

such that the associated graded ring grVn(q,A) is naturally isomorphic to the skew
polynomial ring Tq[x1, · · · , xn]. Another way of constructing Vn(q,A) is to use an
iterated Ore extension starting with T . To calculate the discriminant of Vn(q,A)
over its center, one needs to determine the center of Vn(q,A). The discriminant is
defined whenever Vn(q,A) is a finite module over a central subring Z [CPWZ2],
and it is most useful when Vn(q,A) is a free module over Z [CPWZ1]. Since
grVn(q,A) ≃ Tq[x1, · · · , xn] we have that grVn(q,A) is a finite module over its
center if and only if each qij is a root of unity. Using this, we can show that the
algebra Vn(q,A) is a finite module over its center if and only if the parameters qij
are all non-trivial roots of unity. Also, when the center of Vn(q,A) is a polynomial
ring, Vn(q,A) is a finitely generated free module over its center. The following
useful result concerns the centers of Vn(q,A) and Tq[x1, · · · , xn].

To state it, we need some notation. When qij is a root of unity, there are two
integers kij and dij such that

qij = exp(2π
√
−1 kij/dij),
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where dij := o(qij) <∞, |kij | < dij and (kij , dij) = 1. Further, we can choose that

kij = −kji since qji = q−1
ij . Let Li be the lcm{dij | j = 1, . . . , n}. Let Y be the

n× n-matrix (kijLi/dij)n×n. For each prime p, define Y p = Y ⊗ Fp. Let m be any
natural number. Let Ip,m be the set containing i such that Li ∈ pmZ − pm+1Z.

Finally let Y p,m be the submatrix of Y p taken from the row and columns with
indices i ∈ Ip,m.

Theorem 0.3. Suppose qij is a root of unity and not 1 for all i < j.

(1) The center of Tq[x1, · · · , xn] is a polynomial ring if and only if it is of the

form T [xL1

1 , · · · , xLn
n ] if and only if det(Y p,m) 6= 0 in Fp for all primes p

and all integers m > 0 such that Ip,m 6= ∅.
(2) If the center of Tq[x1, · · · , xn] is the subalgebra T [xL1

1 , · · · , xLn
n ], then the

center of Vn(q,A) is the subalgebra T [xL1

1 , · · · , xLn
n ] and Vn(q,A) is finitely

generated and free over T [xL1

1 , · · · , xLn
n ].

The above criterion can be simplified when n = 3 or 4 [Corollaries 5.4 and 5.5].
The point of Theorem 0.3 is that it provides an explicit linear algebra criterion
for when the center of Tq[x1, · · · , xn] is isomorphic to a polynomial ring. One
interesting question after this is the following.

Question 0.4. Suppose that A := Vn(q,A) is finitely generated and free over its
center Z. What is the discriminant d(A/Z)?

Theorems 0.1 and 0.2 answer this question for two special cases.
A secondary goal of this paper is to provide some quick applications. These

discriminant formulas have potential applications in algebraic geometry, number
theory and the study of Clifford algebras. In Section 8 (the final section), we give
some immediate applications of discriminants to the cancellation problem and the
automorphism problem for several classes of noncommutative algebras.

Let us briefly review some definitions. An algebraA is called cancellative ifA[t] ∼=
B[t] for some algebra B implies A ∼= B. Let Aut(A) be the group of all algebra
automorphisms of A. Let A be connected graded. An algebra automorphism g of
A is called unipotent if

g(v) = v + (higher degree terms)

for all homogeneous elements v ∈ A. Let Autuni(A) denote the subgroup of Aut(A)
consisting of all unipotent automorphisms [CPWZ2, After Theorem 3.1]. When
Autuni(A) is trivial, Aut(A) is usually small and easy to handle. We will give a
criterion on when Autuni(A) is trivial.

Let A be a domain and F be a subset of A. Let Sw(F ) be the set of g ∈ A such
that f = agb for some a, b ∈ A and 0 6= f ∈ F . Let D1(F ) be the k-subalgebra of A
generated by Sw(F ). For n > 2, we define Dn(F ) = D1(Dn−1(F )) inductively, and
define D(F ) =

⋃
n≥1Dn(F ). This algebra is called the the F -divisor subalgebra of

A. When F = {d(A/Z)}, D(F ) is called discriminant-divisor subalgebra of A and
is denoted by D(A). The main result in Section 8 is the following.

Theorem 0.5. Suppose k is a field of characteristic zero. Let A be a connected
graded domain of finite Gelfand-Kirillov dimension. Assume that A is finitely
generated and free over its center. If D(A) = A, then A is cancellative and
Autuni(A) = {1}.
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The above theorem can be applied to some Artin-Schelter regular algebras of
global dimension four in Examples 6.3 and 8.4. Further applications are certainly
expected.

This paper is organized as follows. Background material about discriminants is
provided in Section 1. We prove Theorem 0.1 in Section 2 and Theorem 0.2 in
Section 3. Sections 4-6 concern the question of when Tq[x1, · · · , xn] and Vn(q,A)
are finitely generated and free over their centers and contain the proof of Theorem
0.3. In Section 7, we review and introduce some invariants related to discriminants,
locally nilpotent derivations, and automorphisms, which will be used in Section 8.
In Section 8, some applications are provided and Theorem 0.5 is proven.

1. Preliminaries

In this section we recall some definitions and basic properties of the discriminant.
A basic reference is [CPWZ1, Section 1].

Throughout let k be a base commutative domain and everything is over k. Let A
be an algebra and Z be a central subalgebra of A such that A is finitely generated
and free over Z. A modified version of the discriminant was introduced in [CPWZ2]
when A is not free over Z; however, in this paper, we only consider the case when
A is finitely generated and free over Z. Let r be the rank of A over Z.

We embed A in the endomorphism ring End(AZ) by sending a ∈ A to the left
multiplication la : A→ A. Since A is a free over Z of rank r, End(AZ) ∼=Mr×r(Z).
Define the trace function

(E1.0.1) tr : A→ End(AZ) ∼=Mr×r(Z)
trm−−→ Z

where trm is the usual matrix trace. The trace function tr is independent of the
choice of basis of A over Z.

Definition 1.1. [CPWZ1, Definition 1.3(3)] Retain the above notation. Suppose
that A is a free module over a central subalgebra Z with a Z-basis {z1, · · · , zr}.
The discriminant of A over Z is defined to be

d(A/Z) = det(tr(zizj))r×r ∈ Z.

By [CPWZ1, Proposition 1.4(2)], d(A/Z) is unique up to a scalar in Z×. For
x, y ∈ Z, we use the notation x =Z× y to indicate that x = cy for some c ∈ Z×.
So d(A/Z) =Z× det(tr(zizj))r×r as in [CPWZ1, Definition 1.3(3)]. The following
lemma is easy.

Lemma 1.2. Retain the notation as in Definition 1.1. Let (A′, Z ′) be another pair
of algebras such that Z ′ is a central subalgebra of A′ and A′ is a free Z ′-module of
rank r. Let g : A→ A′ be an algebra homomorphism such that

(i) g(Z) ⊆ Z ′.
(ii) {g(z1), · · · , g(zr)} is a Z ′-basis of A′.

Then g(d(A/Z)) =(Z′)× d(A′/Z ′).

Proof. For any a ∈ A, we denote a′ = g(a). Write azi =
∑r
j=1 aijzj for all i. By

applying g to the last equation, we have a′z′i =
∑r
j=1 a

′
ijz

′
j. By definition (E1.0.1),

tr(a) =
∑
i aii and

tr(g(a)) = tr(a′) =
∑

i

a′ii = g(
∑

i

aii) = g(tr(a))
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for all a ∈ A. By Definition 1.1 and the above equation,

g(d(A/Z)) = g(det(tr(zizj))r×r) = det(tr(z′iz
′
j))r×r =(Z′)× d(A′/Z ′).

�

Let Z be a central subalgebra of A and consider an Ore set C ⊂ Z. Then the
localization ZC−1 is central in AC−1.

Lemma 1.3. Let Z be a central subalgebra of A. Suppose A is free over Z of rank
r. Then AC−1 is free over ZC−1 of rank r. As a consequence,

d(AC−1/ZC−1) =(ZC−1)× d(A/Z).

Proof. Let {z1, · · · , zr} is a Z-basis of A. Then it is also a ZC−1-basis of AC−1.
The consequence follows from Lemma 1.2. �

We will need the following result from [CPWZ2, Proposition 2.8]. We change
notation from k to T to denote a commutative domain in the following proposition.

Proposition 1.4. Let T be a commutative domain and let A = Tq[x1, · · · , xn].
Suppose Z := T [xα1

1 , · · · , xαn
n ] is a central subalgebra of A, where the αi are positive

integers.

(1) [CPWZ2, Proposition 2.8] Let r =
∏n
i=1 αi. Then

d(A/Z) =T× rr(

n∏

i=1

xαi−1
i )r.

(2) If n = 2 and q12 is a primitive m-th root of unity and Z = T [xm1 , x
m
2 ], then

d(A/Z) =T× m2m2

(xm1 x
m
2 )m(m−1).

(3) If qij = −1 for all i < j and αi = 2 for all i, then

d(A/Z) =T× 2n2
n

(
n∏

i=1

x2i )
2n−1

.

Proof. Parts (2,3) are special cases of part (1). �

The next lemma is a special case [CPWZ2, Proposition 4.10]. Suppose Z is a
central subalgebra of A and A is free over Z of rank r < ∞. We fix a Z-basis of
A, say b := {b1 = 1, b2, · · · , br}. Suppose A is an N-filtered algebra such that the
associated graded ring grA is a domain. For any element f ∈ A, let gr f denote
the associated element in grA. Let gr b denote the set {gr b1, · · · , gr br}, which is a
subset of grA.

Lemma 1.5. [CPWZ2, Proposition 4.10] Retain the above notation. Suppose that
grA is finitely generated and free over grZ with basis gr b. Then

gr (d(A/Z)) =(grZ)× d(grA/ grZ).
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2. Discriminant of Aq over its center

Let T be a commutative domain and q ∈ T× be a primitive n-th root of unity for
some n ≥ 2. Let Aq be the q-quantum Weyl algebra over T generated by x and y
subject to the relation yx = qxy+a for some a ∈ T . This agrees with the definition
of Aq given in the introduction when T = k and a = 1. It is easy to check that
the center of Aq, denoted by Z(Aq), is T [x

n, yn], and that Aq is free over Z(Aq) of
rank n2. A Z(Aq)-basis of Aq is B := {xiyj | 0 ≤ i, j ≤ n − 1}. The aim of this
section is to compute the discriminant d(Aq/Z(Aq)).

Let A′ be the T -subalgebra of Aq generated by x′ := (1 − q)x and y. Since
yx′ = qx′y+(1− q)a and (1− q) may not be invertible, there is no obvious algebra
homomorphism from Aq to A′. Let Z ′ be the subalgebra T [(x′)n, yn] which is the
center of A′.

Lemma 2.1. Retain the above notation. Then

d(A′/Z ′) = (1 − q)n
2(n−1)d(Aq/Z(Aq)).

Proof. Let tr′ : A′ → Z ′ be the trace function defined as in (E1.0.1). We use this
trace function to compute the discriminant d(A′/Z ′).

Let B′ := {(x′)iyj}0≤i,j≤n−1. Then B′ is a Z ′-basis of A′. Note that A′ and
Aq have the same ring of fractions and Z(Aq) and Z

′ have the same fraction field.
Since the trace function is independent of the choice of basis we have tr′(a) = tr(a)
for all a ∈ A′.

Picking any two elements bs = xisyjs and bt = xityjt in B, we have corresponding
elements b′s = (x′)isyjs and b′t = (x′)ityjt in B. Hence

tr′(b′sb
′
t) = tr((1 − q)is+itbsbt) = (1− q)is+it tr(bsbt).

By definition, d(A′/Z ′) = det[tr′(b′sb
′
t)b′s,b′t∈B′ ]. Hence we have

d(A′/Z ′) = det[(tr′(b′sb
′
t))b′s,b′t∈B′ ]

= det[((1− q)is+it tr(bsbt))bs,bt∈B]

= (1 − q)N det[(tr(bsbt))bs,bt∈B]

= (1 − q)Nd(Aq/Z(Aq)),

where

N =
∑

all is,it

(is + it) = 2
∑

all is

is = 2n(0 + 1 + 2 + · · ·+ (n− 1)) = n2(n− 1).

The assertion follows. �

Following the above lemma, we first compute d(A′/Z ′). We can re-write A′ as
T 〈x′, y〉/(yx′−qx′y−(1−q)a) so that the positions of x′ and y are more symmetrical.

Let C = {(yn)i | i ≥ 1}. Consider the localizations Z ′′ := Z ′C−1 and A′′ :=
A′C−1. Let

x′′ := x′ − ay−1 = (1− q)x − (ay−n)yn−1 ∈ A′′.

Lemma 2.2. Retain the above notation. The following hold:

(1) yx′′ − qx′′y = 0.
(2) A′′ := A′C−1 is generated by T , (yn)−1, x′′ and y.

(3) (x′′)n is central and d(A′′/Z ′′) =(Z′′)× n2n2

((x′′)nyn)n(n−1).

(4) d(A′′/Z ′′) =(Z′′)× n2n2

((1 − q)nxnyn − an)n(n−1).
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Proof. (1) We have yx′′ − qx′′y = y((1− q)x − ay−1)− q((1 − q)x− ay−1)y = 0.
(2) This is clear.
(3) Since qn = 1, (x′′)n commutes with y by part (1). By part (2), (x′′)n

commutes with every element in A′′.
Consider an algebra homomorphism g : Tq[x1, x2] → A′′ determined by g(x1) =

x′′ and g(x2) = y. Then the center of B := Tq[x1, x2] is R := T [xn1 , x
n
2 ] and

{xi1xj2 | 0 ≤ i, j ≤ n − 1} is an R-basis of B. It is clear that A′′ is free of rank n2

and A′′ =
∑

0≤i,j≤n−1(x
′)iyjZ ′′. Hence {(x′′)iyj | 0 ≤ i, j ≤ n− 1} is a Z ′′-basis of

A′′. Then the hypotheses of Lemma 1.2 hold. Applying Lemma 1.2 to g, we have

g(d(B/R)) =(Z′)× d(A′′/Z ′′). By Proposition 1.4(2), d(B/R) = n2n2

(xn1x
n
2 )
n(n−1).

Therefore, d(A′′/Z ′′) =(Z′)× n2n2

((x′′)nyn)n(n−1).

(4) In the following, we will denote ψ = y−1, z = x′′ and p = q−1. The
commutation relation between x′ and ψ is

(E2.2.1) ψx′ = (1− q)ψx = (1 − q)(pxψ − paψ2) = px′ψ − (p− 1)aψ2.

Recall that z = x′′ = x′ − aψ. Write zn =
∑n
i=0 ci(x

′)iψn−i. Since zn is central
(see part (3)), we have ci = 0 unless i = 0, n. It is clear that cn = 1. Next we
determine c0. Since A′′ is a free module over Z ′′ with basis {(x′)iψj | 0 ≤ i, j ≤
n−1}, we can work modulo the right Z ′′-submoduleW generated by (x′)iψj where
0 < i < n and 0 ≤ j < n. Let ≡ denote equivalence mod W .

By induction, for i = 1, . . . , n− 1, we have

(E2.2.2) ψix′ = pix′ψi − (pi − 1)(aψi+1).

Then ψix′ ≡ −(pi − 1)(aψi+1). For each 1 ≤ j ≤ n− 1, write

zj =

j∑

i=0

cji (x
′)iψj−i.

Then x′zj ∈ W for all j < n − 1 and x′zn−1 ≡ (x′)n. For each j, we have

ψj−1zn−j =
∑n−j

i=0 d
j
i (x

′)iψn−1−i for some dji ∈ Z ′, so

(E2.2.3) x′ψj−1zn−j ∈ W

for all j ≥ 2. By the above computation and (E2.2.1)-(E2.2.3), we have

zn − (x′)n = (x′ − aψ)zn−1 − (x′)n

= x′zn−1 − (x′)n − aψzn−1

≡ −aψ(x′ − aψ)zn−2

≡ −a(px′ψ − (p− 1)aψ2 − aψ2)zn−2

≡ −a(−pa)ψ2zn−2 − apx′ψzn−2

≡ −a(−pa)ψ2zn−2

≡ −a(−pa)(ψ2x− aψ3)zn−3

≡ −a(−pa)(−p2a)ψ3zn−3

...

≡ −a(−pa)(−p2a) · · · (−pn−1a)ψn

= (−a)np(n−1)n/2ψn = −anψn.
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Therefore
zn ≡ −anψn + (x′)n.

Hence c0 = −an and zn = (x′)n − anψn. Combining all the above, we have

(x′′)nyn = ((x′)n − anψn)yn = (x′)nyn − an = (1− q)nxnyn − an.

Part (4) follows from part (3) and the above formula. �

Lemma 2.3. The discriminant of A′ over its center Z ′ is

d(A′/Z ′) =T× n2n2

((1 − q)nxnyn − an)n(n−1).

Proof. Let g be the embedding of A′ into A′′ = A′C−1, viewed as an inclusion.
By Lemma 1.2, g sends d(A′/Z ′) to d(A′′/Z ′′). Combining with Lemma 2.2(4), we
have

d(A′/Z ′) =(Z′′)× g(d(A′/Z(A′))) =(Z′′)× d(A′′/Z ′′)

=(Z′′)× n2n2

((1 − q)nxnyn − an)n(n−1).

Let Φ be the element d(A′/Z ′){n2n2

((1 − q)nxnyn − an)n(n−1)}−1, which can be
viewed as an element in the quotient ring of A′. By the above equation, Φ is in
(Z ′′)×. Since Z ′′ = T [(x′)n, y±n], Φ is of the form αysn for some α ∈ T× and
some s. By symmetry, Φ is also of the form β(x′)tn for some β ∈ T× and some
t. Hence s = t = 0, α = β ∈ T× and Φ = α ∈ T×. Therefore d(A′/Z ′) =

αn2n2

((1− q)nxnyn − an)n(n−1) and the assertion follows. �

Now let

(E2.3.1) m :=

n−1∏

i=2

(1 + q + · · ·+ qi−1).

We can show that n = (1 − q)n−1m by factoring the polynomial xn − 1 ∈ T [x],
dividing by (x − 1), then substituting 1 for x as follows:

xn − 1 =

n−1∏

i=0

(x− qi),

n−1∑

i=0

xi =
xn − 1

x− 1
=

n−1∏

i=1

(x− qi),

(E2.3.2) n =

n−1∏

i=1

(1− qi) = (1− q)n−1
n−1∏

i=2

(1 + q + · · ·+ qi−1) = (1 − q)n−1m.

Now we are ready to prove the main result of this section, that also recovers
Theorem 0.1.

Theorem 2.4. Retain the above notation. The discriminant of Aq over its center
Z(Aq) is

d(Aq/Z(Aq)) =T× (nm)n
2

((1− q)nxnyn − an)n(n−1).

Proof. Using Lemmas 2.1 and 2.3 and equation (E2.3.2), we have

(1 − q)n
2(n−1)d(Aq/Z(Aq)) =T× (nm(1 − q)n−1)n

2

((1 − q)nxnyn − an)n(n−1).

Since Aq is a domain, we obtain that

d(Aq/Z(Aq)) =T× (nm)n
2

((1− q)nxnyn − an)n(n−1).
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�

Remark 2.5.

(1) By [CPWZ2, Lemma 2.7(7)], the integer n in Theorem 2.4 is nonzero in T .
However n and m may not be invertible in general.

(2) Theorem 0.1 is clearly a consequence of Theorem 2.4.

A slight generalization of Theorem 2.4 is the following.

Theorem 2.6. Let T be a commutative domain and q ∈ T× be a primitive n-th
root of unity. Let B be the T -algebra of the form

T 〈x, y〉
(yx− qxy = a, xn = b, yn = c)

where a, b, c ∈ T . Suppose that B is a free module over T with basis {xiyj | 0 ≤
i, j ≤ n − 1}. Then d(B/T ) =T× (nm)n

2

((1 − q)nxnyn − an)n(n−1), where m is
given in (E2.3.1).

Proof. First note it is well-known and easy to check that T is the center of B.
Recall that Aq is the algebra of the form T 〈x, y〉/(yx − qxy = a). There is

a natural algebra homomorphism g from Aq to B sending x to x and y to y
and t ∈ T to t ∈ T . Then the hypotheses in Lemma 1.2 hold. By Lemma 1.2,
g(d(Aq/Z(Aq))) = d(B/T ). Now the assertion follows from Theorem 2.4. �

3. Discriminant of Clifford algebras

In this section we assume that 2−1 ∈ k. We fix an integer n ≥ 2.
Let T be a commutative domain and let A := {aij | 1 ≤ i < j ≤ n} be a set of

scalars in T . We write aji = aij if i < j. Let Vn(A) be the T -algebra generated by
{x1, · · · , xn} subject to the relations

xixj + xjxi = aij , ∀ i 6= j.

This algebra was studied in [CPWZ1, CPWZ3]. Some basic properties of Vn(A)
are given in [CPWZ1, Section 4]. Let M1 be the matrix

(E3.0.1) M1 :=




2x21 a12 · · · a1n
a21 2x22 · · · a2n
...

... · · ·
...

an1 an2 · · · 2x2n


 .

This is a symmetric matrix with entries in Z := T [x21, · · · , x2n]. We will define a
sequence of matrices Mi later. Note that Z is a central subalgebra of Vn(A). If we
write M1 = (mij,1)n×n, then mij,1 = xjxi + xixj for all i, j.

The algebra Vn(A) is a Clifford algebra over Z. We will recall the definition of
the Clifford algebra associated to a quadratic form in the second half of this section.
In the next few lemmas, we are basically diagonalizing the quadratic form, which is
elementary and well-known in the classical case, see [La, Chapter I, Corollary 2.4]
for some related material. Since we need some explicit construction to complete
the proof of our main result, details will be provided below.

We will introduce a sequence of new variables starting with

xi,1 = xi, ∀ i = 1, · · · , n,
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and

aij,1 = aij , ∀ i 6= j, and aii,1 = 2x2i , ∀ i.
So we have xj,1xi,1 + xi,1xj,1 = aij,1 for all i, j. Let

(E3.0.2) x1,2 := x1,1 and xi,2 := xi,1 −
1

2
a1i,1x

−2
1,1x1,1 for all i ≥ 2.

Lemma 3.1. Retain the notation as above.

(1) xi,2x1,2 + x1,2xi,2 = 0 for all i ≥ 2.

(2) x2i,2 = x2i,1 − 1
4a

2
1i,1x

−2
1,1 for all i ≥ 2.

(3) xi,2xj,2 + xj,2xi,2 = aij,1 − 1
2a1i,1a1j,1x

−2
1,1 for all 2 ≤ i < j ≤ n.

(4) Let M2 be the matrix (xi,2xj,2 + xj,2xi,2)1≤i,j≤n. Then detM2 = detM1.

(5) Let C1 = {x2i1,1}i≥1. Then the localization Vn(A)[C−1
1 ] is free over Z[C−1

1 ]

with basis {xd11,2 · · ·xdnn,2 | ds = 0, 1}.
Proof. (1,2,3) Follows by direct computation.

(4) Let N be the matrix



1 0 0 · · · 0
− 1

2a12,1x
−2
1,1 1 0 · · · 0

− 1
2a13,1x

−2
1,1 0 1 · · · 0

...
...

... · · ·
...

− 1
2a1n,1x

−2
1,1 0 0 · · · 1



.

By linear algebra and part (3), one can check that NM1N
T =M2. Since detN = 1,

we have detM2 = detM1.
(5) First of all Vn(A) is free over Z with basis {xd11,1 · · ·xdnn,1 | ds = 0, 1}. In

the localization Vn(A)[C−1], this basis can be transformed to a basis {xd11,2 · · ·xdnn,2 |
ds = 0, 1} by using (E3.0.2). �

After we have xi,2, define aij,2 to be xi,2xj,2 + xj,2xi,2 for all i, j. Now we define
xi,s and aij,s inductively.

Definition 3.2. Let s ≥ 3 and suppose that xi,s−1 and aij,s−1 are defined induc-
tively. Define

(E3.2.1) xi,s := xi,s−1, ∀ i < s and xi,s := xi,s−1−
1

2
as−1i,s−1x

−1
s−1,s−1, ∀i ≥ s.

Define aij,s := xi,sxj,s + xj,sxi,s for all i, j.

Similar to Lemma 3.1, we have the following lemma. Its proof is also similar to
the proof of Lemma 3.1, so is omitted.

Lemma 3.3. Retain the notation as above. Let 2 ≤ s ≤ n.

(1) xi,sxj,s + xj,sxi,s = 0 for all i < j and i < s.

(2) xi,s = xi,s−1 if i < s and x2i,s = x2i,s−1 − 1
4a

2
s−1i,s−1x

−2
s−1,s−1 for all i ≥ s.

(3) xi,sxj,s + xj,sxi,s = aij,s−1 − 1
2as−1i,s−1as−1j,s−1x

−2
s−1,s−1 for all s ≤ i <

j ≤ n.
(4) Let Ms be the matrix (xi,sxj,s + xj,sxi,s)1≤i,j≤n. Then detMs = detM1.

(5) Let Cs−1 be the Ore set {x2i11,1x
2i1
2,2 · · ·x

2is−1

s−1,s−1}i1,··· ,is−1≥1. Then the localiza-

tion Vn(A)[C−1
s−1] is free over Z[C−1

s−1] with basis {xd11,s · · ·xdnn,s | ds = 0, 1}.
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We need two more lemmas before we prove the main result.

Lemma 3.4. Let T be a commutative domain. Let A be a T -algebra containing T
as a subalgebra, generated by x1, · · · , xn and satisfying the relations xjxi+xixj = 0
for all i < j and x2i = ai ∈ T . Suppose that A is a free module over T with basis

{xd11 · · ·xdnn | ds = 0, 1}. Then

d(A/T ) =T× (

n∏

i=1

(2x2i ))
2n−1

=T× (

n∏

i=1

(x2i ))
2n−1

.

Proof. Let B = T−1[x1, · · · , xn] and Z = T [x21, · · · , x2n]. Then B is a free module

over Z with basis {xd11 · · ·xdnn | ds = 0, 1}. Let g be the algebra map from B to A
sending T to T , xi to xi. Then the hypotheses in Lemma 1.2 holds. By Lemma 1.2,
g(d(B/Z)) =T× d(A/T ). Note that d(B/Z) was computed in Proposition 1.4(3) to

be (
∏n
i=1(2x

2
i ))

2n−1

as we assume that 2 is invertible. Now the assertion follows. �

Let A be an Ore domain and let Q(A) denote the skew field of fractions of A.
Let Z be the commutative subalgebra T [x21, · · · , x2n] ⊂ Vn(A). For each 1 ≤ 1 ≤ n,

let Zi be the subring of Q(Z) of the form Q(T [x21, · · · , x̂2i , · · · , x2n])[x2i ].

Lemma 3.5. Retain the above notation.

(1)
⋂n
i=1 Zi = Q(T )[x21, · · · , x2n].

(2) Z[C−1
n−1] ⊆ Zn where Z[C−1

n−1] is defined in Lemma 3.3(5).

Proof. (1) This is an easy commutative algebra fact.
(2) By Lemma 3.3(2) and induction, each x2i,s, for all 1 ≤ i < n and all 1 ≤ s ≤ n,

is in Q(T [x21, · · · , x2n−1]). So Z[C
−1
n−1] ⊆ Zn.

�

Theorem 3.6. Suppose 2 is invertible. Let Z = T [x21, · · · , x2n]. Then

d(Vn(A)/Z) =T× (detM1)
2n−1

where M1 is given in (E3.0.1).

Proof. Consider the variables {xi,n}ni=1 defined in Lemma 3.3. By Lemma 3.3(5),

Vn(A)[C−1
n−1] is free over Z[C−1

n−1] with basis {xd11,s · · ·xdnn,s | ds = 0, 1}. By Lemma

3.4, the discriminant d(Vn(A)[C−1
n−1]/Z[C

−1
n−1]) is of the form (

∏n
i=1(x

2
i ))

2n−1

up to

a unit in Z[C−1
n−1]. By Lemma 3.3(4), we have

d(Vn(A)[C−1
n−1]/Z[C

−1
n−1]) = (

n∏

i=1

(x2i ))
2n−1

= (detMn)
2n−1

= (detM1)
2n−1

.

By Lemma 1.3,

d(Vn(A)/Z) =(Z[C−1

n−1
])× d(Vn(A)[C−1

n−1]/Z[C
−1
n−1]) =(Z[C−1

n−1
])× (detM1)

2n−1

.

Let Φ be the element d(Vn(A)/Z)−1(detM1)
2n−1

. Then Φ ∈ (Z[C−1
n−1])

×. This

means that both Φ and Φ−1 are in Z[C−1
n−1] ⊆ Zn. By symmetry, Φ is Zi for all

i. Thus Φ ∈ ⋂n
i=1 Zi = Q(T )[x21, · · · , x2n]. Similarly, Φ−1 is in Q(T )[x21, · · · , x2n].

Therefore Φ,Φ−1 ∈ Q(T ).
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Write d(Vn(A)/Z) = c (detM1)
2n−1

where c = Φ−1 ∈ Q(T ). It remains to show
c ∈ Z×. Note that Vn(A) is a filtered algebra such that grVn(A) ∼= T−1[x1, · · · , xn].
By Lemma 1.5,

gr d(Vn(A)/Z) =Z× d(grVn(A)/ grZ).

The left-hand side of the above is c (
∏
i=1(x

2
i ))

2n−1

and the right-hand side of the

above is (
∏
i=1(x

2
i ))

2n−1

by Proposition 1.4(3) (assuming 2 is invertible). Thus
c ∈ Z× as required. �

Theorem 0.2 is a special case of Theorem 3.6 by taking aij = 1 for all i < j.
The algebras Vn(A) and Wn are special Clifford algebras. Now we consider a

Clifford algebra in a more general setting. Let T be a commutative domain and V
be a free T -module of rank n. Given a quadratic form q : V −→ T , we can associate
to this data the Clifford algebra

C(V, q) =
T 〈V 〉

(x2 − q(x) | x ∈ V )
.

Note that this q is different from the parameter q in the definition of the q-quantum
Weyl algebra Aq and the parameter set q in the Vn(q,A) and Tq[x1, · · · , xn]. Con-
sider the bilinear form associated to q,

(E3.6.1) b(x, y) =
1

2
(q(x+ y)− q(x)− q(y))

for all x, y ∈ V . If we choose a T -basis x1, . . . , xn for V and let

(E3.6.2) B := (bij) = (b(xi, xj))n×n ∈ T n×n

be the symmetric matrix which represents b with respect to this basis, then the
relations of C(V, q) are

(E3.6.3) xixj + xjxi = 2bij, for all i, j.

Define det(q) to be det(B).
The following main result is a consequence of Theorem 3.6 and Lemma 1.2.

Theorem 3.7. Let A := C(V, q) be a Clifford algebra over a commutative domain
T defined by a quadratic form q : V → T . Pick a T -basis of V , say {xi}ni=1. Then

(E3.7.1) d(A/T ) =T× (det(xixj + xjxi)n×n)
2n−1

=T× det(q)2
n−1

.

Proof. Let b : V ⊗2 → T be the symmetric bilinear form associated to the quadratic
form q. Let aij = 2b(xi, xj) for all i < j and A = {aij}1≤i<j≤n. Then there
is a canonical algebra surjection π : Vn(A) → C(V, q) sending xi → xi for all
i = 1, · · · , n and t → t for all t ∈ T , and the kernel of the π is the ideal generated
by {x2i − bii}ni=1. Clearly, π(T [x21, · · · , x2n]) = T and the matrix (xixj + xjxi)n×n
equals M1. It is easy to check that {xd11 · · ·xdnn | di = 0, 1} is a basis of Vn(A) over
T [x21, · · · , x2n] and a basis of C(V, q) over T . The first equation of (E3.7.1) follows
from Theorem 3.6 and Lemma 1.2 and the second equation follows from the fact
that 2B = (xixj + xjxi)n×n and that 2 is invertible. �

In the rest of this section we briefly discuss “generic Clifford algebras” which
will appear again in Section 8. (This generic Clifford algebra should be called a
“universal Clifford algebra”, but the term “universal Clifford algebra” has already
been used).
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Fix an integer n. Let I be the set {(i, j) | 1 ≤ i ≤ j ≤ n} that can be thought
as the quotient set {(i, j) | 1 ≤ i, j ≤ n}/((i, j) ∼ (j, i)). Let w denote the
integer 1

2n(n + 1). There is a bijection between I and the set of first w integers
{1, 2, · · · , w}. Let Tg be the commutative domain k[t(i,j) | (i, j) ∈ I] which is
isomorphic to k[t1, · · · , tw]. Define a Tg-algebra Ag generated by {x1, · · · , xn} and
subject to the relations

(E3.7.2) xixj + xjxi = 2t(i,j), ∀ 1 ≤ i ≤ j ≤ n.

Let Vg =
⊕n

i=1 Tgxi. Define a bilinear form bg : Vg ⊗ Vg → Tg by bg(xi, xj) = t(i,j)
and the associated quadratic form by qg(x) = bg(x, x) for all x ∈ Vg. The “generic
Clifford algebra” Ag is defined to be the Clifford algebra associated to (Vg, qg). For
any Clifford algebra C(V, q) over a commutative ring T , by comparing (E3.6.3) with
(E3.7.2), one sees that there is an algebra map Ag → C(V, q) sending xi → xi and
t(i,j) → bij . Define deg xi = 1 for all i and deg t(i,j) = 2 for all (i, j) ∈ I. Then Ag
is a connected graded algebra over k.

We also define some factor algebras of Ag. Let J be a subset of {(i, j) | 1 ≤
i < j ≤ n} and wJ denote the integer w − |J |. Let Tg,J be the commutative
polynomial ring k[ti,j | (i, j) ∈ I \ J ], which is isomorphic to k[t1, · · · , twJ

]. Define
a Tg,J -algebra Ag,J generated by {x1, · · · , xn} and subject to the relations

(E3.7.3) xixj + xjxi =

{
2t(i,j), (i, j) ∈ I \ J,
0, (i, j) ∈ J.

Let Vg,J =
⊕n

i=1 Tg,Jxi. Define a bilinear form bg,J : Vg,J ⊗ Vg,J → Tg,J by

bg,J(xi, xj) =

{
t(i,j) (i, j) ∈ I \ J,
0, (i, j) ∈ J.

and the associated quadratic form by qg,J (x) =

bg(x, x) for all x ∈ Vg,J . Then Ag,J is the Clifford algebra associated to (Vg,J , qg,J).
If J ⊆ J ′ ⊆ {(i, j) | 1 ≤ i < j ≤ n}, there is an algebra map Ag,J → Ag,J′ sending

xi → xi and t(i,j) →
{
t(i,j), (i, j) /∈ J ′,

0 (i, j) ∈ J ′ \ J. . In particular, Ag,J is a connected

graded factor ring of Ag.
In part (4) of the next lemma, we will use a few undefined concepts that are

related to the homological properties of an algebra. We refer to [Le, LP, RZ] for
definitions.

Lemma 3.8. Retain the above notation. Assume that k is a field of characteristic
not two. Let J ′ be subset of {(i, j) | 1 ≤ i < j ≤ n} and J = J ′ \ {(i0, j0)} for some
(i0, j0) ∈ J ′.

(1) The Hilbert series of Ag is

HAg
(t) =

(1 + t)n

(1 − t2)w

where w = 1
2n(n+ 1).

(2) The Hilbert series of Ag,J is

HAg,J
(t) =

(1 + t)n

(1 − t2)wJ

where wJ = w − |J |.
(3) t(i0,j0) is a central regular element in Ag,J′ , and Ag,J = Ag,J′/(t(i0,j0)).
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(4) Ag and Ag,J are connected graded Artin-Schelter regular, Auslander regular,
Cohen-Macaulay noetherian domains.

Proof. (1) Note that Ag is a free module over Tg with basis {xd11 · · ·xdnn | ds = 0, 1}.
Recall deg xi = 1 and deg t(i,j) = 2. We have

HAg
(t) = (1 + t)nHTg

(t) =
(1 + t)n

(1 − t2)w
.

(2) The proof is similar. Use the fact HTg,J
(t) = 1

(1−t2)wJ
.

(3) It is clear that t(i0,j0) is central in Ag,J′ and Ag,J = Ag,J′/(t(i0,j0)). So the
ideal (t(i0,j0)) is the left ideal t(i0,j0)Ag,J′ and the right ideal Ag,J′t(i0,j0). By parts

(1) and (2), the Hilbert series of (t(i0,j0)) is t
2HAg,J′

(t). So t(i0,j0) is regular.

(4) We only provide a proof for Ag. The proof for Ag,J is similar.
From part (3), JM := {t(i,j) | 1 ≤ i < j ≤ n} is a sequence of regular central

elements in Ag of positive degree. It is easy to see that Ag,JM
(= Ag/(JM )) is

isomorphic to the skew polynomial ring k−1[x1, · · · , xn], which is an Artin-Schelter
regular, Auslander regular, Cohen-Macaulay noetherian domain. Applying [LP,
Lemma 7.6] repeatedly, Ag has finite global dimension. Applying [Le, Proposition
3.5, Theorem 5.10] repeatedly, Ag is a noetherian Auslander Gorenstein and Cohen-
Macaulay domain. By [Le, Theorem 6.3], Ag is Artin-Schelter Gorenstein. Since Ag
has finite global dimension, it is Auslander regular and Artin-Schelter regular. �

Remark 3.9. Retain the above notation.

(1) Some homological properties of the algebra Ag are given in Lemma 3.8. It
would be interesting to work out combinatorial and geometric invariants
(and properties) of Ag. For example, what are the point-module and line-
module schemes of Ag? Definitions of these schemes can be found in [VVR,
VVRW].

(2) Another way of presenting Ag is the following. Let S be a k-vector space
of dimension n. Define Ag to be k〈S〉/([x2, y] = 0 | ∀ x, y,∈ S). By using
this new expression, one can easily see that the group of graded algebra
automorphisms of Ag, denoted by Autgr(Ag), is isomorphic to GLn(k).

(3) Suppose n ≥ 2. The full automorphism group Aut(Ag) has not been de-
termined. It is known that Aut(Ag) is not affine. For example, if f(t) is a
polynomial in t, then

xi →
{
xi i > 1,

x1 + f([x1, x2]
2)x2 i = 1,

extends to an algebra automorphism of Ag.
(4) It seems interesting to study “cubic-algebra” k〈S〉/([x3, y] = 0 | ∀ x, y ∈ S)

and higher-degree analogues.
(5) The quotient division ring of Ag, denoted by Dg, is called the “generic Clif-

ford division algebra of rank n”. It would be interesting to study algebraic
properties or invariants of Dg.

4. Center of skew polynomial rings

To use the discriminant most effectively, one needs to first understand the center
of an algebra. In this section we give a criterion for when Tq[x1, · · · , xn] is free over
its center and when the center of Tq[x1, · · · , xn] is a polynomial ring.



DISCRIMINANT FORMULAS AND APPLICATIONS 15

Recall that T is a commutative domain and q := {qij ∈ T× | 1 ≤ i < j ≤ n} is a
set of invertible scalars. Let P := Tq[x1, . . . , xn] be the skew polynomial ring over
T subject to the relations (E0.2.1). We assume that dij := o(qij) <∞ and write

(E4.0.1) qij = exp(2π
√
−1 kij/dij),

where |kij | < dij and (kij , dij) = 1. Note that, by our convention, qij = q−1
ji for

all i, j. Hence, we choose kij = −kji and dij = dji. We also adopt the convention
that if qij = 1 then kij = 0 and dij = 1. In particular, kii = 0 and dii = 1. We can

extend P to P [x−1
1 , ..., x−1

n ], with an inverse for each xi, with the following expected
relations

xix
−1
i = x−1

i xi = 1, xjx
−1
i = q−1

ij x
−1
i xj , and x−1

j x−1
i = qijx

−1
i x−1

j .

We need to do some analysis to understand the center of P . Let ηi denote conju-
gation by xi, sending f 7−→ x−1

i fxi, and let ξ = xs11 · · ·xsnn . Then

ηi(ξ) = exp(2π
√
−1 eTi Y s) ξ

where Y ∈ son(Q) whose (i, j)-th entry is kij/dij , s is the column vector whose i-th
entry is si appearing in the powers of ξ, and ei the i-th standard basis vector in
Qn.

Lemma 4.1. Retain the above notation. Then ξ is in the center Z(P ) of P if and
only if Y s ∈ Zn.

Proof. Since P is generated by {xi}, ξ ∈ Z(P ) if and only if ηi(ξ) = ξ for all i, if
and only if exp(2π

√
−1 eTi Y s) = 1, if and only if eTi Y s ∈ Z for all i, and finally, if

and only if Y s ∈ Zn. �

By choosing the standard basis for Qn, we can consider Y as a linear trans-
formation Qn −→ Qn by sending s 7−→ Y s. Here we view Qn as column vectors
and Y as a left multiplication. We can restrict this map to Zn ⊂ Qn (embedded
via the standard basis) and compose with the quotient Qn −→ Qn/Zn to obtain a
Z-module homomorphism Y ′ : Zn −→ Qn/Zn.

Lemma 4.2. Retain the above notation. Then ξ ∈ Z(P ) if and only if s ∈ ker(Y ′).

Proof. By lemma 4.1, ξ ∈ Z(P ) if and only if Y s ∈ Zn, which is equivalent to
Y ′(s) = 0 by the definition of Y ′. �

Let D be the matrix (dij)n×n and let Li be the lcm of the entries in i-th row
of D, namely, Li = lcm{dij | j = 1, . . . , n}. Since D is a symmetric matrix, Li is
also the lcm of the entries in i-th column. Observe that Z(P ) contains the central

subring P ′ := k[xL1

1 , . . . , xLn
n ]. In other words, ker(Y ′) contains the Z-lattice Λ

spanned by Liei for i = 1, . . . , n. Therefore Y ′ factors through

Zn −→M := Zn/Λ =

n⊕

i=1

Z/LiZ.

For each s ∈ Zn, the i-th entry of Y ′(s) is
∑
j kijsj/dij ∈ Q/Z, which is Li-torsion,

or equivalently, in L−1
i Z/Z. Therefore Y ′ induces a map

M −→M ′ :=

n⊕

i=1

L−1
i Z/Z.
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Since M ′ is naturally isomorphic to M , we can define an endomorphism

Y :M −→M

by setting

Y s = (

n∑

j=1

Li(kijsj/dij))
n
i=1.

In particular, Y ej =
∑n
i=1(kijLi/dij)ei. Sometimes we think of Y as a matrix

Y = (kijLi/dij)n×n = diag(L1, · · · , Ln)Y.
The following lemma is a re-interpretation of [CPWZ2, Lemma 2.3].

Lemma 4.3. Retain the above notation. The following are equivalent.

(1) The center Z(P ) of P is a polynomial ring.
(2) Z(P ) = P ′.
(3) ker(Y ) = 0.
(4) Y is an isomorphism.

Proof. (1) ⇔ (2): One implication is clear. For the other implication, we assume
that the center Z(P ) is a polynomial ring. By [CPWZ2, Lemma 2.3], Z(P ) is of
the form T [xai1 , · · · , xain ]. It is easy to check that Li | ai for all i. Since Z(P ) ⊇ P ′,
ai = Li for all i. The assertion follows.

(3) =⇒ (2): Let ξ := xs11 · · ·xsnn ∈ Z(P ) and let s = (si)
n
i=1. By Lemma 4.2,

s ∈ ker(Y ′). Since Y is induced by Y ′, Y (s) = 0. By part (3), s = 0 in M = Zn/Λ.
So s ∈ Λ, which is equivalent to ξ ∈ P ′. Therefore, Z(P ) = P ′ as desired.

(2) =⇒ (3): Let ξ := xs11 · · ·xsnn ∈ P where s := (si)
n
i=1 ∈ ker(Y ) viewing as a

vector in M . By the definition of M , we might assume that each si is non-negative
and less than Li. Since Y is induced by Y ′, we have that s ∈ ker(Y ′). By Lemma
4.2, ξ ∈ Z(P ). By part (2) and our choice of 0 ≤ si < Li, ξ = 1 or s = 0 as desired.

(3) ⇔ (4): This is clear since M is finite. �

The advantage of working with Y is that ker(Y ) = 0 is equivalent to Y being
an isomorphism. Next we need to understand when Y is an isomorphism. For the
rest of this section we use ⊗ for ⊗Z and Fp for Z/pZ.

Lemma 4.4. The morphism Y is an isomorphism if and only if Y ⊗ Fp is an
isomorphism for all primes p.

Proof. As a Z-module, M is finite, and it suffices to show that Y is surjective if
and only if Y ⊗Fp is surjective for each prime p. This is clear since −⊗ Fp is right
exact, so surjectivity of a map can be checked on closed fibers. �

Fix any prime p. Let Mp = M ⊗ Fp, and Y p = Y ⊗ Fp. For any ei, if Li /∈ pZ,
then the image of ei is zero in Mp. We can therefore use {ei|Li ∈ pZ} as a basis
of Mp. Consequently, Mp is a vector space over Fp of dimension at most n, and we

can write Y p as a matrix over Fp. Next we will decompose the vector space Mp

and the matrix Y p.
For each positive integer m, let Mp,m denote the subspace of Mp generated by

{ei|Li ∈ pmZ− pm+1Z}. Let Y p,m be the endomorphism

Mp,m −→Mp
Y p−→Mp −→Mp,m
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where the first map is the inclusion and the last map is the natural projection using
the given basis {ei|Li ∈ pZ}. Then Y p,m can be expressed as the submatrix of Y
taken from the row and columns with indices i such that ei ∈ Mp,m. For all but

finitely many values of m, Mp,m = 0, and in this case, Y p,m is a 0 × 0 matrix.
We adopt the convention that the determinant of a 0 × 0 matrix is 1. In general,
det(Y p,m) is in Fp.

Lemma 4.5. The following are equivalent.

(1) The map Y p is an isomorphism.

(2) For all positive integers m, Y p,m is an isomorphism.

(3) det(Y p,m) 6= 0 for all positive integers m.

Proof. It is clear that (2) and (3) are equivalent, so we need only show that (1) and
(2) are equivalent.

Let m > 0, and let i, j be such that Li ∈ pmZ − pm+1Z and Lj /∈ pmZ. Since
Lj = lcm{dkj | k = 1, ..., n}, we have dij /∈ pmZ, and kijLi/dij ∈ pZ. Therefore,

the ei-component of Y pej is zero. We can extended this to show that for any

m > m′ > 0, the Mp,m′-component of Y p(Mp,m) is zero, or equivalently,

Y p(Mp,m) ⊆
⊕

n≥m

Mp,n =: Nm.

This implies that, for any m > 0, Y p acts as an endomorphism on Nm. Since

each Mp is finite dimensional, Y p is an isomorphism if and only if it acts as an
isomorphism on each subquotient Nm/Nm+1

∼=Mp,m. This action is already given

by Y p,m, so the assertion follows. �

Combining all the lemmas in this section we have

Theorem 4.6. The center of the skew polynomial ring Tq[x1, · · · , xn] is a polyno-

mial ring if and only if det(Y p,m) 6= 0 for all primes p and all integers m > 0.

Theorem 4.6 is a slight generalization of Theorem 0.3(a) without the hypothesis
that qij 6= 1 for all i 6= j. The definition of the matrices Y p,m is not straightforward,
so we give an example below. Hopefully, this example will show that this matrix is
not hard to understand.

Example 4.7. We start with the following skew-symmetric matrix with entries in
Q

Y :=




0 4/27 2/9 0 2/3 3/5
−4/27 0 1/3 7/9 1/3 1/5
−2/9 −1/3 0 1/6 1/2 1/2
0 −7/9 −1/6 0 2/3 0

−2/3 −1/3 −1/2 −2/3 0 5/8
−3/5 −1/5 −1/2 0 −5/8 0



.

One can easily construct qij by (E4.0.1) and the skew polynomial ring Tq[x1, · · · , x6]
by (E0.2.1), but the point of this example is to work out the matrices Y p,m for all
primes p and all m > 0. By considering the denominators of the entries of Y , one
sees that

(L1, L2, L3, L4, L5, L6) = (33 · 5, 33 · 5, 2 · 32, 2 · 32, 23 · 3, 23 · 5).
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This implies that Y p,m is a trivial matrix (or a 0× 0-matrix) except for p = 2, 3, 5.
Next we consider

Y = diag(L1, · · · , L6)Y =




0 20 30 0 90 81
−20 0 45 105 45 27
−4 −6 0 3 9 9
0 −14 −3 0 12 0

−16 −8 −12 −16 0 15
−24 −8 −20 0 −25 0



.

Recall that Mp,m has a basis {ei | Li ∈ pmZ − pm+1Z} and Y p.m is the square

submatrix of Y with indices {i | Li ∈ pmZ− pm+1Z} and with entries evaluated in
Fp.

For p = 2, Y 2,m are the following:

Y 2,1 is the principle (3, 4)-submatrix of Y , and

Y 2,1 =

(
0 1
1 0

)
.

Y 2,3 uses indices 5, 6, and

Y 2,3 =

(
0 1
1 0

)
.

For all m = 2 or m > 3, Y 2,m is trivial.

Therefore, Y 2 is an isomorphism by Lemma 4.5.
For p = 3, Y 3,m are the following:

Y 3,1 uses only index 5, and is the 1× 1 zero matrix.

Y 3,2 uses indices 3, 4, and is the 2× 2 zero matrix.

Y 3,3 uses indices 1, 2, and

Y 3,3 =

(
0 1
−1 0

)
.

For all m > 3, Y 3,m is trivial.

Since det(Y 3,1) = det(Y 3,2) = 0, Y 3 is not an isomorphism by Lemma 4.5. Conse-
quently, the center of Tq[x1, · · · , x6] is not a polynomial ring by Theorem 4.6.

For p = 5, Y 5,m are the following:

Y 5,1 uses indices 1, 2, 6, and

Y 5,1 =




0 0 1
0 0 2
−1 −2 0


 .

For all m > 1, Y 5,m is trivial.

It is easy to check that det(Y 5,1) = 0. Therefore Y 5 is not an isomorphism.

For p > 5, Y p,m is trivial for all m > 0.
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5. Low dimensional cases

We start with some easy consequences of Theorem 4.6 and then discuss the case
when n is 3 or 4.

Corollary 5.1. Suppose there are a prime p and an m > 0 such that Mp,m is odd

dimensional. Then Y p is not an isomorphism. As a consequence, the center of
Tq[x1, · · · , xn] is not a polynomial ring.

Proof. If Y p,m is a skew-symmetric matrix of odd size, its determinant is zero (this
is true even when p = 2). The rest follows from Lemma 4.5 and Theorem 4.6. �

Corollary 5.2. Suppose there is a prime p such that Mp is odd dimensional. Then

Y p is not an isomorphism. As a consequence, the center of Tq[x1, · · · , xn] is not a
polynomial ring.

Proof. Since Mp =
⊕∞

m=1Mp,m, if it is odd dimensional, at least one Mp,m must
be odd dimensional. The assertion follows from Corollary 5.1. �

Corollary 5.3. Suppose, for each prime p, p | dij for at most one pair (i, j),

1 ≤ i < j ≤ n. Then Y p is an isomorphism for each p. As a consequence, the
center of Tq[x1, · · · , xn] is a polynomial ring.

Proof. If each dij /∈ pZ, then each Li /∈ pZ, Mp = 0 and Y p is trivially an isomor-
phism.

If dij ∈ pmZ − pm+1Z for some i, j and some positive integer m, and each of
every other term dkℓ /∈ pZ, then Li, Lj ∈ pmZ − pm+1Z, and each of every other

Lk /∈ pZ. This shows that Y p,m is a nonzero 2 × 2 skew-symmetric matrix (i.e.

det(Y p,m) 6= 0) and Mp,m′ = 0 for each m′ 6= m. The rest follows from Lemma 4.5
and Theorem 4.6. �

Next we give simple criteria for Y to be an isomorphism in the cases where
n = 3, 4.

Corollary 5.4. The center of Tq[x1, x2, x3] is a polynomial ring if and only if
(dij , dik) = 1 for all different i, j, k.

Proof. There are only three d terms – d12, d13, and d23. If each (dij , dik) = 1, then
no prime is a factor of more than one term in {dij}. By Corollary 5.3, the center
of Tq[x1, x2, x3] is a polynomial ring.

Conversely, suppose that p is a prime such that dij , dik ∈ pZ for some i, j, k.
Then L1, L2, L3 ∈ pZ. This implies that Mp has dimension 3. Hence, by Corollary

5.2, Y p is not an isomorphism. So Y is not an isomorphism. Therefore the center
of Tq[x1, x2, x3] is not a polynomial ring by Lemma 4.3. �

Corollary 5.5. The center of Tq[x1, x2, x3, x4] is a polynomial ring if and only if,
for each prime p, one of the following holds:

(a) Each Li /∈ pZ.
(b) For some positive integer m, Y p,m is 4× 4 with nonzero determinant.
(c) There are distinct indices i, j, k, ℓ ∈ {1, 2, 3, 4} and a nonnegative integer m

such that dij ∈ pm+1Z, dkℓ ∈ pmZ− pm+1Z, and every other d term is not
in pm+1Z.
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Proof. Let P = Tq[x1, x2, x3, x4]. By Lemmas 4.3 and 4.4, Z(P ) is a polynomial

ring if and only if Y p is an isomorphism for all p. It remains to show that, for each

p, Y p is an isomorphism if and only if one of (a), (b), or (c) holds. Now we fix p,
and prove the assertion in three cases according to the shape of Mp.

First we prove the “if” part.
(a) If each Li /∈ pZ, then Mp = 0 and Y p is trivially an isomorphism. This

handles the case when Mp = 0.

(b) If for some m > 0, Y p,m is 4× 4 with nonzero determinant, then every other

Y p,r (for all r 6= m) is a 0× 0 matrix, and consequently, Y p an isomorphism. This
is the case when Mp =Mp,m is 4-dimensional for one m.

(c) Assume the hypotheses in part (c). Let m′ > m be the integer such that

dij ∈ pm
′

Z − pm
′+1Z. If m = 0, then dij is the only d term divisible by p. Hence

Y p,m′ is a skew-symmetric 2 × 2 nonzero matrix and Y p,r is trivial for all r 6= m′.

Therefore Y p is an isomorphism. If m > 0, then Y p,m and Y p,m′ are both skew-
symmetric and 2× 2, and (because kkℓLk/dkℓ /∈ pZ), nonzero. Furthermore, every
other Y p,r is 0× 0 for all r 6= m,m′. Therefore Y p is an isomorphism.

For the rest we prove the “only if” part.
Suppose that Y p is an isomorphism. By Corollary 5.2, Mp is even dimensional,

that is, dimMp = 0, 2 or 4.
The dimMp = 0 case coincides with the case when each Li /∈ pZ, so we obtain

case (a).
For the dimMp = 2 case, at least one dij ∈ pZ, Li, Lj ∈ pZ, and no other d term

is a multiple of p, so Y p is necessarily an isomorphism. We can set m = 0, so that
dij ∈ pm+1Z, and all other dab /∈ pm+1Z. So we obtain (c).

All that remains is the dimMp = 4 case. We have that each Mp,m is even

dimensional by Corollary 5.1. If dimMp,m = 4 for some m, then Y p,m is 4× 4 and

Y p is an isomorphism if and only if det(Y p,m) 6= 0. So we obtain case (b).
Finally, suppose there exist m′ > m > 0 such that dimMp,m = dimMp,m′ = 2.

Let i, j, k, ℓ be distinct such that Li, Lj ∈ pm
′

Z−pm′+1Z and Lk, Lℓ ∈ pmZ−pm+1Z.

We must have that dij ∈ pm
′

Z ⊆ pm+1Z and every other d term is not in pm+1Z.

If dkℓ /∈ pmZ, then kkℓLk/dkℓ, kℓkLℓ/dℓk ∈ pZ and Y p,m is the 2 × 2 zero matrix,
yielding a contradiction. Therefore, dkℓ must be in pmZ. So we obtain case (c)
again. �

6. Center of Generalized Weyl algebras

Let T be a commutative k-domain. In this section we assume that q := {qij} is
a set of roots of unity in T and A := {aij | 1 ≤ i < j ≤ j} be a subset of T . Define
the generalized Weyl algebra associated to (q,A) to be the central T -algebra

V (q,A) : =
T 〈x1, . . . , xn〉

(xjxi − qijxixj − aij | i 6= j)
.

Consider a filtration on V (q,A) with deg xi = 1 and det t = 0 for all t ∈ T . Suppose
that

(E6.0.1) grV (q,A) is naturally isomorphic to Tq[x1, · · · , xn].
Consider the hypothesis that

(E6.0.2) for any pair (i, j), aij = 0 whenever qij = 1.
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Proposition 6.1. Suppose (E6.0.1) and (E6.0.2) and let A = V (q,A). If the
center Z(grA) is a polynomial ring, then so is Z(A), and Z(A) ∼= Z(grA).

Proof. If Z(grA) is a polynomial ring, then Z(grA) = T [xL1

1 , · · · , xLn
n ] where Li =

lcm{dij | j = 1, · · · , n} [Lemma 4.3]. Recall that dij is the order of qij .

First we claim that xLi

i is in the center of A. For each j, we have xjxi = qijxixj+
aij . If qij = 1, then xj commutes with xi by hypothesis (E6.0.2), so xj commutes

with xLi

i . If qij 6= 1, then the order of qij is dij . The equation xjxi = qijxixj + aij

implies that xj commutes with x
dij
i , as each xjx

k
i = qkijx

k
i xj+(1+qij+· · ·+qk−1

ij )aij .

Since dij divides Li, xj commutes with xLi

i for all j 6= i. This shows that xLi

i is
central.

Since grA is the skew polynomial ring Tq[x1, · · · , xn], it is easy to check that

grZ(A) ⊂ Z(grA). Since Z(grA) is generated by {xLi

i }ni=1, then induction on

the degree of element f ∈ Z(A) shows that f is generated by xLi

i . Therefore the
assertion follows. �

Proposition 6.2. Retain the above notation and suppose (E6.0.1). If aij 6= 0 for
some i 6= j, then qikqjk = 1 for all k 6= i or j.

Proof. We resolve xkxjxi in two different ways,

(xkxj)xi = (qjkxjxk + ajk)xi

= qjkxj(xkxi) + ajkxi

= qjkxj(qikxixk + aik) + ajkxi

= qjkqik(xjxi)xk + qjkaikxj + ajkxi

= qjkqik(qijxixj + aij)xk + qjkaikxj + ajkxi

= qjkqikqijxixjxk + qjkqikaijxk + qjkaikxj + ajkxi

and similarly,

xk(xjxi) = xk(qijxixj + aij)

= qij(xkxi)xj + aijxk

= qij(qikxixk + aik)xj + aijxk

= qijqikxi(xkxj) + qijaikxj + aijxk

= qijqikqjkxixjxk + qijqikajkxi + qijaikxj + aijxk

Comparing the coefficients of xk gives the result. �

When an algebra A is finitely generated and free over its center (as in the situa-
tion of Proposition 6.1), one should be able to compute the discriminant of A over
its center. We give an example here.

Example 6.3. Let A be generated by x1, x2, x3, x4 subject to the relations

x3x1 − x1x2 = 0, x4x2 + x2x4 = 0,

x3x2 − x2x3 = 0, x3x4 + x4x3 = 0,(E6.3.1)

x4x1 + x1x4 = 0, x1x2 + x2x1 = x23 + x24.

This is the example in [VVR, Lemma 1.1] (with λ = 0). It is an iterated Ore
extension, and therefore, Artin-Schelter regular of global dimension four.



22 K. CHAN, A.A. YOUNG, AND J.J. ZHANG

It is not hard to check that the center of A is generated by x2i . This algebra is
a factor ring of the algebra B over T := k[t] generated by x1, x2, x3, x4 subject to
the relations

x3x1 − x1x2 = 0, x4x2 + x2x4 = 0,

x3x2 − x2x3 = 0, x3x4 + x4x3 = 0,(E6.3.2)

x4x1 + x1x4 = 0, x1x2 + x2x1 = t.

Note that grB is a skew polynomial ring over T with the above relations by
setting t = 0. The Y -matrix is




0 1/2 0 1/2
−1/2 0 0 1/2
0 0 0 1/2

−1/2 −1/2 −1/2 0


 .

By Corollary 5.5(b), B has center T [x21, x
2
2, x

2
3, x

2
4]. By the next lemma the discrimi-

nant of B over its center is 248(4x21x
2
2−t2)8x163 x164 . By Lemma 1.2, the discriminant

of A over its center is 248(4x21x
2
2 − (x23 + x24)

2)8x163 x
16
4 . We will see in the next sec-

tions that D(A) = A. As a consequence of Theorem 0.5, A is cancellative and the
automorphism group of A is affine.

Lemma 6.4. Suppose the k[t]-algebra B is generated by {x1, x2, x3, x4} subject to
the six relations given (E6.3.2). Then the discriminant of B over its center is
248(4x21x

2
2 − t2)8x163 x

16
4 .

Sketch of the Proof. It is routine to check that the center of B is

Z(B) = k[t][x21, x
2
2, x

2
3, x

2
4].

The algebra B is a free module over Z(B) of rank 16 with a Z(B)-basis {xa1xb2xc3xd4 |
a, b, c, d = 0, 1}. Let {z1, · · · z16} be the above Z(B)-basis. Then we can compute
the matrix (tr(zizj))16×16, which is





















































16 0 0 0 0 8t 0 0 0 0 0 0 0 0 0 0

0 16a 8t 0 0 0 0 0 0 0 0 0 0 0 0 0

0 8t 16b 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 16c 0 0 0 0 0 0 0 8ct 0 0 0 0

0 0 0 0 16d 0 0 0 0 0 0 0 8dt 0 0 0

8t 0 0 0 0 α 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 16ac 0 8ct 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −16ad 0 −8dt 0 0 0 0 0 0

0 0 0 0 0 0 8ct 0 16bc 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −8dt 0 −16bd 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −16cd 0 0 0 0 −8cdt

0 0 0 8ct 0 0 0 0 0 0 0 β 0 0 0 0

0 0 0 0 8dt 0 0 0 0 0 0 0 γ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 16acd 8cdt 0

0 0 0 0 0 0 0 0 0 0 0 0 0 8cdt 16bcd 0

0 0 0 0 0 0 0 0 0 0 −8cdt 0 0 0 0 δ





















































where α = −16ab+8t2, β = −16abc+8ct2, γ = −16abd+8dt2, δ = 16abcd− 8cdt2,
and a = x21, b = x22, c = x23, d = x24. We skip the details in computing the above
traces. By using Maple, its determinant is 248(4x21x

2
2 − t2)8x163 x

16
4 . �

7. Three subalgebras

In this section we discuss three (possibly different) subalgebras of A, all of which
are helpful for the applications in the next section.
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7.1. Makar-Limanov Invariants. The first subalgebra is the Makar-Limanov In-
variants of A introduced by Makar-Limanov [Ma1]. This invariant has been very
useful in commutative algebra. For any k-algebra A, let Der(A) denote the set of
all k-derivations of A and LND(A) denote the set of locally nilpotent k-derivations
of A.

Definition 7.1. Let A be an algebra over k.

(1) The Makar-Limanov invariant [Ma1] of A is defined to be

(E7.1.1) ML(A) =
⋂

δ∈LND(A)

ker(δ).

(2) We say that A is LND-rigid if ML(A) = A, or LND(A) = {0}.
(3) We say that A is strongly LND-rigid if ML(A[t1, · · · , td]) = A for all d ≥ 0.

The following lemma is clear. Part (2) follows from the fact that ∂ ∈ LND(A) if
and only if g−1∂g ∈ LND(A).

Lemma 7.2. Let A be an algebra.

(1) ML(A) is a subalgebra of A.
(2) For any g ∈ Aut(A), g(ML(A)) = ML(A).

7.2. Divisor subalgebras. Throughout this subsection let A be a domain con-
taining Z. Let F be a subset of A. Let Sw(F ) be the set of g ∈ A such that
f = agb for some a, b ∈ A and 0 6= f ∈ F . Here Sw stands for “sub-word”, which
can be viewed as a divisor.

Definition 7.3. Let F a subset of A.

(1) Let D0(F ) = F . Inductively define Dn(F ) as the k-subalgebra of A gen-
erated by Sw(Dn−1(F )). The subalgebra D(F ) =

⋃
n≥0Dn(F ) is called

the F -divisor subalgebra of A. If F is the singleton {f}, we simply write
D({f}) as D(f)

(2) If f = d(A/Z) (if it exists), we call D(f) the discriminant-divisor subalgebra
of A or DDS of A, and write it as D(A).

The following lemma is well-known [Ma2, p. 4].

Lemma 7.4. Let x, y be nonzero elements in A and let ∂ ∈ LND(A). If ∂(xy) = 0,
then ∂(x) = ∂(y) = 0.

Proof. Let m and n be the largest integers such that ∂m(x) 6= 0 and ∂n(y) 6= 0.
Then the product rule and the choice of m,n imply that

∂m+n(xy) =
m+n∑

i=0

(
n+m

i

)
∂i(x)∂m+n−i(y) =

(
n+m

m

)
∂m(x)∂n(y) 6= 0.

So m+ n = 0. The assertion follows. �

Lemma 7.5. Let F be a subset of ML(A). Then D(F ) ⊆ ML(A).

Proof. Let ∂ be any element in LND(A). By hypothesis, ∂(f) = 0 for all f ∈ F .
By Lemma 7.4, ∂(x) = 0 for all x ∈ Sw(F ). So ∂ = 0 when restricted to D1(F ).
By induction, ∂ = 0 when restricted to D(F ). The assertion follows by taking
arbitrary ∂ ∈ LND(A). �
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Lemma 7.6. Suppose d(A/Z) is defined. Then the DDS D(A) is preserved by all
g ∈ Aut(A).

Proof. By [CPWZ1, Lemma 1.8(6)] or [CPWZ2, Lemma 1.4(4)], d(A/Z) is g-
invariant up to a unit. So, if g ∈ Aut(A), then g maps Sw(d(A/Z)) to Sw(d(A/Z))
and D1(d(A/Z)) to D1(d(A/Z)). By induction, one sees that g maps Dn(d(A/Z))
to Dn(d(A/Z)). So the assertion follows. �

We need to find some elements f ∈ A so that ∂(f) = 0 for all ∂ ∈ LND(A). The
next lemma was proven in [CPWZ2, Proposition 1.5].

Lemma 7.7. Let Z be the center of A and d ≥ 0. Suppose A× = k×. Assume
that A is finitely generated and free over Z. Then ∂(d(A/Z)) = 0 for all ∂ ∈
LND(A[t1, · · · , td]).
Proof. Let f denote the element d(A[t1, · · · , td]/Z[t1, · · · , td]) in Z[t1, · · · , td]. By
[CPWZ2, Proposition 1.5], ∂(f) = 0. By [CPWZ1, Lemma 5.4],

f =k× d(A/Z).

The assertion follows. �

Here is the first relationship between the two subalgebras.

Proposition 7.8. Retain the hypothesis of Lemma 7.7. Let d ≥ 0. Then

D(A) ⊆ ML(A[t1, · · · , td]) ⊆ A.

Proof. It is clear that ML(A[t1, · · · , td]) ⊆ A by [BZ]. Let f = d(A/Z), which
is in A ⊆ A[t1, · · · , td]. By Lemma 7.7, f ∈ ML(A[t1, · · · , td]). Let D′(f) be
the discriminant-divisor subalgebra of f in A[t1, · · · , td]. By Lemma 7.5, D′(f) ⊆
ML(A[t1, · · · , td]). It is clear from the definition that D(f) ⊆ D′(f). Therefore the
assertion follows. �

In particular, by taking d = 0, we have D(A) ⊆ ML(A).

7.3. Aut-Bounded subalgebra. In this subsection we assume that A is filtered
such that the associated graded ring grA is a connected graded domain. Later
we further assume that A is connected graded. Since grA is a connected graded
domain, we can define deg f to be the degree of gr f , and the degree satisfies the
equation

deg(xy) = deg x+ deg y

for all x, y ∈ A.

Definition 7.9. Retain the above hypotheses. Let G be a subgroup of Aut(A) and
let V be a subset of A.

(1) Let x be an element in A. The G-bound of x is defined to be

degG(x) := sup{deg(g(x)) | g ∈ G}.
(2) Let g be in Aut(A). The V -bound of g is defined to be

degg(V ) := sup{deg(g(x)) | x ∈ V }.
(3) The G-bounded subalgebra of A, denoted by βG(A), is the set of elements

x in A with finite G-bound. It is clear that βG(A) is a subalgebra of A
[Lemma 7.10(1)]. In particular, the Aut-bounded subalgebra of A, denoted
by β(A), is the set of elements x in A with finite Aut(A)-bound.
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The following lemma is easy, so we omit the proof.

Lemma 7.10. Retain the above notation. Let G be a subgroup of Aut(A).

(1) The set βG(A) is a subalgebra of A.
(2) g(βG(A)) = βG(A) for all g ∈ G.

Here is the relation between the two subalgebras D(A) and β(A). Let V be a
subset of A. We say V is of bounded degree if there is an N such that deg(v) < N
for all v ∈ V .

Proposition 7.11. Let A be a filtered algebra such that grA is a connected graded
domain. Suppose that G ⊆ Aut(A) and F ⊆ A.

(1) If G(F ) has bounded degree, then D(F ) ⊆ βG(A).
(2) If f ∈ A is such that g(f) =Z(A)× f for all g ∈ G, then D(f) ⊆ βG(A).
(3) Assume that A is finitely generated and free over its center Z. Let f =

d(A/Z), then D(A) = D(f) ⊆ β(A).

Proof. (1) We have D0(F ) = F ⊆ βG(A) by assumption and use induction on n.
Suppose that Dn−1(F ) ⊆ βG(A). Assume that Dn(F ) is not contained in βG(A).
Then there exists x ∈ Dn(A) such that G(x) does not have bounded degree. Since
Dn(A) is generated by Sw(Dn−1(A)) as an algebra, there is an f ∈ Sw(Dn−1(A))
such that G(f) does not have bounded degree. By definition of Sw(Dn−1(A)),
there exists a nonzero f ′ ∈ Dn−1(A) and a, b ∈ A such that f ′ = afb. Since
grA is a domain, we have deg(g(f ′)) = deg(g(a)) + deg(g(f)) + deg(g(b)) for all
g ∈ G. Hence G(f ′) does not have bounded degree, which is a contradiction. Hence
Dn(F ) ⊆ βG(A) for all n ≥ 1, therefore D(F ) ⊆ βG(A).

(2) Since Z(A)× ⊆ A0, we see that G(f) has bounded degree, hence part (2)
follows from part (1).

(3) The third assertion is a special case of part (2) by Lemma 1.2. �

Under the hypotheses of Propositions 7.8 and 7.11 (and assume that A is finitely
generated and free over its center Z), we have

ML(A)

D(A)

β(A)

A

⊇ ⊆

⊇⊆

For the rest of this section, we assume that A is a connected graded domain and
that k contains the field Q. An automorphism g of A is called unipotent if

(E7.11.1) g(v) = v + (higher degree terms)

for all homogeneous elements v ∈ A. Let Autuni(A) denote the subgroup of
Aut(A) consisting of unipotent automorphisms [CPWZ2, After Theorem 3.1]. If
g ∈ Autuni(A), we can define

(E7.11.2) log(g) := −
∞∑

i=1

1

i
(1 − g)i.

Let C be the completion of A with respect to the graded maximal ideal m :=
A≥1. Then C is a local ring containing A as a subalgebra. We can define degl :
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C → Z by setting degl(v) to be the lowest degree of the nonzero homogeneous
components of v ∈ C. We define a unipotent automorphism of C in a similar way
to (E7.11.1) by using degl. It is clear that if g ∈ Autuni(A), then it induces a
unipotent automorphism of C, which is still denoted by g.

Lemma 7.12. Let A be a connected graded domain. Let g ∈ Autuni(A) and G
be any subgroup of Aut(A) containing g. Let B denote βG(A). Then log(g) |B
is a locally nilpotent derivation of B. Further, g |B is the identity if and only if
log(g) |B is zero.

Proof. Let C be the completion of A with respect to the graded maximal ideal
m := A≥1. Let g also denote the algebra automorphism of C induced by g. Then
g is also a unipotent automorphism of C.

Since g is unipotent, degl(1−g)(v) > degl v for any 0 6= v ∈ C. By induction, one
has deg(1−g)n(v) ≥ n+deg v for all n ≥ 1. Thus log(g)(v) converges and therefore
is well-defined. It follows from a standard argument that log(g) is a derivation of
C (this also is a consequence of [Fr, Proposition 2.17(b)]).

Let v be an element in B := βG(A). Note that g
n(v) ∈ B for all n by Lemma 7.10.

Since v ∈ B, there is an N0 such that deg gn(v) < N0 for all n. If (1− g)n(v) 6= 0,
then

(E7.12.1) deg(1− g)n(v) = deg(

n∑

i=0

(
n

i

)
gi(v)) < N0, for all n.

When n ≥ N0, the inequalities from the previous paragraph imply that

(E7.12.2) degl(1− g)n(v) ≥ n+ deg v ≥ N0,

which contradicts (E7.12.1) unless (1− g)n(v) = 0. Therefore

(E7.12.3) (1 − g)n(v) = 0, for all n > N0.

By (E7.12.3), the infinite sum of log(g) in (E7.11.2) terminates when applied
to v ∈ B, and log(g)(v) ∈ A. By Lemma 7.10, log(g)(v) ∈ B. Since log(g) is a
derivation of C, it is a derivation when restricted to B.

Next we need to show that it is a locally nilpotent derivation when restricted
to B. It suffices to verify that, for any v ∈ B, log(g)N (v) = 0 for N ≫ 0, which
follows from (E7.11.2) and (E7.12.3).

The final assertion follows from the fact that g is the exponential function of
log(g) and log(g) is locally nilpotent. �

Now we are ready to prove the second part of Theorem 0.5 without the finite
GK-dimension hypothesis.

Theorem 7.13. Let k be a field of characteristic zero and A be a connected graded
domain over k. Assume that A is finitely generated and free over its center Z in
part (2).

(1) If ML(A) = β(A) = A, then Autuni(A) = {1}.
(2) If D(A) = A, then Autuni(A) = {1}.

Proof. (1) By hypothesis, B := β(A) equals A. Let g ∈ Autuni(A). Then log(g) |B
is a locally nilpotent derivation of B by Lemma 7.12. Hence log(g) ∈ LND(A).
Since ML(A) = A, LND(A) = {0}. So log(g) = 0. By Lemma 7.12, g is the
identity.
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(2) Combining the hypothesis D(A) = A with Propositions 7.8 and 7.11, we have
ML(A) = β(A) = A. The assertion follows from part (1). �

8. Applications

In this section we assume that k is a field of characteristic zero.

8.1. Zariski cancellation problem. The Zariski cancellation problem for non-
commutative algebras was studied in [BZ]. We recall some definitions and results.

Definition 8.1. [BZ, Definition 1.1] Let A be an algebra.

(a) We call A cancellative if A[t] ∼= B[t] for some algebra B implies that A ∼= B.
(b) We call A strongly cancellative if, for any d ≥ 1, A[t1, . . . , td] ∼= B[t1, . . . , td]

for some algebra B implies that A ∼= B.

The original Zariski cancellation problem, denoted by ZCP, asks if the polyno-
mial ring k[t1, · · · , tn], where k is a field, is cancellative. A recent result of Gupta
[Gu1, Gu2] settled the question ZCP negatively in positive characteristic for n ≥ 3.
The ZCP in characteristic zero remains open for n ≥ 3. Some history and partial
results about the ZCP can be found in [BZ]. In [BZ], the authors used discrim-
inants and locally nilpotent derivations to study the Zariski cancellation problem
for noncommutative rings.

One of the main results in [BZ] is the following.

Theorem 8.2. [BZ, Theorems 3.3 and 0.4] Let A be a finitely generated domain of
finite Gelfand-Kirillov dimension. If A is strongly LND-rigid (respectively, LND-
rigid), then A is strongly cancellative (respectively, cancellative).

Now we have an immediate consequence, which is the first part of Theorem 0.5.
Combining with Theorem 7.13, we finished the proof of Theorem 0.5.

Theorem 8.3. Let A be a finitely generated domain of finite GK-dimension. Let
Z be the center of A and suppose A× = k×. Assume that A is finitely generated
and free over Z. If A = D(A), then A is strongly cancellative.

Proof. Combining the hypothesis A = D(A) with Proposition 7.8, we have

A = D(A) ⊆ ML(A[t1, · · · , td]) ⊆ A.

So ML(A[t1, · · · , td]) = A, or A is strongly LND-rigid. The assertion follows from
Theorem 8.2. �

Next we give two examples.

Example 8.4. Let A be generated by x1, · · · , x4 subject to the relations

x1x2 + x2x1 = 0, x2x3 + x3x2 = 0,

x1x3 + x3x1 = 0, x3x4 + x4x3 = 0,(E8.4.1)

x1x4 + x4x1 = x23, x2x4 + x4x2 = 0.

This is an iterated Ore extension, so it is Artin-Schelter regular of global dimension
4. This is a special case of the algebra in [VVRW, Definition 3.1]. Set x2i = yi for



28 K. CHAN, A.A. YOUNG, AND J.J. ZHANG

i = 1, · · · , 4. Then Z(A) = k[y1, y2, y3, y4]. The M1-matrix of (E3.0.1) is

(aij)4×4 =




2y1 0 0 y3
0 2y2 0 0
0 0 2y3 0
y3 0 0 2y4


 .

The determinant det(aij) is f0 := 4y2y3(4y1y4−y23) by linear algebra. By Theorem

3.7, the discriminant f := d(A/Z) is f23

0 . It is clear that y2, y3 ∈ Sw(f) and
y1, y4 ∈ Sw(D1(f)). Thus xi ∈ Sw(D2(f)) for all i. Consequently, A = D(A). By
Theorem 8.3, A is strongly cancellative.

The next example is somewhat generic.

Example 8.5. Let T be a commutative domain, and A = C(V, q) be the Clifford
algebra associated to a quadratic form q : V → T where V is a free T -module of
rank n. Suppose that n is even. Then the center of A is T [La, Chapter 5, Theorem
2.5(a)]. We assume that A is a domain with A× = k×. Let t1, . . . , tw be a set
of generators of T , and suppose that q(V ) ⊆ (t1 · · · tw)T or det(q) ∈ (t1 · · · tw)T .
Then by Theorem 3.7 we have f := d(A/T ) ∈ (t1 · · · tw)2

n−1

. So ts ∈ Sw(f) for all
s. This shows that T ⊆ D(A) and then A = D(A) (as x2i ∈ T ). By Theorem 8.3, A
is strongly cancellative.

Remark 8.6. Let A be the algebra in Example 6.3. Using the formula for d(A/Z)
given in Lemma 6.4, it is easy to see that A = D(A). So A is cancellative by
Theorem 8.3.

8.2. Automorphism problem. By [CPWZ1, CPWZ2], the discriminant controls
the automorphism group of some noncommutative algebras. In this section we com-
pute some automorphism groups by using the discriminants computed in previous
sections. We first recall some definitions and results.

We modify the definitions in [CPWZ1, CPWZ2] slightly. Let A be an N-filtered
algebra such that grA is a connected graded domain. Let X := {x1, · · · , xn} be a
set of elements in A such that it generates A and grX generates grA. We do not
require deg xi = 1 for all i.

Definition 8.7. Let f be an element in A and X ′ = {x1, · · · , xm} be a subset of X .
We say f is dominating over X ′ if for any subset {y1, · · · , yn} ⊆ A that is linearly
independent in the quotient k-space A/k, there is a lift of f , say F (X1, · · · , Xn),
in the free algebra k〈X1, · · · , Xn〉, such that degF (y1, · · · , yn) > deg f whenever
deg yi > deg xi for some xi ∈ X ′.

The following lemma is easy.

Lemma 8.8. Retain the above notation. Suppose f := d(A/Z) is dominating over
X ′. Then for every automorphism g ∈ Aut(A), deg g(xi) ≤ deg xi for all xi ∈ X ′.

Proof. Let yi = g(xi). Then {y1, · · · , yn} is linearly independent in A/k (as
{x1, · · · , xn} is linearly independent on A/k). If deg yi > deg xi for some i, by
the dominating property, there is a lift of f in the free algebra, say F (X1, · · · , Xn),
such that degF (y1, · · · , yn) > deg f . Since g is an algebra automorphism,

F (y1, · · · , yn) = F (g(x1), · · · , g(xn)) = g(F (x1, · · · , xn)) = g(f).
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By [CPWZ1, Lemma 1.8(6)], g(f) = f (up to a unit in Z). Hence

degF (y1, · · · , yn) = deg g(f) = deg f,

yielding a contradiction. Therefore deg g(xi) = deg yi ≤ deg xi for all i. �

We will study the automorphism group of a class of Clifford algebras, see Exam-
ple 8.5.

Example 8.9. Let A be the Clifford algebra over a commutative k-domain T as in
Example 8.5 and assume that n is even. Let {z1, · · · , zn} denote a set of generators
for A. We will use {x1, · · · , xn} for the generators of the generic Clifford algebra
Ag defined in Section 3. Then there is an algebra homomorphism from Ag → A
sending xi to zi for all i. Since n is even, T is the center of A. Assume that A is a
filtered algebra such that grA is a connected graded domain, so we can define the
degree of any non-zero element in A. Further assume that deg ti = 2 (not 1) for all
i = 1, · · · , w and deg zi > 2 for all i = 1, 2, · · · , n. In particular, there is no element
of degree 1. Some explicit examples are given later in this example.

Recall that we assumed q(V ) ⊆ (t1 · · · tw)T . Let 2bij = zjzi + zizj, then we
can write bij = (t1 · · · tw)Nb′ij for some N > 0. By Theorem 3.7, the discriminant

is f := d(A/T ) = [(
∏w
s=1 ts)

Nd′]2
n−1

where d′ = det(2b′ij)n×n. We need another
extra hypothesis, which is that

(E8.9.1) deg d′ < N.

Let X ′ = {ti}wi=1 and X = {zi}ni=1

⋃
X ′. Then f is a noncommutative polynomial

over X ′. We first claim that f is dominating over X ′. Let {yi}wi=1 be a set of

elements in A \ k. If deg yi > 2 for some i, then deg[(
∏w
s=1 ys)

Nd′(y1, · · · , yw)]2
n−1

is strictly larger than the degree of f , as we assume that deg d′ < N. This shows
the claim.

Now let g be any algebra automorphism of A and let yi be g(ti) for all i. Then,
by Lemma 8.8, deg yi = 2. It follows from the relations zizi = bii that deg zi > 3.
Hence (grA)2 is generated by the ti’s. This implies that yi is in the span of X ′ and
k. In some sense, every automorphism of A is affine (with respect to X ′). It is a
big step in understanding the automorphism group of A.

Below we study the automorphism group of a family of subalgebras of the generic
Clifford algebra Ag of rank n that is defined in Section 3. As before we assume n is
even. We have two different sets of variables t, one for Ag and the other for general
A. It would be convenient to unify these in the following discussion. So we identify
{t(i,j) | 1 ≤ i ≤ j ≤ n} with {ti}wi=1 via a bijection φ. Here w = 1

2n(n+1) as in the
definition of Ag [Section 3].

Let r be any positive integer and let Bg,r be the graded subalgebra of Ag gen-
erated by {t(i,j)} for all 1 ≤ i ≤ j ≤ n (or {ti}wi=1) and zi := xi(

∏w
k=1 tk)

r for all
i = 1, 2, · · · , n. Since Bg,r is a graded subalgebra of Ag, it is a connected graded
domain. This is also a Clifford algebra over Tg := k[t(i,j)] generated by {zi}ni=1

subject to the relations

zjzi + zizj = 2(

w∏

k=1

tk)
2rt(i,j) =: 2bij

from which the bilinear form b and associated quadratic form q can easily be recov-
ered. In particular, q(V ) ⊆ (

∏w
k=1 tk)

2rTg where V = ⊕ni=1Tgzi. By the definition
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of Ag, deg ti = 2. Then deg zi = 1 + 4rw > 3. Now we assume that N := 2r is
bigger than 2r that is the degree of d′ := det(t(i,j)). So we have

n < r, or equivalently deg d′ < N

as required by (E8.9.1). See also Remark 8.10.
Let g be an algebra automorphism of Bg,d. By the above discussion, g(ti), for

each i, is a linear combination of {tj}wj=1 and 1. Using the relations z2i = bii, we
see that deg g(zi) = deg(zi) for all i. Thus g must be a filtered automorphism of
Bg,d.

Since g preserves the discriminant f and f is homogeneous in ti, deg g(ti) = 2.
Further, by using the expression of f and the fact that Tg is a UFD, g(ti) can not
be a linear combination of tj ’s of more than one term. Thus g(ti) = citj for some j
and some ci ∈ k×. This implies that there is a permutation σ ∈ Sw and a collection
of units {ci}wi=1 such that g(ti) = citσ(i) for all i. Since g is filtered (by the last

paragraph), g(zi) =
∑n

k=1 dikzk + ei where dik, ei ∈ k. Applying g to the relation

z2i = bii = (

w∏

i=1

ti)
N tφ(i,i), where N := 2r,

we obtain that

(
∑

k

dikzk)
2 + 2ei(

∑

k

dikzk) + e2i = (

w∏

i=1

citi)
Ng(tφ(i,i)).

Since (
∑

k dikzk)
2 ∈ T , we have ei(

∑
k dikzk) = 0. Consequently, ei = 0 and

g(zi) =
∑n
k=1 dikzk. Applying g to the relations

zizj + zjzi = 2bij = 2(

w∏

i=1

ti)
N tφ(i,j),

and expanding the left-hand side, we obtain that

∑

k,l

dikdjl(zkzl + zlzk) = 2(

w∏

i=1

citi)
Ng(tφ(i,j)).

Hence dikdjl is nonzero for only one pair (k, l). Thus there is a set of units {di}ni=1

and a permutation ψ ∈ Sn such that g(zi) = dizψ(i) for all i = 1, · · · , n. Then the
above equation implies that

didj(
w∏

i=1

ti)
N tφ(ψ(i),ψ(j)) = (

w∏

i=1

ci)
N (

w∏

i=1

ti)
Ncφ(i,j)tσ(φ(i,j))

for all i, j. Therefore

(E8.9.2) φ(ψ(i), ψ(j)) = σ(φ(i, j))

and

(E8.9.3) didj = (

w∏

i=1

ci)
Ncφ(i,j)

for all i, j.
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By (E8.9.2), σ is completely determined by ψ ∈ Sn. Let d̄i = di(
∏w
i=1 ci)

−r.
Then (E8.9.3) says that d̄id̄j = cφ(i,j). So

∏w
i=1 ci =

∏
1≤i≤j≤n d̄id̄j . This means

that cφ(i,j)s and dis are completely determined by d̄is. In conclusion,

Aut(Bg,r) ∼= {ψ ∈ Sn}⋉ {d̄i ∈ k× | i = 1, · · · , n} ∼= Sn ⋉ (k×)n.

In particular, every algebra automorphism of Bg,r is a graded algebra automor-
phism.

Remark 8.10. As a consequence of the computation in Example 8.9, Aut(Bg,r)
is independent of the parameter r when r > n. In fact, this assertion holds for all
r > 0, but its proof requires a different and longer analysis, so it is omitted. On
the other hand, Aut(Bg,0) = Aut(Ag) is very different, see Remark 3.9(3).

We will work out one more automorphism group below.

Example 8.11. We continue to study Example 8.4 and prove that every algebra
automorphism of A in Example 8.4 is graded. Some of unimportant details are
omitted due to the length.

Claim 1: m := A≥1 is the only ideal of codimension 1 satisfying dimm/m2 = 4.
Suppose I = (x1 − a1, x2 − a2, x3 − a3, x4 − a4) is an ideal of A of codimension 1
such that dimk I/I

2 = 4. Then the map π : xi → ai for all i extends to an algebra
homomorphism A → k. Applying π to the relations of A in (E8.4.1), we obtain
that

a1a2 = 0, a1a3 = 0, 2a1a4 = a23, a2a3 = 0, a3a4 = 0, a2a4 = 0.

Therefore (ai) is either (a1, 0, 0, 0), or (0, a2, 0, 0), or (0, 0, 0, a4). By symmetry, we
consider the first case and the details of the other cases are omitted. Let zi = xi−ai
for all i. Then the first relation of (E8.4.1) becomes

z1z2 + z2z1 = (x1 − a1)x2 + x2(x1 − a1) = −2a1x2 = −2a1z2.

So 2a1z2 ∈ I2. Since dim I/I2 = 4, a1 = 0. Thus we proved claim 1.
One of the consequences of claim 1 is that any algebra automorphism of A

preserves m. So we have a short exact sequence

1 → Autuni(A) → Aut(A) → Autgr(A) → 1

where Autgr(A) is the group of graded algebra automorphisms of A and Autuni(A)
is the group of unipotent algebra automorphisms of A.

Claim 2: If f is a nonzero normal element in degree 1, then B := A/(f) is
Artin-Schelter regular domain of global dimension three. By [RZ, Lemma 1.1],
B has global dimension 3. Since A satisfies the χ-condition [AZ], so is B. As a
consequence, B is AS regular of global dimension 3 [AS]. It is well-known that every
Artin-Schelter regular algebra of global dimension three is a domain (following by
the Artin-Schelter-Tate-Van den Bergh’s classification [AS, ATV1, ATV2]).

Claim 3: If f ∈ A1 is a normal element, then f ∈ kx2 or f ∈ kx3. First
of all, both x2 and x3 are normal elements by the relations (E8.4.1). Note that
xig = η−1(g)xi for i = 2, 3, where η−1 is the algebra automorphism of A sending
xi to −xi for all i.

Suppose that f is nonzero normal and f /∈ kx3 ∪ kx4. Then the image f̄ of f
is normal in A/(x3). Since A/(x3) is a skew polynomial ring, by [KKZ, Lemma
3.5(d)], f̄ is a a scalar multiple of xi for some i = 1, 2, or 4. This implies that f is
either ax1+bx3, or ax2+bx3 or ax4+bx3 for some a, b ∈ k. If b = 0, then f = x1 or
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x4. The relation x1x4+x4x1 = x23 implies that A/(f) is not a domain (as x23 = 0 in
A/(f)). This contradicts claim 2. So the only possible case is f = x2 (again yielding
a contradiction). Now assume that b 6= 0 (and a 6= 0 because f /∈ kx3 ∪ kx4). We
consider the first case and the details of the other cases are similar and omitted.
Since f = ax1 + bx3, then relation x1x3 + x3x1 = 0 implies that x21 = 0 in A/(f),
which contradicts with Claim 2. In all these cases, we obtain a contradiction, and
therefore f ∈ kx2 or f ∈ kx3.

Since A/(x2) is not isomorphic to A/(x3), there is no algebra automorphism
sending x2 to x3. As a consequence, any graded automorphism ψ of A maps
x2 → c2x2 and x3 → c3x3. Let g be any graded algebra automorphism of A. Let
ḡ be the induced algebra automorphism of A/(x3). By [KKZ, Lemma 3.5(e)], ḡ
sends x1 → c1x1 and x4 → c4x4 or x1 → c1x4 and x4 → c4x1. Then, by using the
original relations in (E8.4.1), one can check that g is of the form

x1 → c1x1, x2 → c2x2, x3 → c3x3, x4 → c4x4

where c1c2 = c23 = c24 or

x1 → c1x4, x2 → c2x2, x3 → c3x3, x4 → c4x1

where c1c2 = c23 = c24. So

Autgr(A) ∼= {(c1, c2, c3, c4) ∈ (k×)4 | c1c2 = c23 = c24}
which is completely determined.

Claim 4: Autuni(A) is trivial. Recall that the discriminant of A over its center
is

d := (x22x
2
3(4x

2
1x

2
4 − x43))

8.

By Example 8.4, the DDS subalgebra D(A) is the whole algebra A. The assertion
follows from Theorem 0.5.

Combining all these claims, one sees that Aut(A) = Autgr(A) which is described
in Claim 3.

Remark 8.12. Ideas as in Remark 8.10 also apply to Example 6.3 and a similar
conclusion holds. The interested reader can fill out the details.
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