Generalized Gauss maps and integrals for three-component links:
toward higher helicities for magnetic fields and fluid flows
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To each three-component link in the 3-sphere we associate a generalized Gauss map from
the 3-torus to the 2-sphere, and show that the pairwise linking numbers and Milnor triple
linking number that classify the link up to link homotopy correspond to the Pontryagin
invariants that classify its generalized Gauss map up to homotopy. We view this as a
natural extension of the familiar situation for two-component links in 3-space, where the
linking number is the degree of the classical Gauss map from the 2-torus to the 2-sphere.
The generalized Gauss map, like its prototype, is geometrically natural in the sense that it
is equivariant with respect to orientation-preserving isometries of the ambient space, thus
positioning it for application to physical situations.

When the pairwise linking numbers of a three-component link are all zero, we give an
integral formula for the triple linking number analogous to the Gauss integral for the pair-
wise linking numbers. This new integral is also geometrically natural, like its prototype,
in the sense that the integrand is invariant under orientation-preserving isometries of the
ambient space. Versions of this integral have been applied by Komendarczyk in special
cases to problems of higher order helicity and derivation of lower bounds for the energy
of magnetic fields.

We have set this entire paper in the 3-sphere because our generalized Gauss map is
easiest to present here, but in a subsequent paper we will give the corresponding maps and
integral formulas in Euclidean 3-space.

INTRODUCTION

depends on the ordering and orientation of the components.
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In his senior thesis, published in 1954, John Milnor!' classified three-component
links in the 3-sphere S3 up to link homotopy, a deformation during which each
component may cross itself but distinct components must remain disjoint. A com-
plete set of invariants is given by the pairwise linking numbers p, g and r of the
components, and by the residue class u of one further integer modulo the greatest
common divisor of p, g and r, Milnor’s triple linking number. For example, the
Borromean rings shown here have p = ¢ = r = 0 and u = +1, where the sign
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To each three-component link L in S 3 we will associate a generalized Gauss map g; from the 3-torus
T3 to the 2-sphere S 2 in such a way that link homotopies of L become homotopies of g;. The assignment
L — g; then defines a function

g: L3 — [T3,Sz]

from the set £3 of link homotopy classes of three-component links in S to the set [T, S 2] of homotopy
classes of maps T3 — S2, and it will be seen below that g is injective.

Maps from T° to S? were classified up to homotopy by Lev Pontryagin? in 1941. A complete set of
invariants is given by the degrees p, ¢ and r of the restrictions to the 2-dimensional coordinate subtori,
and by the residue class v of one further integer modulo twice the greatest common divisor of p, ¢ and
r, the Pontryagin invariant of the map. This invariant is an analogue of the Hopf invariant for maps
from S3 to S2, and is an absolute version of the relative invariant originally defined by Pontryagin for
pairs of maps from a 3-complex to S? that agree on the 2-skeleton of the domain.

Our first main result, Theorem A below, equates Milnor’s and Pontryagin’s invariants p, g and r for
L and g;, and asserts that 2u(L) = v(g.). As a consequence, the function g : L3 — [T3,S2] above is
one-to-one, with image the set of maps of even v-invariant.

In the special case when p = g = r = 0, we derive an explicit and geometrically natural integral
formula for the triple linking number, reminiscent of Gauss’ classical integral formula for the pairwise
linking number. This formula and variations of it are presented in Theorem B below.

In the rest of this introduction, we provide the definition of the generalized Gauss map and give careful
statements of Theorems A and B. Some motivation for our work from the mathematical perspective of
configuration spaces, and from the physical perspective of fluid mechanics and plasma physics, may be
found in Appendix A.

The generalized Gauss map of a three-component link in the 3-sphere

Let x, y and z be three distinct points on the unit 3-sphere S* in R*. They cannot lie on a straight
line in R*, so must span a 2-plane there. Translate this plane to pass through the origin, and then
orient it so that the vectors x — z and y — z form a positive basis. The result is an element G(x, y, z) of
the Grassmann manifold G,R* of all oriented 2-planes through the origin in 4-space. This procedure
defines the Grassmann map

G : Conf3S3 — G,R*

pictured in Figure 1, where Conf3S? ¢ S3 x §3 x S? is the configuration space of ordered triples of
distinct points in S3. The map G is equivariant with respect to the diagonal SO(4) action on §3x S3x 53
and the usual SO(4) action on G,R*.

G(x,y,2)

Sz
FIG. 1. The Grassmann map (x,y, z) — G(x,y,2)

The Grassmann manifold G,R* is diffeomorphic to the product S xS? of two 2-spheres, as explained
in Section IV below. Let 7, and _ : G,R* — S? denote the projections to the two factors. One of these
will be used in the definition of the generalized Gauss map, but the choice of which one will be seen to
be immaterial.

Now let L be a link in S3 with three parametrized components

X ={x(s)|seSY, Y = {®|teSyand Z = (zw)|ueS'}



as indicated schematically in Figure 2. Here and throughout, we view the parametrizing circle S ' as the
quotient R/2xZ, and assume implicitly that the parametrizing functions x = x(s), y = y(¢) and z = z(u)
are smooth with nowhere vanishing derivatives.

FIG. 2. The link L in S*

We define the generalized Gauss map g; : T> — S? by the formula

gu(s,t,u) = m(G(x(s), y(1), z(u)).

where G : Conf3S3 — G,R* is the Grassman map and 7, : GoR* = §2x S? — §? is the projection onto
the first factor. Thus g; is the composition 7,Ge; where e; : T — Conf3S3, (s,t,u) — (x(s), y(£), z(t))
is the embedding that parametrizes the link. We regard g; as a natural generalization of the classical
Gauss map T? — §? associated with a two-component link in R,

It is evident that the map g, is geometrically natural in the sense that it is equivariant with respect to
the action of SO(4) on the link L and on the sphere S 2. That is, if h € SO(4), then 8wy = h o gr, where
h acts on GoR* = §2 x §? via the double covering SO(4) — SO(3) x SO(3), and then accordingly on
each S? factor.

It is also clear that the homotopy class of g; is unchanged under reparametrization of L, or more
generally under any link homotopy of L. Furthermore, g, is “symmetric” in that it transforms under
any permutation of the components of L by precomposing with the corresponding permutation auto-
morphism of 73 multiplied by the sign of the permutation.

Statement of results

The first of our two main results gives an explicit correspondence between the Milnor link homotopy
invariants of a three-component ordered, oriented link L in the 3-sphere and the Pontryagin homotopy
invariants of its generalized Gauss map.

Theorem A. Let L be a 3-component link in S3. Then the pairwise linking numbers p, q and r
of L are equal to the degrees of its generalized Gauss map g; : T> — S? on the two-dimensional
coordinate subtori of T3, while twice Milnor’s u-invariant for L is equal to Pontryagin’s v-invariant
Jfor g modulo 2 ged(p, q, r).

Conventions. (1) In this paper, links in S3 are always ordered (the components are taken in a specific
order) and oriented (each component is oriented).

(2) The two-dimensional coordinate subtori of 7> are oriented to have positive intersection with the
remaining circle factors.

Our second main result is an explicit and geometrically natural formula for Milnor’s triple linking
number (L), in the case that all the pairwise linking numbers of L vanish, that is reminiscent of Gauss’
classical integral formula for the linking number of a two-component link. This formula will be pre-
sented in three versions: first as an integral involving differential forms on the 3-torus, second as the
same integral expressed in terms of vector fields, and finally as an infinite sum involving Fourier coeffi-
cients.

To state these formulas, we need some definitions. Let w denote the Euclidean area 2-form on S2,
normalized to have total area 1. Then w pulls back under the generalized Gauss map g;, to a closed
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2-form w; on T3, which can be converted to a divergence-free vector field v, on T3 via the usual
formula

wi(@,b) = (@xb)ev,.

We call w; the characteristic 2-form of L, and v its characteristic vector field. When p, q and r are
all zero, wy, is exact and vy is in the image of curl. In Section VII we give explicit formulas for w;, and
vz, and in Section VIII for the fundamental solution ¢ of the scalar Laplacian on T3, which appear in
the integral formulas for u(L).

For the third version of our formula for the Milnor invariant, we need to express the characteristic
2-form and vector field in terms of Fourier series on the 3-torus. To that end, view T3 as the quotient
(R/2nZ)* and write X = (s,t,u) € R3 for a general point there. Using the complex form of Fourier
series, express

wp = Y (endt Ndu+chydunds+chds Adi)e™ = ) ey o™« xdx

Al neZz3

where ¢, = (¢}, ch,c), dx = (ds,dt,du) and *dx = (dtAdu,duAds,dsAdt) in the final expression.
It follows that v; = 3, <7 €n €™ % « Oy, where 0y = (0/0s,8/0t,0/0u).

According to Theorem A, the pairwise linking numbers p, g and r of L are equal to the degrees of its
Gauss map g; on the two-dimensional coordinate subtori of 73, and these degrees in turn are equal to
the integrals there of the characteristic 2-form w;. In particular, w; is exact if and only if these degrees
are all zero. In the language of vector fields, the degree of g; on a coordinate subtorus is the flux of the
characteristic vector field v, through this subtorus, and hence v; is in the image of curl if and only if all
of these fluxes are zero.

When we expand w;, above as a Fourier series, it is only the term

Co e *dX = cydt Adu+cydu Nds+ cyds Adt

which has the potential for a non-zero integral over the coordinate subtori, and it vanishes precisely
when p, ¢ and r are all zero.

Theorem B. If the pairwise linking numbers of a three-component link L in S° are all zero, then
Milnor’s p-invariant of L is given by each of the following equivalent formulas

() = 172 f dwr) Awy = 172 f Sorawp) Awp (1)
T3 T3
=172 f VL) X V1Y) + Vy o(x — y) dx dy @)
T3xT3
= 87r3Zan X by +n/[nf? . A3)
nz0

where ¢ is the fundamental solution of the scalar Laplacian on the 3-torus, wy and Vi are the
characteristic form and vector field of L, the sum in (3) is over all nonzero lattice points in 7>, and
a, and b, are the real and imaginary parts of the Fourier coefficients ¢, of wy and vy.

Explanation of the notation. In (1), d '(w;) denotes any 1-form on T3 whose exterior derivative is
wy. Among such 1-forms, the specific choice §(¢ * wy ) has the smallest L? norm, where § is the exterior
co-derivative (L? adjoint of d), and where ¢ * w is the convolution of ¢ with w;, discussed in detail in
Sections VII and VIII.

In (2), the difference x — y is taken in the abelian group structure on 7°, the expression Vy ¢(x —y)
indicates the gradient with respect to y while x is held fixed, and dx and dy are volume elements on
T3. This formula is just the vector field version of (1) in which the integral hidden in the convolution is
expressed openly; we will see in Appendix A that it represents the “helicity” of the vector field v; on
T3.

Observe that the integrands in (1) and (2) are invariant under the group SO(4) of orientation-
preserving rigid motions of §3, attesting to the naturality of the formulas.



Organization of the paper

Our main narrative thread appears in the body of the paper, and may be read straight through. The
background and motivation for our work from the topological perspective of configuration spaces, and
from the physical perspective of fluid mechanics and plasma physics, may be found in Appendix A.

The key idea of the proof of Theorem A centers on the “delta move”, a higher order variant of a
crossing change. Applied to a three-component link L in the 3-sphere, we show easily that this move
increases the Milnor p-invariant by 1, and then the bulk of the proof is devoted to showing that it
increases Pontryagin’s v-invariant by 2.

The foundational material for this proof is contained in Sections II and III. In particular, in Section II
we discuss how to compute Milnor’s p-invariant, describe the delta move, and prove that it increases
the u-invariant by 1. In Section III, we discuss Pontryagin’s homotopy classification of maps from a
3-manifold to the 2-sphere in terms of framed bordism of framed links, define the “Pontryagin link”
of such a map to be the inverse image of any regular value, and then show how to convert the relative
y-invariant to an absolute one when the manifold is the 3-torus. This section concludes with a simple
procedure for computing the absolute v-invariant of any map of the 3-torus to the 2-sphere from a
diagram of its Pontryagin link, whose proof appears in Appendix B.

The proof of Theorem A will occupy us in Sections IV-VI, and is organized as follows.

In Section IV, we derive an explicit formula for the generalized Gauss map g; needed for the proof
of Theorem B, but not for that of Theorem A. We then describe an alternative asymmetric form A, of
the generalized Gauss map that is more convenient for the proof of Theorem A, and that, just as for g;,
depends a priori on the choice of a projection to the 2-sphere. We show that the two generalized Gauss
maps are homotopic to one another, and that, up to homotopy, neither in fact depends on the choice of
projection. We note a close relation between %, and the classical Gauss maps of two-component links
in 3-space, and use this, together with the symmetry of g;, to prove the first statement in Theorem A.

In Section V, we set up for the proof of the rest of Theorem A by describing the standard open-book
structure on S3 with disk pages, use a link homotopy to move a given link L into “generic position”
with respect to it, and then show how to explicitly visualize the Pontryagin link of the corresponding
asymmetric generalized Gauss map h;. Finally, we use the results of Section III to develop a method
for computing v(h;) = v(gr). The key technical results in this section are the Bicycle Theorem and its
corollary, the Double Crossing Formula, whose proofs appear in Appendices C and D.

In Section VI, we complete the proof of Theorem A by induction, using the methods developed in
Sections II and III to first confirm the “base case”, and then using the methods of Section V to carry
out the inductive step, showing that the delta move increases Pontryagin’s v-invariant by 2. An entirely
different, algebraic proof of Theorem A, using string links and maps of the 2-torus to the 2-sphere, may
be found in our paper>.

In Sections VII and VIII, we investigate the special case when the pairwise linking numbers p, g
and r of L are all zero, and so the u and v-invariants are ordinary integers. In this case we will use
J.H. C. Whitehead’s integral formula for the Hopf invariant, adapted to maps of the 3-torus to the
2-sphere, together with a formula for the fundamental solution of the scalar Laplacian on the 3-torus
as a Fourier series in three variables, to provide an explicit integral formula for v(g;) (Theorem B) and
hence for u(L) in light of Theorem A.

Il. THE MILNOR L-INVARIANT

Let L be a three-component link in either R3 or S3, with oriented components X, Y and Z, and
pairwise linking numbers p, g and r. Milnor’s original definition of the triple linking number u(L),
typically denoted j1;3(L), was algebraic. The formulation in his PhD thesis* is expressed in terms of
the lower central series of the link group G, the fundamental group of the complement of L, as follows.

Choose based meridians for the link components X, Y and Z, and let x, y and z denote the correspond-
ing elements of G. In general, these three elements do not generate G, but they do generate the quotient
of G by the third term [[G, G], G] in its lower central series. In this quotient group, the longitude of Z
can be written as a word w in x, y and z and their inverses. Assign an integer m,,(w) to this word that
counts with signs the number of times that x appears before y in w, allowing intervening letters. More

precisely, each appearance of x ---y or x™! --- y~! contributes +1 to My (W), while x --- y~! or xtey



contributes —1. Then u(L) is the element of Zgcq(p,q,- defined by
ML) = my(w) modged(p,q,r).

There is a geometric reformulation of this definition, found by Mellor and Melvin®, that is more
convenient for our purposes: choose Seifert surfaces F, Fy and Fz for the components of L, and move
these into general position. Starting at any point on X, record its intersection with the Seifert surfaces
for Y and Z by a word wy in y and z. For example a y or y~! in wy indicates a positive or negative
intersection point of X with Fy. Set myx = my,(wx), where the right hand side is computed as in the last
paragraph, and similarly set my = m;(wy) and mz = m,,(wz). Finally, let 7 be the signed count of the
number of triple points of intersection of the three Seifert surfaces. Then

u(L)y = mxy +my+mz—t modged(p,q,r).

It follows from this formula that (L) is invariant under even permutations of the components of L, but
changes sign under odd permutations. This is a well known property of Milnor’s triple linking number.

We give two sample calculations of the triple linking number, using this geometric formulation, that
will feature in our inductive proof of Theorem A in Section VI.

Example IL.1. Let L, be the link shown in Figure 3, with components X, ¥ and Z and with pair-
wise linking numbers p, g and r. Choose the Seifert surfaces Fx, Fy and F; to be the obvious disks,
essentially lying in the page, bounded by X, Y and Z.

LSSSSSSS
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ffff q\_/r \\

X

FIG. 3. The base link L, forp =5,g=3,r=-2

Starting at appropriate points on the link components, we can read off the words
wx =y'z0, wy=2/x" and wz = x7y’.

Thus my = gr, my = rp and my = pq. Furthermore, it is clear that there are no triple points of
intersection of the three disks. Therefore

H(Lpg) = qr+rp+pg—0 = 0 € Zgeapg.n-
The links L, will serve as the base links for our proof of Theorem A.

Example I1.2. Consider the delta move shown in Figure 4, transforming the link L on the left to the link
L on the right. This move takes place within a 3-ball, outside of which the link is left fixed. It does not
alter the pairwise linking numbers of L, and may be thought of as a higher order variant of a crossing
change.

The delta move was introduced by Matveev®. It was shown by Murakami and Nakanishi’ that a
suitable sequence of such moves can transform any link into any other link with the same number
of components and the same pairwise linking numbers. In particular, the base link L, above can be
transformed into any other three-component link with pairwise linking numbers p, g and r by a sequence

6
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FIG. 4. The delta move L — L

of delta moves. The inductive step of our proof of Theorem A will be based on this observation, and so
we determine right now the effect of the delta move on the u-invariant.

If the three arcs involved in the delta move do not come from three distinct components of the link
L, then the change can be achieved by a link homotopy, and hence neither Milnor’s p-invariant nor
Pontryagin’s v-invariant for g; will change.

But if the arcs do come from three distinct components of L as shown in the figure, then u increases
by 1, thatis ,u(f) = pu(L)+1. This can be seen as follows, using the geometric formula for the y-invariant.

In Figure 5, we display on the left fragments of the Seifert surfaces Fx, Fy and F; before the delta
move, while on the right, after the delta move, each old surface is enlarged a bit to provide new surfaces
Fg, Fy and F>.

FIG. 5. A negative triple point appears

On the left, the three surface fragments are disjoint, while on the right, after their enlargement, they
are not. Where these surfaces now come together, we have an additional isolated triple point, and since
the normals to the surfaces at this point form a left-handed frame, this triple point gets a minus sign.
Thus ¢ drops by 1. We also see that after the delta move, the curve Z has two extra intersections with
Fy, the first positive and the second negative, and no extra intersections with Fg. Since these new
intersection points are adjacent along the curve, and of opposite signs, it follows that the new count
mz = my,(w) is equal to the old one mz. Similarly my = my and my = my. Hence u = my +my +mz —t
increases by 1, as claimed.

The heart of the proof of Theorem A will be to show that application of the delta move increases
Pontryagin’s v-invariant by 2.

lll. THE PONTRYAGIN V-INVARIANT

Heinz Hopf® proved in 1931 that homotopy classes of maps from the 3-sphere to the 2-sphere are
in one-to-one correspondence with the integers via his now famous Hopf invariant. Pontryagin® gen-
eralized this to give the homotopy classification for maps from an arbitrary finite 3-complex to the
2-sphere. It is convenient for our purposes to restrict to smooth maps from 3-manifolds to the 2-sphere,



and to use Poincaré duality to reformulate Pontryagin’s result, originally presented via cohomology, in
homological terms.

Definition and properties

Fix a closed, oriented, smooth 3-manifold M. The homotopy classification of maps f : M — S? can
be expressed using two differential topological invariants.
The primary invariant

A(f) € H(M) (with integral coefficients understood)

records the homology class of the preimage link £ = f~!(x) of any regular value * of f (oriented
as explained below), or equivalently the Poincaré dual of the pull-back f*(w) of the orientation class
w € H*(S?). It is easily shown that two maps have the same primary invariant if and only if they induce
the same map on homology.

The secondary invariant

v(fo, f1) € Zaa

compares two maps fy and f; with the same primary invariant 4. Here d(1) is the divisibility of 4 as an
element of the free abelian group H(M)/torsion. Thus d(1) = 0 if A is of finite order, and otherwise
d(Q) is the largest positive integer d for which A = dk for some « € H\(M).

For example, if M is the 3-torus T3, then A(f) = (p,q.r) € H\(T?) = Z* where p, q and r are the
degrees of f restricted to the coordinate 2-tori, and the divisibility d(p, g, r) is the greatest common
divisor of p, g and r.

In the next few paragraphs, we discuss these invariants A and v in more detail, and provide a natural
way, in the special case that M is the 3-torus, to transform v from a relative invariant into an absolute
one, meaning a function of a single map.

First recall that a framing of a smooth link in M is a homotopy class of trivializations of the normal
bundle of the link. It can be represented by an orthonormal triple (u, v,t) of vector fields along the
link with respect to some Riemannian metric on M, where t is tangent to the link. We can use this
to orient the link by t by insisting that the triple give the orientation on M. Conversely, if the link is
already oriented by t, then the framing can be specified by a single unit normal vector field u, as v is
then determined by the condition that (u, v, t) be an orthonormal frame giving the orientation on M. In
pictures, therefore, we often indicate a framing on an oriented link by simply drawing a thin parallel
push-off of the link, recording the tips of the vectors in u.

Now given a map f : M — S? with regular value *, the link £ = f~'(x) € M inherits a framing
by pulling back an oriented basis for the tangent space to S at *, and acquires an orientation from this
framing, as above. Equipped with this framing and orientation, £ will be called the Pontryagin link of
f at .

Note that any framed oriented link £ in M arises as the Pontryagin link of some map from M to
S2. In particular, the Pontryagin-Thom construction produces such a map, given by wrapping each
normal disk fiber of a tubular neighborhood of £ around the 2-sphere by the exponential map, using
the framing to identify the fiber with the disk of radius « in the tangent space to S at *, and sending
everything outside the neighborhood to the antipode of %. This construction provides a one-to-one
correspondence between the set [M, S?] of homotopy classes of maps M — S2, and the set Qflr(M) of
framed bordism classes of framed oriented links in M (see e.g. Chapter 7 in Milnor?).

Now we return to our discussion of the invariants associated with maps f : M — S2.

An easy argument shows that the primary invariant A(f), the homology class of the oriented link
f71(#), is independent of the choice of regular value *, and that A(f) is invariant under homotopies of f.
Indeed, the preimages £, and £, of any regular values for any pair of maps homotopic to f are bordant
in M x [0, 1] (see Milnor® for a proof). It follows that £y and £; are homologous in M. Conversely,
homologous links in M are bordant in M x [0, 1] by a standard argument going back to Thom!®. This
shows that the partition of [M, S 2] into subsets [M, S %], according to their primary invariants A € H,(M)
corresponds to the partition of Qﬁr M into unframed bordism classes.

The secondary invariant associated with a pair of bordant framed links measures the obstruction
to extending the framings on the links across any bordism between them. More precisely, given fy
and f; in [M,S 21, with Pontryagin links £y and £;, and an oriented surface ¥ ¢ M X [0, 1] with



0F = L x 1 - Ly x0, the framings on Ly and £; combine to give a normal framing of ¥ along its
boundary. The obstruction to extending this framing across ¥ is measured by its relative Euler class
e(F) in H*(F,0F ;1;SO(2)) = Z, which in homological terms is the intersection number of # with a
generic perturbation of itself that is directed by the given framings along 8% . This class depends on the
choice of the regular values of fy and f; used to define the Pontryagin links, and on the choice of the
bordism ¥ between the links. But the residue class of e(#) mod 2d(1) does not depend on these choices;
see Gompf!! and Cencelj, Repovs and Skopenkov!? for details, and also see Auckly and Kapitanksi'?.
This residue class

v(fo, f1) = e(F) mod 2d(A) € Zay

will be referred to as the relative Pontryagin v-invariant of f; and f;.

Converting the relative Pontryagin v-invariant into an absolute invariant

The task of converting v into an absolute invariant, that is, changing it from a function of two variables
to a function of one variable, requires the choice of a base map f, in each subset [M, S*]; of homotopy
classes of maps with primary invariant A. One can then define the absolute Pontryagin v-invariant by

v(f) = v(f. f))

for any f € [M, S?],. Whether such choices can be made in a topologically meaningful way depends
on the manifold M.

For example, Pontryagin? (page 356) explicitly cautioned against trying to make this choice when
M = S' x S2. In this case there are, up to homotopy, exactly two maps to S? with primary invariant
1 € H(S!x S?) = Z, meaning degree 1 on the cross-sectional 2-spheres in S ! X S2. One of these is the
projection fy(6, x) = x to the S? factor, and the other is the twist map f;(6, x) = roty(x) that rotates the
S? factor once while traversing the S ' factor; here rot, indicates rotation of S? through an angle 6 about
its polar axis. Note that the double twist f>(6, x) = rotyy(x) is homotopic to fj.

What Pontryagin observed is that fy and f; differ by an automorphism of S! x §2, and so there is no
natural way to choose which one should serve as the base map for the homology class [S' x §2,52];.
More precisely, the automorphism 4 given by (0, x) = (0, roty(x)) satisfies foh = fi, while fih = f,
which is homotopic to fy. Thus the maps fj and f; have equal topological status, and so neither is more
basic than the other.

A key feature of this example is the existence of a homotopically nontrivial automorphism of S ' x 5?2
that induces the identity on homology. In general, if a 3-manifold M supports such an automorphism #,
then A(fh) = A(f) for any map f : M — S?2. Hence the existence of & provides a potential obstruction
to the natural choice of base maps in [M, S 21, for all A. The 3-torus has no such automorphisms, due to
the fact that its higher homotopy groups vanish.

For each triple of integers p, ¢ and r, we now show how to pick out a specific map f, : T° — S?2
having these preassigned cross-sectional degrees, which can serve in a topologically meaningful way as
the base map for the set [T2, S2], . of all such maps.

We will describe f,,, by specifying its Pontryagin link £,,., as follows. Choose three pairwise
disjoint circles Cy, C; and C, that are cosets of the coordinate circle subgroups

Sl=8"x0x0,8=0xS"'x0 and S! =0x0xS!

of the 3-torus (where as usual S' = R/277Z) with disjoint tubular neighborhoods N, N, and N,. Equip
these circles with their coordinate framings induced from the Lie framing (dy, 9;, d,) of the tangent
bundle of T3, that is, (8;,8,) for Cs, (8,,9;) for C, and (8, 8;) for C,. Then construct Lygr from p
parallel copies of C, in Ny (meaning p distinct cosets of S! lying in N}), ¢ copies of C; in N, and r
copies of C,, in N, all with their coordinate framings, as indicated in Figure 6. Thus f,, wraps the disk
fibers of the tubes N;, N; and N, around S? by maps of degree p, ¢ and r, and is constant elsewhere.

Here and below, the 3-torus is pictured as the cube [0, 27]? in stu-space with opposite faces identi-
fied. The axes correspond to the coordinate circles S!, S} and S, and the coordinate framings are the
“blackboard” framings, i.e. those given by parallel push-offs in the projection shown. The link Ls3_, is
shown in the figure. Note that by construction L is empty, so fyoo is constant.
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N

FIG. 6. Pontryagin link £, for the base map f,,,

Computing the absolute Pontryagin v-invariant

Our goal is to give a simple procedure for computing the Pontryagin v-invariant of amap f : T3 — §?2
from a “toral diagram” of its Pontryagin link L.
By definition, a toral diagram of L consists of

1. aclassical oriented link diagram D in the 2-torus T2 with crossings C,

2. a finite set of signed points in T2, the marked points, partitioned into the isolated ones
M c T? — D, and the internal ones N ¢ D — C, and

3. integer framings for each component of D and each point in M.

For example, the link £, above is duplicated in Figure 7(a) with its toral diagram beneath it, and
another example is given in Figure 7(b).

‘ > \Ti\ I
| \J

=|||= Qj\\\\
Y

N

V4

/

®2
(a) The link £, and its diagram (b) Another example

FIG. 7. Toral diagrams of framed links in 73

It is understood that £ should project to DU M under the projection 7> — T2 sending (s, 1, u) to (s, 1),
and so points in M correspond to vertical components * X * x S ! in £, oriented up or down according
to the signs. The points in N correspond to transverse intersections of £ with the horizontal 2-torus
T? x 0 — shaded in the figures — where the sign +1 or —1 indicates whether the curve points up or down
near the intersection.

To explain the crossings C, view T? as the cube [0, 27]° in stu-space with opposite faces identified,
as before, and T2 as the square [0, 27r]? in the st-plane with opposite sides identified. Above D — N, the
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link £ resides in 72 x (0, 27r). At a crossing, the over-crossing strand is the one with the larger vertical
u-coordinate in the cube.

Finally, the framings specify a push-off of £ by comparison with the blackboard framing of DU M in
T2. These “blackboard” framings are obtained by pushing © U M off itself in the direction of a normal
vector field in T2, and then lifting these push-offs to a collection of framing curves for the components
of L that we call their O-framings. For vertical circles, these are just the coordinate framings. Now the
n-framing on any given component of £ is the one obtained from the 0-framing by adding »n full twists,
right or left handed according as # is positive or negative.

In these figures we typically indicate the framing on the link in T by a thin push-off, and use the
convention that the unlabeled components of the diagram have framing zero, that is, the blackboard
framing. We also denote the positive marked points in the diagram with solid dots, and the negative
ones with hollow dots.

We have allowed isolated marked points in the definition above so that projections of links such as
L, will qualify as toral diagrams, and to facilitate our later work. Note, however, that a generic isotopy
of L will eliminate the set M of isolated marked points, converting an n-framed isolated marked point
— corresponding to a vertical circle in £ — into a small (n + 1)-framed circle with one internal marked
point — corresponding to a spiral perturbation of the vertical circle. More precisely, using the notation
above of solid dots for positive marked points and hollow dots for negative ones, we have

O Q = OO

n—1 n+1 n+1 n-1

as is readily verified by a suitable picture in the 3-torus.

Now suppose we are given a toral diagram of a Pontryagin link £ for a map f : T3 — S2. We say
that the diagram represents f, and seek to compute v(f) from it.

First observe that the primary invariant

A(f) = (p.g,7)

is easily read from the diagram. Indeed p and ¢ (which are the degrees of the projections of £ to the
horizontal circle factors S| and S}) are just the intersection numbers of D with S} and —S!, and r (the
degree of the projection of £ to the vertical circle S|, or equivalently the intersection number of £ with
the horizontal 2-torus) is the sum of the signs of all the marked points. We call p and ¢ the horizontal
winding numbers of the diagram, and r its vertical winding number. For what follows, we will also
need to consider the vertical winding of the individual components of £. Each such component £;
projects either to some subset D; of D, or to a point M; in M (if L; is vertical). In either case, we
call this projected image the “i" component” of the diagram, and write r; for the sum of all the marked
points that lie on it. Clearly r; is just the vertical winding number of £;, and ) r; = r, the total vertical
winding number of the diagram.

To compute v(f), we will transform L by a sequence of framed bordisms into L, with some extra
twists in the framing. The number of twists is by definition v(f); counting these twists ultimately yields
the simple formula for v(f) that will be given in Proposition III.1.

To cleanly state this formula, we assume from the outset that our diagram has no crossings. There
is no loss of generality in doing so since the crossings can be eliminated by saddle bordisms of L, as
illustrated in Figure 8 (viewing L from the top, looking down on a crossing in the horizontal torus)
which of course do not change v(f). Furthermore, we will see that the Pontryagin link of a “generic
link” (to be defined in Section V), has a toral diagram without crossings.

I | /‘%, .
bordism (

FIG. 8. Using saddles to eliminate crossings
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Each such saddle bordism is achieved by adding a 1-handle, as indicated on the left side of Figure 9,
and drawn in full, suppressing one dimension in T3, on the right side.

FIG. 9. The saddle bordism

The effect of the saddle bordism on the diagram is easy to describe. If it is used to eliminate a self-
crossing of an n;-framed component 9; (meaning P; is the projection of a component £; of L) then
D; splits into two components whose framings must add up to n; + 1, depending on the sign of the
crossing. Beyond this condition, the framings on the new components can be chosen arbitrarily since
twists in the original framing can be shifted along £; at will. If the saddle bordism is used to eliminate
a crossing between distinct components 9; and D; of O with framings n; and n;, then the result is a
single component with framing n; + n; + 1.

Once we have a toral diagram without crossings representing f, the extra data needed to compute
v(f) is the list of vertical winding numbers r; of its components together with one additional integer
n = Y n;, the sum of all the component framings n;, which we call the fotal framing and place as a label
next to the diagram.

To state the formula efficiently, we will use one more list of numbers that is easily read from the
diagram. First pick a basepoint * in T2 away from D U M, and then for each i, choose an arc y; that
runs from the i component of D U M to *. Now define the depth of the i component to be

di = 2y;«D mod 2gcd(p,q,1),

that is, twice the intersection number in 72 of the arc v; with the union D of the closed curves in the
diagram. This intersection number must be properly interpreted for components of 9. In this case the
initial point of y; lies on D, contributing i% to the intersection number, and thus +1 to d;. It follows that
d; is always an odd integer for components of D, and an even integer for components of M, meaning
isolated marked points. An example is shown in Figure 10.

FIG. 10. Depths of components in the diagram

Of course the depth d; depends on the choice of arc y;, but only modulo 2 gcd(p, g), and so it is
certainly well defined modulo 2 ged(p, g, 7). Furthermore, in the formula for v(f) below, the depths
appear only as coeflicients in the sum }’ r;d;. It is readily seen that this sum changes by a multiple of
> 2r; = 2r when moving the basepoint *, and so it is well defined modulo 2 ged(p, ¢, r), independent of
the choices of * and of the arcs v;.

We can now state the main result of this section.
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Proposition ITL.1. Let f : T3 — S? be a smooth map whose Pontryagin link L is represented by a
toral diagram in T* without crossings, with horizontal winding numbers p and gq, vertical winding
number r, and total framing n. Then the primary and secondary Pontryagin invariants of f are given
by

Af) = (p,q,r) and
v(f) = n+pqg+ Y rid; mod 2ged(p,q,r)

where r; and d; are the vertical winding numbers and depths (with respect to any chosen basepoint)
of the components of the diagram.

The proof is given in Appendix B. The following application will arise in the proof of Theorem A in
Section VI.

Example II1.2. If f is represented by the +(pq + r)-framed (p, g) torus link in 72, with one component
K of vertical winding number r, and the rest of vertical winding number zero, then A(f) = (p, g, 7), and
choosing a base point adjacent to K,

v(f) = (pg+r)+pg+1-r+0+0) = 2(pg+71) = 0 € Zyged(pgn-

IV.  EXPLICIT FORMULAS FOR THE GENERALIZED GAUSS MAP

In this section we give an explicit diffeomorphism from the Grassmann manifold G,R* of oriented
2-planes through the origin in 4-space to a product of two 2-spheres, and then use it to give a formula
for the Gauss map g; : T — S? of a three-component link L in the 3-sphere. For simplicity, we have
dropped the adjective “generalized” and henceforth simply refer to g; : T3 — S? as the “Gauss map”,
while continuing to call its prototype T2 — S the “classical Gauss map”.

We also describe an alternative form

hy T3> 82

of the Gauss map, homotopic to g; but more convenient for the proof of Theorem A that we will give in
Section VI. The formula for 4, will reveal a close connection between the Gauss map and the classical
Gauss map T? — S? for two-component links in 3-space.

Throughout we regard R* as the algebra of quaternions, with orthonormal basis 1,4, j, k and unit
sphere S (oriented so that i, j, k is a positive frame for the tangent space to S3 at the point 1), and R
as the subspace of pure imaginary quaternions spanned by i, j and k, with unit sphere S2. Thus §3
is viewed as the multiplicative group of unit quaternions, and S? as the subset of pure imaginary unit
quaternions.

For any quaternion g = qo + q1i + q»j + g3k, let § denote its conjugate gy — q1i — q2j — g3k, which
coincides with ¢g~' when ¢ € S3, and let Re (q) = ¢o and Im (q) = q1i + ¢»j + g3k denote its real and
imaginary parts.

The Grassmann manifold G,R*
It is well known that G,R* can be identified with a product of two 2-spheres. In particular, we will

use the diffeomorphism

7:GRY — §2x §?

that maps the oriented plane {a, b), spanned by an orthonormal 2-frame (a, b) in R*, to the point (ba, ab)
in S% x S2. Note that both coordinates

n.{a,b) = ba and n_{a,b) = ab

do in fact lie in S? since right and left multiplication by @ are orthogonal transformations of R, carrying
the orthonormal frame (a, b) to the orthonormal frames (1, ba) and (1, ab).

To see that & is well-defined, consider any other orthonormal basis for the plane (a, b). It must be of
the form (ac, bc) for some c in the circle subgroup Cy;, through ab, since this group acts on the plane by
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rotations. Thus it suffices to check that bc ac = ba, which is immediate, and that ac bc = ab, which is
true since ¢ commutes with ab.

To see that r is in fact a diffeomorphism, we can simply write down the inverse. It maps a pair (x, y)
in §2x S? to the plane {c, cy) where ¢ is the midpoint of any geodesic arc from x to y on S 2. This can be
verified by a straightforward calculation using the fact that conjugation by a pure imaginary quaternion
rotates the 2-sphere about that quaternion by 7 radians, so cyc = x.

The Gauss map g,

Recall from the introduction that the Grassmann map G : ConfsS 3 5 G,R* sends a triple (x,y, z) of
distinct points in S3 to the plane they span in R*, translated to pass through the origin, and oriented so
that

G(x,y,2) = (x—2,y—2).

We have extended notation so that for any two linearly independent vectors a and b in R*, the symbol
(a, b) denotes the oriented plane they span. Then, given a three-component link L in S, its Gauss map
gL : T? — S?is defined using the Grassmann map G and the projection 7, : GoR* — S? by the formula

gr(s,t,u) = 7.G(x,y,2) = 7{x—2,y—2)

where x = x(s), y = y(¢) and z = z(u) parametrize the components of L.

To make this explicit, and to show that using 7_ in place of .. in the definition would not change the
homotopy class of g;, we need expressions for 7.{a, b) when a and b are arbitrary linearly independent
vectors in R*, but not necessarily orthonormal.

For example, if a and b are orthogonal, then ba and ab are still pure imaginary, and so need only be
normalized to give m.(a, b) and m_{a, b).

For a general pair of linearly independent vectors a and b, the vector ¢ = b — (bea/a+a)a, where
is the dot product in R*, is orthogonal to a and satisfies (a,c) = {(a, b). Therefore n,{a,b) = n.{a,c),
which equals the unit normalization of the vector ca = ba — b+a. But bea = Re (ba), and so m.{a, b) is
the unit normalization of Im (ba). Similarly 7_{a, b) is the unit normalization of Im (ab). Therefore, for
any two linearly independent vectors a and b, we have n.{a,b) = (a,b)./|(a,b).| where (, ). are the
skew symmetric bilinear forms on R* defined by

(a,b), = Im ba and (a,b). = Im ab.

It follows that g; (s, t, u) is the unit normalization of the vector

F(x,)’sZ) (X—Z,y_Z)+ = (x»Y)++(V,Z)++(Z,x)+

(ixsy+iysz+izex, jxey+ jyez+ jzox, kxey+kysz+ kz+x)

where the last expression follows from the formula (a, b), = (ia+b, ja+b,ka+b). This formula is seen
as follows. By definition, (a,b), = Im(ba) = (i-ba)i + (jeba)j + (k+ba)k. But g-ba = qa-b for any
q (in particular i, j or k) since right multiplication by the unit quaternion a/|a| is an isometry, and so
(a,b)y = (ia*b)i + (jasb)j+ (ka*b)k = (iasb, ja+b, ka+b). Summarizing, we have shown:

Proposition IV.1. The Gauss map g; : T> — S? of a three-component link L in S* is given by the
Jormula

gi(s,t,u) = F(x,y,2)/|F(x,y,2)|

where x = x(s), y = y(t) and z = z(u) parametrize the components of L, and F : Conf3S®> — R3 is
the function defined above.

This formula for g; will be used in our proof of Theorem B in Sections VII and VIII. For Theorem A
it will be more convenient, for the most part, to use an alternative form of the Gauss map that we
introduce next.
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The asymmetric Gauss map hj,
Given a three-component link L in the 3-sphere, we define below an asymmetric version

hy T3 — §?

of the Gauss map in which the last component of L plays a distinguished role, and show that it is
homotopic to the earlier defined symmetric Gauss map g;. As will be seen, the map s can be viewed
as a parametrized family of classical Gauss maps for twisted versions of the first two components of L,
parametrized by the third component.

For notational economy, we use [¢] to denote the unit normalization g/|g| of a nonzero quaternion q.

The key motivation for the definition of /; is that the Grassmann map G : Conf3S3 — G,R* factors
up to homotopy through the Stiefel manifold V,R* of orthonormal 2-frames in 4-space. More pre-
cisely, let pr, denote stereographic projection of § 3 — {z} onto z*, the 3-plane through the origin in R*
orthogonal to z. Then we define the Stiefel map

H : Conf3S* — VoR* | (x,y,2) — (2, [pr,x — pr,y])

(recall that the square brackets signify unit normalization), and will show that it is a homotopy equiva-
lence whose composition with the canonical projection

P:VoR* — GR* | (z,v) — (V)

is homotopic to the Grassmann map G.
To see this, first observe that there is a deformation retraction of Conf3S 3 to its subspace

V = {v,-z2)|vLlz

defined as follows. Start with (x,y, z) € Conf3S 3 and consider the points pr,x and pr,y in z+. Translation
in z* moves pr,y to the origin, and then dilation in z* makes the translated pr,x into a unit vector.
Conjugating this motion by pr, moves x to [pr,x — pr.y], moves y to —z, and leaves z fixed, as pictured
in Figure 11, thus defining a deformation retraction of Conf3S 3 to its subspace V, sending (x,y,z) to
([pr,x — pr,yl, =2, 2).

[pr,x — pr,y] = (pr,x — pr,y)/lpr,x — pr,y|

FIG. 11. The deformation retraction Conf3S3 — V

Identifying V with V,R?* via (v, -z,7) © (z,v), this shows that H is a homotopy equivalence with
homotopy inverse I given by I(z,v) = (v, —z, z). The calculation

Gl(z,v) = (v—2,-2z2) = {z,v) = P(z,v),

shows that GI = P, and so G ~ PH as claimed.

Now observe that there are two natural homeomorphisms from the Stiefel manifold V,R* to S° x §2
that arise from viewing S ? as the unit quaternions and S? as the pure imaginary unit quaternions, namely
(z,v) ~ (z,vZ) and (z,v) - (z,Zv). These yield projections 7, : V,R* — §2 given by

m(z,v) = v and n_(z,v) = 7Zv.
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These are just the lifts to V,R* of the previously defined projections . : GoR* — §? with the same
names.
Define the asymmetric Gauss map h; : T> — S? to be the composition , He; :

hp(s,t,u) = [pr.x —pry]z

where as usual x = x(s), y = y(¢) and z = z(u) parametrize the components of L, and the square brackets
indicate unit normalization.

Proposition IV.2. The two versions g; and h;, of the Gauss map of a three-component link L in S* are
homotopic. Furthermore, these maps are independent, up to homotopy, of the choice of projections
7, or w_ used in their definitions.

Proof. By definition g; = n,Ge; and h;, = n,He;, shown in the diagram below as the maps from left
to right across the bottom and top, respectively.

V,R?
PN
T3 —— Conf,S? P 52
R /
G,R*

Here e, (s, t, u) = (x(s), y(t), z(u)) records the parametrization of the link, and G and H are the Grassmann
and Stiefel maps with their associated projections .. It was shown above that the left triangle in the
diagram commutes up to homotopy, and the right triangle commutes on the nose. Therefore 4;, and g,
are homotopic.

Now the same argument shows that the maps 4, = n_He; and g; = n_Ge; are homotopic. Hence
to complete the proof, it suffices to show that /; and h; are homotopic. To do so, view V,R* as the
unit tangent bundle of S 3, with projection p to the base S3 given by p(z,v) = z. Then the composition
pHey is null-homotopic, since it maps onto the third component of L, and so the map He;, is homotopic
to a map into any S 2-fiber of the bundle V,R* — §3. We choose the fiber over z = 1, where the two
projections 7, (z,v) = vZ and w_(z, v) = Zv coincide. It follows that 4z, and /; are homotopic. ]

A Gaussian view of the asymmetric Gauss map

The formula above for 4y, involves first normalizing a vector in z*, and then multiplying by Z to move
it to the unit sphere S? in the pure imaginary quaternion 3-space R3. We would like to express this
directly as the normalization of a vector in R.

A geometric argument shows that stereographic projection pr, is given by

pr,b = (Im ba)a/(1 — Re ba)

and it follows that (pr,b)c = pr,.bc for any three unit quaternions a, b and ¢ with a # b. Hence the
formula Az (s, t,u) = [pr.x — pr,y] Z can be rewritten as

hi(s,t,u) = [Prl XZ — pry vzl = [pr_l(—yZ) - Pf_1(_xz)]

where, as usual, x = x(s), y = y(#) and z = z(u) parametrize L, and the square brackets indicate
unit normalization in R3. We favor the last expression because stereographic projection from —1 is
orientation-preserving, while from 1 it is orientation-reversing.

Now for any two distinct unit quaternions a and z, introduce the abbreviation

5 3
a, = pr_(-az) € R,
and so in particular a_; = pr_; a. Then we can write

hL(Sat’u) = [yZ_'xZ]'
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For fixed u, this is just the classical Gauss map for the two-component link X, U ¥, ¢ R? that is the
image of the first two components X U Y of L under the map a — a,. Thus the asymmetric Gauss map
hy, can be viewed as a one-parameter family of classical Gauss maps for images in 3-space of X U Y.
The third component Z provides the parameter and determines the axes about which these images are
gradually twisted.

In the next section, we will explain this perspective more carefully. But we can see right now that it
yields an easy proof of the first part of Theorem A, equating the pairwise linking numbers of the link L
with the degrees of the restriction of its Gauss map g, to the coordinate 2-tori.

Proof of the first statement in Theorem A

It can be arranged by an isotopy of L that z(0) = —1. Then the restriction of s;, to the coordinate
2-torus S ' x S x 0 is precisely the classical Gauss map of the stereographic image X_; UY_; of XU Y,
whose degree is equal to the linking number Lk(X, Y) since pr_, is orientation-preserving. Since g, is
homotopic to iy, the same is true for g;. But then it follows from the symmetry of g, that Lk(X, Z) and
Lk(Y, Z) are given by the degrees of g, on S! x0x S!'andon 0 x S' x S, respectively.

The proof of the second statement in Theorem A — which relates the triple linking number of L to the
Pontryagin v-invariant of its Gauss map — is more delicate. It will occupy us for the next two sections.

V.  THE PONTRYAGIN V-INVARIANT OF THE GENERALIZED GAUSS MAP

Fix a link L in §3 with three components X, ¥ and Z parametrized by x = x(s), y = y(¢) and z = z(u).
Recalling that S is regarded as the group of unit quaternions, the asymmetric Gauss map &, : T> — §2
is given by

hL(S’t’M) = [)’z_xz]

where a, is an abbreviation for the vector pr_,(—aZ) in pure imaginary quaternion 3-space R?, and the
square brackets indicate unit normalization. To carry out the proof of Theorem A, we need a way to
compute the absolute Pontryagin v-invariant of /4. A procedure for doing so is described here.

Throughout this section and the next, R3 is pictured in the usual way, with the i j-plane horizontal
and the kz—axis pointing straight up as in Figure 12. In particular, we view k as the north pole of the unit
sphere S-.

FIG. 12. Pure imaginary quaternion 3-space

Qutline of the procedure for computing v(s)

First, we will move L by a link homotopy into a favorable position — referred to as generic below —
so that, in particular, the north pole k of S? is a regular value of /;.
Then we will construct a toral diagram (in the sense of Section III) for the associated Pontryagin link

L =h'(k) c T,
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Roughly speaking, our approach is as follows.

By definition of /;, the Pontryagin link £ consists of all (s, ¢, u) € T for which the vector in R? from
X, to y, points straight up, where x = x(s), y = y(¢) and z = z(u). The genericity of L will imply that
for some points (s, ) in the 2-torus T there is a unique u = u(s,t) € S' that will make this happen,
while for all other points (s, ), no u will work. Furthermore, the set D of all points of the first kind,
called isogonal points for reasons explained below, is a smooth 1-dimensional submanifold of 72 whose
components we call icycles.

Thus £ is the graph of the function u(s, t) over the collection D of icycles in 7

L = {(s,t,u) e T | (s,0) € Dand u = u(s,1)}.

When suitably oriented and decorated with framing and vertical winding numbers, O will be the desired
toral diagram of L.

In particular, the icycles in D correspond to certain oriented cycles of vectors directed from X to Y,
which we call bicycles, that are easily spotted from a picture of L. Each bicycle has a longitudinal and
meridional degree, recording how much it turns and spins relative to the standard open book structure
on S3. The framing and vertical winding number of the corresponding icycle are determined by these
degrees.

Therefore a diagram for £ can be constructed once we identify the bicycles in L. With this diagram
in hand, the methods of Section III can then be used to compute v(h;).

We now give the details of this procedure. There are three geometries involved: spherical geometry
in S3, where the link L lives, Euclidean geometry in R3, the setting for the asymmetric Gauss map,
and hyperbolic geometry in the complex upper half plane H, which turns out to be for us the natural
geometry on the pages of the “standard” open book decomposition of R?. We begin with an explicit
construction of this open book, which provides a framework for the discussion that follows.

The standard open books in R? and $3

Consider the great circle K in §3 through 1 and &, and the orthogonal great circle C through i and .
Orient both circles by left complex multiplication by K (i.e. from 1 toward k on K, and i toward j on C)
so that their linking number is +1.

Stereographic projection from —1 carries K onto the k-axis in R3, and fixes C, which now appears
as the unit circle in the i j-plane. The complement V of the k-axis in R? is naturally identified with the
product of a circle S! (viewed as the quotient R/27Z) with the complex upper half plane H (which for
later purposes will be viewed as the hyperbolic plane) via the diffeomorphism

V — S'xH
with coordinates £:V — S! and m : V — H given by

t(q) = arg(q + q2i) and m(q) = q3 +|q1 + qaili.

for g = qi + g2 j + g3k € V = R3 — k-axis. In other words, if ¢ = (r, 6, z) in cylindrical coordinates, then
£(g) = 0 and m(q) = z + ri. We call £ and m the longitudinal and meridional projections in R?, and
refer to £(q) as the polar angle of q.

The longitudinal projection defines the standard open book in R?, with binding the k-axis, and with
pages Py = {~'(0) for 6 € S'. The pages are just the oriented vertical half-planes bounded by the k-axis,
each indexed by its polar angle as shown in Figure 13. The meridional projection serves to identify each
page Py with the hyperbolic plane H, with “center” iy = i cos + j sinf corresponding to i. The union
of all the page centers is the unit circle C.

The longitudinal and meridional projections in R? lift to §3 (in the complement of K) by composing
with stereographic projection from —1, given by pr_;q = (Im¢q)/(1 + Re g¢) = (g1i + g2j + g3k) /(1 + qo).
Relying on the context, we continue to denote them by ¢ and m, and to refer to £(q) as the polar angle
of ¢. Explicitly, for g = go + q1i + g2 + g3k € S* — K,

g3 + |q1 + qoili

Uq) = arg(qi +q2i)  and  mlg) = v

Just as in R3, the longitudinal projection in S defines the standard open book in S 3, with binding K,
and with pages Hy = £~'(6). The pages are now open great hemispheres in S* with centers (i.e. poles)
ig along the great circle C, and with K as equator. By design, pr_; maps each hemispherical page Hy in
S onto the corresponding half-planar page Py in R3.



19

A
pages
k
.j
Ci do
>
L 0
|
/ Pe

binding

FIG. 13. The standard open book in R3

Generic links
A three-component link L = X U Y U Z in S? is generic if

1. Z coincides with the oriented binding K of the standard open book, and
2. X and Y wind “generically” around Z.

More precisely, the second condition requires the restriction to X U Y of the longitudinal projection
¢: 83— K — S!, which sends each point to its polar angle, to be a Morse function with just one
critical point per critical value. Geometrically, this means X and Y are transverse to the pages of the
standard open book in S3, except for finitely many pages where exactly one of them turns around at a
single point. These will be called the critical points of L, while all other points on X U Y will be called
regular points. Each regular point w has a sign, denoted sign(w), when viewed as an intersection point
of L with the page containing w. Thus sign(w) = +1 or —1 according to whether L is oriented in the
direction of increasing or decreasing polar angle near w.

An example of a generic link is shown in Figure 14. It has four critical points, two on X and two on
Y, indicated by dots in the picture.

)\
N
|

FIG. 14. A generic link

Any three-component link in S? is evidently link homotopic to a generic one: first unknot the last
component by a link homotopy and move it to coincide with K, and then adjust the first two components
by a small isotopy to satisfy the genericity condition (2). From this point on we assume that L is generic
without further mention. As a consequence, we will show the following:
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(a) The north pole k € S is a regular value of the Gauss map /.

(b) There is a simple method for constructing a toral diagram for the associated Pontryagin link
L = h}!(k) from a picture of L.

This is the content of the “bicycle theorem” below. To state it precisely, we need to introduce the key
notion of a bicycle in L, and its associated icycle in T?.

Bicycles and icycles

Assume, as always, that the components X, Y and Z of L are parametrized by smooth functions
x = x(s), y = y(¢) and z = z(u) with nowhere vanishing derivatives. In particular, points (s, ) in the
2-torus parametrize pairs of points x € X and y € Y. Suppose that x and y have the same polar angle 6,
or equivalently that they lie in a common page Hy of the standard open book in S3. Then we call (s, ?)
an isogonal point in T?, and call (x, y) a page vector in L with polar angle 6, reflecting the fact that the
vector in R? from pr_,(x) to pr_,(y) lies entirely on the half-planar page Py.

A page vector (x,y) will be called critical if x or y is a critical point of L, and regular if both x
and y are regular. A regular page vector is positive if the oriented strands of L through x and y point
in the same direction, meaning sign(x) = sign(y), and is negative if they point in opposite directions.
These notions are illustrated in Figure 15, in which the vectors labeled 1 and 2 are positive regular page
vectors, 3 is negative regular, and 4 is critical.

e
\\\QD e

FIG. 15. Page vectors

Now consider the spaces
D = {isogonal points in T2} and P = {page vectorsin L}.

By definition D parametrizes . The genericity of L implies that # consists of a finite number of disjoint
cycles of page vectors, and that D consists of a finite collection of smooth simple closed curves in T2.
Orient P so that it points to the right (meaning in the direction of increasing polar angle) at each positive
regular page vector in it, and to the left at each negative regular page vector. This gives a well-defined
orientation on £, inducing one on D as well. We call these the preferred orientations on P and D.

Definition. A bicycle (or “bi-cycle”) in L is a component $; of P, that is, an oriented cycle of page
vectors. Each bicycle is parametrized by a component D; of D, which we call its associated icycle (or
“i-cycle”).

Some examples of bicycles and their associated icycles

We first draw in Figure 16 four local pictures of a bicycle near a regular page vector, and below them,
their parametrizing icycles. It is understood that these pictures take place somewhere in front of the
upward pointing Z axis. The four cases represent the possible directions of X and Y relative to the page
containing the vector. In each case, the orientation of the bicycle is indicated by a squiggly arrow.
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FIG. 16. Local pictures of a bicycle and its corresponding icycle

For an example of a full bicycle, consider the “clasp” between X and Y pictured in Figure 17(a). This
gives rise to the bicycle in Figure 17(b), passing successively through the vectors labeled 1,2, 3,4 and
then back to 1. The associated icycle is a counterclockwise circle in 72, shown in Figure 17(c). The
route taken by this bicycle is “short” in the sense that it does not wind around the binding, although it
does spin within the pages.

t
V4 1 1
< : X
2 4
Y 3
\) ) s
(a) the clasp (b) the bicycle (c) the icycle

FIG. 17. Bicycle arising from a clasp

As another example, the link shown in Figure 14 and reproduced in Figure 18(a) below has three
bicycles. Two of them are short, arising from the clasps as in the previous example, while the remaining
long one oscillates back and forth in the longitudinal direction, eventually making one full revolution
around the binding. It is an instructive exercise left to the reader to recover the plot of the associated
icycles in Figure 18(b), in which the trivial circles labeled A and B correspond to the clasps in L with
the same labels, C labels the icycle that parametrizes the long bicycle, and the corners of the square
parametrize the pair (x, y) indicated by the dots in Figure 18(a).

Before proceeding, we remind the reader that our interest in icycles associated to L stems from the
fact that — when suitably decorated — they give a toral diagram for a Pontryagin link of the Gauss map
hy. This is the content of the bicycle theorem.

The Bicycle Theorem
The longitudinal and meridional projections on §3 — K, defined earlier, induce projections by the
same name on the space P of page vectors,
st p 2 H,
given by {(x,y) = {(x) = €(y) and m(x,y) = arg(m(y) — m(x)). In other words £(x, y) is the polar angle
that parametrizes the common hemispherical page in S containing x and y, and m(x, y) is the argument
of the vector from m(x) to m(y) in H.
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(a) the generic link L (b) the icycles of L

FIG. 18. A generic link and its icycles

Using these projections, we define the longitudinal and meridional degrees of a bicycle P; in L by
{; = deg(t|P)) and m; = deg(m|P;).

These integer invariants record, respectively, the number of times #; travels around the binding Z, and
the number of times its vectors spin around in the pages as it goes.

For example, any bicycle arising from a clasp between X and Y has zero longitudinal degree, while
its meridional degree can be +1. In particular, the one shown in Figure 17 has meridional degree —1,
while the ones labeled A and B in Figure 18(a) have degrees 1 and —1, respectively. The long bicycle in
Figure 18(a), labeled C in Figure 18(b), has longitudinal degree 2 and meridional degree 1.

For any icycle D; in T2, parametrizing a bicycle P; in L, define the framing n; and vertical winding
number r; of D; by

n; = —fi—mi and rp = m;

where ¢; and m; are the longitudinal and meridional degrees of ;.
We can now state the main result of this section.

Bicycle Theorem V.1. Let L be a generic link in S®. Then
(a) The north pole k € S? is a regular value of hy : T®> — S*

(b) The collection D of icycles of L, together with their framings and vertical winding numbers as
defined above, forms a toral diagram for the associated Pontryagin link L = hzl(k).

The proof will be given in Appendix C. We now illustrate how the bicycle theorem can be used to
compute the Pontryagin invariant of the Gauss map of a generic link.

Computing v(h;) for a generic link L using the bicycle theorem

As a first example, again consider the link L pictured in Figure 18(a). As noted above, it has three
bicyles A, B, C, with longitudinal degrees 0, 0,2, meridional degrees 1,—1, 1, and so by definition,
framings —1, 1, =3 and vertical winding numbers 1, -1, 1.

By the bicycle theorem, the Pontryagin link for the Gauss map %, has toral diagram as shown in
Figure 18(b) with vertical winding numbers 1, —1 and 1 on the icycles A, B and C, and with global
framing n = —1 + 1 — 3 = 3. Thus the total vertical winding numberis r = 1 -1+ 1 = 1 and from the
diagram we compute the horizontal winding numbers to be p = —1 and g = —2. (These values for the
winding numbers of the diagram are confirmed by the calculations p = Lk(Y,Z) = -1, ¢ = Lk(X,Z) =
-2 and r = Lk(X, Y) = 1.) Thus the invariant v(h;) is well defined modulo 2 = 2 gcd(-1, -2, 1).

Using a base point in the lower right corner of the diagram, and straight line paths from the icycles
to the base point, the depths of the icycles A, B and C are 1, —1 and —1. Thus by Proposition III.1 we
conclude that

vihy) = n+pg+Yrdi = -3+2+1 =0 € Z,.
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Although the purpose of this example is to illustrate how the bicycle theorem is used for computations,
we note that Theorem A (yet to be proved) yields the same result here effortlessly, since it implies that
the Pontryagin invariant of the Gauss map of any three-component link in S? is even. Therefore, when
the pairwise linking numbers p, g and r are relatively prime, as they are in this case, the computation is
modulo 2 ged(p, g, ) = 2, and so the Pontryagin invariant is zero.

Double crossing changes

For our next example we analyze the effect on v(h;) of changing two crossings of opposite signs
between the first two components of a generic link L = X U Y U Z. This will be a key step in our
inductive proof of Theorem A.

To this end, choose a positive and a negative crossing between X and Y in a suitable projection of L,
and let (x4, y;) and (x_, y_) be the corresponding page vectors. Changing both of the crossings yields a
new link L, with the same pairwise linking numbers as L. This is illustrated in Figure 19 where L is the
Borromean rings, shown on the left, and Lis the unlink, shown on the right.

z zZ
AN AN
X > > X
< <

+, ) -~ ~_ ) +—
N | A < | -~

< < —~

Y | Y

(a) the Borromean rings L (b) the unlink 3

FIG. 19. A double crossing change

We then say that L is obtained from L by a double crossing change, and propose to use the bicycle
theorem to compute the resulting change Av = v(h7) — v(hr) in Pontryagin invariants.

As it turns out, there is a simple formula for Ay involving the link L, obtained from L by “smoothing”
both crossings in the usual way:

X - X - X

The smoothed link Ly has three components, P and Q (replacing X and Y) and Z. The component P
goes from + to — along Y, and then back from — to + along X, where we retain the + and — labels after
smoothing, while Q goes from + to — along X, and then back from — to + along Y. This is illustrated in
Figure 20 for the double crossing change shown in Figure 19, where we use X, _ to denote the arc on X
from + to —, and so forth. Now, as a consequence of the Bicycle Theorem V.1, we have the following
formula for Ay, whose proof appears in Appendix D:

Corollary V.2. (Double Crossing Formula) If L = X U Y U Z is transformed into L by a double
crossing change, and P and Q are the components of the associated smoothing of XUY, as explained
above, then the corresponding Pontryagin invariants change by

Av = 2Lk(P, Z) = -2 Lk(Q, Z) € Zlgcd(p,q,r)

where p, q and r are the pairwise linking numbers of the components of L.



24

FIG. 20. The smoothed link Ly = PUQUZ

For the inductive step of the proof of Theorem A in the next section, we will need to apply this
formula for Av under the double crossing change L — L shown in Figure 21 (which will be seen to be
equivalent to a delta move). It is understood that L and L should coincide outside the picture, where
in fact they can be arbitrary. Indeed, if not generic outside the ball, they can be adjusted by a link
homotopy to become so, and then the methods described above apply. Since the component Q of the
smoothed link L is just a meridian of Z with Lk(Q, Z) = —1, it follows that Ay = 2.

Thus we have proved the following:

(a) the link L (b) the link L

FIG. 21. A simple double crossing change

Corollary V.3. If two links L and L coincide outside a 3-ball, and appear in the ball as shown in
Figure 21, then v(hy) = v(hr) + 2.

VI. PROOF OF THEOREM A

Let L be a three-component link in the 3-sphere with Gauss map g; : T3 — S2. Theorem A asserts
that the degrees of g; on the coordinate 2-tori of 7 are equal to the pairwise linking numbers p, g and r
of the components of L, and that Pontryagin’s absolute v-invariant of gy is equal to twice Milnor’s triple
linking number (L) mod 2 ged(p, g, r).

The first statement was proved easily at the end of Section IV. We now prove the second statement by
an inductive argument, relying heavily on the techniques and results of the last section. Throughout, we
will use the asymmetric Gauss map /4, : T> — S2 in place of g;, since these two maps are homotopic.

Proof of the base case of Theorem A

In Example II.1 we introduced the “base links” L, with pairwise linking numbers p, g and r and
H(Lpqr) = 0. See Figure 3. We will show that Theorem A holds for these links.
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To accomplish this, we must show that for each p, g and r, the associated Gauss map hLW is homo-
topic to the base map f,,, : T3 — S? used in Section III to convert the relative Pontryagin v-invariant
to an absolute v-invariant. In other words, we must show that v(hy,,) = 0.

First move L,,, by a link homotopy into generic position, and let L = X U Y U Z be the resulting
link. Then Z coincides with the binding K of the standard open book, while X and Y wind around Z
in a generic fashion, g and p times respectively, linking each other r times along the way. In fact this
winding can be made monotonic, to appear as shown in Figure 22 for the case (p, g, 7) = (5,3, -2).

FIG. 22. A generic link L representing L,

Observe that one need not actually construct a link homotopy carrying L, to L, but need only
check that the pairwise and triple linking numbers of L, and L coincide, and then appeal to Milnor’s
classification. The verification that u(L) = 0 is completely analogous to the calculation for u(L,,),
using the obvious stacked disks, joined by half twisted bands, as Seifert surfaces for X and Y, and a
hemispherical page in the open book on §3 as a Seifert surface for Z.

Now the bicycles in L are easily identified. There are d = gecd(p, g) of them, all of longitudinal
degree ¢ = lcm(p, g), and all but one of meridional degree O, the remaining one being of degree r.
The parametrizing icycles are all parallel to a (p/d, q/d) torus knot in the 2-torus, with vertical winding
numbers all equal to zero, except one equal to r. By the bicycle theorem, these icyles form a diagram
for the Pontryagin link of A;, with global framing —(pq + r). This is exactly the situation described in
Example III.2, and so

V(thqr) = V(hL) =0 € Zchd(p,q,r)

as asserted.

Proof of the inductive step of Theorem A

First recall from Example I1.2 that any three-component link L with pairwise linking numbers p, ¢
and r is link homotopic to a link obtained from L,,, by a sequence of delta moves of the type shown
in Figure 4 (or its inverse), by a result of Murakami and Nakanishi’. It was shown in that example that
each such move increases u(L) by 1.

Now observe that such a delta move A : L — L can be viewed as a double crossing change D, of the
kind shown in Figure 21, composed with an isotopy, as indicated in Figure 23. By Corollary V.3, this
double crossing change increases v(L) by 2, and so A does the same.

Since this argument applies to an arbitrary delta move, it follows that v(L) = 2u(L) for all three-
component links L. This completes the proof of Theorem A.
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AN ? s

FIG. 23. Another view of the delta move

Vil. PROOF OF THEOREM B, FORMULAS (1) AND (2)

Theorem B provides three formulas for Milnor’s u-invariant of a three-component link L in S* whose
pairwise linking numbers vanish:

(1) (differential forms) u(L) = 1/2f d ' (w) Awp = 1/2f oy *wr) Awr
T3 T3

(2) (vector fields) u(L) = 1/2 f VL(X) X Vi (y) * Vy o (x —y) dxdy
T3%T3
(3) (Fourier series) u(L) = 87 Z a, X b, « n/|nf
n#0
The notation is explained in the introduction.

In the subsections that follow, we obtain explicit expressions for the characteristic 2-form w; and
vector field v;, and for the fundamental solution ¢ to the scalar Laplacian on 773, and then establish
formula (1) by making use of J. H. C. Whitehead’s integral formula for the Hopf invariant. Then, we
show how to obtain formula (2) from formula (1). Finally, in Section VIII we review the calculus of
differential forms and Fourier analysis on 7, in order to make explicit the role and form of ¢ and obtain
formula (3).

Explicit formula for the 2-form w; and the vector field v; on 3
Recall the formula for the Gauss map g, : T° — §? of the link L given in Proposition IV.1,

F(x,y,2)

gL(s,t,u) = ————,
|F(x,y,2)|

where x = x(s), y = y(f) and z = z(u) parametrize the components of L, and where F' was given in
Section IV as

F(x,y,2) = (ixey+iyez+izex, jxey+ jyez+ jzex, kxey+kyez+kzex).

Here we view x, y and z as quaternions for the multiplication and as vectors in R* when performing
the dot product. For simplicity, we write g, = F/|F|, suppressing the appearance of the evaluation map
er(s,t,u) = (x(s), y(t), z2(u)).

Again let w be the Euclidean area 2-form on the unit 2-sphere S? ¢ R?, normalized so that the total
area is 1 instead of 4. If p is a point of S 2 andaandb are tangent vectors to S 2 at p, then

1
wp(a,b) = E(a X b) « p.
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This 2-form w on S? extends to a closed 2-form @ in R — 0 given by

(axb)p
4r pP

bl

@p(a,b) =

which is the pullback of w from S? to R* — 0 via the map p ~ p/|p|. Hence the pullback g;w of w from
S2to T3 via g; = F/|F|is the same as the pullback F*@ of w from R3 — 0 to 77 via F.
Write

gw = F'w = a(s,t,u) dt Adu+ b(s,t,u) du Ads + c(s, t,u) ds A dt.

Then we have

a(s’ t7 I/[) = F*a(at’au) = E(F*ahF*au)
(F, X F,)+F
4z |FP?

w(F, Fy) =

and likewise for b(s, t, u) and c(s, ¢, u), where the subscripts on F denote partial derivatives.
Therefore, the characteristic 2-form of the link L is

) FixFF 0 FxFeF o FXEFo
= = — o FRpGL R ,
“L = & 4r |FP T N T @

and its corresponding characteristic vector field is

. F,xF,+F F,xF,oF  F,xF,+F
v, = + +
L an|lFP T aniFP T Am|FP

e

Proof of Theorem B, formula (1)

Let L be a three-component link in S* with pairwise linking numbers p, ¢ and r all zero. By the first
part of Theorem A these numbers are the degrees of the Gauss map g : T — S? on the 2-dimensional
coordinate subtori. Since these degrees are all zero, g; is homotopic to a map g: T°> — S? which
collapses the 2-skeleton of 77 to a point:

gL = g:T3i>S3i>Sz,

where o is the collapsing map. By the second part of Theorem A, Milnor’s y-invariant of L is equal to
half of Pontryagin’s v-invariant v(g;) (comparing g; to the constant map foo as explained in Section III),
which in turn is just the Hopf invariant of f: §3 — §2,

u(L) = iv(g) = LHopf(f).

We can thus use J. H. C. Whitehead’s integral formula for the Hopf invariant as the first ingredient in
our formula for the g invariant. Starting from Hopf’s definition of his invariant of a map f: S* — S?
as the linking number between the inverse images of two regular values, Whitehead'* found an integral
formula for Hopf(f) as follows.

Let w be the area 2-form on S 2, normalized so that fsz w = 1. Its pullback f*w is a closed 2-form on
S3, which is exact because H>(S3;R) = 0. Hence f*w = da for some 1-form « on §3, and Whitehead
showed that the Hopf invariant of f is given by the formula

Hopf(f) = L}a/\f*a) = Ld-l(f*w)/\f*w,

the value of the integral being independent of the choice of a.

One way to make Whitehead’s formula explicit, and to make the integrand geometrically natural, is
to choose a = ayp, the 1-form of least L* norm for which day = f*w. Although we do not follow this
approach here, we show explicitly how to do so in Appendix F since this may be of independent interest.
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Instead, we are going to pull the whole situation back to 73 and perform our calculations there. In
particular, the formula for Hopf(f) above pulls back to the formula

v(gr) = f aAgw,
T3

where « is any 1-form on 73 such that da = g*w. One such choice would be @ = 0*ay. However, since
we do not have an explicit analytic formula for o, and since the formula for @ is complicated, we will
pursue a slightly different approach.

Taking advantage of the fact that g; is homotopic to g, we also have

v(gL):fa/\g}“w:fa/\wL
T3 T3

for any 1-form a on T3 such that da = w;. Therefore, what we really need is a canonical way to produce
such a 1-form a on T°. We will prove in Proposition VIIL2 that

ap = 0(p*wp)

has the desired property that da; = wp. Moreover, if @ is any other 1-form such that da = wg, then
|y | <|a|in L*(T?), with equality if and only if @ = ;.
We thus obtain the explicit integral formula for Milnor’s p-invariant of the three component link L:

1
uL) = $v(gr) = z‘f;w (¢ * wr) A wy,

which is formula (1) of Theorem B.

Proof of Theorem B, formula (2)

The 1-form §(¢ * wy) on T3 which appears in formula (1) of Theorem B converts to the vector field
V x(¢*Vy), which can be regarded as the magnetic field on T due to the current flow v;. The customary
minus sign here is now hidden in the definitions of the Laplacian and its inverse (Green’s operator).
The integral formula for Milnor’s p-invariant given in formula (1),

1
u(L) = Ef S(p*wp) ANwr,
T3

then converts to the formula
1 - -
ull) = = f (V X (¢ * VL)) sv.dvol
2 T3

in the language of vector fields. To obtain formula (2) of Theorem B, we first expand out the convolution
integral

(p*vL)(x) = ﬁs vL(Y) p(x — y) dy.
Then we compute its curl:
(Tex i) = [ Vox(we-y) dy = - [ i) x Letx-yay,
using the product formula V x (fa) = f(V x a) —a x V. Note that Vy x v,(y) = 0 since, from the point

of view of the variable x, the vector field v;(y) is constant.
Inserting the expression for the curl of ¢ * v; into the formula for u(L), we get

u(L)

1 - R
5 [ (@ xTex-y) - wiwaxay
T3xT3

1 - -
= 3 [ X Ve -y axay
T3xT3

1 IR _
=5 f vi(X) X Vi (y) « Vy p(x — y) dx dy,
T3XT3
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where at the last step we hid the minus sign by taking the gradient of ¢ with respect to y instead of x,
and obtained formula (2) of Theorem B.

VIll. FOURIER SERIES AND THE PROOF OF THEOREM B, FORMULA (3)

Fourier series and the fundamental solution of the Laplacian

In the proofs of formulas (1) and (2) of Theorem B, we needed to find a 1-form @ on T3 whose
exterior derivative is the exact 2-form w; associated with the three-component link L in S3. We asserted
that we can choose @ = d(¢ * wy), where ¢ is the fundamental solution of the scalar Laplacian on T3.
Furthermore, we asserted that this choice of « is canonical in the sense that it has the smallest L2 norm
among all possible choices. We justify these assertions in this section and lay the groundwork for the
proof of formula (3) of Theorem B by studying the calculus of differential forms on 73 = (R/27Z)? in
terms of their Fourier series.

We will prove the following two results:

Proposition VIIL.1. The fundamental solution of the scalar Laplacian on the
3-torus T? = (R/2n7)? is given by the formula
1 .
o) = — > e™/Inf.
87 n#0

The function ¢ is C* at all points x € T® except 0, where it becomes infinite.

Proposition VIIL2. If w is any exact differential form on T3 with C* coefficients, then
a = 6(p*w)

is a C* differential form satisfying da = w. Furthermore, if da = w as well, then |a|;» < |@|;2, with
equality if and only if @ = a.

Before diving into calculations, we pause for some words of explanation: We write Q¥(T) for the
space of C* k-forms on T3. With d as the exterior differentiation operator taking QK(T3) to QF1(T?),
and ¢ the co-differentiation map adjoint to d in the L? sense, the Laplacian of a k-form « is

Aa = (dé + dd)a.

This definition gives us the “geometer’s sign convention” for the Laplacian on functions (0-forms):

ﬁﬁ_ﬁﬁ],

2 2 2
axl sz 6x3

af = |

Proof of Proposition VIII.1

The fundamental solution of the scalar Laplacian is a function ¢, convolution with which “inverts”
the Laplacian to the extent that this is possible. On T3, only functions that integrate to zero are in the
range of the Laplacian, and so “the” fundamental solution of A on 77 is the function ¢ which satisfies

f @dvol = 0 and Aexf) = f
T3

for all f € C*(T?) such that f fdvol = 0.
T3

Even though we have expressed ¢ in terms of complex exponentials, the value of ¢ is real for real
values of x because of the symmetry of the coefficients.
Figure 24 shows the graph of the corresponding fundamental solution

1 ine
¢ = 7 ) e/’
4 n#0
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FIG. 24. Fundamental solution of the scalar Laplacian on S! x S

of the scalar Laplacian on the 2-torus S' x S!, summed for |n| < 10, and displayed over the range
[<3m,37] x [-3n, 3x].
With respect to the L? inner product

(f.g) = fT f(x) g(x)dx,

the set of complex exponentials {¢™* | n € Z3} is an orthogonal set, and (™%, ¢™*) = 873 for all n.
Any function f in L?>(T?) can be expanded into a Fourier series

f~ Z cne™X
neZz?

where

_ 1 mexy __ 1 f —in*x
Cn = 87r3<f’e ) = 3 T}f(x)e dx.

3

Moreover, by Plancharel’s theorem, the L*(73)-norm of f is equal to the £>-norm of the sequence of
coefficients:

e = [ s = Y s

nez3

This shows that the function ¢ of Proposition VIIL.1 is in L*(T?), since |cy|* is of order 1/[n|*, while the
number of lattice points at distance |n| from 0 is of order |n|*.
Because the range of the scalar Laplacian is the (closed) subspace of functions f for which

f fx)dx =0,
T3

we will denote this subspace of L*(T?) by L3(T?), and similarly for other function spaces, where a
zero subscript indicates that all functions in the space have average value zero. In terms of Fourier
coefficients, f € L3(T?) if and only if the Fourier coefficient co = c(0,0,0) = 0.

For functions f and g in C*(T?), their convolution f * g is defined by

(feg) = Lf(y)g(x—y)dy,
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and also lies in C*(7?). One checks easily that ™% % ¢™* = 0 if m # n, and e™* % ™% = 8x3e™'X,
Therefore, if f and g have Fourier series ) ch,e™ * and Y d,e™ %, then the Fourier series of f = g is

87> Z Cndne™ .
nez?

From this it follows that the operation of convolution satisfies fxg = g=* fand (f*g)«h = f*(g=h)
whenever all the convolutions are defined. Furthermore,

of

0 og
8_xk(f*g) = 6_xk*g_f*6_xk'

For u € C(T?), with
u(x) = anein"‘,
nez3
we have
Au(x) = Z|n|2b,,em"‘.
n#0

Because the (0, 0, 0)-coefficient of Au is zero, this shows why in order to solve Au = f we must restrict
ftobein C8°(T3). And for f € C8°(T3), with

fx) = chei“"‘,

nz0

the unique solution u € C8°(T3) of Au = f has bp = ca/In|?, and so, since

1 ine
¢ = o= ) "/,
ﬂ n+0

we conclude that u = ¢ * f. This completes the proof of Proposition VIII.1 except for the assertion
about the smoothness of ¢ away from its singularity, which follows from well-known local regularity
theorems for elliptic partial differential equations (see, for example, Folland"’, Theorem 6.33).

Fourier series and the calculus of differential forms on the 3-torus

To prove Proposition VIIL.2, we express the calculus of differential forms on 7° in terms of Fourier
series. Except for the fundamental solution ¢ of the (scalar) Laplacian on T3, we will assume all
functions and forms are C*.

We continue to express functions (0-forms) as Fourier series: for x = (s, ¢, u) and n = (n1, ny, n3), we
write

f(x) = Z cne™* € QUT?).
nez?

Likewise, we employ the notation described in the introduction and express 1-forms using
cn = (3, ¢, c%) and dx = (ds, dt, du). We write

a(x) = Z cne™*edx € QNT).

nez?
With xdx = (dt A du,du A ds,ds A dt) as before, we can express a 2-form as
B(x) = Z cne™*e % dx € QXT?).
nez’

Finally, with dV = ds A dt A du, a 3-form can be written as

y(x) = Z cne™*dV € Q3 (T?).

nez’
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It is straightforward to express both the exterior derivative d and the codifferential ¢ in terms of
Fourier coefficients. With f, @, 8 and y as above, we have

df = ) icane™*«dx and of = 0,
da = Zinxcnei“"‘- xdx and da = —Zimcnem"‘
Z in X cpe™* e dx

- Z icpne™ * e x dx

dp = Zin-cne"""‘dv and B

dy =0 and Oy

Thus, exterior differentiation and co-differentiation are expressed in terms of vector algebraic operations
on the Fourier coefficients. From these expressions, we conclude the following about the kernel and
image of d and ¢:

e For O-forms,

kerd = {f|cn = 0forn # 0, while ¢y is arbitrary}
imd = {0}
kero = {all f}
imd = {f|cy=0}
e For 1-forms, . . .
kerd = {a|cy = Apn for n # 0, while ¢y is arbitrary}
imd = {a|cy, = Aynforn #0, ¢g =0}
keréd = {a|cypen =0 forn # 0, while ¢, is arbitrary}
imé = {a|cp*n=0forn #0, ¢y =0}
o For 2-forms, kerd = {B]|cy*n =0 forn # 0, while ¢y is arbitrary}
imd = {B|cpen=0forn+0, ¢cg =0}
kerd = {B|cyp = Axn for n # 0, while ¢y is arbitrary}
imd = {f|cy =4Aynforn £ 0, ¢y = 0}
e For 3-forms,
kerd = {all y}
imd = {y|cy =0}
kerd = {y|cy, = 0forn # 0, while ¢y is arbitrary}
ims = {0}

Therefore imd C kerd and im§ C ker 8, and the following orthogonal (with respect to the L? inner
product) decompositions hold:

OKT?) = ker6@®imd = imd®kerd

for k = 0,...,3. The k-forms in ker d N ker ¢ are the forms whose Fourier series contain only constant
terms. These are called harmonic k-forms because they are in the kernel of the Laplacian A = dd + dd,
so we write Har*(T%) = kerd N ker 6. We then have the Hodge decomposition

QNT?) = imé @ Hark(T?) @ imd.

The Laplacian A: QX(T?) — QK(T?) preserves this Hodge decomposition, taking im & bijectively to
itself, killing Har*(7®), and taking im d bijectively to itself.
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Proof of Proposition VIIL.2

We must show that if w is any C* exact differential k-form on 7?3, then the (k — 1)-form @ = §(¢ * w)
is C* and satisfies da = w, and that if da = w as well, then |a|;> < [al;2, with equality if and only if
@ = a. We will carry this out specifically for 2-forms, because it is the case we use in Theorem B. The
proofs for 1-forms and 3-forms are essentially the same.

For a 2-form

B = chem'x- * dx,

nez’

its Laplacian is given by

AB = Z|n|2c,,e"""- * dx.

n+0

We can use convolution with the fundamental solution ¢ of the scalar Laplacian to express the Green’s
operator,

Cn  inex
Gr(B) = ¢*f = Zme“ o * dx.

n#0

Clearly the Laplacian A and the Green’s operator are inverses of one another when applied to 2-forms
with ¢y = 0, equivalently, to 2-forms /8 orthogonal to Har?(73).

To prove Proposition VIIL.2, assume that S is exact, that is, 8 € imd. Then Gr(g) is also exact, hence
certainly closed, and therefore

B = AGr(B) = (d6+6d)Gr(B) = d6Gr(B) = do(p = ).

Thus a = d(¢p * B) satisfies da = .

If @ is any other 2-form satisfying da = 3, then « differs from a by some closed 2-form, which must
be L2-orthogonal to « since « € im 8. Thus, |a|;> < [@];» by the Pythagorean theorem.

Since the Fourier coefficients of a C* 2-form decrease faster than any negative power of |n|, we have
that Gr(8) and ¢ Gr(8) will be C* if § is. This completes the proof of Proposition VIII.2.

Proof of Theorem B, formula (3)
This formula expresses Milnor’s invariant ¢(L) in terms of the Fourier coefficients of wy:

(L) = g,ﬁzw

where

wp = che’“"‘- * dx

with ¢, = a, + ib, and with a, and b, real.

The formula for w; is summed over n # 0 because, as we saw in the Introduction just before the
statement of Theorem B, the hypothesis of pairwise linking numbers zero is equivalent to the vanishing
of the coefficient ¢ in the Fourier expansion of wy.

We begin with formula (1) of Theorem B for u(L):

1
ulL) = Ef 6 * wr) A wy.
T3

We have

in*x

cpe
prwp = E z 5 - *dx,
In|
n#0
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and hence, from our table of derivatives and co-derivatives in terms of Fourier series,

(nXcp)ie™X
dprwn) = )= 15— -dx
n#0 n

To compute 6(¢ * wr) A wr, we use the fact that if v - dx is a 1-form and w - xdx is a 2-form, then
(V-dx)AN(W- *dx) = (v-w)dV.

Thus

N X Cy) * Cpy i€/ MM X
Sp*w) Awy = Z (n X ) ln‘|‘; dv.
m#0 n#0

When we insert this double sum into the integral u(L) = % fT3 o(p * wr) A wr, most of the terms
in the summation will integrate to zero, leaving only the terms where m + n = 0. In those cases,
M x — o0 — 1 integrates to 87°, the volume of 73.

Thus

u(L) = Z imXcy) Cp Z i(cp Xce_p)-M

2 2
n#0 In| n#0 In

and it remains to simplify this last series.
Since ¢, = a, +ib, and wy is real-valued, we have ¢_, = ¢, = a, — ib,. Hence ¢, X ¢c_, = —2ia, X by,
and therefore

u(L) = 47T3Z:i(cn><c_n)-n _ Z(anan) n’

2 2
n#0 |n| n#0 |11|

completing the proof of formula (3) and, with it, that of Theorem B.

Appendix A: Background and Motivation

Configuration spaces.

To study the linking of simple closed curves in a 3-manifold M from the perspective of homotopy
theory, it is convenient to ignore the knotting of individual components and focus on the relation of link
homotopy. For some background on this notion, see Milnor™* and, for example, Massey Casson'’,
Turaev'3, Porter'?, Fenn?, Orr?', Cochran??, and Habegger and Lin?

Configuration spaces come into the picture as follows. Let L be an ordered, oriented link in M with
n components X, Y, ... parametrized by x = x(s),y = y(t),... for s,1,... in S'. Then consider the
evaluation map

e : T" — Conf,M , (5,1,...)— (x,y,...)

from the n-torus 7" = §' x --- x §'! to the configuration space Conf,M of ordered n-tuples of distinct
points in M. Since link homotopies of L become homotopies of e;, the assignment L — ¢; induces a
map from the set £L,(M) of link homotopy classes of n-component links in M to the set [T", Conf,M]
of homotopy classes of maps from 7" to Conf, M,

e: L,(M) — [T", Conf,M].

We can think of the map e as defining a representation from the world of link homotopy to the world of
homotopy, and the basic question is whether or not this representation is faithful, that is, one-to-one.
For two-component links in R3, the representation e is faithful. The set £>(R?) is in one-to-one
correspondence with the integers via the classical linking number, while the set [72, Conf,R?] is also
in one-to-one correspondence with the integers via the Brouwer degree, since Conf,R* deformation
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retracts to S2. The correspondence e is bijective since the linking number of a two-component link
equals the degree of its Gauss map

y—

T2 — §2 )
ly — xl

, (5,0 —

The profit is the famous integral formula of Gauss?*,

1 dx dy x-y
Lk(X,Y) = — — X =
X, A7 Jrods  dr |x—yP

dx d
dsdt = j;zd_)scxd_)t}. ) o(y—x) ds dt,

where ¢(x) = 1/4n|x| is the fundamental solution of the scalar Laplacian in R?. The integrand is natural,
in the sense that it is invariant under the group of orientation-preserving rigid motions of R3, acting on
the link.

By contrast, for two-component links in S3 the representation e is not faithful. The configuration
space Conf,S3 has the homotopy type of S3, and hence all maps of T? to Conf,S? are homotopically
trivial. In particular, the analogue of Gauss’s linking integral in S 3, with an integrand which is geometri-
cally natural in the above sense, cannot be obtained by this route. Nevertheless, such an integral formula
was found by DeTurck and Gluck? using an alternative route via electrodynamics on the 3-sphere, and
independently by Kuperberg?® via the calculus of double forms.

For higher-dimensional two-component links, the same dichotomy holds. In R”, Scott?’ and Massey
and Rolfsen?® showed that link homotopy classes of links whose components are copies of S* and §"*!
are in bijective correspondence with homotopy classes of maps from S x S”7*~! to the configuration
space Conf,R” ~ S"~! and consequently with 7r,_;(S"~!") = Z. Finding a geometric linking integral is
straightforward, as the Gauss linking integral and its proof easily generalize to this setting. Shifting the
scene to S" does not change the link homotopy story, but all maps from S* x §"~*=! to the configuration
space Conf,S" ~ S" are homotopically trivial. Geometrically natural linking integrals still exist in this
situation, as demonstrated by DeTurck and Gluck?® and Shonkwiler and Vela-Vick®’, but finding them
requires new techniques.

For n-component homotopy Brunnian links in R> — meaning links that become trivial up to link
homotopy when any single component is removed — and analogous links in higher dimensions,
Koschorke®' showed that the representation e is again faithful. This provided the first proof (up to
sign) of our Theorem A for the case when the pairwise linking numbers are zero.

The content of the present paper is that, for arbitrary three-component links L in S3, the represen-
tation e is faithful, and that we are led thereby to a natural integral for Milnor’s triple linking number
when the pairwise linking numbers vanish. The relevant configuration space Conf3S? is easily seen to
deformation retract to S® x S2, where the S3 coordinate records one of the three points in each triple
(see Section IV). It follows that the evaluation map e; : T> — Conf3S? is homotopic to a map of T3
into an §? fiber, and this turns out to be, up to homotopy, our generalized Gauss map g;.

Theorem A asserts, among other things, that L and L’ are link homotopic if and only if g; and g, are
homotopic, and hence that

e: L3(S%) — [T3, Conf3S?]

is faithful. Furthermore, it was observed above that if 4 € SO(4) is an orientation preserving isometry of
S3, then enry = h - er where - is the diagonal action, and so the integrands in the formulas for Milnor’s
triple linking number p(L) in Theorem B are invariant under the action of SO(4).

In this paper, our constructions and theorems are set specifically in S3; the corresponding results in
R3 will be treated in a sequel.

Fluid mechanics and plasma physics.
The helicity of a vector field V defined on a bounded domain Q in R? is given by the formula

1 —
Hel(V) = o fQ V() x Vo)« S ddy = fQ V()X V() + ¥, glx-y) ddy.

where, as above, ¢ is the fundamental solution of the scalar Laplacian in R?, and dx and dy are volume
elements.
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Woltjer®? introduced this notion during his study of the magnetic field in the Crab Nebula, and showed
that the helicity of a magnetic field remains constant as the field evolves according to the equations
of ideal magnetohydrodynamics, and that it provides a lower bound for the field energy during such
evolution. The term “helicity” was coined by Moffatt’®>, who also derived the above formula from
Woltjer’s original expression.

There is no mistaking the analogy with Gauss’s linking integral, and no surprise that helicity is a
measure of the extent to which the orbits of V wrap and coil around one another. Since its introduction,
helicity has played an important role in astrophysics and solar physics, and in plasma physics here on
earth.

Looking back at Theorem B, we see that the integral in our formula for Milnor’s u-invariant of a
three-component link L in the 3-sphere expresses the helicity of the associated vector field v; on the
3-torus.

Our study was motivated by a problem proposed by Arnold and Khesin®** regarding the search for
“higher helicities” for divergence-free vector fields. In their own words:

The dream is to define such a hierarchy of invariants for generic vector fields such that, whereas
all the invariants of order < k have zero value for a given field and there exists a nonzero invariant
of order k + 1, this nonzero invariant provides a lower bound for the field energy.

Since the helicity integral above is analogous to the Gauss linking integral, the general hope is that
higher helicities will be analogous to higher order linking invariants. An alternative approach to helicity
may be found in the work of Cantarella and Parsley>>.

The formulation in Theorems A and B has led to partial results that address the case of vector fields
on invariant domains such as flux tubes modeled on the Borromean rings; see Komendarczyk36-37.

Other integral formulas. Previous integral formulas for Milnor’s triple linking number and at-
tempts to define a higher order helicity can be found in the work of Massey'®*®, Monastyrsky and
Retakh®, Berger*®*!, Guadagnini, Martellini and Mintchev#?, Evans and Berger*?, Akhmetiev and Ruz-
maiken***| Arnold and Khesin**, Laurence and Stredulinsky*®, Leal*’, Hornig and Mayer*®, Riviere*’,
Khesin®?, Bodecker and Hornig51 , Auckly and Kapitanskjl3, Akhmetiev®2, and Leal and Pineda’?.

The principal sources for these formulas are Massey triple products in cohomology, quantum field
theory in general, and Chern—Simons theory in particular. A common feature of these integral formulas

is that choices must be made to fix the domain of integration and the value of the integrand.

Appendix B: Proof of Proposition Ill.1

This proposition gives a formula for the primary and secondary invariants A(f) and v(f), of a smooth
map f : T3 — S? whose Pontryagin link £ is represented by a toral diagram in 72 without crossings,
with horizontal winding numbers p and g, vertical winding number 7, and total framing n:

Af) = (pg)  and  v(f) = n+pg+ ). rd; mod 2ged(p,q,7)

where r; and d; are the vertical winding numbers and depths (with respect to any chosen basepoint) of
the components of the diagram.

The formula for A(f) was derived in Section III and, as explained there, is at least well defined
modulo 2 ged(p, g, r), independent of the choice of basepoint. So it remains to verify that this is the
correct formula for v(f).

First observe that, in the absence of crossings, the integers r; are all that are needed to recover the link
L up to isotopy. In particular, each nonvertical component of £ can be taken to wind monotonically
around the last circle factor of T3, Furthermore, equipped with the total framing n, we can recover the
framed link £ up to framed bordism. To see this, note that a pair of saddle bordisms can be used as
shown in Figure 25 to transfer a twist in the framing from any component of L to any other, and so we
can distribute the framings in any desired way among the components.

We now propose to transform L by a sequence of framed bordisms into £, with some extra twists in
the framing. These correspond to homotopies of f and so do not change the Pontryagin invariant v(f).
We will carry this out on a diagrammatic level, transforming our given toral diagram, with total framing
n, to the diagram for £, shown in Figure 7(a) (reproduced below for the reader’s convenience) with
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IR
Yy

FIG. 25. Using saddles to transfer twists

some total framing, which by definition will equal v(f). So we must simply keep track of the change in
the total framing as we proceed.

A

|

FIG. 7(a). The link £, and its diagram

We first use saddle bordisms to replace the vertical winding of each non-vertical component £; by |r;|
zero-framed vertical components, at the cost of adding 7; to the total framing. The new vertical circles
are “adjacent” to O; — meaning displaced slightly to the right of it in the projection — and oriented up
or down according to the sign of r;. This is illustrated in Figure 26. The net effect on the diagram is to
reduce all the vertical winding numbers to zero on the components of D (i.e. to eliminate the internal
marked points N), to add }’|r;| isolated marked points, and to add },r; to the total framing of the
diagram, where the sums are only over the non-vertical components of L.

vl

FIG. 26. Using saddles to replace vertical winding by vertical circles

\

N\

Since our target is the base link £, (with extra twists), the vertical circles must be gathered together.
This is the purpose of our base point *, which will serve as a gathering spot, and the arcs y;, which will
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serve as the paths in 72 along which to move the vertical circles which at the moment are adjacent to the
L;. Ateach intersection of y; with a component of D, these vertical circles must cross the corresponding
strand of £. This crossing can be accomplished by a pair of saddle bordisms as indicated in Figure 27,
adding +2 to the diagram framing. On the diagrammatic level, this can viewed as a two step process,
running the bordism shown in Figure 26 backwards and then forwards, in order to move an isolated
marked point across a component of D, as shown at the bottom of the figure.

e I =

| N

FIG. 27. Using saddles to gather the vertical circles

\

Now it is easy to check that the act of removing the vertical winding of the nonvertical components
of £, and then gathering all the resulting vertical circles (including the original ones corresponding to
M) will add }; r;d; to the total framing of the diagram. Visually, this process can be thought of as a
“migration” to the base point of all the marked points in the diagram.

Next use disk bordisms to remove the null homotopic components of D (arranging for them to be
O-framed by storing their twists elsewhere, as explained above) and similarly use annular bordisms to
remove any pair of curves that are parallel but oppositely oriented. The diagram now consists of a (p, )
torus link in 72 (meaning ¢ parallel copies of the (p’, ¢’) torus knot, where p = cp’ and g = cq’ with
p’ and ¢’ relatively prime) together with r isolated marked points near *. The total framing, which was
originally equal to n, has changed to n + }’ r;d;.

Finally we transform the (p, ¢) torus link by using saddle bordisms (reversing the process described
above for removing crossings) into p copies of S! and g copies of S!, grouped as in £,,,,, at the cost of
adding pq to the total framing. Thus we have arrived at £,,,, having changed the total framing from 7 to
n+ pq+ Y, rid;. This verifies the stated formula for v(f), and completes the proof of Proposition III.1. O

Appendix C: Proof of the Bicycle Theorem V.1

The Bicycle Theorem asserts that for a generic link L in §3 with asymmetric characteristic map
hy : T3 — §? (defined in Section IV), the north pole k € S is a regular value of /;, and the collection
D of icycles of L together with their framings and vertical winding numbers (as defined in Section V)
form a toral diagram for the associated Pontryagin link £ = hzl (k).

To prove this, choose a parametrization x = x(s), y = y(#) and z = z(u) for the three components
X, Y and Z of L. Then Z coincides with the binding K of the standard open book, which is the circle
subgroup of §3 containing the quaternion k. Looking back at the formula for the Gauss map

hi(s,t,u) = (v: = x2)/ly: = x;| where a; =pr_(-az),
we see that we must understand the K-action sending z € K to the automorphism a — az of S, and the

induced K-action on R? via stereographic projection. Visualizing how these actions transform the pages
of the standard open books will aid us in our subsequent arguments, and we do this next.
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The geometry of the K-action

For any z = cos @ + k sin « in the binding K, right multiplication by Z = cos @ — ksin @ is an isometry
of §3 that rotates K by —« radians, likewise rotates the orthogonal great circle C of page centers by a
radians, and so advances each hemispherical page Hy to the page Hy,, while simultaneously rotating
the page by —a radians about its center iy. Therefore, as z traverses K, any given page turns once around
K, successively occupying the positions vacated by the other pages. During this time, the page spins
once negatively about its center, so that in total it is following a left-handed screw motion along C.

This turning of the hemispherical pages about K in 3 is transferred by stereographic projection to
a turning of the half-planar pages about the k-axis in R?, while the spherical rotations of the pages
in §3 become hyperbolic rotations of the pages in R* about their centers. This is a consequence of
the conformality of stereographic projection, which implies that the page identification Hy < Py is
conformal. Once again, the net effect is a left-handed screw motion along C.

This description of the K-action has the following technical consequence that is critical for our study
of the Gauss map of a generic link.

Lemma C.1. (Twist Lemma) Let x and y be distinct points in S° lying in the complement of the
binding K of the standard open book.

(a) If x and y lie on different pages, then for 7 € K, the vector y, — x, never lies on a page of the
corresponding open book in R3, and in particular never points straight up.

(b) If x and y lie on the same page, then as 7 traverses K, the vectors y, — x, lie on successive
pages in R3, turning once positively around the binding, and spinning once counterclockwise
without backtracking within the pages as they go. In particular, y, — x, points straight up
for a unique 7 = 7(x,y) € K.

Proof. Since the K-action carries pages to pages, x and y will lie on the same page in S? if and only if
x, and y, lie on the same page in R? for all z € K. Part (a) of the lemma is now obvious. Using the
meridional projection, and the description of the K-action above, part (b) of the lemma translates into
the following statement. For any pair of distinct points x and y in the upper half-plane model of the
hyperbolic plane H, the function

d(a) = arg(rot,y — rot,x)

is strictly increasing, where rot, : H — H is hyperbolic rotation about i by a radians. Since we wish to
prove this for all x and y, it suffices to show that d’(0) > 0 (because d’(«) for one choice of x and y is
equal to d’(0) for some other choice of x and y).

To prove this, we transfer the problem to the Poincaré disk D using the conformal map

1-2z

f:D—H , f(z)=1+z

i

that sends O to i. Hyperbolic rotation of H about i by any angle is conjugate by f to euclidean rotation
of D by the same angle. Thus we must show that for any pair of distinct points x and y in D, the function

g(@) = arg(f(ey) — f(e“x))

has positive derivative at @ = 0. Noting that f(a) — f(b) = 2i(b — a)/(1 + a)(1 + b) and using the fact
that the argument function converts products into sums and quotients into differences, we find that g(a)
differs by a constant from the function

h(@) = a—arg(l + e®x) — arg(l + €y),
and so it remains to show that #’(0) > 0. But a simple geometric argument using the central angle
theorem from elementary plane geometry shows that, for any given z € D, the derivative of the function
arg(l + €'“z) at @ = 0 is strictly less than 1/2. Therefore 7’'(0) > 1 — 1/2 — 1/2 = 0 as desired. m|



40

It follows from the twist lemma that, for any point (s, #) in the 2-torus that is isogonal for our generic
link L (meaning that x = x(s) and y = y(¢) have the same polar angle, and hence lie on the same page
of the open book), there exists a unique u = u(s,t) € S'! for which the vector y, — x, points straight up,
namely the u for which z = z(u) = 7(x, y). It follows that the link

L ="k = {(s,t,u) € T | (s,0) € D and u = us, 1)},

is the graph of the function u(s,t) over the collection D of isogonal curves in T2, as asserted in the
introduction.

We now use the twist lemma to prove part (a) of the bicycle theorem, asserting that & is a regular value
of hy. This will endow the components of £ with orientations (and thus vertical winding numbers)
and framings, as defined in Section III. The proof of the bicycle theorem will then be completed by
showing that these agree with the preferred orientations, vertical winding numbers and framings of the
components of D, also defined in Section III.

Why is k a regular value of /,?

Suppose that iy (s, t,u) = k. This means that the vector from x;, to y, points straight up, and so lies in
some page P of the standard open book in R3. We must show that at (s, ¢, ) the vectors dh;, d,h; and
d,h; span the tangent space to S at k.

We are guided by Figure 28, depicting a neighborhood of the vertical vector v from x, to y, in R3,
lying on the page P. In this figure, X, and Y, denote the images of X and Y under the z-action, one or
both of which must be transverse to P since L is generic. We arbitrarily depict X, tangent to P and Y,
transverse to it.

uhy V Y,

V TURN

FIG. 28. k is regular

The hollow arrows in the figure indicate the left-handed screw motion of the K-action. In particular,
as the u parameter increases along K, this action (the stereographic image of right multiplication by
—Z) turns the pages in the indicated direction while spinning them in a left-handed fashion about their
centers.

As the ¢ parameter along Y increases, the tip of v moves to the right along Y, so that d,/; also points
to the right, transverse to P. For clarity, we draw this partial derivative vector at the tip of v, even though
it is really tangent to S at its north pole k.

As the u parameter along Z increases, two things happen which affect v. The page containing it turns
around the binding, but such an action keeps v vertical, so has no infinitesimal effect. In addition, the
page spins around its center, shifting the binding in a downward direction. Thus by the twist lemma, the
vector 0,y is nonzero and tangent to the page, pointing toward the binding when placed with its initial
point at y,.

It follows that d,h; and 9,h;, are linearly independent, confirming that (s, z, u) is a regular point of the
map hy. Since (s, ¢, u) was chosen arbitrarily in hil(k), we see that & is a regular value of Ay, proving
part (a) of the Bicycle Theorem.
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Finishing the proof of the Bicycle Theorem

Starting with a three-component link L in generic position in S3, we have shown above that the
Pontryagin link £ of its Gauss map /. is given by

L= 'k = {(s,t,u) € T | (5,¢) € D and u = u(s,1)}.

It remains to prove that the preferred orientation, vertical winding number r; and framing »; of each
isogonal curve 9, as specified in Figure 16 and just before the statement of the bicycle theorem, agree
with the orientation, vertical winding number and framing of the component £; of the Pontryagin link
that lies over D;.

To see that the orientations agree, choose a regular page vector (x,y) parametrized by an isogonal
point (s, 7) in D;, and consider the orientation of Y relative to the page containing x and y, as recorded
by the sign of y.

Figure 29 shows the associated vertical vector (x;,y,) in 3-space for the case when sign(y) = +1,
causing the displaced link component Y, to point to the right. Arguing as above (see Figure 28) we
see that d,h;, also points to the right, while 9,/ points toward the binding as always. Thus 9,4, and
0,hy, form a positive basis for the tangent plane to S? at k. Since 0, 9, and 9, form a positive basis
for the tangent space to T at each of its points, it follows that the link component £; must be oriented
in the direction of increasing s near the associated point (s, #, #) in the 3-torus, and this agrees with the
orientation assigned to O; in Figure 16.

A

duhy, Y.

arhy,

FIG. 29. Orientation of the Pontryagin link

Similarly, if sign(y) = —1 then £; points in the direction of decreasing s near (s, t, u), which again is
seen from Figure 16 to agree with the preferred orientation on ;.

Next consider the vertical winding number r; of D;. By definition r; is equal to the meridional degree
m; of the associated bicycle P;, that is, the number of times that the page vectors spin in the pages of
the open book as the bicycle is traversed. By the twist lemma, this is equal to the number of times that
z spins around K, or equivalently that u = u(s, f) spins around the circle as (s, t) traverses 9;, which is
the vertical winding number of £;.

Finally consider the framing n; of D;. By definition n; = —{; —m;, where ¢; and m; are the longitudinal
and meridional degrees of the associated bicycle ;. This integer specifies a normal vector field n to £;
by adding n; full twists (positive or negative according to the sign of #;) to the lift z of a normal vector
field to D; in T2, the “zero” or “blackboard” framing.

We must show that the vector field n coincides with the Pontryagin framing of .£;. In other words, the
differential of h; carries it onto a homotopically trivial loop of nonzero tangent vectors to S2 at k. To
see this, first note that z is homotopic to the vertical vector field d,, remaining nonzero and transverse
to £; during the homotopy. Now since 9,/ is always tangent to the page containing x, and y,, as shown
above, it is clear that each longitudinal circuit of the bicycle P; causes dh;(z) to spin once in the same
direction about the binding. By the twist lemma, each meridional spin of the bicycle also causes dh;(z)
to spin once about the binding. Thus dhy(z) spins ¢; + m; times as the bicycle is traversed. Adding
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n; = —€; — m; full twists to the framing negates this spinning, and so dh;(n) does not spin at all, up to
isotopy, as asserted.
This completes the proof of the bicycle theorem.

Appendix D: Proof of the Double Crossing Formula, Corollary V.2

Recall that this is a formula for the change Av in the Pontryagin v-invariant of alink L = XUY U Z in
S3 when a pair of crossings of opposite signs between X and Y are changed. Smoothing both crossings,
the components X and Y are transformed into a pair of knots P and Q, as explained in detail above the
statement of Corollary V.2 and illustrated in Figure 20. The double crossing formula then states that

Av = 21k(P,Z) = -2Lk(Q,Z) mod 2gcd(p,q,r)

where p, g and r are the pairwise linking numbers of the components of L.
To prove this, first note that

Lk(PUQ,Z) = Lk(XUY,Z) = p+qg = 0 mod gcd(p,q,r)

so it suffices to establish the first equality.

We may assume that the two page vectors v, = (x,,y,) and v_ = (x_,y_) associated with the chosen
crossings lie on distinct hemispherical pages H, and H_ of the standard open book in S 3, and that these
pages contain no critical points in the link. These two page vectors may lie in distinct bicycles in L, or
they may lie in the same bicycle.

Suppose first that v, and v_ lie in distinct bicycles P, and P_ in L. When we change L to L, these
bicycles will change, but the icycles D, and D_ in the 2-torus that parametrize them will stay the same.
However, their vertical winding numbers r, and r_ (which record the meridional degrees of £, and _)
and their framings n, and n_ (which record the negative of the sum of the meridional and longitudinal
degrees of £, and #_) will change. In particular, we claim that

re = ry—1 and T =r_+1,

and consequently 7, =n, + 1 and n_ = n_ — 1 since the longitudinal degrees of the bicycles clearly
do not change. The figure below helps us to see this.

Y \/ Y \ _
x =L X _

In this figure, we start with a positive crossing in L and change it to a negative crossing in L. Since the
strands of X and Y are both pointing to the right, the bicycle £, is moving from left to right. During this
motion the page vectors in #, undergo half a counter-clockwise rotation with respect to the preferred
orientation on the pages. In the corresponding picture for L, we see half a clockwise rotation. Therefore
the bicycle in L has one more full clockwise rotation in the pages than in L, and so7, = r, — 1 as
claimed.

If, for example, we switched the arrow on the strand of Y, we would have a negative crossing, but
then the corresponding bicycle would be moving from right to left, and we would see that7_ = r_ + 1
as claimed. With this guidance, we leave the remaining cases to the reader.

Now suppose that the page vectors v, and v_ lie in the same bicycle P, = P_. Then the above
changes in vertical winding number r for the corresponding icycle D, = O_ will cancel, and so we see
that neither the vertical winding number nor the framing of the icycle will change, that is 7. = r. and
Ny =n..

Note that in either case, whether v, and v_ lie in the same or different bicycles, the fotal framing n of
the diagram (the sum of the framings of the icycles) does not change.

At this point we recall Proposition III.1, which tells us that

v(hy) = n+pg+ 3 rd;.



43

In passing from L to L via the double crossing change, we have just seen that the total framing n does
not change, and the pairwise linking numbers p and g certainly do not change. We have also seen that
the icycles stay the same, so their depths d¢; do not change. Only the winding numbers r, and r_ of the
(possibly equal) icycles D, and D_ may change. In particular, they also do not change when the page
vectors

Vi = (x(s:),y(t)  and Vo = (x(s0),¥(10))

lie in the same bicycle, and so Av = 0 in this case, while they change to7, = r, —land7. = r_+ 1
when v, and v_ lie in distinct bicycles, in which case we have

Av = vhy)=v(hy) = - —r)d-+ (0 —r)d, = d_—d,.

Thus in either case it remains to prove that d_ — d, = 2Lk(P, Z).

To show this, we must compute the depths d, and d_ of D, and D_. This requires a choice of base
point, and then a choice of paths y, and y_ from D, and D_ to this base point. We let (s, ) be the
base point, and use the vertical path y, from (s, ;) to (s4,7-) and the horizontal path y_ from (s_, 7_)
to (s4,12).

The depth d_ of the component D_ of D counts the intersections of y_ with 9, which means that it
counts the times that (x(s), y(¢-)) is a page vector for s_ < s < s, assuming parametrizations set up so
that s_ < s, . Since y(z_) already lies in the page H_, this means we are counting the times that x(s)
also lies in H_ for s < s < s, . In other words we are counting the intersection number X_, « H_.
Examining Figure 16, we find that the signs of the intersection points of y_ with D agree with the signs
of the corresponding intersection points of X_, with H_, and hence

d- =2X ,*H_ mod2gcd(p,q,r).

In a similar fashion, intersections of y, with D correspond to intersections of Y._ with H,, but in this
case, the signs of corresponding points of intersection are opposites, and so the depth of D, is

d, = -2Y, *H, mod 2gcd(p,q,r).

Therefore the assertion that d_ — d, = 2Lk(P,Z), which will complete the proof of the corollary,
reduces to the identity

X_,*H_+Y, *H, = Lk(P,Z),

which follows easily from the fact that P = X_, U Y, _. Figure 30 helps us to see this.

FIG. 30. The linkingof P=X_, U Y, and Z
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In the figure, the arc X_, winds around the vertical Z axis k times and the arc Y,_ winds around it
¢ times, while the entire loop P = X_, U Y,_ winds around it k + £ + 1 times. By our half-counting
convention, we have

+k and Yo_oeH, = 1 4¢

X_,H_ = !

1
2

and the result follows. O

Appendix E: Numerical computation

Matlab was used to calculate an approximation to Milnor’s y-invariant as given by formula (3) of
Theorem B for the three-component link L in S* parametrized by

x(s) = ((1-p*+(p* —gP)sin’*s)'?, pcoss, gsins, 0)

y(®)
zw) = ((1=p*+ (P> = gH)sin®w)'’?, gsinu, 0, pcosu)

(¢! —p2+(p2 —qz)sinzt)l/z, 0, pcost, gsint)

forp=.7,q = .4, and s, t,u € [0, 2n]; this is a concrete realization of the Borromean rings with u = —1,
whose stereographic projection is shown in Figure 31. In particular, we used Matlab to approximate
the Fourier coefficients ¢, of its characteristic form w;, for n € [-64, 6413, using subdivisions of the s,
t and u intervals into 256 subintervals to estimate the associated integrals. The approximation of u we
obtained in this way was —0.999999999987.

FIG. 31. Borromean rings

Appendix F: Whitehead’s integral formula for the Hopf invariant

In this appendix, we make J. H. C. Whitehead’s integral formula for the Hopf invariant of a map
f: 83— S? explicit. Recall from Section VII Whitehead’s formula,

Hopf(f) = fsza/\wf,

where wy = f*w is the pullback to § 3 of the normalized area form w on S2, and « is any 1-form on S
such that da = wy. To make this formula explicit requires a way to produce such an a.
To do this, we first write Whitehead’s formula in the language of vector fields,

Hopf(f) =f§-?'fdvol,
3

where the 2-form wy on § 3 has been converted to the vector field v + in the usual way, and where ais
any vector field on S ¥ such that V x a = v;.
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An explicit recipe for a was given by DeTurck and Gluck?:

a(y) = BS(v)(y) = fs P vr(%) X Vy o(X, ) dx.

Here BS is the Biot—Savart operator for vector fields on the 3-sphere. In the last integral, Pyy indicates
parallel transport in S along the geodesic segment from X to y, the function ¢ is given by

o) = — (r — a)csca,

42
and ¢(x,y) is an abbreviation for ¢(a(X,y)), with a(x,y) the geodesic distance on § 3 between x and y.
The significance of the function ¢ is that it is the fundamental solution of a shifted Laplacian on S3:

“Ap—¢ =4,

where ¢ is the Dirac delta function.
The above formula for BS(v r) is the analogue on § 3 of the classical Biot—Savart formula from elec-

trodynamics in R?, expressing the magnetic field BS(Vy) in terms of the current flow v;. The equation
V x BS(v/) = vy is just one of Maxwell’s equations, transplanted to S°.

Inserting this formula for BS(v) into the previous formula for the Hopf invariant and performing
simple manipulations, we get

Hopf(f) = - f Pyx Vr(X) X V/(y) * Vy (X, y) dx dy,
§3xs3

the explicit version of Whitehead’s integral formula on the 3-sphere S°.
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