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To each three-component link in the 3-sphere we associate a generalized Gauss map from
the 3-torus to the 2-sphere, and show that the pairwise linking numbers and Milnor triple
linking number that classify the link up to link homotopy correspond to the Pontryagin
invariants that classify its generalized Gauss map up to homotopy. We view this as a
natural extension of the familiar situation for two-component links in 3-space, where the
linking number is the degree of the classical Gauss map from the 2-torus to the 2-sphere.
The generalized Gauss map, like its prototype, is geometrically natural in the sense that it
is equivariant with respect to orientation-preserving isometries of the ambient space, thus
positioning it for application to physical situations.

When the pairwise linking numbers of a three-component link are all zero, we give an
integral formula for the triple linking number analogous to the Gauss integral for the pair-
wise linking numbers. This new integral is also geometrically natural, like its prototype,
in the sense that the integrand is invariant under orientation-preserving isometries of the
ambient space. Versions of this integral have been applied by Komendarczyk in special
cases to problems of higher order helicity and derivation of lower bounds for the energy
of magnetic fields.

We have set this entire paper in the 3-sphere because our generalized Gauss map is
easiest to present here, but in a subsequent paper we will give the corresponding maps and
integral formulas in Euclidean 3-space.

I. INTRODUCTION

Borromean Rings

In his senior thesis, published in 1954, John Milnor1 classified three-component
links in the 3-sphere S 3 up to link homotopy, a deformation during which each
component may cross itself but distinct components must remain disjoint. A com-
plete set of invariants is given by the pairwise linking numbers p, q and r of the
components, and by the residue class µ of one further integer modulo the greatest
common divisor of p, q and r, Milnor’s triple linking number. For example, the
Borromean rings shown here have p = q = r = 0 and µ = ±1, where the sign
depends on the ordering and orientation of the components.
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To each three-component link L in S 3 we will associate a generalized Gauss map gL from the 3-torus
T 3 to the 2-sphere S 2 in such a way that link homotopies of L become homotopies of gL. The assignment
L 7→ gL then defines a function

g : L3 −→ [T 3, S 2]

from the setL3 of link homotopy classes of three-component links in S 3 to the set [T 3, S 2] of homotopy
classes of maps T 3 → S 2, and it will be seen below that g is injective.

Maps from T 3 to S 2 were classified up to homotopy by Lev Pontryagin2 in 1941. A complete set of
invariants is given by the degrees p, q and r of the restrictions to the 2-dimensional coordinate subtori,
and by the residue class ν of one further integer modulo twice the greatest common divisor of p, q and
r, the Pontryagin invariant of the map. This invariant is an analogue of the Hopf invariant for maps
from S 3 to S 2, and is an absolute version of the relative invariant originally defined by Pontryagin for
pairs of maps from a 3-complex to S 2 that agree on the 2-skeleton of the domain.

Our first main result, Theorem A below, equates Milnor’s and Pontryagin’s invariants p, q and r for
L and gL, and asserts that 2µ(L) = ν(gL). As a consequence, the function g : L3 −→ [T 3, S 2] above is
one-to-one, with image the set of maps of even ν-invariant.

In the special case when p = q = r = 0, we derive an explicit and geometrically natural integral
formula for the triple linking number, reminiscent of Gauss’ classical integral formula for the pairwise
linking number. This formula and variations of it are presented in Theorem B below.

In the rest of this introduction, we provide the definition of the generalized Gauss map and give careful
statements of Theorems A and B. Some motivation for our work from the mathematical perspective of
configuration spaces, and from the physical perspective of fluid mechanics and plasma physics, may be
found in Appendix A.

The generalized Gauss map of a three-component link in the 3-sphere
Let x, y and z be three distinct points on the unit 3-sphere S 3 in R4. They cannot lie on a straight

line in R4, so must span a 2-plane there. Translate this plane to pass through the origin, and then
orient it so that the vectors x − z and y − z form a positive basis. The result is an element G(x, y, z) of
the Grassmann manifold G2R

4 of all oriented 2-planes through the origin in 4-space. This procedure
defines the Grassmann map

G : Conf3S 3 −→ G2R
4

pictured in Figure 1, where Conf3S 3 ⊂ S 3 × S 3 × S 3 is the configuration space of ordered triples of
distinct points in S 3. The map G is equivariant with respect to the diagonal SO(4) action on S 3×S 3×S 3

and the usual SO(4) action on G2R
4.

G(x, y, z)

x
y

z

S 3
R4

FIG. 1. The Grassmann map (x, y, z) 7→ G(x, y, z)

The Grassmann manifold G2R
4 is diffeomorphic to the product S 2×S 2 of two 2-spheres, as explained

in Section IV below. Let π+ and π− : G2R
4 → S 2 denote the projections to the two factors. One of these

will be used in the definition of the generalized Gauss map, but the choice of which one will be seen to
be immaterial.

Now let L be a link in S 3 with three parametrized components

X = {x(s) | s ∈ S 1} , Y = {y(t) | t ∈ S 1} and Z = {z(u) | u ∈ S 1}
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as indicated schematically in Figure 2. Here and throughout, we view the parametrizing circle S 1 as the
quotient R/2πZ, and assume implicitly that the parametrizing functions x = x(s), y = y(t) and z = z(u)
are smooth with nowhere vanishing derivatives.

X

Y

Z

S 3

FIG. 2. The link L in S 3

We define the generalized Gauss map gL : T 3 → S 2 by the formula

gL(s, t, u) = π+(G(x(s), y(t), z(u)).

where G : Conf3S 3 → G2R
4 is the Grassman map and π+ : G2R

4 = S 2×S 2 → S 2 is the projection onto
the first factor. Thus gL is the composition π+GeL where eL : T 3 → Conf3S 3, (s, t, u) 7→ (x(s), y(t), z(u))
is the embedding that parametrizes the link. We regard gL as a natural generalization of the classical
Gauss map T 2 → S 2 associated with a two-component link in R3.

It is evident that the map gL is geometrically natural in the sense that it is equivariant with respect to
the action of SO(4) on the link L and on the sphere S 2. That is, if h ∈ SO(4), then gh(L) = h ◦ gL, where
h acts on G2R

4 � S 2 × S 2 via the double covering SO(4) → SO(3) × SO(3), and then accordingly on
each S 2 factor.

It is also clear that the homotopy class of gL is unchanged under reparametrization of L, or more
generally under any link homotopy of L. Furthermore, gL is “symmetric” in that it transforms under
any permutation of the components of L by precomposing with the corresponding permutation auto-
morphism of T 3 multiplied by the sign of the permutation.

Statement of results
The first of our two main results gives an explicit correspondence between the Milnor link homotopy

invariants of a three-component ordered, oriented link L in the 3-sphere and the Pontryagin homotopy
invariants of its generalized Gauss map.

Theorem A. Let L be a 3-component link in S3. Then the pairwise linking numbers p, q and r
of L are equal to the degrees of its generalized Gauss map gL : T3 → S2 on the two-dimensional
coordinate subtori of T3, while twice Milnor’s µ-invariant for L is equal to Pontryagin’s ν-invariant
for gL modulo 2 gcd(p, q, r).

Conventions. (1) In this paper, links in S 3 are always ordered (the components are taken in a specific
order) and oriented (each component is oriented).
(2) The two-dimensional coordinate subtori of T 3 are oriented to have positive intersection with the
remaining circle factors.

Our second main result is an explicit and geometrically natural formula for Milnor’s triple linking
number µ(L), in the case that all the pairwise linking numbers of L vanish, that is reminiscent of Gauss’
classical integral formula for the linking number of a two-component link. This formula will be pre-
sented in three versions: first as an integral involving differential forms on the 3-torus, second as the
same integral expressed in terms of vector fields, and finally as an infinite sum involving Fourier coeffi-
cients.

To state these formulas, we need some definitions. Let ω denote the Euclidean area 2-form on S 2,
normalized to have total area 1. Then ω pulls back under the generalized Gauss map gL to a closed
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2-form ωL on T 3, which can be converted to a divergence-free vector field ⇀vL on T 3 via the usual
formula

ωL(⇀a ,
⇀

b) = (⇀a ×
⇀

b) · ⇀vL.

We call ωL the characteristic 2-form of L, and ⇀vL its characteristic vector field. When p, q and r are
all zero, ωL is exact and ⇀vL is in the image of curl. In Section VII we give explicit formulas for ωL and
⇀vL, and in Section VIII for the fundamental solution ϕ of the scalar Laplacian on T 3, which appear in
the integral formulas for µ(L).

For the third version of our formula for the Milnor invariant, we need to express the characteristic
2-form and vector field in terms of Fourier series on the 3-torus. To that end, view T 3 as the quotient
(R/2πZ)3 and write x = (s, t, u) ∈ R3 for a general point there. Using the complex form of Fourier
series, express

ωL =
∑
n∈Z3

(
cs

n dt ∧ du + ct
n du ∧ ds + cu

n ds ∧ dt
)

ein·x =
∑

n ∈Z3

cn ein·x · ?dx

where cn = (cs
n, c

t
n, c

u
n) , dx = (ds, dt, du) and ?dx = (dt∧du, du∧ds, ds∧dt) in the final expression.

It follows that ⇀vL =
∑

n ∈Z3 cn ein·x · ∂x, where ∂x = (∂/∂s, ∂/∂t, ∂/∂u).
According to Theorem A, the pairwise linking numbers p, q and r of L are equal to the degrees of its

Gauss map gL on the two-dimensional coordinate subtori of T 3, and these degrees in turn are equal to
the integrals there of the characteristic 2-form ωL. In particular, ωL is exact if and only if these degrees
are all zero. In the language of vector fields, the degree of gL on a coordinate subtorus is the flux of the
characteristic vector field ⇀vL through this subtorus, and hence ⇀vL is in the image of curl if and only if all
of these fluxes are zero.

When we expand ωL above as a Fourier series, it is only the term

c0 · ?dx = cs
0 dt ∧ du + ct

0 du ∧ ds + cu
0 ds ∧ dt

which has the potential for a non-zero integral over the coordinate subtori, and it vanishes precisely
when p, q and r are all zero.

Theorem B. If the pairwise linking numbers of a three-component link L in S3 are all zero, then
Milnor’s µ-invariant of L is given by each of the following equivalent formulas

µ(L) = 1/2
∫

T3
d−1(ωL) ∧ ωL = 1/2

∫
T3
δ(ϕ ∗ ωL) ∧ ωL (1)

= 1/2
∫

T3×T3

⇀vL(x) × ⇀vL(y) · ∇y ϕ(x − y) dx dy (2)

= 8π3
∑
n,0

an × bn · n/|n|2 . (3)

where ϕ is the fundamental solution of the scalar Laplacian on the 3-torus, ωL and ⇀vL are the
characteristic form and vector field of L, the sum in (3) is over all nonzero lattice points in Z3, and
an and bn are the real and imaginary parts of the Fourier coefficients cn of ωL and ⇀vL.

Explanation of the notation. In (1), d−1(ωL) denotes any 1-form on T 3 whose exterior derivative is
ωL. Among such 1-forms, the specific choice δ(ϕ ∗ωL) has the smallest L2 norm, where δ is the exterior
co-derivative (L2 adjoint of d), and where ϕ ∗ ωL is the convolution of ϕ with ωL, discussed in detail in
Sections VII and VIII.

In (2), the difference x − y is taken in the abelian group structure on T 3, the expression ∇y ϕ(x − y)
indicates the gradient with respect to y while x is held fixed, and dx and dy are volume elements on
T 3. This formula is just the vector field version of (1) in which the integral hidden in the convolution is
expressed openly; we will see in Appendix A that it represents the “helicity” of the vector field ⇀vL on
T 3.

Observe that the integrands in (1) and (2) are invariant under the group SO(4) of orientation-
preserving rigid motions of S 3, attesting to the naturality of the formulas.
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Organization of the paper

Our main narrative thread appears in the body of the paper, and may be read straight through. The
background and motivation for our work from the topological perspective of configuration spaces, and
from the physical perspective of fluid mechanics and plasma physics, may be found in Appendix A.

The key idea of the proof of Theorem A centers on the “delta move”, a higher order variant of a
crossing change. Applied to a three-component link L in the 3-sphere, we show easily that this move
increases the Milnor µ-invariant by 1, and then the bulk of the proof is devoted to showing that it
increases Pontryagin’s ν-invariant by 2.

The foundational material for this proof is contained in Sections II and III. In particular, in Section II
we discuss how to compute Milnor’s µ-invariant, describe the delta move, and prove that it increases
the µ-invariant by 1. In Section III, we discuss Pontryagin’s homotopy classification of maps from a
3-manifold to the 2-sphere in terms of framed bordism of framed links, define the “Pontryagin link”
of such a map to be the inverse image of any regular value, and then show how to convert the relative
ν-invariant to an absolute one when the manifold is the 3-torus. This section concludes with a simple
procedure for computing the absolute ν-invariant of any map of the 3-torus to the 2-sphere from a
diagram of its Pontryagin link, whose proof appears in Appendix B.

The proof of Theorem A will occupy us in Sections IV–VI, and is organized as follows.
In Section IV, we derive an explicit formula for the generalized Gauss map gL needed for the proof

of Theorem B, but not for that of Theorem A. We then describe an alternative asymmetric form hL of
the generalized Gauss map that is more convenient for the proof of Theorem A, and that, just as for gL,
depends a priori on the choice of a projection to the 2-sphere. We show that the two generalized Gauss
maps are homotopic to one another, and that, up to homotopy, neither in fact depends on the choice of
projection. We note a close relation between hL and the classical Gauss maps of two-component links
in 3-space, and use this, together with the symmetry of gL, to prove the first statement in Theorem A.

In Section V, we set up for the proof of the rest of Theorem A by describing the standard open-book
structure on S 3 with disk pages, use a link homotopy to move a given link L into “generic position”
with respect to it, and then show how to explicitly visualize the Pontryagin link of the corresponding
asymmetric generalized Gauss map hL. Finally, we use the results of Section III to develop a method
for computing ν(hL) = ν(gL). The key technical results in this section are the Bicycle Theorem and its
corollary, the Double Crossing Formula, whose proofs appear in Appendices C and D.

In Section VI, we complete the proof of Theorem A by induction, using the methods developed in
Sections II and III to first confirm the “base case”, and then using the methods of Section V to carry
out the inductive step, showing that the delta move increases Pontryagin’s ν-invariant by 2. An entirely
different, algebraic proof of Theorem A, using string links and maps of the 2-torus to the 2-sphere, may
be found in our paper3.

In Sections VII and VIII, we investigate the special case when the pairwise linking numbers p, q
and r of L are all zero, and so the µ and ν-invariants are ordinary integers. In this case we will use
J. H. C. Whitehead’s integral formula for the Hopf invariant, adapted to maps of the 3-torus to the
2-sphere, together with a formula for the fundamental solution of the scalar Laplacian on the 3-torus
as a Fourier series in three variables, to provide an explicit integral formula for ν(gL) (Theorem B) and
hence for µ(L) in light of Theorem A.

II. THE MILNOR µ-INVARIANT

Let L be a three-component link in either R3 or S 3, with oriented components X, Y and Z, and
pairwise linking numbers p, q and r. Milnor’s original definition of the triple linking number µ(L),
typically denoted µ̄123(L), was algebraic. The formulation in his PhD thesis4 is expressed in terms of
the lower central series of the link group G, the fundamental group of the complement of L, as follows.

Choose based meridians for the link components X, Y and Z, and let x, y and z denote the correspond-
ing elements of G. In general, these three elements do not generate G, but they do generate the quotient
of G by the third term [[G,G],G] in its lower central series. In this quotient group, the longitude of Z
can be written as a word w in x, y and z and their inverses. Assign an integer mxy(w) to this word that
counts with signs the number of times that x appears before y in w, allowing intervening letters. More
precisely, each appearance of x · · · y or x−1 · · · y−1 contributes +1 to mxy(w), while x · · · y−1 or x−1 · · · y
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contributes −1. Then µ(L) is the element of Zgcd(p,q,r) defined by

µ(L) = mxy(w) mod gcd(p, q, r).

There is a geometric reformulation of this definition, found by Mellor and Melvin5, that is more
convenient for our purposes: choose Seifert surfaces FX , FY and FZ for the components of L, and move
these into general position. Starting at any point on X, record its intersection with the Seifert surfaces
for Y and Z by a word wX in y and z. For example a y or y−1 in wX indicates a positive or negative
intersection point of X with FY . Set mX = myz(wX), where the right hand side is computed as in the last
paragraph, and similarly set mY = mzx(wY ) and mZ = mxy(wZ). Finally, let t be the signed count of the
number of triple points of intersection of the three Seifert surfaces. Then

µ(L) = mX + mY + mZ − t mod gcd(p, q, r).

It follows from this formula that µ(L) is invariant under even permutations of the components of L, but
changes sign under odd permutations. This is a well known property of Milnor’s triple linking number.

We give two sample calculations of the triple linking number, using this geometric formulation, that
will feature in our inductive proof of Theorem A in Section VI.

Example II.1. Let Lpqr be the link shown in Figure 3, with components X, Y and Z and with pair-
wise linking numbers p, q and r. Choose the Seifert surfaces FX , FY and FZ to be the obvious disks,
essentially lying in the page, bounded by X, Y and Z.

X

YZ

rq

p

FIG. 3. The base link Lpqr for p = 5, q = 3, r = −2

Starting at appropriate points on the link components, we can read off the words

wX = yrzq , wY = zpxr and wZ = xqyp.

Thus mX = qr, mY = rp and mZ = pq. Furthermore, it is clear that there are no triple points of
intersection of the three disks. Therefore

µ(Lpqr) = qr + rp + pq − 0 = 0 ∈ Zgcd(p,q,r).

The links Lpqr will serve as the base links for our proof of Theorem A.

Example II.2. Consider the delta move shown in Figure 4, transforming the link L on the left to the link
L̂ on the right. This move takes place within a 3-ball, outside of which the link is left fixed. It does not
alter the pairwise linking numbers of L, and may be thought of as a higher order variant of a crossing
change.

The delta move was introduced by Matveev6. It was shown by Murakami and Nakanishi7 that a
suitable sequence of such moves can transform any link into any other link with the same number
of components and the same pairwise linking numbers. In particular, the base link Lpqr above can be
transformed into any other three-component link with pairwise linking numbers p, q and r by a sequence
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X X̂

Y Ŷ

Z Ẑ

FIG. 4. The delta move L→ L̂

of delta moves. The inductive step of our proof of Theorem A will be based on this observation, and so
we determine right now the effect of the delta move on the µ-invariant.

If the three arcs involved in the delta move do not come from three distinct components of the link
L, then the change can be achieved by a link homotopy, and hence neither Milnor’s µ-invariant nor
Pontryagin’s ν-invariant for gL will change.

But if the arcs do come from three distinct components of L as shown in the figure, then µ increases
by 1, that is µ(L̂) = µ(L)+1. This can be seen as follows, using the geometric formula for the µ-invariant.

In Figure 5, we display on the left fragments of the Seifert surfaces FX , FY and FZ before the delta
move, while on the right, after the delta move, each old surface is enlarged a bit to provide new surfaces
FX̂ , FŶ and FẐ .

FX FY

FZ

FX̂ FŶ

FẐ

FIG. 5. A negative triple point appears

On the left, the three surface fragments are disjoint, while on the right, after their enlargement, they
are not. Where these surfaces now come together, we have an additional isolated triple point, and since
the normals to the surfaces at this point form a left-handed frame, this triple point gets a minus sign.
Thus t drops by 1. We also see that after the delta move, the curve Ẑ has two extra intersections with
FŶ , the first positive and the second negative, and no extra intersections with FX̂ . Since these new
intersection points are adjacent along the curve, and of opposite signs, it follows that the new count
mẐ = mxy(wẐ) is equal to the old one mZ . Similarly mX̂ = mX and mŶ = mY . Hence µ = mX +mY +mZ − t
increases by 1, as claimed.

The heart of the proof of Theorem A will be to show that application of the delta move increases
Pontryagin’s ν-invariant by 2.

III. THE PONTRYAGIN ν-INVARIANT

Heinz Hopf8 proved in 1931 that homotopy classes of maps from the 3-sphere to the 2-sphere are
in one-to-one correspondence with the integers via his now famous Hopf invariant. Pontryagin2 gen-
eralized this to give the homotopy classification for maps from an arbitrary finite 3-complex to the
2-sphere. It is convenient for our purposes to restrict to smooth maps from 3-manifolds to the 2-sphere,
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and to use Poincaré duality to reformulate Pontryagin’s result, originally presented via cohomology, in
homological terms.

Definition and properties
Fix a closed, oriented, smooth 3-manifold M. The homotopy classification of maps f : M → S 2 can

be expressed using two differential topological invariants.
The primary invariant

λ( f ) ∈ H1(M) (with integral coefficients understood)

records the homology class of the preimage link L = f −1(∗) of any regular value ∗ of f (oriented
as explained below), or equivalently the Poincaré dual of the pull-back f ∗(ω) of the orientation class
ω ∈ H2(S 2). It is easily shown that two maps have the same primary invariant if and only if they induce
the same map on homology.

The secondary invariant

ν( f0, f1) ∈ Z2d(λ)

compares two maps f0 and f1 with the same primary invariant λ. Here d(λ) is the divisibility of λ as an
element of the free abelian group H1(M)/torsion. Thus d(λ) = 0 if λ is of finite order, and otherwise
d(λ) is the largest positive integer d for which λ = dκ for some κ ∈ H1(M).

For example, if M is the 3-torus T 3, then λ( f ) = (p, q, r) ∈ H1(T 3) � Z3 where p, q and r are the
degrees of f restricted to the coordinate 2-tori, and the divisibility d(p, q, r) is the greatest common
divisor of p, q and r.

In the next few paragraphs, we discuss these invariants λ and ν in more detail, and provide a natural
way, in the special case that M is the 3-torus, to transform ν from a relative invariant into an absolute
one, meaning a function of a single map.

First recall that a framing of a smooth link in M is a homotopy class of trivializations of the normal
bundle of the link. It can be represented by an orthonormal triple (u, v, t) of vector fields along the
link with respect to some Riemannian metric on M, where t is tangent to the link. We can use this
to orient the link by t by insisting that the triple give the orientation on M. Conversely, if the link is
already oriented by t, then the framing can be specified by a single unit normal vector field u, as v is
then determined by the condition that (u, v, t) be an orthonormal frame giving the orientation on M. In
pictures, therefore, we often indicate a framing on an oriented link by simply drawing a thin parallel
push-off of the link, recording the tips of the vectors in u.

Now given a map f : M → S 2 with regular value ∗, the link L = f −1(∗) ⊂ M inherits a framing
by pulling back an oriented basis for the tangent space to S 2 at ∗, and acquires an orientation from this
framing, as above. Equipped with this framing and orientation, L will be called the Pontryagin link of
f at ∗.

Note that any framed oriented link L in M arises as the Pontryagin link of some map from M to
S 2. In particular, the Pontryagin–Thom construction produces such a map, given by wrapping each
normal disk fiber of a tubular neighborhood of L around the 2-sphere by the exponential map, using
the framing to identify the fiber with the disk of radius π in the tangent space to S 2 at ∗, and sending
everything outside the neighborhood to the antipode of ∗. This construction provides a one-to-one
correspondence between the set [M, S 2] of homotopy classes of maps M → S 2, and the set Ωfr

1 (M) of
framed bordism classes of framed oriented links in M (see e.g. Chapter 7 in Milnor9).

Now we return to our discussion of the invariants associated with maps f : M → S 2.
An easy argument shows that the primary invariant λ( f ), the homology class of the oriented link

f −1(∗), is independent of the choice of regular value ∗, and that λ( f ) is invariant under homotopies of f .
Indeed, the preimages L0 and L1 of any regular values for any pair of maps homotopic to f are bordant
in M × [0, 1] (see Milnor9 for a proof). It follows that L0 and L1 are homologous in M. Conversely,
homologous links in M are bordant in M × [0, 1] by a standard argument going back to Thom10. This
shows that the partition of [M, S 2] into subsets [M, S 2]λ according to their primary invariants λ ∈ H1(M)
corresponds to the partition of Ωfr

1 M into unframed bordism classes.
The secondary invariant associated with a pair of bordant framed links measures the obstruction

to extending the framings on the links across any bordism between them. More precisely, given f0
and f1 in [M, S 2]λ with Pontryagin links L0 and L1, and an oriented surface F ⊂ M × [0, 1] with
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∂F = L1 × 1 − L0 × 0, the framings on L0 and L1 combine to give a normal framing of F along its
boundary. The obstruction to extending this framing across F is measured by its relative Euler class
e(F ) in H2(F , ∂F ; π1SO(2)) = Z, which in homological terms is the intersection number of F with a
generic perturbation of itself that is directed by the given framings along ∂F . This class depends on the
choice of the regular values of f0 and f1 used to define the Pontryagin links, and on the choice of the
bordismF between the links. But the residue class of e(F ) mod 2d(λ) does not depend on these choices;
see Gompf11 and Cencelj, Repovš and Skopenkov12 for details, and also see Auckly and Kapitanksi13.
This residue class

ν( f0, f1) = e(F ) mod 2d(λ) ∈ Z2d(λ)

will be referred to as the relative Pontryagin ν-invariant of f0 and f1.

Converting the relative Pontryagin ν-invariant into an absolute invariant
The task of converting ν into an absolute invariant, that is, changing it from a function of two variables

to a function of one variable, requires the choice of a base map fλ in each subset [M, S 2]λ of homotopy
classes of maps with primary invariant λ. One can then define the absolute Pontryagin ν-invariant by

ν( f ) = ν( f , fλ)

for any f ∈ [M, S 2]λ. Whether such choices can be made in a topologically meaningful way depends
on the manifold M.

For example, Pontryagin2 (page 356) explicitly cautioned against trying to make this choice when
M = S 1 × S 2. In this case there are, up to homotopy, exactly two maps to S 2 with primary invariant
1 ∈ H1(S 1 × S 2) = Z, meaning degree 1 on the cross-sectional 2-spheres in S 1 × S 2. One of these is the
projection f0(θ, x) = x to the S 2 factor, and the other is the twist map f1(θ, x) = rotθ(x) that rotates the
S 2 factor once while traversing the S 1 factor; here rotθ indicates rotation of S 2 through an angle θ about
its polar axis. Note that the double twist f2(θ, x) = rot2θ(x) is homotopic to f0.

What Pontryagin observed is that f0 and f1 differ by an automorphism of S 1 × S 2, and so there is no
natural way to choose which one should serve as the base map for the homology class [S 1 × S 2, S 2]1.
More precisely, the automorphism h given by h(θ, x) = (θ, rotθ(x)) satisfies f0h = f1, while f1h = f2,
which is homotopic to f0. Thus the maps f0 and f1 have equal topological status, and so neither is more
basic than the other.

A key feature of this example is the existence of a homotopically nontrivial automorphism of S 1 ×S 2

that induces the identity on homology. In general, if a 3-manifold M supports such an automorphism h,
then λ( f h) = λ( f ) for any map f : M → S 2. Hence the existence of h provides a potential obstruction
to the natural choice of base maps in [M, S 2]λ for all λ. The 3-torus has no such automorphisms, due to
the fact that its higher homotopy groups vanish.

For each triple of integers p, q and r, we now show how to pick out a specific map fpqr : T 3 → S 2

having these preassigned cross-sectional degrees, which can serve in a topologically meaningful way as
the base map for the set [T 3, S 2](p,q,r) of all such maps.

We will describe fpqr by specifying its Pontryagin link Lpqr, as follows. Choose three pairwise
disjoint circles Cs, Ct and Cu that are cosets of the coordinate circle subgroups

S 1
s = S 1 × 0 × 0 , S 1

t = 0 × S 1 × 0 and S 1
u = 0 × 0 × S 1

of the 3-torus (where as usual S 1 = R/2πZ) with disjoint tubular neighborhoods Ns, Nt and Nu. Equip
these circles with their coordinate framings induced from the Lie framing (∂s, ∂t, ∂u) of the tangent
bundle of T 3, that is, (∂t, ∂u) for Cs, (∂u, ∂s) for Ct and (∂s, ∂t) for Cu. Then construct Lpqr from p
parallel copies of Cs in Ns (meaning p distinct cosets of S 1

s lying in Ns), q copies of Ct in Nt and r
copies of Cu inNu, all with their coordinate framings, as indicated in Figure 6. Thus fpqr wraps the disk
fibers of the tubes Ns, Nt and Nu around S 2 by maps of degree p, q and r, and is constant elsewhere.

Here and below, the 3-torus is pictured as the cube [0, 2π]3 in stu-space with opposite faces identi-
fied. The axes correspond to the coordinate circles S 1

s , S 1
t and S 1

u, and the coordinate framings are the
“blackboard” framings, i.e. those given by parallel push-offs in the projection shown. The link L5 3−2 is
shown in the figure. Note that by construction L000 is empty, so f000 is constant.
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FIG. 6. Pontryagin link Lpqr for the base map fpqr

Computing the absolute Pontryagin ν-invariant
Our goal is to give a simple procedure for computing the Pontryagin ν-invariant of a map f : T 3 → S 2

from a “toral diagram” of its Pontryagin link L.
By definition, a toral diagram of L consists of

1. a classical oriented link diagramD in the 2-torus T 2 with crossings C,

2. a finite set of signed points in T 2, the marked points, partitioned into the isolated ones
M ⊂ T 2 −D, and the internal ones N ⊂ D − C, and

3. integer framings for each component ofD and each point inM.

For example, the link Lpqr above is duplicated in Figure 7(a) with its toral diagram beneath it, and
another example is given in Figure 7(b).

3

2

(a) The link Lpqr and its diagram (b) Another example

FIG. 7. Toral diagrams of framed links in T 3

It is understood thatL should project toD∪M under the projection T 3 → T 2 sending (s, t, u) to (s, t),
and so points inM correspond to vertical components ∗ × ∗ × S 1 in L, oriented up or down according
to the signs. The points in N correspond to transverse intersections of L with the horizontal 2-torus
T 2 × 0 – shaded in the figures – where the sign +1 or −1 indicates whether the curve points up or down
near the intersection.

To explain the crossings C, view T 3 as the cube [0, 2π]3 in stu-space with opposite faces identified,
as before, and T 2 as the square [0, 2π]2 in the st-plane with opposite sides identified. AboveD−N , the
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link L resides in T 2 × (0, 2π). At a crossing, the over-crossing strand is the one with the larger vertical
u-coordinate in the cube.

Finally, the framings specify a push-off ofL by comparison with the blackboard framing ofD∪M in
T 2. These “blackboard” framings are obtained by pushingD∪M off itself in the direction of a normal
vector field in T 2, and then lifting these push-offs to a collection of framing curves for the components
of L that we call their 0-framings. For vertical circles, these are just the coordinate framings. Now the
n-framing on any given component of L is the one obtained from the 0-framing by adding n full twists,
right or left handed according as n is positive or negative.

In these figures we typically indicate the framing on the link in T 3 by a thin push-off, and use the
convention that the unlabeled components of the diagram have framing zero, that is, the blackboard
framing. We also denote the positive marked points in the diagram with solid dots, and the negative
ones with hollow dots.

We have allowed isolated marked points in the definition above so that projections of links such as
Lpqr will qualify as toral diagrams, and to facilitate our later work. Note, however, that a generic isotopy
of L will eliminate the setM of isolated marked points, converting an n-framed isolated marked point
– corresponding to a vertical circle in L – into a small (n ± 1)-framed circle with one internal marked
point – corresponding to a spiral perturbation of the vertical circle. More precisely, using the notation
above of solid dots for positive marked points and hollow dots for negative ones, we have

= =
n

n − 1 n + 1

and = =
n

n + 1 n − 1

as is readily verified by a suitable picture in the 3-torus.
Now suppose we are given a toral diagram of a Pontryagin link L for a map f : T 3 → S 2. We say

that the diagram represents f , and seek to compute ν( f ) from it.
First observe that the primary invariant

λ( f ) = (p, q, r)

is easily read from the diagram. Indeed p and q (which are the degrees of the projections of L to the
horizontal circle factors S 1

s and S 1
t ) are just the intersection numbers of D with S 1

t and −S 1
s , and r (the

degree of the projection of L to the vertical circle S 1
u , or equivalently the intersection number of L with

the horizontal 2-torus) is the sum of the signs of all the marked points. We call p and q the horizontal
winding numbers of the diagram, and r its vertical winding number. For what follows, we will also
need to consider the vertical winding of the individual components of L. Each such component Li
projects either to some subset Di of D, or to a point Mi in M (if Li is vertical). In either case, we
call this projected image the “ith component” of the diagram, and write ri for the sum of all the marked
points that lie on it. Clearly ri is just the vertical winding number of Li, and

∑
ri = r, the total vertical

winding number of the diagram.
To compute ν( f ), we will transform L by a sequence of framed bordisms into Lpqr with some extra

twists in the framing. The number of twists is by definition ν( f ); counting these twists ultimately yields
the simple formula for ν( f ) that will be given in Proposition III.1.

To cleanly state this formula, we assume from the outset that our diagram has no crossings. There
is no loss of generality in doing so since the crossings can be eliminated by saddle bordisms of L, as
illustrated in Figure 8 (viewing L from the top, looking down on a crossing in the horizontal torus)
which of course do not change ν( f ). Furthermore, we will see that the Pontryagin link of a “generic
link” (to be defined in Section V), has a toral diagram without crossings.

∼

bordism

=

FIG. 8. Using saddles to eliminate crossings
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Each such saddle bordism is achieved by adding a 1-handle, as indicated on the left side of Figure 9,
and drawn in full, suppressing one dimension in T 3, on the right side.

FIG. 9. The saddle bordism

The effect of the saddle bordism on the diagram is easy to describe. If it is used to eliminate a self-
crossing of an ni-framed component Di (meaning Di is the projection of a component Li of L) then
Di splits into two components whose framings must add up to ni ± 1, depending on the sign of the
crossing. Beyond this condition, the framings on the new components can be chosen arbitrarily since
twists in the original framing can be shifted along Li at will. If the saddle bordism is used to eliminate
a crossing between distinct components Di and D j of D with framings ni and n j, then the result is a
single component with framing ni + n j ± 1.

Once we have a toral diagram without crossings representing f , the extra data needed to compute
ν( f ) is the list of vertical winding numbers ri of its components together with one additional integer
n =

∑
ni, the sum of all the component framings ni, which we call the total framing and place as a label

next to the diagram.
To state the formula efficiently, we will use one more list of numbers that is easily read from the

diagram. First pick a basepoint ∗ in T 2 away from D ∪M, and then for each i, choose an arc γi that
runs from the ith component ofD∪M to ∗. Now define the depth of the ith component to be

di = 2 γi ·D mod 2 gcd(p, q, r) ,

that is, twice the intersection number in T 2 of the arc γi with the union D of the closed curves in the
diagram. This intersection number must be properly interpreted for components of D. In this case the
initial point of γi lies onD, contributing ± 1

2 to the intersection number, and thus ±1 to di. It follows that
di is always an odd integer for components of D, and an even integer for components ofM, meaning
isolated marked points. An example is shown in Figure 10.

∗

Di

γi

M j

γ j
di = 2 · 2 1

2 = 5
d j = 2 · −1 = −2

FIG. 10. Depths of components in the diagram

Of course the depth di depends on the choice of arc γi, but only modulo 2 gcd(p, q), and so it is
certainly well defined modulo 2 gcd(p, q, r). Furthermore, in the formula for ν( f ) below, the depths
appear only as coefficients in the sum

∑
ridi. It is readily seen that this sum changes by a multiple of∑

2ri = 2r when moving the basepoint ∗, and so it is well defined modulo 2 gcd(p, q, r), independent of
the choices of ∗ and of the arcs γi.

We can now state the main result of this section.
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Proposition III.1. Let f : T3 → S2 be a smooth map whose Pontryagin link L is represented by a
toral diagram in T2 without crossings, with horizontal winding numbers p and q, vertical winding
number r, and total framing n. Then the primary and secondary Pontryagin invariants of f are given
by

λ( f ) = (p, q, r) and
ν( f ) = n + pq +

∑
ridi mod 2 gcd(p, q, r)

where ri and di are the vertical winding numbers and depths (with respect to any chosen basepoint)
of the components of the diagram.

The proof is given in Appendix B. The following application will arise in the proof of Theorem A in
Section VI.

Example III.2. If f is represented by the ±(pq + r)-framed (p, q) torus link in T 2, with one component
K of vertical winding number r, and the rest of vertical winding number zero, then λ( f ) = (p, q, r), and
choosing a base point adjacent to K,

ν( f ) = (pq + r) + pq + (1 · r + 0 + 0) = 2(pq + r) = 0 ∈ Z2 gcd(p,q,r).

IV. EXPLICIT FORMULAS FOR THE GENERALIZED GAUSS MAP

In this section we give an explicit diffeomorphism from the Grassmann manifold G2R
4 of oriented

2-planes through the origin in 4-space to a product of two 2-spheres, and then use it to give a formula
for the Gauss map gL : T 3 → S 2 of a three-component link L in the 3-sphere. For simplicity, we have
dropped the adjective “generalized” and henceforth simply refer to gL : T 3 → S 2 as the “Gauss map”,
while continuing to call its prototype T 2 → S 2 the “classical Gauss map”.

We also describe an alternative form

hL : T 3 → S 2

of the Gauss map, homotopic to gL but more convenient for the proof of Theorem A that we will give in
Section VI. The formula for hL will reveal a close connection between the Gauss map and the classical
Gauss map T 2 → S 2 for two-component links in 3-space.

Throughout we regard R4 as the algebra of quaternions, with orthonormal basis 1, i, j, k and unit
sphere S 3 (oriented so that i, j, k is a positive frame for the tangent space to S 3 at the point 1), and R3

as the subspace of pure imaginary quaternions spanned by i, j and k, with unit sphere S 2. Thus S 3

is viewed as the multiplicative group of unit quaternions, and S 2 as the subset of pure imaginary unit
quaternions.

For any quaternion q = q0 + q1i + q2 j + q3k, let q̄ denote its conjugate q0 − q1i − q2 j − q3k, which
coincides with q−1 when q ∈ S 3, and let Re (q) = q0 and Im (q) = q1i + q2 j + q3k denote its real and
imaginary parts.

The Grassmann manifold G2R
4

It is well known that G2R
4 can be identified with a product of two 2-spheres. In particular, we will

use the diffeomorphism

π : G2R
4 −→ S 2 × S 2

that maps the oriented plane 〈a, b〉, spanned by an orthonormal 2-frame (a, b) in R4, to the point (bā, āb)
in S 2 × S 2. Note that both coordinates

π+〈a, b〉 = bā and π−〈a, b〉 = āb

do in fact lie in S 2 since right and left multiplication by ā are orthogonal transformations of R4, carrying
the orthonormal frame (a, b) to the orthonormal frames (1, bā) and (1, āb).

To see that π is well-defined, consider any other orthonormal basis for the plane 〈a, b〉. It must be of
the form (ac, bc) for some c in the circle subgroup Cāb through āb, since this group acts on the plane by
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rotations. Thus it suffices to check that bc ac = bā, which is immediate, and that ac bc = āb, which is
true since c commutes with āb.

To see that π is in fact a diffeomorphism, we can simply write down the inverse. It maps a pair (x, y)
in S 2×S 2 to the plane 〈c, cy〉 where c is the midpoint of any geodesic arc from x to y on S 2. This can be
verified by a straightforward calculation using the fact that conjugation by a pure imaginary quaternion
rotates the 2-sphere about that quaternion by π radians, so cyc̄ = x.

The Gauss map gL

Recall from the introduction that the Grassmann map G : Conf3S 3 → G2R
4 sends a triple (x, y, z) of

distinct points in S 3 to the plane they span in R4, translated to pass through the origin, and oriented so
that

G(x, y, z) = 〈x − z, y − z〉.

We have extended notation so that for any two linearly independent vectors a and b in R4, the symbol
〈a, b〉 denotes the oriented plane they span. Then, given a three-component link L in S 3, its Gauss map
gL : T 3 → S 2 is defined using the Grassmann map G and the projection π+ : G2R

4 → S 2 by the formula

gL(s, t, u) = π+G(x, y, z) = π+〈x − z, y − z〉

where x = x(s), y = y(t) and z = z(u) parametrize the components of L.
To make this explicit, and to show that using π− in place of π+ in the definition would not change the

homotopy class of gL, we need expressions for π±〈a, b〉 when a and b are arbitrary linearly independent
vectors in R4, but not necessarily orthonormal.

For example, if a and b are orthogonal, then bā and āb are still pure imaginary, and so need only be
normalized to give π+〈a, b〉 and π−〈a, b〉.

For a general pair of linearly independent vectors a and b, the vector c = b − (b·a/a·a)a, where ·
is the dot product in R4, is orthogonal to a and satisfies 〈a, c〉 = 〈a, b〉. Therefore π+〈a, b〉 = π+〈a, c〉,
which equals the unit normalization of the vector cā = bā − b·a. But b·a = Re (bā), and so π+〈a, b〉 is
the unit normalization of Im (bā). Similarly π−〈a, b〉 is the unit normalization of Im (āb). Therefore, for
any two linearly independent vectors a and b, we have π±〈a, b〉 = (a, b)±/|(a, b)±| where ( , )± are the
skew symmetric bilinear forms on R4 defined by

(a, b)+ = Im bā and (a, b)− = Im āb .

It follows that gL(s, t, u) is the unit normalization of the vector

F(x, y, z) = (x − z, y − z)+ = (x, y)+ + (y, z)+ + (z, x)+

= (ix·y + iy·z + iz·x , jx·y + jy·z + jz·x , kx·y + ky·z + kz·x)

where the last expression follows from the formula (a, b)+ = (ia·b, ja·b, ka·b). This formula is seen
as follows. By definition, (a, b)+ = Im (bā) = (i·bā)i + ( j·bā) j + (k·bā)k. But q·bā = qa·b for any
q (in particular i, j or k) since right multiplication by the unit quaternion a/|a| is an isometry, and so
(a, b)+ = (ia·b)i + ( ja·b) j + (ka·b)k = (ia·b, ja·b, ka·b). Summarizing, we have shown:

Proposition IV.1. The Gauss map gL : T3 → S2 of a three-component link L in S3 is given by the
formula

gL(s, t, u) = F(x, y, z)/|F(x, y, z)|

where x = x(s), y = y(t) and z = z(u) parametrize the components of L, and F : Conf3S3 → R3 is
the function defined above.

This formula for gL will be used in our proof of Theorem B in Sections VII and VIII. For Theorem A
it will be more convenient, for the most part, to use an alternative form of the Gauss map that we
introduce next.
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The asymmetric Gauss map hL

Given a three-component link L in the 3-sphere, we define below an asymmetric version

hL : T 3 −→ S 2

of the Gauss map in which the last component of L plays a distinguished role, and show that it is
homotopic to the earlier defined symmetric Gauss map gL. As will be seen, the map hL can be viewed
as a parametrized family of classical Gauss maps for twisted versions of the first two components of L,
parametrized by the third component.

For notational economy, we use [q] to denote the unit normalization q/|q| of a nonzero quaternion q.
The key motivation for the definition of hL is that the Grassmann map G : Conf3S 3 → G2R

4 factors
up to homotopy through the Stiefel manifold V2R

4 of orthonormal 2-frames in 4-space. More pre-
cisely, let prz denote stereographic projection of S 3 − {z} onto z⊥, the 3-plane through the origin in R4

orthogonal to z. Then we define the Stiefel map

H : Conf3S 3 −→ V2R
4 , (x, y, z) 7−→ (z, [przx − przy])

(recall that the square brackets signify unit normalization), and will show that it is a homotopy equiva-
lence whose composition with the canonical projection

P : V2R
4 −→ G2R

4 , (z, v) 7−→ 〈z, v〉

is homotopic to the Grassmann map G.
To see this, first observe that there is a deformation retraction of Conf3S 3 to its subspace

V = {(v,−z, z) | v ⊥ z}

defined as follows. Start with (x, y, z) ∈ Conf3S 3, and consider the points przx and przy in z⊥. Translation
in z⊥ moves przy to the origin, and then dilation in z⊥ makes the translated przx into a unit vector.
Conjugating this motion by prz moves x to [przx − przy], moves y to −z, and leaves z fixed, as pictured
in Figure 11, thus defining a deformation retraction of Conf3S 3 to its subspace V , sending (x, y, z) to
([przx − przy],−z, z).

z

−z

x

y

prz x

przy

z⊥

S 3

[prz x − przy] = (prz x − przy)/|prz x − przy|

FIG. 11. The deformation retraction Conf3S 3 → V

Identifying V with V2R
4 via (v,−z, z) ↔ (z, v), this shows that H is a homotopy equivalence with

homotopy inverse I given by I(z, v) = (v,−z, z). The calculation

GI(z, v) = 〈v − z,−2z〉 = 〈z, v〉 = P(z, v) ,

shows that GI = P, and so G ' PH as claimed.
Now observe that there are two natural homeomorphisms from the Stiefel manifold V2R

4 to S 3 × S 2

that arise from viewing S 3 as the unit quaternions and S 2 as the pure imaginary unit quaternions, namely
(z, v) 7→ (z, vz̄) and (z, v) 7→ (z, z̄v). These yield projections π± : V2R

4 → S 2 given by

π+(z, v) = vz̄ and π−(z, v) = z̄v.
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These are just the lifts to V2R
4 of the previously defined projections π± : G2R

4 → S 2 with the same
names.

Define the asymmetric Gauss map hL : T 3 → S 2 to be the composition π+HeL:

hL(s, t, u) = [przx − przy] z̄

where as usual x = x(s), y = y(t) and z = z(u) parametrize the components of L, and the square brackets
indicate unit normalization.

Proposition IV.2. The two versions gL and hL of the Gauss map of a three-component link L in S3 are
homotopic. Furthermore, these maps are independent, up to homotopy, of the choice of projections
π+ or π− used in their definitions.

Proof. By definition gL = π+GeL and hL = π+HeL, shown in the diagram below as the maps from left
to right across the bottom and top, respectively.

V2R
4

T 3 Conf3S 3 S 2

G2R
4

P

π+

eL

H

G π+

Here eL(s, t, u) = (x(s), y(t), z(u)) records the parametrization of the link, and G and H are the Grassmann
and Stiefel maps with their associated projections π+. It was shown above that the left triangle in the
diagram commutes up to homotopy, and the right triangle commutes on the nose. Therefore hL and gL
are homotopic.

Now the same argument shows that the maps h′L = π−HeL and g′L = π−GeL are homotopic. Hence
to complete the proof, it suffices to show that hL and h′L are homotopic. To do so, view V2R

4 as the
unit tangent bundle of S 3, with projection p to the base S 3 given by p(z, v) = z. Then the composition
pHeL is null-homotopic, since it maps onto the third component of L, and so the map HeL is homotopic
to a map into any S 2-fiber of the bundle V2R

4 → S 3. We choose the fiber over z = 1, where the two
projections π+(z, v) = vz̄ and π−(z, v) = z̄v coincide. It follows that hL and h′L are homotopic. �

A Gaussian view of the asymmetric Gauss map
The formula above for hL involves first normalizing a vector in z⊥, and then multiplying by z̄ to move

it to the unit sphere S 2 in the pure imaginary quaternion 3-space R3. We would like to express this
directly as the normalization of a vector in R3.

A geometric argument shows that stereographic projection pra is given by

prab = (Im bā)a/(1 − Re bā)

and it follows that (prab)c = prac bc for any three unit quaternions a, b and c with a , b. Hence the
formula hL(s, t, u) = [przx − przy] z̄ can be rewritten as

hL(s, t, u) = [pr1 xz̄ − pr1 yz̄] = [pr−1(−yz̄) − pr−1(−xz̄)]

where, as usual, x = x(s), y = y(t) and z = z(u) parametrize L, and the square brackets indicate
unit normalization in R3. We favor the last expression because stereographic projection from −1 is
orientation-preserving, while from 1 it is orientation-reversing.

Now for any two distinct unit quaternions a and z, introduce the abbreviation

az = pr−1(−az̄) ∈ R3 ,

and so in particular a−1 = pr−1 a. Then we can write

hL(s, t, u) = [yz − xz] .
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For fixed u, this is just the classical Gauss map for the two-component link Xz ∪ Yz ⊂ R
3 that is the

image of the first two components X ∪ Y of L under the map a 7→ az. Thus the asymmetric Gauss map
hL can be viewed as a one-parameter family of classical Gauss maps for images in 3-space of X ∪ Y .
The third component Z provides the parameter and determines the axes about which these images are
gradually twisted.

In the next section, we will explain this perspective more carefully. But we can see right now that it
yields an easy proof of the first part of Theorem A, equating the pairwise linking numbers of the link L
with the degrees of the restriction of its Gauss map gL to the coordinate 2-tori.

Proof of the first statement in Theorem A
It can be arranged by an isotopy of L that z(0) = −1. Then the restriction of hL to the coordinate

2-torus S 1 × S 1 × 0 is precisely the classical Gauss map of the stereographic image X−1 ∪ Y−1 of X ∪ Y ,
whose degree is equal to the linking number Lk(X,Y) since pr−1 is orientation-preserving. Since gL is
homotopic to hL, the same is true for gL. But then it follows from the symmetry of gL that Lk(X,Z) and
Lk(Y,Z) are given by the degrees of gL on S 1 × 0 × S 1 and on 0 × S 1 × S 1, respectively.

The proof of the second statement in Theorem A – which relates the triple linking number of L to the
Pontryagin ν-invariant of its Gauss map – is more delicate. It will occupy us for the next two sections.

V. THE PONTRYAGIN ν-INVARIANT OF THE GENERALIZED GAUSS MAP

Fix a link L in S 3 with three components X, Y and Z parametrized by x = x(s), y = y(t) and z = z(u).
Recalling that S 3 is regarded as the group of unit quaternions, the asymmetric Gauss map hL : T 3 → S 2

is given by

hL(s, t, u) = [yz − xz]

where az is an abbreviation for the vector pr−1(−az̄) in pure imaginary quaternion 3-space R3, and the
square brackets indicate unit normalization. To carry out the proof of Theorem A, we need a way to
compute the absolute Pontryagin ν-invariant of hL. A procedure for doing so is described here.

Throughout this section and the next, R3 is pictured in the usual way, with the i j-plane horizontal
and the k-axis pointing straight up as in Figure 12. In particular, we view k as the north pole of the unit
sphere S 2.

i

j

k

FIG. 12. Pure imaginary quaternion 3-space

Outline of the procedure for computing ν(hL)
First, we will move L by a link homotopy into a favorable position – referred to as generic below –

so that, in particular, the north pole k of S 2 is a regular value of hL.
Then we will construct a toral diagram (in the sense of Section III) for the associated Pontryagin link

L = h−1
L (k) ⊂ T 3 .
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Roughly speaking, our approach is as follows.
By definition of hL, the Pontryagin link L consists of all (s, t, u) ∈ T 3 for which the vector in R3 from

xz to yz points straight up, where x = x(s), y = y(t) and z = z(u). The genericity of L will imply that
for some points (s, t) in the 2-torus T 2 there is a unique u = u(s, t) ∈ S 1 that will make this happen,
while for all other points (s, t), no u will work. Furthermore, the set D of all points of the first kind,
called isogonal points for reasons explained below, is a smooth 1-dimensional submanifold of T 2 whose
components we call icycles.

Thus L is the graph of the function u(s, t) over the collectionD of icycles in T 2:

L = {(s, t, u) ∈ T 3 | (s, t) ∈ D and u = u(s, t)} .

When suitably oriented and decorated with framing and vertical winding numbers,Dwill be the desired
toral diagram of L.

In particular, the icycles in D correspond to certain oriented cycles of vectors directed from X to Y ,
which we call bicycles, that are easily spotted from a picture of L. Each bicycle has a longitudinal and
meridional degree, recording how much it turns and spins relative to the standard open book structure
on S 3. The framing and vertical winding number of the corresponding icycle are determined by these
degrees.

Therefore a diagram for L can be constructed once we identify the bicycles in L. With this diagram
in hand, the methods of Section III can then be used to compute ν(hL).

We now give the details of this procedure. There are three geometries involved: spherical geometry
in S 3, where the link L lives, Euclidean geometry in R3, the setting for the asymmetric Gauss map,
and hyperbolic geometry in the complex upper half plane H, which turns out to be for us the natural
geometry on the pages of the “standard” open book decomposition of R3. We begin with an explicit
construction of this open book, which provides a framework for the discussion that follows.

The standard open books in R3 and S3

Consider the great circle K in S 3 through 1 and k, and the orthogonal great circle C through i and j.
Orient both circles by left complex multiplication by K (i.e. from 1 toward k on K, and i toward j on C)
so that their linking number is +1.

Stereographic projection from −1 carries K onto the k-axis in R3, and fixes C, which now appears
as the unit circle in the i j-plane. The complement V of the k-axis in R3 is naturally identified with the
product of a circle S 1 (viewed as the quotient R/2πZ) with the complex upper half plane H (which for
later purposes will be viewed as the hyperbolic plane) via the diffeomorphism

V −→ S 1 × H

with coordinates ` : V −→ S 1 and m : V −→ H given by

`(q) = arg(q1 + q2i) and m(q) = q3 + |q1 + q2i|i .

for q = q1i + q2 j + q3k ∈ V = R3 − k-axis. In other words, if q = (r, θ, z) in cylindrical coordinates, then
`(q) = θ and m(q) = z + ri. We call ` and m the longitudinal and meridional projections in R3, and
refer to `(q) as the polar angle of q.

The longitudinal projection defines the standard open book in R3, with binding the k-axis, and with
pages Pθ = `−1(θ) for θ ∈ S 1. The pages are just the oriented vertical half-planes bounded by the k-axis,
each indexed by its polar angle as shown in Figure 13. The meridional projection serves to identify each
page Pθ with the hyperbolic plane H, with “center” iθ = i cos θ + j sin θ corresponding to i. The union
of all the page centers is the unit circle C.

The longitudinal and meridional projections in R3 lift to S 3 (in the complement of K) by composing
with stereographic projection from −1, given by pr−1q = (Im q)/(1 + Re q) = (q1i + q2 j + q3k)/(1 + q0).
Relying on the context, we continue to denote them by ` and m, and to refer to `(q) as the polar angle
of q. Explicitly, for q = q0 + q1i + q2 j + q3k ∈ S 3 − K,

`(q) = arg(q1 + q2i) and m(q) =
q3 + |q1 + q2i|i

1 + q0
.

Just as in R3, the longitudinal projection in S 3 defines the standard open book in S 3, with binding K,
and with pages Hθ = `−1(θ). The pages are now open great hemispheres in S 3 with centers (i.e. poles)
iθ along the great circle C, and with K as equator. By design, pr−1 maps each hemispherical page Hθ in
S 3 onto the corresponding half-planar page Pθ in R3.
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i iθ

j

k

θ

binding

pages

Pθ

C

FIG. 13. The standard open book in R3

Generic links
A three-component link L = X ∪ Y ∪ Z in S 3 is generic if

1. Z coincides with the oriented binding K of the standard open book, and

2. X and Y wind “generically” around Z.

More precisely, the second condition requires the restriction to X ∪ Y of the longitudinal projection
` : S 3 − K −→ S 1, which sends each point to its polar angle, to be a Morse function with just one
critical point per critical value. Geometrically, this means X and Y are transverse to the pages of the
standard open book in S 3, except for finitely many pages where exactly one of them turns around at a
single point. These will be called the critical points of L, while all other points on X ∪ Y will be called
regular points. Each regular point w has a sign, denoted sign(w), when viewed as an intersection point
of L with the page containing w. Thus sign(w) = +1 or −1 according to whether L is oriented in the
direction of increasing or decreasing polar angle near w.

An example of a generic link is shown in Figure 14. It has four critical points, two on X and two on
Y , indicated by dots in the picture.

X

Y

Z

FIG. 14. A generic link

Any three-component link in S 3 is evidently link homotopic to a generic one: first unknot the last
component by a link homotopy and move it to coincide with K, and then adjust the first two components
by a small isotopy to satisfy the genericity condition (2). From this point on we assume that L is generic
without further mention. As a consequence, we will show the following:
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(a) The north pole k ∈ S 2 is a regular value of the Gauss map hL.

(b) There is a simple method for constructing a toral diagram for the associated Pontryagin link
L = h−1

L (k) from a picture of L.

This is the content of the “bicycle theorem” below. To state it precisely, we need to introduce the key
notion of a bicycle in L, and its associated icycle in T 2.

Bicycles and icycles
Assume, as always, that the components X, Y and Z of L are parametrized by smooth functions

x = x(s), y = y(t) and z = z(u) with nowhere vanishing derivatives. In particular, points (s, t) in the
2-torus parametrize pairs of points x ∈ X and y ∈ Y . Suppose that x and y have the same polar angle θ,
or equivalently that they lie in a common page Hθ of the standard open book in S 3. Then we call (s, t)
an isogonal point in T 2, and call (x, y) a page vector in L with polar angle θ, reflecting the fact that the
vector in R3 from pr−1(x) to pr−1(y) lies entirely on the half-planar page Pθ.

A page vector (x, y) will be called critical if x or y is a critical point of L, and regular if both x
and y are regular. A regular page vector is positive if the oriented strands of L through x and y point
in the same direction, meaning sign(x) = sign(y), and is negative if they point in opposite directions.
These notions are illustrated in Figure 15, in which the vectors labeled 1 and 2 are positive regular page
vectors, 3 is negative regular, and 4 is critical.

1

2

3

4
X Y

Z

FIG. 15. Page vectors

Now consider the spaces

D = {isogonal points in T 2} and P = {page vectors in L} .

By definitionD parametrizesP. The genericity of L implies thatP consists of a finite number of disjoint
cycles of page vectors, and that D consists of a finite collection of smooth simple closed curves in T 2.
Orient P so that it points to the right (meaning in the direction of increasing polar angle) at each positive
regular page vector in it, and to the left at each negative regular page vector. This gives a well-defined
orientation on P, inducing one onD as well. We call these the preferred orientations on P andD.

Definition. A bicycle (or “bi-cycle”) in L is a component Pi of P, that is, an oriented cycle of page
vectors. Each bicycle is parametrized by a component Di of D, which we call its associated icycle (or
“i-cycle”).

Some examples of bicycles and their associated icycles
We first draw in Figure 16 four local pictures of a bicycle near a regular page vector, and below them,

their parametrizing icycles. It is understood that these pictures take place somewhere in front of the
upward pointing Z axis. The four cases represent the possible directions of X and Y relative to the page
containing the vector. In each case, the orientation of the bicycle is indicated by a squiggly arrow.
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FIG. 16. Local pictures of a bicycle and its corresponding icycle

For an example of a full bicycle, consider the “clasp” between X and Y pictured in Figure 17(a). This
gives rise to the bicycle in Figure 17(b), passing successively through the vectors labeled 1, 2, 3, 4 and
then back to 1. The associated icycle is a counterclockwise circle in T 2, shown in Figure 17(c). The
route taken by this bicycle is “short” in the sense that it does not wind around the binding, although it
does spin within the pages.

X

Y

Z

1
2

3

4

s

t
1

2

3

4

(a) the clasp (b) the bicycle (c) the icycle

FIG. 17. Bicycle arising from a clasp

As another example, the link shown in Figure 14 and reproduced in Figure 18(a) below has three
bicycles. Two of them are short, arising from the clasps as in the previous example, while the remaining
long one oscillates back and forth in the longitudinal direction, eventually making one full revolution
around the binding. It is an instructive exercise left to the reader to recover the plot of the associated
icycles in Figure 18(b), in which the trivial circles labeled A and B correspond to the clasps in L with
the same labels, C labels the icycle that parametrizes the long bicycle, and the corners of the square
parametrize the pair (x, y) indicated by the dots in Figure 18(a).

Before proceeding, we remind the reader that our interest in icycles associated to L stems from the
fact that – when suitably decorated – they give a toral diagram for a Pontryagin link of the Gauss map
hL. This is the content of the bicycle theorem.

The Bicycle Theorem
The longitudinal and meridional projections on S 3 − K, defined earlier, induce projections by the

same name on the space P of page vectors,

S 1 `
←− P

m
−→ H ,

given by `(x, y) = `(x) = `(y) and m(x, y) = arg(m(y) − m(x)). In other words `(x, y) is the polar angle
that parametrizes the common hemispherical page in S 3 containing x and y, and m(x, y) is the argument
of the vector from m(x) to m(y) in H.
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(a) the generic link L (b) the icycles of L

FIG. 18. A generic link and its icycles

Using these projections, we define the longitudinal and meridional degrees of a bicycle Pi in L by

`i = deg(` | Pi) and mi = deg(m | Pi).

These integer invariants record, respectively, the number of times Pi travels around the binding Z, and
the number of times its vectors spin around in the pages as it goes.

For example, any bicycle arising from a clasp between X and Y has zero longitudinal degree, while
its meridional degree can be ±1. In particular, the one shown in Figure 17 has meridional degree −1,
while the ones labeled A and B in Figure 18(a) have degrees 1 and −1, respectively. The long bicycle in
Figure 18(a), labeled C in Figure 18(b), has longitudinal degree 2 and meridional degree 1.

For any icycle Di in T 2, parametrizing a bicycle Pi in L, define the framing ni and vertical winding
number ri ofDi by

ni = −`i − mi and ri = mi

where `i and mi are the longitudinal and meridional degrees of Pi.
We can now state the main result of this section.

Bicycle Theorem V.1. Let L be a generic link in S3. Then

(a) The north pole k ∈ S2 is a regular value of hL : T3 → S2.

(b) The collectionD of icycles of L, together with their framings and vertical winding numbers as
defined above, forms a toral diagram for the associated Pontryagin link L = h−1

L
(k).

The proof will be given in Appendix C. We now illustrate how the bicycle theorem can be used to
compute the Pontryagin invariant of the Gauss map of a generic link.

Computing ν(hL) for a generic link L using the bicycle theorem
As a first example, again consider the link L pictured in Figure 18(a). As noted above, it has three

bicyles A, B, C, with longitudinal degrees 0, 0, 2, meridional degrees 1,−1, 1, and so by definition,
framings −1, 1,−3 and vertical winding numbers 1,−1, 1.

By the bicycle theorem, the Pontryagin link for the Gauss map hL has toral diagram as shown in
Figure 18(b) with vertical winding numbers 1, −1 and 1 on the icycles A, B and C, and with global
framing n = −1 + 1 − 3 = −3. Thus the total vertical winding number is r = 1 − 1 + 1 = 1 and from the
diagram we compute the horizontal winding numbers to be p = −1 and q = −2. (These values for the
winding numbers of the diagram are confirmed by the calculations p = Lk(Y,Z) = −1, q = Lk(X,Z) =

−2 and r = Lk(X,Y) = 1.) Thus the invariant ν(hL) is well defined modulo 2 = 2 gcd(−1,−2, 1).
Using a base point in the lower right corner of the diagram, and straight line paths from the icycles

to the base point, the depths of the icycles A, B and C are 1, −1 and −1. Thus by Proposition III.1 we
conclude that

ν(hL) = n + pq +
∑

ridi = −3 + 2 + 1 = 0 ∈ Z2.
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Although the purpose of this example is to illustrate how the bicycle theorem is used for computations,
we note that Theorem A (yet to be proved) yields the same result here effortlessly, since it implies that
the Pontryagin invariant of the Gauss map of any three-component link in S 3 is even. Therefore, when
the pairwise linking numbers p, q and r are relatively prime, as they are in this case, the computation is
modulo 2 gcd(p, q, r) = 2, and so the Pontryagin invariant is zero.

Double crossing changes
For our next example we analyze the effect on ν(hL) of changing two crossings of opposite signs

between the first two components of a generic link L = X ∪ Y ∪ Z. This will be a key step in our
inductive proof of Theorem A.

To this end, choose a positive and a negative crossing between X and Y in a suitable projection of L,
and let (x+, y+) and (x−, y−) be the corresponding page vectors. Changing both of the crossings yields a
new link L̂, with the same pairwise linking numbers as L. This is illustrated in Figure 19 where L is the
Borromean rings, shown on the left, and L̂ is the unlink, shown on the right.

X

Y

Z

(a) the Borromean rings L

X̂

Ŷ

Ẑ

(b) the unlink L̂

FIG. 19. A double crossing change

We then say that L̂ is obtained from L by a double crossing change, and propose to use the bicycle
theorem to compute the resulting change ∆ν = ν(hL̂) − ν(hL) in Pontryagin invariants.

As it turns out, there is a simple formula for ∆ν involving the link L0 obtained from L by “smoothing”
both crossings in the usual way:

The smoothed link L0 has three components, P and Q (replacing X and Y) and Z. The component P
goes from + to − along Y , and then back from − to + along X, where we retain the + and − labels after
smoothing, while Q goes from + to − along X, and then back from − to + along Y . This is illustrated in
Figure 20 for the double crossing change shown in Figure 19, where we use X+− to denote the arc on X
from + to − , and so forth. Now, as a consequence of the Bicycle Theorem V.1, we have the following
formula for ∆ν, whose proof appears in Appendix D:

Corollary V.2. (Double Crossing Formula) If L = X ∪ Y ∪ Z is transformed into L̂ by a double
crossing change, and P and Q are the components of the associated smoothing of X∪Y, as explained
above, then the corresponding Pontryagin invariants change by

∆ν = 2 Lk(P, Z) = −2 Lk(Q, Z) ∈ Z2 gcd(p,q,r)

where p, q and r are the pairwise linking numbers of the components of L.
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P
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Z

X+−

X−+

Y+−

Y−+

FIG. 20. The smoothed link L0 = P ∪ Q ∪ Z

For the inductive step of the proof of Theorem A in the next section, we will need to apply this
formula for ∆ν under the double crossing change L → L̂ shown in Figure 21 (which will be seen to be
equivalent to a delta move). It is understood that L and L̂ should coincide outside the picture, where
in fact they can be arbitrary. Indeed, if not generic outside the ball, they can be adjusted by a link
homotopy to become so, and then the methods described above apply. Since the component Q of the
smoothed link L0 is just a meridian of Z with Lk(Q,Z) = −1, it follows that ∆ν = 2.

Thus we have proved the following:

X

Y

Z

+ − − +

(a) the link L (b) the link L̂

FIG. 21. A simple double crossing change

Corollary V.3. If two links L and L̂ coincide outside a 3-ball, and appear in the ball as shown in
Figure 21, then ν(hL̂) = ν(hL) + 2.

VI. PROOF OF THEOREM A

Let L be a three-component link in the 3-sphere with Gauss map gL : T 3 → S 2. Theorem A asserts
that the degrees of gL on the coordinate 2-tori of T 3 are equal to the pairwise linking numbers p, q and r
of the components of L, and that Pontryagin’s absolute ν-invariant of gL is equal to twice Milnor’s triple
linking number µ(L) mod 2 gcd(p, q, r).

The first statement was proved easily at the end of Section IV. We now prove the second statement by
an inductive argument, relying heavily on the techniques and results of the last section. Throughout, we
will use the asymmetric Gauss map hL : T 3 → S 2 in place of gL, since these two maps are homotopic.

Proof of the base case of Theorem A
In Example II.1 we introduced the “base links” Lpqr with pairwise linking numbers p, q and r and

µ(Lpqr) = 0. See Figure 3. We will show that Theorem A holds for these links.
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To accomplish this, we must show that for each p, q and r, the associated Gauss map hLpqr is homo-
topic to the base map fpqr : T 3 → S 2 used in Section III to convert the relative Pontryagin ν-invariant
to an absolute ν-invariant. In other words, we must show that ν(hLpqr ) = 0.

First move Lpqr by a link homotopy into generic position, and let L = X ∪ Y ∪ Z be the resulting
link. Then Z coincides with the binding K of the standard open book, while X and Y wind around Z
in a generic fashion, q and p times respectively, linking each other r times along the way. In fact this
winding can be made monotonic, to appear as shown in Figure 22 for the case (p, q, r) = (5, 3,−2).

q

p

r

X

Y

Z

FIG. 22. A generic link L representing Lpqr

Observe that one need not actually construct a link homotopy carrying Lpqr to L, but need only
check that the pairwise and triple linking numbers of Lpqr and L coincide, and then appeal to Milnor’s
classification. The verification that µ(L) = 0 is completely analogous to the calculation for µ(Lpqr),
using the obvious stacked disks, joined by half twisted bands, as Seifert surfaces for X and Y , and a
hemispherical page in the open book on S 3 as a Seifert surface for Z.

Now the bicycles in L are easily identified. There are d = gcd(p, q) of them, all of longitudinal
degree ` = lcm(p, q), and all but one of meridional degree 0, the remaining one being of degree r.
The parametrizing icycles are all parallel to a (p/d, q/d) torus knot in the 2-torus, with vertical winding
numbers all equal to zero, except one equal to r. By the bicycle theorem, these icyles form a diagram
for the Pontryagin link of hL, with global framing −(pq + r). This is exactly the situation described in
Example III.2, and so

ν(hLpqr ) = ν(hL) = 0 ∈ Z2 gcd(p,q,r)

as asserted.

Proof of the inductive step of Theorem A

First recall from Example II.2 that any three-component link L with pairwise linking numbers p, q
and r is link homotopic to a link obtained from Lpqr by a sequence of delta moves of the type shown
in Figure 4 (or its inverse), by a result of Murakami and Nakanishi7. It was shown in that example that
each such move increases µ(L) by 1.

Now observe that such a delta move ∆ : L → L̂ can be viewed as a double crossing change D, of the
kind shown in Figure 21, composed with an isotopy, as indicated in Figure 23. By Corollary V.3, this
double crossing change increases ν(L) by 2, and so ∆ does the same.

Since this argument applies to an arbitrary delta move, it follows that ν(L) = 2µ(L) for all three-
component links L. This completes the proof of Theorem A.
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FIG. 23. Another view of the delta move

VII. PROOF OF THEOREM B, FORMULAS (1) AND (2)

Theorem B provides three formulas for Milnor’s µ-invariant of a three-component link L in S 3 whose
pairwise linking numbers vanish:

(1) (differential forms) µ(L) = 1/2
∫

T 3
d−1(ωL) ∧ ωL = 1/2

∫
T 3
δ(ϕ ∗ ωL) ∧ ωL

(2) (vector fields) µ(L) = 1/2
∫

T 3×T 3

⇀vL(x) × ⇀vL(y) · ∇y ϕ (x − y) dx dy

(3) (Fourier series) µ(L) = 8π3
∑
n,0

an × bn · n/|n|2

The notation is explained in the introduction.
In the subsections that follow, we obtain explicit expressions for the characteristic 2-form ωL and

vector field ⇀vL, and for the fundamental solution ϕ to the scalar Laplacian on T 3, and then establish
formula (1) by making use of J. H. C. Whitehead’s integral formula for the Hopf invariant. Then, we
show how to obtain formula (2) from formula (1). Finally, in Section VIII we review the calculus of
differential forms and Fourier analysis on T 3, in order to make explicit the role and form of ϕ and obtain
formula (3).

Explicit formula for the 2-form ωL and the vector field ⇀vL on T3

Recall the formula for the Gauss map gL : T 3 → S 2 of the link L given in Proposition IV.1,

gL(s, t, u) =
F(x, y, z)
|F(x, y, z)|

,

where x = x(s), y = y(t) and z = z(u) parametrize the components of L, and where F was given in
Section IV as

F(x, y, z) = (ix·y + iy·z + iz·x , jx·y + jy·z + jz·x , kx·y + ky·z + kz·x).

Here we view x, y and z as quaternions for the multiplication and as vectors in R4 when performing
the dot product. For simplicity, we write gL = F/|F|, suppressing the appearance of the evaluation map
eL(s, t, u) = (x(s), y(t), z(u)).

Again let ω be the Euclidean area 2-form on the unit 2-sphere S 2 ⊂ R3, normalized so that the total
area is 1 instead of 4π. If p is a point of S 2, and a and b are tangent vectors to S 2 at p, then

ωp(a,b) =
1

4π
(a × b) · p.
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This 2-form ω on S 2 extends to a closed 2-form ω in R3 − 0 given by

ωp(a,b) =
(a × b)·p

4π |p|3
,

which is the pullback of ω from S 2 to R3 − 0 via the map p 7→ p/|p|. Hence the pullback g∗Lω of ω from
S 2 to T 3 via gL = F/|F| is the same as the pullback F∗ω of ω from R3 − 0 to T 3 via F.

Write

g∗Lω = F∗ω = a(s, t, u) dt ∧ du + b(s, t, u) du ∧ ds + c(s, t, u) ds ∧ dt.

Then we have

a(s, t, u) = F∗ω(∂t, ∂u) = ω(F∗∂t, F∗∂u)

= ω(Ft, Fu) =
(Ft × Fu)·F

4π |F|3
,

and likewise for b(s, t, u) and c(s, t, u), where the subscripts on F denote partial derivatives.
Therefore, the characteristic 2-form of the link L is

ωL = g∗Lω =
Ft × Fu·F

4π |F|3
dt ∧ du +

Fu × Fs·F
4π |F|3

du ∧ ds +
Fs × Ft·F

4π |F|3
ds ∧ dt,

and its corresponding characteristic vector field is

⇀vL =
Ft × Fu·F

4π |F|3
∂s +

Fu × Fs·F
4π |F|3

∂t +
Fs × Ft·F

4π |F|3
∂u.

Proof of Theorem B, formula (1)
Let L be a three-component link in S 3 with pairwise linking numbers p, q and r all zero. By the first

part of Theorem A these numbers are the degrees of the Gauss map gL : T 3 → S 2 on the 2-dimensional
coordinate subtori. Since these degrees are all zero, gL is homotopic to a map g : T 3 → S 2 which
collapses the 2-skeleton of T 3 to a point:

gL ' g : T 3 σ
−→ S 3 f

−→ S 2,

where σ is the collapsing map. By the second part of Theorem A, Milnor’s µ-invariant of L is equal to
half of Pontryagin’s ν-invariant ν(gL) (comparing gL to the constant map f000 as explained in Section III),
which in turn is just the Hopf invariant of f : S 3 → S 2,

µ(L) = 1
2ν(gL) = 1

2 Hopf( f ).

We can thus use J. H. C. Whitehead’s integral formula for the Hopf invariant as the first ingredient in
our formula for the µ invariant. Starting from Hopf’s definition of his invariant of a map f : S 3 → S 2

as the linking number between the inverse images of two regular values, Whitehead14 found an integral
formula for Hopf( f ) as follows.

Let ω be the area 2-form on S 2, normalized so that
∫

S 2 ω = 1. Its pullback f ∗ω is a closed 2-form on
S 3, which is exact because H2(S 3;R) = 0. Hence f ∗ω = dα for some 1-form α on S 3, and Whitehead
showed that the Hopf invariant of f is given by the formula

Hopf( f ) =

∫
S 3
α ∧ f ∗ω =

∫
S 3

d−1( f ∗ω) ∧ f ∗ω ,

the value of the integral being independent of the choice of α.
One way to make Whitehead’s formula explicit, and to make the integrand geometrically natural, is

to choose α = α0, the 1-form of least L2 norm for which dα0 = f ∗ω. Although we do not follow this
approach here, we show explicitly how to do so in Appendix F since this may be of independent interest.
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Instead, we are going to pull the whole situation back to T 3 and perform our calculations there. In
particular, the formula for Hopf( f ) above pulls back to the formula

ν(gL) =

∫
T 3
α ∧ g∗ω,

where α is any 1-form on T 3 such that dα = g∗ω. One such choice would be α = σ∗α0. However, since
we do not have an explicit analytic formula for σ, and since the formula for α0 is complicated, we will
pursue a slightly different approach.

Taking advantage of the fact that gL is homotopic to g, we also have

ν(gL) =

∫
T 3
α ∧ g∗Lω =

∫
T 3
α ∧ ωL

for any 1-form α on T 3 such that dα = ωL. Therefore, what we really need is a canonical way to produce
such a 1-form α on T 3. We will prove in Proposition VIII.2 that

αL = δ(ϕ ∗ ωL)

has the desired property that dαL = ωL. Moreover, if α̃ is any other 1-form such that dα̃ = ωL, then
|αL | ≤ | α̃ | in L2(T 3), with equality if and only if α̃ = αL.

We thus obtain the explicit integral formula for Milnor’s µ-invariant of the three component link L:

µ(L) = 1
2ν(gL) =

1
2

∫
T 3
δ(ϕ ∗ ωL) ∧ ωL,

which is formula (1) of Theorem B.

Proof of Theorem B, formula (2)
The 1-form δ(ϕ ∗ ωL) on T 3 which appears in formula (1) of Theorem B converts to the vector field

∇×(ϕ∗⇀vL), which can be regarded as the magnetic field on T 3 due to the current flow ⇀vL. The customary
minus sign here is now hidden in the definitions of the Laplacian and its inverse (Green’s operator).

The integral formula for Milnor’s µ-invariant given in formula (1),

µ(L) =
1
2

∫
T 3
δ(ϕ ∗ ωL) ∧ ωL ,

then converts to the formula

µ(L) =
1
2

∫
T 3

(
∇ × (ϕ ∗ ⇀vL)

)
·⇀vL d vol

in the language of vector fields. To obtain formula (2) of Theorem B, we first expand out the convolution
integral

(ϕ ∗ ⇀vL)(x) =

∫
T 3

⇀vL(y)ϕ(x − y) dy.

Then we compute its curl:(
∇x × (ϕ ∗ ⇀vL)

)
(x) =

∫
T 3
∇x ×

(
⇀vL(y)ϕ(x − y)

)
dy = −

∫
T 3

⇀vL(y) × ∇x ϕ(x − y) dy ,

using the product formula ∇× ( f ⇀a) = f (∇× ⇀a)− ⇀a ×∇ f . Note that ∇x ×
⇀vL(y) = 0 since, from the point

of view of the variable x, the vector field ⇀vL(y) is constant.
Inserting the expression for the curl of ϕ ∗ ⇀vL into the formula for µ(L), we get

µ(L) = −
1
2

∫
T 3×T 3

(
⇀vL(y) × ∇x ϕ(x − y)

)
· ⇀vL(x) dx dy

= −
1
2

∫
T 3×T 3

⇀vL(x) × ⇀vL(y) · ∇x ϕ(x − y) dx dy

=
1
2

∫
T 3×T 3

⇀vL(x) × ⇀vL(y) · ∇y ϕ(x − y) dx dy ,
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where at the last step we hid the minus sign by taking the gradient of ϕ with respect to y instead of x,
and obtained formula (2) of Theorem B.

VIII. FOURIER SERIES AND THE PROOF OF THEOREM B, FORMULA (3)

Fourier series and the fundamental solution of the Laplacian
In the proofs of formulas (1) and (2) of Theorem B, we needed to find a 1-form α on T 3 whose

exterior derivative is the exact 2-form ωL associated with the three-component link L in S 3. We asserted
that we can choose α = δ(ϕ ∗ ωL), where ϕ is the fundamental solution of the scalar Laplacian on T 3.
Furthermore, we asserted that this choice of α is canonical in the sense that it has the smallest L2 norm
among all possible choices. We justify these assertions in this section and lay the groundwork for the
proof of formula (3) of Theorem B by studying the calculus of differential forms on T 3 = (R/2πZ)3 in
terms of their Fourier series.

We will prove the following two results:

Proposition VIII.1. The fundamental solution of the scalar Laplacian on the
3-torus T3 = (R/2πZ)3 is given by the formula

ϕ(x) =
1

8π3

∑
n,0

ein·x/|n|2.

The function ϕ is C∞ at all points x ∈ T3 except 0, where it becomes infinite.

Proposition VIII.2. If ω is any exact differential form on T3 with C∞ coefficients, then

α = δ(ϕ ∗ ω)

is a C∞ differential form satisfying dα = ω. Furthermore, if dα̃ = ω as well, then |α|L2 ≤ |α̃|L2 , with
equality if and only if α̃ = α.

Before diving into calculations, we pause for some words of explanation: We write Ωk(T 3) for the
space of C∞ k-forms on T 3. With d as the exterior differentiation operator taking Ωk(T 3) to Ωk+1(T 3),
and δ the co-differentiation map adjoint to d in the L2 sense, the Laplacian of a k-form α is

∆α = (dδ + δd)α.

This definition gives us the “geometer’s sign convention” for the Laplacian on functions (0-forms):

∆ f = −

∂2 f
∂x2

1

+
∂2 f
∂x2

2

+
∂2 f
∂x2

3

 .
Proof of Proposition VIII.1

The fundamental solution of the scalar Laplacian is a function ϕ, convolution with which “inverts”
the Laplacian to the extent that this is possible. On T 3, only functions that integrate to zero are in the
range of the Laplacian, and so “the” fundamental solution of ∆ on T 3 is the function ϕ which satisfies∫

T 3
ϕ dvol = 0 and ∆(ϕ ∗ f ) = f

for all f ∈ C∞(T 3) such that
∫

T 3
f dvol = 0.

Even though we have expressed ϕ in terms of complex exponentials, the value of ϕ is real for real
values of x because of the symmetry of the coefficients.

Figure 24 shows the graph of the corresponding fundamental solution

ϕ(x) =
1

4π2

∑
n,0

ein·x/|n|2
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FIG. 24. Fundamental solution of the scalar Laplacian on S 1 × S 1

of the scalar Laplacian on the 2-torus S 1 × S 1, summed for |n| ≤ 10, and displayed over the range
[−3π, 3π] × [−3π, 3π].

With respect to the L2 inner product

〈 f , g〉 =

∫
T 3

f (x) g(x) dx ,

the set of complex exponentials {ein·x | n ∈ Z3} is an orthogonal set, and 〈ein·x, ein·x〉 = 8π3 for all n.
Any function f in L2(T 3) can be expanded into a Fourier series

f ∼
∑
n∈Z3

cnein·x

where

cn =
1

8π3 〈 f , e
in·x〉 =

1
8π3

∫
T 3

f (x) e−in·x dx.

Moreover, by Plancharel’s theorem, the L2(T 3)-norm of f is equal to the `2-norm of the sequence of
coefficients:

| f |L2 =

∫
T 3
| f (x)|2 dx =

∑
n∈Z3

8π3|cn|
2.

This shows that the function ϕ of Proposition VIII.1 is in L2(T 3), since |cn|
2 is of order 1/|n|4, while the

number of lattice points at distance |n| from 0 is of order |n|2.
Because the range of the scalar Laplacian is the (closed) subspace of functions f for which∫

T 3
f (x) dx = 0 ,

we will denote this subspace of L2(T 3) by L2
0(T 3), and similarly for other function spaces, where a

zero subscript indicates that all functions in the space have average value zero. In terms of Fourier
coefficients, f ∈ L2

0(T 3) if and only if the Fourier coefficient c0 = c(0,0,0) = 0.
For functions f and g in C∞(T 3), their convolution f ∗ g is defined by(

f ∗ g
)

(x) =

∫
T 3

f (y) g(x − y) dy ,
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and also lies in C∞(T 3). One checks easily that eim·x ∗ ein·x = 0 if m , n, and ein·x ∗ ein·x = 8π3ein·x.
Therefore, if f and g have Fourier series

∑
cnein·x and

∑
dnein·x, then the Fourier series of f ∗ g is

8π3
∑
n∈Z3

cndnein·x.

From this it follows that the operation of convolution satisfies f ∗g = g ∗ f and ( f ∗g) ∗h = f ∗ (g ∗h)
whenever all the convolutions are defined. Furthermore,

∂

∂xk
( f ∗ g) =

∂ f
∂xk
∗ g = f ∗

∂g
∂xk

.

For u ∈ C∞(T 3), with

u(x) =
∑
n∈Z3

bnein·x ,

we have

∆u(x) =
∑
n,0

|n|2bnein·x.

Because the (0, 0, 0)-coefficient of ∆u is zero, this shows why in order to solve ∆u = f we must restrict
f to be in C∞0 (T 3). And for f ∈ C∞0 (T 3), with

f (x) =
∑
n,0

cnein·x,

the unique solution u ∈ C∞0 (T 3) of ∆u = f has bn = cn/|n|2, and so, since

ϕ(x) =
1

8π3

∑
n,0

ein·x/|n|2 ,

we conclude that u = ϕ ∗ f . This completes the proof of Proposition VIII.1 except for the assertion
about the smoothness of ϕ away from its singularity, which follows from well-known local regularity
theorems for elliptic partial differential equations (see, for example, Folland15, Theorem 6.33).

Fourier series and the calculus of differential forms on the 3-torus
To prove Proposition VIII.2, we express the calculus of differential forms on T 3 in terms of Fourier

series. Except for the fundamental solution ϕ of the (scalar) Laplacian on T 3, we will assume all
functions and forms are C∞.

We continue to express functions (0-forms) as Fourier series: for x = (s, t, u) and n = (n1, n2, n3), we
write

f (x) =
∑
n∈Z3

cnein·x ∈ Ω0(T 3).

Likewise, we employ the notation described in the introduction and express 1-forms using
cn = (cs

n, c
t
n, c

u
n) and dx = (ds, dt, du). We write

α(x) =
∑
n∈Z3

cnein·x·dx ∈ Ω1(T 3).

With ?dx = (dt ∧ du, du ∧ ds, ds ∧ dt) as before, we can express a 2-form as

β(x) =
∑
n∈Z3

cnein·x· ? dx ∈ Ω2(T 3).

Finally, with dV = ds ∧ dt ∧ du, a 3-form can be written as

γ(x) =
∑
n∈Z3

cnein·xdV ∈ Ω3(T 3).
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It is straightforward to express both the exterior derivative d and the codifferential δ in terms of
Fourier coefficients. With f , α, β and γ as above, we have

df =
∑

icnnein·x·dx and δf = 0,

dα =
∑

in × cnein·x· ? dx and δα = −
∑

in·cnein·x

dβ =
∑

in·cnein·xdV and δβ =
∑

in × cnein·x·dx

dγ = 0 and δγ = −
∑

icnnein·x· ? dx

Thus, exterior differentiation and co-differentiation are expressed in terms of vector algebraic operations
on the Fourier coefficients. From these expressions, we conclude the following about the kernel and
image of d and δ:

• For 0-forms,
ker d = { f | cn = 0 for n , 0, while c0 is arbitrary}
im d = {0}
ker δ = {all f }
im δ = { f | c0 = 0}

• For 1-forms,
ker d = {α | cn = λnn for n , 0, while c0 is arbitrary}
im d = {α | cn = λnn for n , 0, c0 = 0}
ker δ = {α | cn·n = 0 for n , 0, while c0 is arbitrary}
im δ = {α | cn·n = 0 for n , 0, c0 = 0}

• For 2-forms,
ker d = { β | cn·n = 0 for n , 0, while c0 is arbitrary}

im d = { β | cn·n = 0 for n , 0, c0 = 0}

ker δ = { β | cn = λnn for n , 0, while c0 is arbitrary}

im δ = { β | cn = λnn for n , 0, c0 = 0}

• For 3-forms,
ker d = {all γ}
im d = {γ | c0 = 0}
ker δ = {γ | cn = 0 for n , 0, while c0 is arbitrary}
im δ = {0}

Therefore im d ⊂ ker d and im δ ⊂ ker δ, and the following orthogonal (with respect to the L2 inner
product) decompositions hold:

Ωk(T 3) = ker δ ⊕ im d = im δ ⊕ ker d

for k = 0, . . . , 3. The k-forms in ker d ∩ ker δ are the forms whose Fourier series contain only constant
terms. These are called harmonic k-forms because they are in the kernel of the Laplacian ∆ = dδ + δd,
so we write Hark(T 3) = ker d ∩ ker δ. We then have the Hodge decomposition

Ωk(T 3) = im δ ⊕ Hark(T 3) ⊕ im d.

The Laplacian ∆ : Ωk(T 3) → Ωk(T 3) preserves this Hodge decomposition, taking im δ bijectively to
itself, killing Hark(T 3), and taking im d bijectively to itself.
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Proof of Proposition VIII.2
We must show that if ω is any C∞ exact differential k-form on T 3, then the (k − 1)-form α = δ(ϕ ∗ω)

is C∞ and satisfies dα = ω, and that if dα̃ = ω as well, then |α|L2 ≤ |α̃|L2 , with equality if and only if
α̃ = α. We will carry this out specifically for 2-forms, because it is the case we use in Theorem B. The
proofs for 1-forms and 3-forms are essentially the same.

For a 2-form

β =
∑
n∈Z3

cnein·x· ? dx ,

its Laplacian is given by

∆β =
∑
n,0

|n|2cnein·x· ? dx.

We can use convolution with the fundamental solution ϕ of the scalar Laplacian to express the Green’s
operator,

Gr(β) = ϕ ∗ β =
∑
n,0

cn

|n|2
ein·x· ? dx.

Clearly the Laplacian ∆ and the Green’s operator are inverses of one another when applied to 2-forms β
with c0 = 0, equivalently, to 2-forms β orthogonal to Har2(T 3).

To prove Proposition VIII.2, assume that β is exact, that is, β ∈ im d. Then Gr(β) is also exact, hence
certainly closed, and therefore

β = ∆ Gr(β) = (dδ + δd) Gr(β) = dδGr(β) = dδ(ϕ ∗ β).

Thus α = δ(ϕ ∗ β) satisfies dα = β.
If α̃ is any other 2-form satisfying dα̃ = β, then α̃ differs from α by some closed 2-form, which must

be L2-orthogonal to α since α ∈ im δ. Thus, |α|L2 ≤ |α̃|L2 by the Pythagorean theorem.
Since the Fourier coefficients of a C∞ 2-form decrease faster than any negative power of |n|, we have

that Gr(β) and δGr(β) will be C∞ if β is. This completes the proof of Proposition VIII.2.

Proof of Theorem B, formula (3)
This formula expresses Milnor’s invariant µ(L) in terms of the Fourier coefficients of ωL:

µ(L) = 8π3
∑
n,0

an × bn · n
|n|2

where

ωL =
∑
n,0

cnein·x · ? dx

with cn = an + ibn and with an and bn real.
The formula for ωL is summed over n , 0 because, as we saw in the Introduction just before the

statement of Theorem B, the hypothesis of pairwise linking numbers zero is equivalent to the vanishing
of the coefficient c0 in the Fourier expansion of ωL.

We begin with formula (1) of Theorem B for µ(L):

µ(L) =
1
2

∫
T 3
δ(ϕ ∗ ωL) ∧ ωL.

We have

ϕ ∗ ωL =
∑
n,0

cnein·x

|n|2 ·
? dx ,
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and hence, from our table of derivatives and co-derivatives in terms of Fourier series,

δ(ϕ ∗ ωL) =
∑
n,0

(n × cn) i ein·x

|n|2 · dx.

To compute δ(ϕ ∗ ωL) ∧ ωL, we use the fact that if v · dx is a 1-form and w · ?dx is a 2-form, then

(v · dx) ∧ (w · ?dx) = (v ·w) dV.

Thus

δ(ϕ ∗ ωL) ∧ ωL =
∑
m,0

∑
n,0

(n × cn) · cm iei(m+n)·x

|n|2
dV.

When we insert this double sum into the integral µ(L) = 1
2

∫
T 3 δ(ϕ ∗ ωL) ∧ ωL, most of the terms

in the summation will integrate to zero, leaving only the terms where m + n = 0. In those cases,
ei(m+n)·x = e0 = 1 integrates to 8π3, the volume of T 3.

Thus

µ(L) = 4π3
∑
n,0

i(n × cn) · c−n

|n|2
= 4π3

∑
n,0

i(cn × c−n) · n
|n|2

and it remains to simplify this last series.
Since cn = an + ibn and ωL is real-valued, we have c−n = cn = an− ibn. Hence cn× c−n = −2i an×bn,

and therefore

µ(L) = 4π3
∑
n,0

i(cn × c−n) · n
|n|2

= 8π3
∑
n,0

(an × bn) · n
|n|2

,

completing the proof of formula (3) and, with it, that of Theorem B.

Appendix A: Background and Motivation

Configuration spaces.
To study the linking of simple closed curves in a 3-manifold M from the perspective of homotopy

theory, it is convenient to ignore the knotting of individual components and focus on the relation of link
homotopy. For some background on this notion, see Milnor1,4 and, for example, Massey16, Casson17,
Turaev18, Porter19, Fenn20, Orr21, Cochran22, and Habegger and Lin23.

Configuration spaces come into the picture as follows. Let L be an ordered, oriented link in M with
n components X,Y, . . . parametrized by x = x(s), y = y(t), . . . for s, t, . . . in S 1. Then consider the
evaluation map

eL : T n −→ ConfnM , (s, t, . . . ) 7−→ (x, y, . . . )

from the n-torus T n = S 1 × · · · × S 1 to the configuration space ConfnM of ordered n-tuples of distinct
points in M. Since link homotopies of L become homotopies of eL, the assignment L 7→ eL induces a
map from the set Ln(M) of link homotopy classes of n-component links in M to the set [T n,ConfnM]
of homotopy classes of maps from T n to ConfnM,

e : Ln(M) −→ [T n,ConfnM].

We can think of the map e as defining a representation from the world of link homotopy to the world of
homotopy, and the basic question is whether or not this representation is faithful, that is, one-to-one.

For two-component links in R3, the representation e is faithful. The set L2(R3) is in one-to-one
correspondence with the integers via the classical linking number, while the set [T 2,Conf2R

3] is also
in one-to-one correspondence with the integers via the Brouwer degree, since Conf2R

3 deformation
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retracts to S 2. The correspondence e is bijective since the linking number of a two-component link
equals the degree of its Gauss map

T 2 −→ S 2 , (s, t) 7−→
y − x
|y − x|

.

The profit is the famous integral formula of Gauss24,

Lk(X,Y) =
1

4π

∫
T 2

dx
ds
×

dy
dt ·

x − y
|x − y|3

ds dt =

∫
T 2

dx
ds
×

dy
dt · ∇y ϕ(y−x) ds dt,

where ϕ(x) = 1/4π|x| is the fundamental solution of the scalar Laplacian in R3. The integrand is natural,
in the sense that it is invariant under the group of orientation-preserving rigid motions of R3, acting on
the link.

By contrast, for two-component links in S 3 the representation e is not faithful. The configuration
space Conf2S 3 has the homotopy type of S 3, and hence all maps of T 2 to Conf2S 3 are homotopically
trivial. In particular, the analogue of Gauss’s linking integral in S 3, with an integrand which is geometri-
cally natural in the above sense, cannot be obtained by this route. Nevertheless, such an integral formula
was found by DeTurck and Gluck25 using an alternative route via electrodynamics on the 3-sphere, and
independently by Kuperberg26 via the calculus of double forms.

For higher-dimensional two-component links, the same dichotomy holds. In Rn, Scott27 and Massey
and Rolfsen28 showed that link homotopy classes of links whose components are copies of S k and S n−k−1

are in bijective correspondence with homotopy classes of maps from S k × S n−k−1 to the configuration
space Conf2R

n ' S n−1, and consequently with πn−1(S n−1) � Z. Finding a geometric linking integral is
straightforward, as the Gauss linking integral and its proof easily generalize to this setting. Shifting the
scene to S n does not change the link homotopy story, but all maps from S k × S n−k−1 to the configuration
space Conf2S n ' S n are homotopically trivial. Geometrically natural linking integrals still exist in this
situation, as demonstrated by DeTurck and Gluck29 and Shonkwiler and Vela-Vick30, but finding them
requires new techniques.

For n-component homotopy Brunnian links in R3 – meaning links that become trivial up to link
homotopy when any single component is removed – and analogous links in higher dimensions,
Koschorke31 showed that the representation e is again faithful. This provided the first proof (up to
sign) of our Theorem A for the case when the pairwise linking numbers are zero.

The content of the present paper is that, for arbitrary three-component links L in S 3, the represen-
tation e is faithful, and that we are led thereby to a natural integral for Milnor’s triple linking number
when the pairwise linking numbers vanish. The relevant configuration space Conf3S 3 is easily seen to
deformation retract to S 3 × S 2, where the S 3 coordinate records one of the three points in each triple
(see Section IV). It follows that the evaluation map eL : T 3 → Conf3S 3 is homotopic to a map of T 3

into an S 2 fiber, and this turns out to be, up to homotopy, our generalized Gauss map gL.
Theorem A asserts, among other things, that L and L′ are link homotopic if and only if gL and gL′ are

homotopic, and hence that

e : L3(S 3) −→ [T 3,Conf3S 3]

is faithful. Furthermore, it was observed above that if h ∈ SO(4) is an orientation preserving isometry of
S 3, then eh(L) = h · eL where · is the diagonal action, and so the integrands in the formulas for Milnor’s
triple linking number µ(L) in Theorem B are invariant under the action of SO(4).

In this paper, our constructions and theorems are set specifically in S 3; the corresponding results in
R3 will be treated in a sequel.

Fluid mechanics and plasma physics.
The helicity of a vector field V defined on a bounded domain Ω in R3 is given by the formula

Hel(V) =
1

4π

∫
Ω×Ω

V(x) × V(y) ·
x − y
|x − y|3

dx dy =

∫
Ω×Ω

V(x) × V(y) · ∇y ϕ(x−y) dx dy.

where, as above, ϕ is the fundamental solution of the scalar Laplacian in R3, and dx and dy are volume
elements.
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Woltjer32 introduced this notion during his study of the magnetic field in the Crab Nebula, and showed
that the helicity of a magnetic field remains constant as the field evolves according to the equations
of ideal magnetohydrodynamics, and that it provides a lower bound for the field energy during such
evolution. The term “helicity” was coined by Moffatt33, who also derived the above formula from
Woltjer’s original expression.

There is no mistaking the analogy with Gauss’s linking integral, and no surprise that helicity is a
measure of the extent to which the orbits of V wrap and coil around one another. Since its introduction,
helicity has played an important role in astrophysics and solar physics, and in plasma physics here on
earth.

Looking back at Theorem B, we see that the integral in our formula for Milnor’s µ-invariant of a
three-component link L in the 3-sphere expresses the helicity of the associated vector field ⇀vL on the
3-torus.

Our study was motivated by a problem proposed by Arnold and Khesin34 regarding the search for
“higher helicities” for divergence-free vector fields. In their own words:

The dream is to define such a hierarchy of invariants for generic vector fields such that, whereas
all the invariants of order ≤ k have zero value for a given field and there exists a nonzero invariant
of order k + 1, this nonzero invariant provides a lower bound for the field energy.

Since the helicity integral above is analogous to the Gauss linking integral, the general hope is that
higher helicities will be analogous to higher order linking invariants. An alternative approach to helicity
may be found in the work of Cantarella and Parsley35.

The formulation in Theorems A and B has led to partial results that address the case of vector fields
on invariant domains such as flux tubes modeled on the Borromean rings; see Komendarczyk36,37.

Other integral formulas. Previous integral formulas for Milnor’s triple linking number and at-
tempts to define a higher order helicity can be found in the work of Massey16,38, Monastyrsky and
Retakh39, Berger40,41, Guadagnini, Martellini and Mintchev42, Evans and Berger43, Akhmetiev and Ruz-
maiken44,45, Arnold and Khesin34, Laurence and Stredulinsky46, Leal47, Hornig and Mayer48, Rivière49,
Khesin50, Bodecker and Hornig51, Auckly and Kapitanski13, Akhmetiev52, and Leal and Pineda53.

The principal sources for these formulas are Massey triple products in cohomology, quantum field
theory in general, and Chern–Simons theory in particular. A common feature of these integral formulas
is that choices must be made to fix the domain of integration and the value of the integrand.

Appendix B: Proof of Proposition III.1

This proposition gives a formula for the primary and secondary invariants λ( f ) and ν( f ), of a smooth
map f : T 3 → S 2 whose Pontryagin link L is represented by a toral diagram in T 2 without crossings,
with horizontal winding numbers p and q, vertical winding number r, and total framing n:

λ( f ) = (p, q, r) and ν( f ) = n + pq +
∑

ridi mod 2 gcd(p, q, r)

where ri and di are the vertical winding numbers and depths (with respect to any chosen basepoint) of
the components of the diagram.

The formula for λ( f ) was derived in Section III and, as explained there, is at least well defined
modulo 2 gcd(p, q, r), independent of the choice of basepoint. So it remains to verify that this is the
correct formula for ν( f ).

First observe that, in the absence of crossings, the integers ri are all that are needed to recover the link
L up to isotopy. In particular, each nonvertical component of L can be taken to wind monotonically
around the last circle factor of T 3. Furthermore, equipped with the total framing n, we can recover the
framed link L up to framed bordism. To see this, note that a pair of saddle bordisms can be used as
shown in Figure 25 to transfer a twist in the framing from any component of L to any other, and so we
can distribute the framings in any desired way among the components.

We now propose to transformL by a sequence of framed bordisms intoLpqr with some extra twists in
the framing. These correspond to homotopies of f and so do not change the Pontryagin invariant ν( f ).
We will carry this out on a diagrammatic level, transforming our given toral diagram, with total framing
n, to the diagram for Lpqr shown in Figure 7(a) (reproduced below for the reader’s convenience) with
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∼ = ∼

FIG. 25. Using saddles to transfer twists

some total framing, which by definition will equal ν( f ). So we must simply keep track of the change in
the total framing as we proceed.

FIG. 7(a). The link Lpqr and its diagram

We first use saddle bordisms to replace the vertical winding of each non-vertical component Li by |ri|

zero-framed vertical components, at the cost of adding ri to the total framing. The new vertical circles
are “adjacent” to Di – meaning displaced slightly to the right of it in the projection – and oriented up
or down according to the sign of ri. This is illustrated in Figure 26. The net effect on the diagram is to
reduce all the vertical winding numbers to zero on the components of D (i.e. to eliminate the internal
marked points N), to add

∑
|r j| isolated marked points, and to add

∑
r j to the total framing of the

diagram, where the sums are only over the non-vertical components of L.

∼

n n + 1

FIG. 26. Using saddles to replace vertical winding by vertical circles

Since our target is the base linkLpqr (with extra twists), the vertical circles must be gathered together.
This is the purpose of our base point ∗, which will serve as a gathering spot, and the arcs γi, which will
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serve as the paths in T 2 along which to move the vertical circles which at the moment are adjacent to the
Li. At each intersection of γi with a component ofD, these vertical circles must cross the corresponding
strand of L. This crossing can be accomplished by a pair of saddle bordisms as indicated in Figure 27,
adding ±2 to the diagram framing. On the diagrammatic level, this can viewed as a two step process,
running the bordism shown in Figure 26 backwards and then forwards, in order to move an isolated
marked point across a component ofD, as shown at the bottom of the figure.

∼ ∼

n − 1 n n + 1

FIG. 27. Using saddles to gather the vertical circles

Now it is easy to check that the act of removing the vertical winding of the nonvertical components
of L, and then gathering all the resulting vertical circles (including the original ones corresponding to
M) will add

∑
ridi to the total framing of the diagram. Visually, this process can be thought of as a

“migration” to the base point of all the marked points in the diagram.
Next use disk bordisms to remove the null homotopic components of D (arranging for them to be

0-framed by storing their twists elsewhere, as explained above) and similarly use annular bordisms to
remove any pair of curves that are parallel but oppositely oriented. The diagram now consists of a (p, q)
torus link in T 2 (meaning c parallel copies of the (p′, q′) torus knot, where p = cp′ and q = cq′ with
p′ and q′ relatively prime) together with r isolated marked points near ∗. The total framing, which was
originally equal to n, has changed to n +

∑
ridi.

Finally we transform the (p, q) torus link by using saddle bordisms (reversing the process described
above for removing crossings) into p copies of S 1

s and q copies of S 1
t , grouped as in Lpqr, at the cost of

adding pq to the total framing. Thus we have arrived atLpqr, having changed the total framing from n to
n+ pq+

∑
ridi. This verifies the stated formula for ν( f ), and completes the proof of Proposition III.1. �

Appendix C: Proof of the Bicycle Theorem V.1

The Bicycle Theorem asserts that for a generic link L in S 3 with asymmetric characteristic map
hL : T 3 → S 2 (defined in Section IV), the north pole k ∈ S 2 is a regular value of hL, and the collection
D of icycles of L together with their framings and vertical winding numbers (as defined in Section V)
form a toral diagram for the associated Pontryagin link L = h−1

L (k).
To prove this, choose a parametrization x = x(s), y = y(t) and z = z(u) for the three components

X, Y and Z of L. Then Z coincides with the binding K of the standard open book, which is the circle
subgroup of S 3 containing the quaternion k. Looking back at the formula for the Gauss map

hL(s, t, u) = (yz − xz)/|yz − xz| where az = pr−1(−az̄) ,

we see that we must understand the K-action sending z ∈ K to the automorphism a 7→ az̄ of S 3, and the
induced K-action on R3 via stereographic projection. Visualizing how these actions transform the pages
of the standard open books will aid us in our subsequent arguments, and we do this next.
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The geometry of the K-action
For any z = cosα + k sinα in the binding K, right multiplication by z̄ = cosα − k sinα is an isometry

of S 3 that rotates K by −α radians, likewise rotates the orthogonal great circle C of page centers by α
radians, and so advances each hemispherical page Hθ to the page Hθ+α while simultaneously rotating
the page by −α radians about its center iθ. Therefore, as z traverses K, any given page turns once around
K, successively occupying the positions vacated by the other pages. During this time, the page spins
once negatively about its center, so that in total it is following a left-handed screw motion along C.

This turning of the hemispherical pages about K in S 3 is transferred by stereographic projection to
a turning of the half-planar pages about the k-axis in R3, while the spherical rotations of the pages
in S 3 become hyperbolic rotations of the pages in R3 about their centers. This is a consequence of
the conformality of stereographic projection, which implies that the page identification Hθ ↔ Pθ is
conformal. Once again, the net effect is a left-handed screw motion along C.

This description of the K-action has the following technical consequence that is critical for our study
of the Gauss map of a generic link.

Lemma C.1. (Twist Lemma) Let x and y be distinct points in S3 lying in the complement of the
binding K of the standard open book.

(a) If x and y lie on different pages, then for z ∈ K, the vector yz − xz never lies on a page of the
corresponding open book in R3, and in particular never points straight up.

(b) If x and y lie on the same page, then as z traverses K, the vectors yz − xz lie on successive
pages inR3, turning once positively around the binding, and spinning once counterclockwise
without backtracking within the pages as they go. In particular, yz − xz points straight up
for a unique z = τ(x, y) ∈ K.

Proof. Since the K-action carries pages to pages, x and y will lie on the same page in S 3 if and only if
xz and yz lie on the same page in R3 for all z ∈ K. Part (a) of the lemma is now obvious. Using the
meridional projection, and the description of the K-action above, part (b) of the lemma translates into
the following statement. For any pair of distinct points x and y in the upper half-plane model of the
hyperbolic plane H, the function

d(α) = arg(rotαy − rotαx)

is strictly increasing, where rotα : H → H is hyperbolic rotation about i by α radians. Since we wish to
prove this for all x and y, it suffices to show that d′(0) > 0 (because d′(α) for one choice of x and y is
equal to d′(0) for some other choice of x and y).

To prove this, we transfer the problem to the Poincaré disk D using the conformal map

f : D −→ H , f (z) =
1 − z
1 + z

i

that sends 0 to i. Hyperbolic rotation of H about i by any angle is conjugate by f to euclidean rotation
of D by the same angle. Thus we must show that for any pair of distinct points x and y in D, the function

g(α) = arg( f (eiαy) − f (eiαx))

has positive derivative at α = 0. Noting that f (a) − f (b) = 2i(b − a)/(1 + a)(1 + b) and using the fact
that the argument function converts products into sums and quotients into differences, we find that g(α)
differs by a constant from the function

h(α) = α − arg(1 + eiαx) − arg(1 + eiαy),

and so it remains to show that h′(0) > 0. But a simple geometric argument using the central angle
theorem from elementary plane geometry shows that, for any given z ∈ D, the derivative of the function
arg(1 + eiαz) at α = 0 is strictly less than 1/2. Therefore h′(0) > 1 − 1/2 − 1/2 = 0 as desired. �
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It follows from the twist lemma that, for any point (s, t) in the 2-torus that is isogonal for our generic
link L (meaning that x = x(s) and y = y(t) have the same polar angle, and hence lie on the same page
of the open book), there exists a unique u = u(s, t) ∈ S 1 for which the vector yz − xz points straight up,
namely the u for which z = z(u) = τ(x, y). It follows that the link

L = h−1
L (k) = {(s, t, u) ∈ T 3 | (s, t) ∈ D and u = u(s, t)} ,

is the graph of the function u(s, t) over the collection D of isogonal curves in T 2, as asserted in the
introduction.

We now use the twist lemma to prove part (a) of the bicycle theorem, asserting that k is a regular value
of hL. This will endow the components of L with orientations (and thus vertical winding numbers)
and framings, as defined in Section III. The proof of the bicycle theorem will then be completed by
showing that these agree with the preferred orientations, vertical winding numbers and framings of the
components ofD, also defined in Section III.

Why is k a regular value of hL?
Suppose that hL(s, t, u) = k. This means that the vector from xz to yz points straight up, and so lies in

some page P of the standard open book in R3. We must show that at (s, t, u) the vectors ∂shL, ∂thL and
∂uhL span the tangent space to S 2 at k.

We are guided by Figure 28, depicting a neighborhood of the vertical vector ⇀v from xz to yz in R3,
lying on the page P. In this figure, Xz and Yz denote the images of X and Y under the z-action, one or
both of which must be transverse to P since L is generic. We arbitrarily depict Xz tangent to P and Yz
transverse to it.

yz

xz

⇀v

Yz

Xz

∂uhL

∂t hL

P

TURN

S
P
I
N

FIG. 28. k is regular

The hollow arrows in the figure indicate the left-handed screw motion of the K-action. In particular,
as the u parameter increases along K, this action (the stereographic image of right multiplication by
−z̄) turns the pages in the indicated direction while spinning them in a left-handed fashion about their
centers.

As the t parameter along Y increases, the tip of ⇀v moves to the right along Yz, so that ∂thL also points
to the right, transverse to P. For clarity, we draw this partial derivative vector at the tip of ⇀v, even though
it is really tangent to S 2 at its north pole k.

As the u parameter along Z increases, two things happen which affect ⇀v. The page containing it turns
around the binding, but such an action keeps ⇀v vertical, so has no infinitesimal effect. In addition, the
page spins around its center, shifting the binding in a downward direction. Thus by the twist lemma, the
vector ∂uhL is nonzero and tangent to the page, pointing toward the binding when placed with its initial
point at yz.

It follows that ∂thL and ∂uhL are linearly independent, confirming that (s, t, u) is a regular point of the
map hL. Since (s, t, u) was chosen arbitrarily in h−1

L (k), we see that k is a regular value of hL, proving
part (a) of the Bicycle Theorem.
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Finishing the proof of the Bicycle Theorem
Starting with a three-component link L in generic position in S 3, we have shown above that the

Pontryagin link L of its Gauss map hL is given by

L = h−1
L (k) = {(s, t, u) ∈ T 3 | (s, t) ∈ D and u = u(s, t)} .

It remains to prove that the preferred orientation, vertical winding number ri and framing ni of each
isogonal curveDi, as specified in Figure 16 and just before the statement of the bicycle theorem, agree
with the orientation, vertical winding number and framing of the component Li of the Pontryagin link
that lies overDi.

To see that the orientations agree, choose a regular page vector (x, y) parametrized by an isogonal
point (s, t) in Di, and consider the orientation of Y relative to the page containing x and y, as recorded
by the sign of y.

Figure 29 shows the associated vertical vector (xz, yz) in 3-space for the case when sign(y) = +1,
causing the displaced link component Yz to point to the right. Arguing as above (see Figure 28) we
see that ∂thL also points to the right, while ∂uhL points toward the binding as always. Thus ∂thL and
∂uhL form a positive basis for the tangent plane to S 2 at k. Since ∂s, ∂t and ∂u form a positive basis
for the tangent space to T 3 at each of its points, it follows that the link component Li must be oriented
in the direction of increasing s near the associated point (s, t, u) in the 3-torus, and this agrees with the
orientation assigned toDi in Figure 16.

yz

xz

Yz

Xz

∂uhL

∂t hL

FIG. 29. Orientation of the Pontryagin link

Similarly, if sign(y) = −1 then Li points in the direction of decreasing s near (s, t, u), which again is
seen from Figure 16 to agree with the preferred orientation onDi.

Next consider the vertical winding number ri ofDi. By definition ri is equal to the meridional degree
mi of the associated bicycle Pi, that is, the number of times that the page vectors spin in the pages of
the open book as the bicycle is traversed. By the twist lemma, this is equal to the number of times that
z spins around K, or equivalently that u = u(s, t) spins around the circle as (s, t) traverses Di, which is
the vertical winding number of Li.

Finally consider the framing ni ofDi. By definition ni = −`i−mi, where `i and mi are the longitudinal
and meridional degrees of the associated bicycle Pi. This integer specifies a normal vector field ⇀n to Li
by adding ni full twists (positive or negative according to the sign of ni) to the lift ⇀z of a normal vector
field toDi in T 2, the “zero” or “blackboard” framing.

We must show that the vector field ⇀n coincides with the Pontryagin framing ofLi. In other words, the
differential of hL carries it onto a homotopically trivial loop of nonzero tangent vectors to S 2 at k. To
see this, first note that ⇀z is homotopic to the vertical vector field ∂u, remaining nonzero and transverse
toLi during the homotopy. Now since ∂uhL is always tangent to the page containing xz and yz, as shown
above, it is clear that each longitudinal circuit of the bicycle Pi causes dhL(⇀z) to spin once in the same
direction about the binding. By the twist lemma, each meridional spin of the bicycle also causes dhL(⇀z)
to spin once about the binding. Thus dhL(⇀z) spins `i + mi times as the bicycle is traversed. Adding
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ni = −`i − mi full twists to the framing negates this spinning, and so dhL(⇀n) does not spin at all, up to
isotopy, as asserted.

This completes the proof of the bicycle theorem.

Appendix D: Proof of the Double Crossing Formula, Corollary V.2

Recall that this is a formula for the change ∆ν in the Pontryagin ν-invariant of a link L = X ∪Y ∪Z in
S 3 when a pair of crossings of opposite signs between X and Y are changed. Smoothing both crossings,
the components X and Y are transformed into a pair of knots P and Q, as explained in detail above the
statement of Corollary V.2 and illustrated in Figure 20. The double crossing formula then states that

∆ν ≡ 2 Lk(P,Z) ≡ −2 Lk(Q,Z) mod 2 gcd(p, q, r)

where p, q and r are the pairwise linking numbers of the components of L.
To prove this, first note that

Lk(P ∪ Q,Z) = Lk(X ∪ Y,Z) = p + q ≡ 0 mod gcd(p, q, r)

so it suffices to establish the first equality.
We may assume that the two page vectors ⇀v+ = (x+, y+) and ⇀v− = (x−, y−) associated with the chosen

crossings lie on distinct hemispherical pages H+ and H− of the standard open book in S 3, and that these
pages contain no critical points in the link. These two page vectors may lie in distinct bicycles in L, or
they may lie in the same bicycle.

Suppose first that ⇀v+ and ⇀v− lie in distinct bicycles P+ and P− in L. When we change L to L̂, these
bicycles will change, but the icyclesD+ andD− in the 2-torus that parametrize them will stay the same.
However, their vertical winding numbers r+ and r− (which record the meridional degrees of P+ and P−)
and their framings n+ and n− (which record the negative of the sum of the meridional and longitudinal
degrees of P+ and P−) will change. In particular, we claim that

r̂+ = r+ − 1 and r̂− = r− + 1 ,

and consequently n̂+ = n+ + 1 and n̂− = n− − 1 since the longitudinal degrees of the bicycles clearly
do not change. The figure below helps us to see this.

X

Y

L X̂

Ŷ

L̂

In this figure, we start with a positive crossing in L and change it to a negative crossing in L̂. Since the
strands of X and Y are both pointing to the right, the bicycle P+ is moving from left to right. During this
motion the page vectors in P+ undergo half a counter-clockwise rotation with respect to the preferred
orientation on the pages. In the corresponding picture for L̂ , we see half a clockwise rotation. Therefore
the bicycle in L̂ has one more full clockwise rotation in the pages than in L, and so r̂+ = r+ − 1 as
claimed.

If, for example, we switched the arrow on the strand of Y , we would have a negative crossing, but
then the corresponding bicycle would be moving from right to left, and we would see that r̂− = r− + 1
as claimed. With this guidance, we leave the remaining cases to the reader.

Now suppose that the page vectors ⇀v+ and ⇀v− lie in the same bicycle P+ = P−. Then the above
changes in vertical winding number r for the corresponding icycleD+ = D− will cancel, and so we see
that neither the vertical winding number nor the framing of the icycle will change, that is r̂± = r± and
n̂± = n±.

Note that in either case, whether ⇀v+ and ⇀v− lie in the same or different bicycles, the total framing n of
the diagram (the sum of the framings of the icycles) does not change.

At this point we recall Proposition III.1, which tells us that

ν(hL) = n + pq +
∑

ridi .
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In passing from L to L̂ via the double crossing change, we have just seen that the total framing n does
not change, and the pairwise linking numbers p and q certainly do not change. We have also seen that
the icycles stay the same, so their depths di do not change. Only the winding numbers r+ and r− of the
(possibly equal) icycles D+ and D− may change. In particular, they also do not change when the page
vectors

⇀v+ = (x(s+), y(t+)) and ⇀v− = (x(s−), y(t−))

lie in the same bicycle, and so ∆ν = 0 in this case, while they change to r̂+ = r+ − 1 and r̂− = r− + 1
when ⇀v+ and ⇀v− lie in distinct bicycles, in which case we have

∆ν = ν(hL̂) − ν(hL) = (̂r− − r−)d− + (̂r+ − r+)d+ = d− − d+ .

Thus in either case it remains to prove that d− − d+ = 2 Lk(P,Z).
To show this, we must compute the depths d+ and d− of D+ and D−. This requires a choice of base

point, and then a choice of paths γ+ and γ− from D+ and D− to this base point. We let (s+, t−) be the
base point, and use the vertical path γ+ from (s+, t+) to (s+, t−) and the horizontal path γ− from (s−, t−)
to (s+, t−).

The depth d− of the component D− of D counts the intersections of γ− with D, which means that it
counts the times that (x(s), y(t−)) is a page vector for s− ≤ s ≤ s+, assuming parametrizations set up so
that s− < s+ . Since y(t−) already lies in the page H−, this means we are counting the times that x(s)
also lies in H− for s− ≤ s ≤ s+ . In other words we are counting the intersection number X−+·H− .
Examining Figure 16, we find that the signs of the intersection points of γ− withD agree with the signs
of the corresponding intersection points of X−+ with H−, and hence

d− = 2 X−+·H− mod 2 gcd(p, q, r).

In a similar fashion, intersections of γ+ withD correspond to intersections of Y+− with H+, but in this
case, the signs of corresponding points of intersection are opposites, and so the depth ofD+ is

d+ = −2 Y+−·H+ mod 2 gcd(p, q, r).

Therefore the assertion that d− − d+ = 2Lk(P,Z), which will complete the proof of the corollary,
reduces to the identity

X−+·H− + Y+−·H+ = Lk(P,Z) ,

which follows easily from the fact that P = X−+ ∪ Y+−. Figure 30 helps us to see this.

H− H+

X−+

Y+−

Z

k

`

−
+

FIG. 30. The linking of P = X−+ ∪ Y+− and Z
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In the figure, the arc X−+ winds around the vertical Z axis k times and the arc Y+− winds around it
` times, while the entire loop P = X−+ ∪ Y+− winds around it k + ` + 1 times. By our half-counting
convention, we have

X−+·H− = 1
2 + k and Y+−·H+ = 1

2 + `

and the result follows. �

Appendix E: Numerical computation

Matlab was used to calculate an approximation to Milnor’s µ-invariant as given by formula (3) of
Theorem B for the three-component link L in S 3 parametrized by

x(s) = ( (1 − p2 + (p2 − q2) sin2 s)1/2 , p cos s , q sin s , 0 )

y(t) = ( (1 − p2 + (p2 − q2) sin2 t)1/2 , 0 , p cos t , q sin t )

z(u) = ( (1 − p2 + (p2 − q2) sin2 u)1/2 , q sin u , 0 , p cos u )

for p = .7, q = .4, and s, t, u ∈ [0, 2π]; this is a concrete realization of the Borromean rings with µ = −1,
whose stereographic projection is shown in Figure 31. In particular, we used Matlab to approximate
the Fourier coefficients cn of its characteristic form ωL for n ∈ [−64, 64]3, using subdivisions of the s,
t and u intervals into 256 subintervals to estimate the associated integrals. The approximation of µ we
obtained in this way was −0.999999999987.

FIG. 31. Borromean rings

Appendix F: Whitehead’s integral formula for the Hopf invariant

In this appendix, we make J. H. C. Whitehead’s integral formula for the Hopf invariant of a map
f : S 3 → S 2 explicit. Recall from Section VII Whitehead’s formula,

Hopf( f ) =

∫
S 3
α ∧ ω f ,

where ω f = f ∗ω is the pullback to S 3 of the normalized area form ω on S 2, and α is any 1-form on S 3

such that dα = ω f . To make this formula explicit requires a way to produce such an α.
To do this, we first write Whitehead’s formula in the language of vector fields,

Hopf( f ) =

∫
S 3

⇀a · ⇀v f d vol,

where the 2-form ω f on S 3 has been converted to the vector field ⇀v f in the usual way, and where ⇀a is
any vector field on S 3 such that ∇ × ⇀a =

⇀v f .
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An explicit recipe for ⇀a was given by DeTurck and Gluck25:

⇀a(y) = BS(⇀v f )(y) =

∫
S 3

Pyx
⇀vf (x) × ∇y ϕ(x, y) dx.

Here BS is the Biot–Savart operator for vector fields on the 3-sphere. In the last integral, Pyx indicates
parallel transport in S 3 along the geodesic segment from x to y, the function ϕ is given by

ϕ(α) = −
1

4π2 (π − α) cscα,

and ϕ(x, y) is an abbreviation for ϕ(α(x, y)), with α(x, y) the geodesic distance on S 3 between x and y.
The significance of the function ϕ is that it is the fundamental solution of a shifted Laplacian on S 3:

−∆ϕ − ϕ = δ,

where δ is the Dirac delta function.
The above formula for BS(⇀v f ) is the analogue on S 3 of the classical Biot–Savart formula from elec-

trodynamics in R3, expressing the magnetic field BS(⇀v f ) in terms of the current flow ⇀v f . The equation
∇ × BS(⇀v f ) =

⇀v f is just one of Maxwell’s equations, transplanted to S 3.
Inserting this formula for BS(⇀v) into the previous formula for the Hopf invariant and performing

simple manipulations, we get

Hopf( f ) = −

∫
S 3×S 3

Pyx
⇀vf (x) × ⇀vf (y) · ∇y ϕ(x, y) dx dy,

the explicit version of Whitehead’s integral formula on the 3-sphere S 3.
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