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Abstract. We provide an alternative proof that Koschorke’s κ-invariant is

injective on the set of link homotopy classes of n-component homotopy Brun-

nian links BLM(n). The existing proof (by Koschorke [23]) is based on the
Pontryagin–Thom theory of framed cobordisms, whereas ours is closer in spirit

to techniques based on Habegger and Lin’s string links. We frame the result in

the language of Fox’s torus homotopy groups and the rational homotopy Lie
algebra π∗(ΩConf(n)) ⊗ Q of the configuration space. It allows us to express

the relevant Milnor’s µ–invariants as homotopy periods of Conf(n).

1. Introduction

The purpose of this paper is to develop methods to address a question of Koschorke
[23, p. 315] concerning classical smooth links in R3. Namely, Koschorke defines a
link invariant, called the κ–invariant, by: (i) defining a map from the space of link
maps to the space of continuous maps of a torus to a configuration space, and (ii)
passing to the path-components. He conjectures that this invariant distinguishes
links up to link homotopy. The tools developed in this paper are a computation
of a so-called torus homotopy group which provides a framework for studying link
homotopy classes and Koschorke’s invariant. The group in question (denoted later
by TF (n)) is a natural subset of the pointed homotopy classes of maps of a torus
to the configuration space. The resulting group is described by generators and
relations as well as associated information. The relations are built up out of re-
lations which appear in a seemingly different context which first arose in work of
Kohno and Drinfel’d on a different subject arising from monodromy representations
from the KZ–equation, (see [2] for a comprehensive reference). In particular, it is
shown that the group obtained here for addressing Koschorke’s conjecture is gen-
erated by certain elements in a function space. Furthermore, the group generated
by these natural choices satisfies a group theoretic analogue of relations known as
the Yang–Baxter relations or horizontal 4T relations within knot theory.

1.1. Preliminaries. Let us fix n distinct points {x1, . . . , xn} in R3 and consider
the space of (based) n–component link maps, i.e. smooth maps,

L :(S1, s1) t . . . t (S1, sn) −−−→ R3,

L(si) = xi, Li(S
1) ∩ Lj(S1) = ∅, i 6= j,

(1.1)

where each component has a basepoint si mapped to a corresponding fixed point xi
in R3. Equivalently, we may consider the space of free link maps where the assump-
tion on the basepoints is dropped, however as there is a bijective correspondence
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between the pointed and basepoint free theory by a standard argument. Two link
maps L and L′ are link homotopic if and only if there exists a smooth homotopy
H :

(⊔n
i=1 S

1
)
× I 7→ R3 connecting L and L′ through link maps. Following [23],

we denote the set of equivalence classes of n–component link maps by LM(n). By
transversality, a link homotopy (as originally defined by Milnor [31]) of a link map
can be realized at the level of diagrams by a finite sequence of Reidemeister moves
and crossing changes [12]; in particular the link homotopy classification of links is
equivalent to the link homotopy classification of link maps.

In [31], Milnor classified 3-component links up to link homotopy by the set of
invariants built from the pairwise linking numbers µ̄(1; 2), µ̄(1; 3), µ̄(2; 3) ∈ Z and
a triple linking number µ̄(1, 2; 3) ∈ Zgcd{µ̄(1;2),µ̄(1;3),µ̄(2;3)}. In particular he showed
that the collection of integer valued µ–invariants {µ(1, σ(2), . . ., σ(n− 1);n)(L)}σ
indexed by permutations σ ∈ Σ(2, . . . , n − 1) separates homotopy Brunnian links
(following Milnor’s lead, we use µ rather than µ̄ to indicate the lack of indeter-
minacy in the Brunnian case, see the end of Section 4 for detailed definitions).
Recall that an n-component link L is homotopy Brunnian [23] whenever all of its
(n− 1)-component sublinks are link-homotopically trivial; we denote the subset of
these links by BLM(n) ⊂ LM(n). It is well known [15,25] that the µ̄-invariants are
insufficient to separate LM(n) for n ≥ 4, though a refinement of these invariants
due to Levine [25] classifies links of four or fewer components. The question of clas-
sification has been effectively addressed in 1990 by Habegger and Lin [12] who gave
an effective procedure for distinguishing elements in LM(n) for all n. Nevertheless
it still remains an open problem whether a complete set of “numerical” link homo-
topy invariants for LM(n) can be defined. For instance, the authors of [16, 26, 30]
address this question using, among other things, the perspective of Vassiliev finite-
type invariants. An alternative view, which is rarely cited in this context but which
we intend to advocate here, appears in the work on higher dimensional link maps
by Koschorke [20–24], Haefliger [13], Massey and Rolfsen [28], and more recently
by Munson [33] and Munson–Goodwillie in [11].

Following [22,23], the κ-invariant is defined for classical links (i.e., 1-dimensional
links in R3) as

κ : LM(n)→ [Tn,Conf(n)],

κ([L]) = [FL], FL = L1 × · · · × Ln,
(1.2)

where [Tn,Conf(n)] is the set of pointed homotopy classes of maps from the n-torus
Tn to the configuration space Conf(n) of n distinct points in R3:

Conf(n) = {(x1, . . . , xn) ∈ (R3)n | xi 6= xj for i 6= j}.
Again, we consider pointed maps in (1.2) purely for convenience. Koschorke [20–24]
introduced the following central question which is directly related to the problems
mentioned above and the κ–invariant.

Question 1.1 (Koschorke [23]). Is the κ-invariant injective and therefore a com-
plete invariant of n-component classical links up to link homotopy?

In 1997 Koschorke showed that κ is injective on BLM(n) [23, Theorem 6.1 and
Corollary 6.2]; i.e., it separates homotopy Brunnian links. More recently the above
question was answered in the affirmative when n = 3, [6, 7]. The work of Munson
and Volić (e.g. Proposition 3.10 [34]) gives a possibly stronger invariant of homotopy
string links than the Koschorke invariant, an as yet unsettled question. Although
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their methods apply primarily to links in dimensions greater than 3, these methods
also provide a potentially interesting setting for links in R3.

1.2. Statement of the main result. In order to frame the main theorem in
the language of the rational Lie algebra of ΩConf(n), the based loops on the con-
figuration space Conf(n), we first introduce the necessary background. It is well
known [5, 8] that π∗(ΩConf(n)) ⊗ Q, which we denote further by L(Conf(n)), is a
graded Lie algebra with the bracket given by the Samelson product which is the
adjoint of the usual Whitehead product [38]. More precisely, for any space X the
Samelson product of α ∈ πk(ΩX) and β ∈ πj(ΩX) is given by

[α, β] = (−1)k−1∂∗[∂
−1
∗ α, ∂−1

∗ β]W ,

where ∂∗ : πp+1(X) → πp(ΩX) is the adjoint homomorphism and [·, ·]W is the
Whitehead product. The generators of L(Conf(n)) are all in degree 1 and are
represented by maps Bj,i : S1 → ΩConf(n), 1 ≤ i < j ≤ n, defined as adjoints of
pointed versions of the spherical cycles

Aj,i : S2 = ΣS1 −→ Conf(n), Aj,i(ξ) = ( . . . , qj︸︷︷︸
i’th

, . . . , qj + ξ︸ ︷︷ ︸
j’th

, . . . ), (1.3)

where ξ ∈ S2 and q = (q1, . . . , qn) is fixed in Conf(n). We also have the following
vector space isomorphism [8, p. 22]:

L(Conf(n))
vect.∼=

n−1⊕
j=1

π∗(Ω(S2 ∨ . . . ∨ S2︸ ︷︷ ︸
j times

))⊗Q =
n⊕
j=2

L(Bj,1, . . . , Bj,j−1), (1.4)

where the jth factor L(Bj,1, . . . , Bj,j−1) equals π∗(Ω(S2∨ . . .∨S2)) ⊗ Q and is the
free Lie algebra generated by {Bj,k}, k = 1 . . . j−1. As a Lie algebra, L(Conf(n)) is
the quotient of the direct sum of the free Lie algebras Lj by the 4T -relations [8, p.
20], [5, 18]:

Bi,j = −Bj,i [Bσ(2),σ(1), Bσ(4),σ(3)] = 0, (for n ≥ 4),

[Bσ(2),σ(1), Bσ(3),σ(1) +Bσ(3),σ(2)] = 0,
(1.5)

where σ is any permutation on {1, 2, . . . , n}. We can now state the main result.

Main Theorem. The restriction of κ to BLM(n) is injective. Moreover,

(i) the image κ(BLM(n)) of BLM(n) is contained in a copy of πn(Conf(n)) ∼=
πn−1(ΩConf(n)) inside [Tn,Conf(n)] and it is a free, rank (n − 2)!, Z–
module generated by

B(n, σ) = [Bn,1, Bn,σ(2), . . . , Bn,σ(n−1)], σ ∈ Σ(2, . . . , n− 1); (1.6)

where [Bn,1, Bn,σ(2), . . . , Bn,σ(n−1)] is a shorthand for the iterated Samelson
products

[. . . [[Bn,1, Bn,σ(2)], Bn,σ(3)], . . . , Bn,σ(n−1)].

(ii) for any representative link L ∈ BLM(n) we have the following expansion
in the above basis:

κ(L) =
∑

σ∈Σ(2,...,n−1)

µ(1, σ(2), . . . , σ(n− 1);n)B(n, σ),

where µ(1, σ(2), . . . , σ(n − 1);n) are Milnor’s µ–invariants of Brunnian
links.
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Recall [14,37] that the homotopy periods of a simply connected manifold M (with
finite Betti numbers) are integrals in the differential forms on M which detect all
nontrivial elements of π∗(M) ⊗ Q. It is well known that the homotopy periods
problem is completely solvable; see [14, 37] and the recent work [36]. As a direct
consequence of (ii) we obtain

Corollary 1.2. Given any L ∈ BLM(n), the associated µ-invariants {µ(1, σ(2),
. . ., σ(n − 1);n)(L)}σ, σ ∈ Σ(2, . . . , n − 1) are fully determined by the homotopy
periods of the basis elements B(n, σ).

The inspiration for the proof of the Main Theorem comes from the algebraic
techniques introduced by the first author in [4] and from the second proof in [6,
Section 5]. Moreover, Corollary 1.2 implies that the µ-invariants of homotopy
Brunnian links can be computed by Chen’s iterated integrals [14], which in this light
appear as generalized Gauss integrals and hence as a possible source of invariants
for fluid flows [1, p. 176] (see also [19]).
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2. String links

Following Habegger and Lin [12], let H(n) be the group of link homotopy classes
of ordered, oriented string links with n components. There is a split short exact
sequence of groups

1 −→ C(n; i) −−−→ H(n)
δi−−−−−→ H(n; i) −→ 1 (2.1)

where H(n; i) is the copy of H(n − 1) given by the map δi which deletes the ith
strand. The normal subgroup C(n; i) is isomorphic to RF (n − 1), the reduced
free group on the n − 1 generators shown in Figure 1. Recall that the reduced
free group RF (n − 1) is the quotient of the free group F (n − 1) on the (n − 1)
generators τ1, . . . , τn−1 obtained by adding the relations [τj , gτjg

−1] = 1 for all
j ∈ {1, . . . , n− 1} and all g ∈ F (n− 1).

1 j i n

. . . . . . . . .

Figure 1. A generator τi,j of C(n; i) ∼= RF (n− 1).

The exact sequence (2.1) is split by the map si : H(n; i) −→ H(n) which just
adds one trivial strand to any element of H(n; i) as the ith strand. Thus, for each
i, we have the semidirect product decomposition

H(n) = H(n; i) n C(n; i). (2.2)
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Given ρ ∈ H(n), let

ρ = (θ, h)i = θihi, θi ∈ H(n; i) and hi ∈ C(n; i), (2.3)

be the factorization of ρ with respect to the above decomposition. A partial conju-
gation of ρ by λ ∈ H(n) is obtained by ρ = (θ, h)i 7→ (θ, λhλ−1)i.

Theorem 2.1 (Habegger–Lin Markov-type theorem [12]). Denote the Markov clo-
sure operation by

·̂ : H(n) −−−−−→ LM(n). (2.4)

Then

(a) ·̂ is surjective.
(b) ρ̂1 = ρ̂2 if and only if ρ1 and ρ2 in H(n) are related by a sequence of

conjugations and partial conjugations (in fact, partial conjugations are suf-
ficient [17]).

We collect some known facts about H(n) below. Here and throughout the paper,
if G is a group then its kth lower central subgroup is defined inductively by G1 =
G,G2 = [G,G1], . . . , Gk = [G,Gk−1].

(1) H(n) is torsion-free and nilpotent of class n− 1,
(2) H(n)k = H(n; i)k n C(n; i)k,
(3) H(n)k−1/H(n)k is a free abelian group of rank (k − 2)!

(
n
k

)
.

In the following we will focus on the copy of C(n;n) ∼= RF (n − 1) in H(n)
generated by 〈τ1, . . . , τn−1〉 where τk := τn,k, as given in Figure 1. From [4] we list
known and useful facts about RF (n− 1) below.

(4) RF (n− 1) admits the presentation〈
τ1, . . . , τn−1

∣∣ for all 1 ≤ i1 < . . . < ik ≤ n, 1 < k ≤ n :

[τi1 , . . . , τik ] = 1, whenever τis = τir for some s < r
〉
,

(2.5)

where [τi1 , . . . , τik ] denotes the simple k-fold commutator [· · · [[τi1 , τi2 ], τi3 ],
. . ., τik ] (c.f. [27, p. 295]).

Denote by I = (i1, . . . , ik) an ordered multiindex, where 1 ≤ i1 < . . . < ik ≤ n− 1,
1 ≤ k ≤ n− 1, and let

τ(I, σ) := [τi1 , τiσ(2) , . . . , τiσ(k) ], (2.6)

where σ is a permutation of {2, . . . , k}. Then

(5) RF (n− 1)n = {1} and

RF (n− 1)k

/
RF (n− 1)k+1

∼=
⊕

(k−1)!(n−1
k )

Z.

(6) Each RF (n − 1)k

/
RF (n − 1)k+1 is generated by {τ(I, σ)}, with |I| = k,

and elements z ∈ RF (n− 1) have the normal form

z = λ1λ2 · · ·λn−1, where λk =
∏

I,|I|=k

∏
σ∈Σ(2,...,k)

τ(I, σ)e(I,σ), (2.7)

for some e(I, σ) ∈ Z.
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Consider the homomorphism

δ : H(n) −−−−−→
n∏
i=1

H(n; i), δ =
n∏
i=1

δi, (2.8)

where δi is as defined in (2.1). Clearly,

ker δ = C(n; 1) ∩ C(n; 2) ∩ . . . ∩ C(n;n). (2.9)

Observe that elements of ker δ have a natural geometric meaning: they are precisely
the string links which become trivial after removing any of their components. Fur-
ther we call them Brunnian string links and denote by BH(n). In the ensuing
lemma we choose to treat BH(n) as a subgroup of C(n;n) ∼= RF (τ1, . . . , τn−1).

Lemma 2.2. BH(n) is a free abelian group of rank (n− 2)! generated by

τ(n, σ) := [τ1, τσ(2), . . . , τσ(n−1)] for σ ∈ Σ(2, . . . , n− 1). (2.10)

Moreover,

(i) for each i:

BH(n) = C(n; i)n−1
∼= H(n)n−1

∼= RF (n− 1)n−1;

(ii) BH(n) ⊂ Z(H(n)).

Proof. The fact that H(n)n−1 ⊂ Z(H(n)) follows immediately from nilpotency (i.e.
length n commutators are all trivial in H(n)). Thus (i) implies (ii).

Clearly BH(n) ⊂ ker δi = C(n; i), so any z ∈ BH(n) can be written in the
normal form (2.7). We claim that z = λn−1. Indeed, for each k < n − 1 and any
I = (i1, . . . , ik), consider τ(I, σ) given in (2.6). Pick j ∈ {1, . . . , n − 1} such that
j 6= ir for all ir ∈ I, which is possible since k < n − 1. The map δj : C(n; i) −→
C(n; i) ∩ C(n; j) which deletes the jth strand is given on generators as

δj(τi) =

{
1 for j = i,

τi otherwise,
(2.11)

so we have δj(τ(I, σ)) = τ(I, σ). Therefore, δj(λk) 6= 1 for some j ∈ {1, . . . , n− 1},
contradicting the fact that z ∈ BH(n) ⊂ ker δj for all j. Hence, the normal form
(2.7) implies z = λn−1 and therefore (2.10) follows as well as the first part of (i).

The second identity in (i) is immediate: (2) implies thatH(n)n−1 = H(n; i)n−1n
C(n; i)n−1, but this is just C(n; i)n−1 since H(n; i)n−1

∼= H(n − 1)n−1 is trivial by
(1). �

The relation between Brunnian string links and Brunnian links is revealed in the
following result, which is a consequence of Lemma 2.2 and Theorem 2.1.

Proposition 2.3. The restriction of the Markov closure operation defined in (2.4)

to BH(n) is injective, and the image B̂H(n) equals BLM(n).

Proof. In order to see that ·̂ is injective on BH(n), let ρ ∈ BH(n). Since BH(n) =
C(n; i)n−1, the factorization

ρ = (θ, h)i = θihi

is only valid if θi = 1. Since this holds for all i, partial conjugations of ρ are just
ordinary conjugations which, since BH(n) ⊂ Z(H(n)), act trivially on ρ. Thus,
Markov closure is injective on BH(n).
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In order to see B̂H(n) = BLM(n), observe that for any natural number m the
inverse image of the unlink in LM(m) under ·̂ : H(m) −→ LM(m) contains only
1 ∈ H(m). Indeed, Theorem 2.1(b) tells us that any element of the inverse image of
the unlink under ·̂ has to be related to 1 by conjugations or partial conjugations.
Obviously, both of these operations act trivially on 1, which proves the claim.

Now fix a representative link L ∈ BLM(n) and, by Theorem 2.1(a), let ρ ∈ H(n)

be such that ρ̂ = L. Since any (n − 1)-component sublink δ̂i(ρ) of L is trivial,
the fact proven above implies that δi(ρ) = 1 for any 1 ≤ i ≤ n, and therefore
ρ ∈ ker δ = BH(n). �

3. Torus homotopy groups

In this and the following sections all sets of homotopy classes [X,Y ] are pointed
and ∗ denotes a basepoint. Consider the group

T (n) := [ΣTn−1,Conf(n)] = [Tn−1,ΩConf(n)] (3.1)

of homotopy classes of pointed maps from the (n− 1)-torus Tn−1 = (S1)n−1 to the
based loop space ΩConf(n) of the configuration space Conf(n). The product in T (n)
comes from the loop multiplication or equivalently the coproduct of suspensions. In
the notation of Fox [9,10], who introduced torus homotopy groups, T (n) is denoted
by τn(Conf(n)) and equivalently defined as π1(Maps(Tn−1,Conf(n)), ∗), where the
basepoint ∗ in the case of T (n) is defined to be the constant map. In the following,
we will freely alternate between both ways of representing T (n) given in (3.1).

Letting Pk be the k-skeleton of Tn−1, we have the filtration

{s} = P0 ⊂ P1 ⊂ . . . ⊂ Pn−1 = Tn−1, ∗ = s = (s1, . . . , sn−1).

For each ordered multiindex I, observe that Pk =
⋃
I,|I|=k SI , with notation

SI = {t = (t1, . . . , tn−1) ∈ Tn−1 | ti = si for i /∈ I}.
SI = SI/(SI ∩ P|I|−1).

(3.2)

It implies a decreasing filtration of groups

T (n) ⊃ T (n; 1) ⊃ · · · ⊃ T (n;n− 1) = {1},
where T (n; k) := [(Tn−1, Pk); (ΩConf(n), ∗)]. Some known facts about {T (n; k)}
are summarized below (c.f. [38, p. 462]):

(7) {T (n; k)} is a central chain of T (n).
(8) T (n) is nilpotent of class n− 1.
(9)

T (n; k − 1)
/
T (n; k) ∼=

⊕
I, |I|=k−1

πI(ΩConf(n)), (3.3)

where πI(ΩConf(n)) := [SI ,ΩConf(n)].

Each factor πI(ΩConf(n)) in the direct sum of (3.3) turns out to be a subgroup of
T (n) via a monomorphism indexed by I = (i1, . . . , ik), 1 ≤ i1 < . . . < ik ≤ n − 1
defined as follows (c.f. [9, 38]):

j#
I : [SI ,ΩConf(n)] −−−−−→ T (n),

j#
I ([f ]) = [f ◦ jI ], jI : Tn−1−→ SI ,

(3.4)

where jI is the quotient projection.



8 F. R. COHEN, R. KOMENDARCZYK, AND C. SHONKWILER

Remark 3.1. Another way to see (3.3) is via the homotopy equivalence ΣTn−1 ∼=∨n−1
k=1

∨
I, |I|=k ΣSk. Then each monomorphism j#

I of (3.4) can be regarded as

induced from the restriction in the above bouquet to the Ith factor ΣS|I| of ΣTn−1.

We have the following lemma due to Fox [10, p. 498]:

Lemma 3.2. For every ordered multiindex I, j#
I is a monomorphism. For I, J :

(i) Suppose I ∩ J = Ø and ε = (−1)w, where w is the number of instances
of i > j with i ∈ I and j ∈ J . Then for any α ∈ πI(ΩConf(n)), β ∈
πJ(ΩConf(n)), we have

j#
I∪J([α, β]) = [j#

I (α), j#
J (β)]ε,

where [α, β] is the Samelson product of α and β, and [ , ] on the right hand
side denotes the commutator in T (n).

(ii) If I ∩ J 6= Ø, then [j#
I (α), j#

J (β)] = 1.

Consider the following elements of T (n) obtained from the generators {Bk,i} of
L(Conf(n)) which are adjoints of the {Ak,i} defined in (1.3):

tk,i(`) := j#
(`)(Bk,i) ∈ π(`)(ΩConf(n)), 1 ≤ i < k ≤ n, 1 ≤ ` ≤ n− 1, (3.5)

where (`) is a length 1 multiindex. In view of the fact that {Bk,i} are free gener-
ators of π1(ΩConf(n)), the tk,i(`) each have infinite order and {tk,i(`)} generates
a subgroup of T (n) which we will denote by TF (n). The following lemma is a
consequence of Theorem 5.4 in [27] and we omit its technical proof.

Lemma 3.3. The lower central series {TF (n)k} of TF (n) has the following prop-
erties:

(10) TF (n) is nilpotent of class n− 1, and
(11) TF (n)k ⊂ T (n; k) for every k, and the last stage TF (n)n−1 is generated by

length n− 1 commutators in {tk,i(`)}.

Next, let us define and characterize the Brunnian part of TF (n), which we denote
by BTF (n). Consider the following projection map, which is defined by analogy
to the string link story as

Ωψ : ΩConf(n)
∏n
i=1 Ωψi−−−−−−−−−−→

∏
n

ΩConf(n− 1),

obtained by looping ψ = ψ1 × . . . × ψn, where ψi : Conf(n) → Conf(n − 1) is
the projection ψi : (x1, . . . , xi, . . . , xn) 7→ (x1, . . . x̂i, . . . , xn) “deleting” the ith
coordinate. As in the case of string links, we say that t ∈ TF (n) is Brunnian
whenever t belongs to the kernel of the homomorphism

Ψ : TF (n) −−→
∏
n

[Tn−1,ΩConf(n− 1)],

induced from the product
∏n−1
i=1 Ωψi. The following result should seem like dèjá vu

of Lemma 2.2 from the previous section.

Lemma 3.4. The group BTF (n) = ker Ψ is a free abelian group of rank (n − 2)!
generated by iterated commutators in TF (n) of the form

t(n, σ) = [tn,1(1), tn,σ(2)(σ(2)), . . . , tn,σ(n−1)(σ(n− 1))], (3.6)
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where σ ∈ Σ(2, . . . , n − 1) is any permutation of {2, . . . , n − 1}. In particular, it
follows that

BTF (n) ⊂ TF (n)n−1 ⊂ πN (ΩConf(n)), (3.7)

where N = (1, 2, . . . , n− 1) is the top ordered index in the notation of (3.4).

Proof. Observe that Ωψ#
i are defined on the generators {tk,j(`)} of TF (n) as

Ωψ#
i (tk,j(`)) =

{
1 for k = i or j = i

tk,j(`) otherwise.
(3.8)

Each ψi is a fibration, with the fiber having the homotopy type of
∨n−1
i=1 S

2, [5,8, p.
14] where each S2 factor corresponds to a generator in {Bi,k, Br,i}k,r, it follows
that {Bi,k, Br,i} generate kerπ∗(Ωψi), thus (3.5) implies (3.8).

Next, we show that every t ∈ BTF (n) is a product of length n−1 commutators in
the tk,i(`) which do not have repeated lower indices {k, i}. Similar to the situation in
the proof of Lemma 2.2, no nontrivial commutator [tk1,i1(`1), . . ., tkj ,ij (`j)] of length
< n − 1 can be in BTF (n). Indeed, any such commutator has to be in the image

under j#
I , with I = (`1, . . . , `j), 1 ≤ `1, . . . , `j ≤ n − 1, of the iterated Samelson

product [Bk1,i1 , . . . , Bkj ,ij ]. Thanks to the relations (1.5) and Lemma 3.2, all the
Bks,is have to have a common first lower index k; thus, up to sign, [Bk1,i1 , . . . , Bkj ,ij ]
equals [Bk,i1 , . . . , Bk,ij ]. Furthermore, if j < n − 1, then we can find r with 1 ≤
r ≤ n− 1 such that r /∈ {i1, . . . , ij}. Then it follows from (3.8) that

Ωψ#
r

(
[tk,i1(`1), . . . , tk,ij (`j)]

)
6= 1,

so this commutator cannot be in BTF (n). Likewise, no nontrivial commutator
[tk,i1(`1), . . . , tk,in−1

(`n−1)], (where (`1, . . ., `n−1) is a permutation of (1, . . . , n−1))
with repeated second lower indices (i.e., ip = iq for some p 6= q) can be in BTF (n).
Thus, we are left only with the possibility that t ∈ BTF (n) is the product of length
n− 1 commutators without repeated lower indices. Hence, (3.7) follows from (11)
of Lemma 3.3. It remains to observe that the t(n, σ) defined in (3.6) generate
BTF (n) or, equivalently, that {B(n, σ) = [Bn,1, Bn,σ(2), . . . , Bn,σ(n−1)]} generate
kerπ∗(

∏
i Ωψi). By abuse of notation we use BTF (n) to denote kerπ∗(

∏
i Ωψi) as

well. Since we are only concerned with the free part of ker Ψ it suffices to work
rationally and show the following about the B(n, σ)s:

(a) they span BTF (n)⊗Q,
(b) they are linearly independent in L(Conf(n)) = π∗(ΩConf(n))⊗Q.

For (a), note that (by an argument analogous to [27, p. 295]) BTF (n) ⊗ Q is
spanned by the simple (n − 1)-fold products [Bn,i1 , Bn,i2 , . . . , Bn,in−1

] with no re-
peated Bn,ik . Then a simple induction involving the Jacobi identity proves the
claim. Part (b) can be argued by considering L(Conf(n)) as a subalgebra of the
universal enveloping algebra UL(Conf(n)) and expanding B(n, σ) in monomial basis
of UL(Conf(n)). Again an elementary induction argument leads to the claim. �

4. Proof of Main Theorem

Let (0, . . . , 0) be the basepoint of Tn and let each factor be parametrized by the
unit interval. Distinguish the following subsets of Tn:

At := Tn−1 × {t}, Sn := {(0, . . . , 0)} × S1, (4.1)
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and define the maps

p# : [ΣTn−1,Conf(n)] −→ [Tn,Conf(n)], where

p : Tn −→ Tn/(A0 ∨ Sn) ∼= ΣTn−1.
(4.2)

Lemma 4.1. Let N = (1, 2, . . . , n− 1) be the top ordered multiindex. Consider the
composition

πN (ΩConf(n))
j#N−−−→ T (n)

p#−−−→ [Tn,Conf(n)],

where j#
N is defined in (3.4). Then p# ◦ j#

N is injective.

This result follows from Satz 12, Satz 20 in [35] (see [23, p. 305]). Next, we turn
to the proof of the Main Theorem.

We will work with C(n;n), which is a copy of RF (n− 1) inside H(n), and begin
by constructing a homomorphism

φ : C(n;n) −→ TF (n) (4.3)

via the canonical homomorphism F (n − 1) −→ TF (n) defined on the generators
τ1, . . . , τn−1 of the free group by

φ : τi 7→ tn,i(i).

Observe, by Lemma 3.2(ii), that any commutator in {tn,i(i)} with repeats is triv-
ial. Therefore, as a direct consequence of the presentation in (4), we can pass to
the quotient and obtain a homomorphism φ : C(n;n) ∼= RF (n− 1) −→ TF (n), as
required.
Fact: The following diagram commutes:

C(n;n) TF (n)

LM(n) [Tn,Conf(n)].

φ

p#·̂

κ

(4.4)

With this fact in hand consider the composition φ◦ ι where ι : BH(n) −→ C(n;n) is
the inclusion monomorphism (see Lemma 2.2). The normal form of any z ∈ BH(n)
is a product of terms τ(n, σ) as defined in (2.10); thus, by the definition of φ and
(3.6), we immediately obtain

φ(τ(n, σ)) = t(n, σ).

Hence, Lemma 3.4 implies that φ ◦ ι is a monomorphism with image equal to
BTF (n). Further, the Fact stated above yields the commutative diagram

BH(n) BTF (n) ⊂ πN (ΩConf(n))

TF (n)

BLM(n) [Tn,Conf(n)].

φ ◦ ι

j#N

p#

·̂

κ

(4.5)

By Lemma 4.1 the composition p#◦j#
N ◦φ◦ι is injective. Further, by Proposition 2.3

the Markov closure map ·̂ is a bijection on BH(n). Therefore, the injectivity of κ
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follows, proving (i) of the Main Theorem modulo the above Fact. We also have the
set identity

κ(BLM(n)) = p# ◦ j#
N (BTF (n)),

which implies that κ(BLM(n)) has the structure of a Lie Z-module with basis given
by the iterated Samelson products B(n, σ) from (1.6).
It remains to prove the Fact stated above. Figure 2 shows the intuitive idea – which
originated in Section 5 of [6] – behind the formal argument we present below.

x x

Figure 2. The link ̂τ3,2τ3,1 before and after an isotopy. The point

indicated by • on the third component corresponds to the parameter

t1, while the basepoint of the third component is marked by ×. The

isotopy moving • to the basepoint × makes it clear that the loop in2

π1(Maps(Tn−1,Conf(n)), ∗) ∼= T (n) corresponding to κ( ̂τ3,2τ3,1) is ho-

motopic to the product of the loops corresponding to κ(τ̂3,2) and κ(τ̂3,1);

in other words, that κ( ̂τ3,2τ3,1) = p#(t3,2(2) · t3,1(1)) = p#(φ(τ3,2τ3,1)).

Proof of the Fact. As a first step, we show commutativity of (4.4) on the generators
{τi} of C(n;n). Given a multi-index I, we adapt the notation SI and SI from (3.2).
Because all strands of τ̂i except the nth and the ith can be collapsed to the basepoint
(see Figure 1), κ(τ̂i) factors, up to homotopy, through

Tn
p(i,n)−−−−−−−→ S(i,n) = Si × Sn

κ(τ̂i)|Si×Sn−−−−−−−−−−−→ Conf(n).

Since the ith and nth strands of τi link once, the restriction κ(τ̂i)|Si×Sn has degree
1 after composing with the projection Πi,n : Conf(n) −→ Conf(2) ∼= S2 onto

the ith and nth coordinates. Further, κ(τ̂i)|Si×Sn factors through Si × Sn
pi−−→

ΣSi
An,i−−−−→ Conf(n), where the An,i are defined in (1.3) (note that pi induces a

bijection p#
i : [ΣSi,Conf(n)] −→ [Si×Sn,Conf(n)]). Using the definitions in (3.4),

(3.5) and (4.2) we have

κ(τ̂i) = p#
(i,n)(p

#
i (An,i)) = p#(j#

(i)(Bn,i)) = p#(tn,i(i)), (4.6)

where the second equality is obtained by passing to adjoints. This shows that
Diagram 4.4 commutes on the generators. Now, let τ ∈ C(n;n) be a word of
length k in {τi}; specifically

τ = τi1τi2 · · · τik . (4.7)

2The basepoint ∗ of π1(Maps(Tn−1,Conf(n)), ∗) can be taken (w.l.o.g.) as the null map ob-
tained from the restriction of the link to its trivial first n− 1 strands.
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Working with a braid representative of τ , we let 0 = t0 < t1 < t2 < . . . < tk−1

< tk = 1 be such that the restriction of the t parameter to [tj−1, tj ] parametrizes τij
in (4.7). Recall from (4.1) the subsets Aj := Atj and Sn, which are the (n−1)-torus
with fixed last coordinate tj and the nth coordinate circle, respectively. We have
the following cofibration diagram together with the induced exact sequence of sets
and groups:

(A1 tA2 t . . . tAk) ∪ Sn
⊂ - Tn

h -
∨
k

ΣTn−1[
k⊔
i=1

Ai,Conf(n)

]
× π1Conf(n) �

⊂#

[Tn,Conf(n)] �
h#

[∨
k

ΣTn−1,Conf(n)

]
Since κ(τ̂) restricted to any Aj is null and Conf(n) is simply-connected, there ex-

ists some z ∈ [
∨
k ΣTn−1,Conf(n)] such that h#(z) = κ(τ̂). Let rj :

∨
k ΣTn−1 −→

ΣTn−1 be the projection onto the jth factor and let zj = r#
j (z). Clearly z =

z1 · . . . · zk where · is the coproduct in [ΣTn−1,Conf(n)]. Since we can choose the
representative of τij to be 1 · . . . · 1 · τij · 1 · . . . · 1, repeating the above reasoning
yields

κ(τ̂ij ) = κ([ ̂1 · . . . · 1 · τij · 1 · . . . · 1]) = h#(1 · . . . · zj . . . · 1) = h#(r#
j (zj)) = p#(zj),

where the last identity follows from the definitions of h, rj , and p. But then we
know from (4.6) that κ(τ̂ij ) = p#(tn,ij (ij)), so it follows that the adjoint of zj is
tn,ij (ij). Since the adjoint of the coproduct is the loop product, we conclude that
the adjoint of z equals φ(τ), and

κ(τ̂) = h#(z) = p#(φ(τ)). �

For (ii) of the Main Theorem, consider any [L] ∈ BLM(n). Expanding in
{B(n, σ)} we obtain

κ([L]) =
∑

σ∈Σ(2,...,n−1)

e(1, σ(2), . . . , σ(n− 1))B(n, σ),

where e(1, σ(2), . . . , σ(n− 1)) are integer coefficients. We want to show that

e(1, σ(2), . . . , σ(n− 1)) = µ(1, σ(2), . . . , σ(n− 1);n), (4.8)

where µ(1, σ(2), . . . , σ(n − 1);n) are the Milnor invariants of L. In the next two
paragraphs we briefly recall Milnor’s [32] definition of these invariants.

For a fixed n-component link L in S3, the quotient Gq := π1(S3−L)/(π1(S3−L)q)
is an isotopy invariant of L and is generated by n meridians m1, . . . ,mn, one for each
component of L [3,32]. Letting w1, . . . , wn be the words in Gq representing untwisted
longitudes of the components of L, Milnor showed that Gq has the presentation

〈m1, . . . ,mn|[m1, w1], . . . , [mn, wn], R〉,

where R consists of all length q commutators in the generators. If F (m1, . . . ,mn) is
the free group generated by the mi and Z〈〈X1, . . . , Xn〉〉 is the ring of formal power
series in the non-commuting variables {X1, . . . , Xn}, then the homomorphism M :
F (m1, . . . ,mn) → Z〈〈X1, . . . , Xn〉〉 – called the Magnus expansion – is defined on
generators by

M(mi) = 1 +Xi, M(m−1
i ) = 1−Xi +X2

i −X3
i + . . . .
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The Magnus expansion descends to Gq and the image of the longitude wj is

M(wj) = 1 +
∑
I

µ(I; j)XI , (4.9)

where the summation extends over all I = (i1, . . . , im) where 1 ≤ ir ≤ n and
XI = Xi1 · · ·Xim for m > 0. The coefficient µ(I; j) does not depend on q, if q ≥ m.
If ∆(I) is the greatest common divisor of the µ(J ; j) with J is a proper subset of
I (up to cyclic permutation), then Milnor showed that the residue class µ̄(I; j) of
µ(I; j) modulo ∆(I) is an invariant of the link L. If the indices of I are all distinct,
this is a link homotopy invariant; as alluded to above, ∆(I) = 0 when L is an
n-component homotopy Brunnian link and I is a length n− 1 multiindex with no
repeats, so there is no indeterminacy and µ(I; j) is a link homotopy invariant of L.

As a first step to proving (4.8), let z ∈ BH(n) be such that ẑ = L. Thanks to
the normal form (2.7), the definition of φ, and Diagram 4.5, we have

z =
∏
σ

τ(n, σ)e(1,σ(2),...,σ(n−1)). (4.10)

Therefore, it suffices to confirm (4.8) for a link diagram obtained by closing up a
pure braid representative of z in the above normal form. The identity (4.8) will
follow from

µ(1, ξ(2), . . . , ξ(n− 1);n)(τ̂(n, σ)) =

{
1 if ξ = σ ∈ Σn−2

0 if ξ 6= σ,

µ(i1, i2, . . . , ik;n)(τ̂(n, σ)) = 0 for k < n− 1,

(4.11)

and the product formula [29, p. 7]

µ(j1, . . . , jp;n)(ẑ1 · z2) = µ(j1, . . . , jp;n)(ẑ1) + µ(j1, . . . , jp;n)(ẑ2)

+

n−1∑
k=1

µ(j1, . . . , jk;n)(ẑ1)µ(jk+1, . . . , jp;n)(ẑ2),
(4.12)

where z1, z2 ∈ H(n) and · denotes the product of string links. Indeed, any proper
sublink K of ẑ = L is link-homotopically trivial, meaning that any word wi repre-
senting a longitude in the link group π1(S3 −K)/π1(S3 −K)q is trivial. But then,
since removing a component doesn’t affect the µ invariants not involving the index
of that component, this implies that all µ(j1, . . . , jk;n)(L) with k < n − 1 vanish.
Hence, (4.12) applied to (4.10) yields

µ(j1, . . . , jn−1;n)(ẑ) =
∑
σ

e(1, σ(2), . . . , σ(n− 1))µ(j1, . . . , jn−1;n)(τ̂(n, σ)).

Substituting (j1, . . . , jn−1) = (1, σ(2), . . . , σ(n− 1)) and applying (4.11), we obtain
(4.8) and (ii) of the Main Theorem. One corollary is the fact, previously known to
Milnor [31], that the (n − 2)! higher linking numbers {µ(1, σ(2), . . . , σ(n − 1);n)}
separate BLM(n).

It remains to prove (4.11). A longitude wn of the nth component of τ(n, σ) can

be read off directly from the braid diagram of τ̂(n, σ) as the following word in the
meridians {mj} of the other components:

mσ = [m1,mσ(2), . . . ,mσ(n−1)].
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Formally, this word is simply obtained from τ(n, σ) by replacing τn,j with mj . It
is a general fact (see [27]) that the leading term in the Magnus expansion of any
commutator [mi,mj ] is equal to the commutator [Xi, Xj ] = XiXj − XjXi in the
ring Z〈〈X1, . . . , Xn〉〉 provided [Xi, Xj ] 6= 0. Therefore, an inductive argument
implies that

M(wn) = 1 + [X1, Xσ(2), . . . , Xσ(n−1)] + (higher-order terms)

(notice that [X1, Xσ(2), . . . , Xσ(n−1)] 6= 0 since it involves distinct variables). Again,
an elementary induction on n shows that in the expansion of Xσ := [X1, Xσ(2), . . .
, Xσ(n−1)] in monomials of degree n− 1, the monomial X1Xσ(2) · · ·Xσ(n−1) occurs
only once and is a leading term in the expansion. Therefore, (4.11) follows from
(4.9). This completes the proof of the Main Theorem.

Corollary 1.2 is a direct consequence of the fact that the homotopy periods of the
Samelson products {B(n, σ)} in πn−1(ΩConf(n)) can be obtained from the general
methodology of Sullivan’s minimal model theory [37], or approaches in [14], [36].
Consult [19] for a basic derivation of such an integral in the case of three component
links.
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