ON VOLUME-PRESERVING VECTOR FIELDS AND
FINITE TYPE INVARIANTS OF KNOTS.

R. KOMENDARCZYK AND 1. VOLIC

ABSTRACT. We consider the general nonvanishing, divergence-free vector fields defined on a
domain in 3-space and tangent to its boundary. Based on the theory of finite type invariants,
we define a family of invariants for such fields, in the style of Arnold’s asymptotic linking
number. Qur approach is based on the configuration space integrals due to Bott and Taubes.
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1. INTRODUCTION

Suppose we have a volume-preserving vector field X defined in some compact domain 8
of R3 and tangent to its boundary. In the ideal hydrodynamics or magnetohydrodynamics
(MHD), c.f. [6] for a comprehensive reference, X plays a role of a vorticity field or a magnetic
field. Euler equations (in the ideal hydrodynamics or the ideal MHD) tell us that the flow ¢x
of X evolves in time under volume-preserving deformations. Therefore, quantities associated
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with ¢x that are invariant under such deformations are of particular interest to these areas
of research.

The best known such invariant is the helicity of X, which we will denote by J#(X). It was
first discovered by Woltjer in [45]. Its topological nature, i.e. the connection to the linking
number of a pair of closed curves in space, was first observed in the work of Moffatt [34] and
then fully described by Arnold in [4]. This paper concerns the existence and properties of
other invariants of volume-preserving fields derived in the style of Arnold from the finite type
(or Vassiliev) invariants of knots and links [41, 10, 3, 44] (see also questions in [5, Problem
1990-16] and [6, p. 176]).

In more detail, and following the general idea of [4], recall that a long piece of an orbit
Or(x) of a vector field X through z € 8 for time T (or a collection of orbits through different
points in 8) can be made into a knot (link) by adding a “short arc” (or as many short arcs
as there are orbits) o(x,y) connecting its endpoints, i.e.

Or(z) = Or(z) Uo(z,y), where y= Or(z)(T). (1.1)

Thus for any T > 0 we obtain a family of knots {€r(z)}zes. Now let K be the space of
knots (the set of embeddings of S* in R? endowed with the € topology) and let

F:KX—R

be a function, typically a knot invariant. This function can be restricted to the family
{Or(x)}zes, Tesulting in a function

)\g,T: S—R

This is a prototype for an invariant of ¢x under smooth isotopies via diffeomorphisms isotopic
to the identity. In order to produce an actual numerical invariant of ¢y, and consequently
of X, we need to remove the dependence on short arcs. For that reason, for some m > 0
(usually an integer), one considers the limit
gm(X) :qll_l;[éo S%Ag,;ﬁ(:ﬂ) (12)

We will call #™(X) the asymptotic value of .F along the flow of X (of order m). Whenever
the order m is specified, we may denote .#™(X) simply by .#(X). If # is a knot invariant,
this usually gives an invariant of X under volume-preserving deformations. In this case, we
will refer to .#(X) as an asymptotic invariant of X (of order m).

Replacing a single orbit &7 (z) by a collection of n orbits {&'r(z,),- - , &r(x,)} at distinct
points z,---, z, of 8, the above philosophy can be applied to an invariant .#: £, — R,
where L,, is the space of n-component links (defined and topologized analogously to X).

Arnold showed in [4] that this technique gives, in the case when .# is the the linking
number lk of pairs of orbits {&(z), &(y)}, a well defined invariant .#°(X) which equals the
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above mentioned Woltjer’s helicity. Namely, given a divergence-free field X on 8, we have

200 = [ (Jim 7IK(Gr(@), 6r(0)) o) x n(w) (1.3)

$x8 T—o0

where 1 is a volume form on R?, and the function under the integral is a well-defined p almost
everywhere integrable function on 8. Arnold called 5#(X) the average asymptotic linking
number of X and showed that .#°(X) is invariant under the volume-preserving deformations
of X.

More precisely, let Vect(8, 1) be the Lie algebra of smooth volume-preserving vector fields
on 8 C R? equipped with a volume form p. Consider the action by the group of smooth
volume-preserving diffeomorphisms of R? (isotopic to the identity), Diffo(R?, p):

Diffy(R?, 1) x Vect(8, u) — Vect(g(8), u) (1.4)
(9, X) — 9.X,

where g, stands for the pushforward of the vector field X by the diffeomorphism g. Then
invariance under the volume-preserving deformations means the invariance under the above
action. In other words,

H(X) = H(g.X). (1.5)

Remark. Observe that ¢, X(z) = %g o ox(t, g_l(x))|:=o‘ Thus on the level of flows, the
action in (1.4) maps the flow ¢x = @x(t,z) of X to the flow godxog™' = goodx(t,97'(z))
of g, X, i.e.

dx —> godxog . (1.6)

In order to state our main results we first need to provide some general information about
finite type invariants, leaving further details for Section 3 (or see, for example, [44] for a more
detailed reference). The basic object in the theory of these invariants is a graded algebra
(over any ring, but for us, this will be R) of trivalent diagrams (see Figure 1) which we
will denote by D. The subspace of diagrams of degree n consists of those diagrams with 2n
vertices and is denoted by D,, where k = k(D) vertices are on the circle (circle vertices),
and s = s(D) vertices are off the circle (free vertices). Then D is the direct sum of Dy, for all
n > 1. For each diagram D € D, we may construct a function on a knot space K by means
of configuration space integrals, denoted as

Ip:X—R. (1.7)

Details about the map Ip are given in Section 3.

Both D and its dual, W = D*, called the space of weight systems, are Hopf algebras. More
formally, any W € W is a finite linear combination of diagrams in D. Finite type invariants
of knots' are indexed by the subspace of primitive weight systems, and this is the content
of the fundamental theorem of finite type invariants, originally due to Kontsevich [29]. An

IThe set up for links is analogous.
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FIGURE 1. Examples of trivalent diagrams (without labels or edge orienta-
tions). The middle diagram is of degree four, while the other two are of degree
three.

alternative proof of this is due to Altschuler and Freidel 3], where the finite type n invariant
Vi KX — R associated with the primitive weight system

W= Y apDeW, ap€eR, (1.8)
DeTD,,

is a finite linear combination of functions in (1.7):

sz z G.DID'l‘bIDI, GD,bER. (19)
DETDx

Here D, = ©, and TD,, denotes the set of trivalent diagrams generating D. For a more
precise statement, see Theorem 3.6. Let us denote the part of the sum W corresponding to
diagrams with k vertices on the circle by W*. Thus if W is a degree n weight system, we
have W = 2" W*, with the top part of W being W?2"; this corresponds to diagrams all
of whose vertices are on the circle (such diagrams are called chord diagrams). We can then
also clearly write

2n
Vi = Y Vige + Vi, (1.10)
k=1
We are now ready to state our main result.

Theorem A. Let X be a volume-preserving nonvanishing vector field on a compact domain
8 C R3, tangent to the boundary. We then have:

(i) For any diagram D € D of degree n, the asymptotic value I%(X), k = k(D) of Ip
along the flow of X exists.
(12) For any invariant Viy of type n, the asymptotic invariant % (X) of order 2n exists
and equals the asymptotic value ¥ (X) of Viyen along the flow X.
(i17) Y (X) is invariant under the action by volume preserving diffeomorphisms isotopic
to the identity.

Note that, in part (i), J%(X) is not necessarily an invariant because Ip is not one. Further,
we may consider a situation where %y (X) = %3#"(X) = 0 and see if the lower order averages
of Viy exist. For instance, if the asymptotic value %" '(X) exists, it may provide a lower
order asymptotic invariant of X. Inductively, if % (X) = 0 for k < j < 2n—1, we may ask if

%% (X) defines an invariant of a lower order (in the sense of definition following (1.2)). While
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we do not answer this question in full generality we obtain the following direct consequence

of (i) in Theorem A and (1.10).

Corollary A. Consider a primitive weight system W and suppose for a given k (k < n),
we have W* #£ 0. Suppose also that the asymptotic value ”f/,,f, (X) of W vanishes for every
k < j < 2n—1 as does the asymptotic value ”f/,yf;kH(X). Then the asymptotic invariant
Yw(X) of order k exists and equals the asymptotic value ”f/‘{ik (X) of Viyr along the flow X.

The meaning of lower order invariants is unclear to us at this point. However, the work in
[27, 28] on asymptotic Brunnian links shows one possible setting where they might appear.

A closely related result to Theorem A is proven in [25] by Gambaudo and Ghys who
consider a signature invariant o: KX — 7Z of knots and its asymptotic counterpart for
ergodic volume-preserving fields X. In particular, they prove that, in the setting of ergodic
fields, the associated asymptotic signature o(X) is of order 2 and satisfies

o(X) = %ﬁ(){). (1.11)

An extension of this work on ergodic fields to other knot invariants appears more recently in
the work of Baader [7, 8]. In addition, Baader and Marché [9] consider asymptotic finite type
invariants. The main result of [9] gives an analog of the identity (1.11) for any asymptotic
finite type invariant %y (X) of order n whenever X is ergodic and W is degree n. Note that
Theorem A shows that %y (X) = #2"(X) is well-defined for a general nonvanishing field
X (on a domain 8 in R?), and also indicates a possibility for lower order invariants. Our
techniques also lead us to the following counterpart of a result in [9].

Theorem B. Let p be the standard volume form on R? and let X be an ergodic p-preserving
nonvanishing vector field on a domain 8. Then there exists a singular differential form ww 2,
of degree 4n on 82", such that

Yw(X) =ew (H(X))" = ww,gn/\(lax,ux e X LX,U,I), (1.12)

52n

n times

where ey is a constant independent of X, txp is the contraction of X into the form p, and
H(X) is the helicity defined in (1.3). Moreover, the lower order invariants (if they exist)
are given as follows

Y (X) = OW.m N (ILX;L X +ee X LX;LI).

§2m

m times

Another avenue we explore here are applications to the energy—helicity problem as consid-
ered by Arnold in [4] (see also [6]). Define the (magnetic) energy of X by

BC) = [ IXPdn, (1.13)

i.e. as the square of the L2 norm of X. Consider the problem of minimizing the energy

functional E on the orbit ox = {g,X | g € Diffg(R?, 1)} of the action (1.4) through a fixed
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vector field X. If ox is an orbit through a general volume-preserving field X there may not
be a minimizing (smooth) vector field (c.f. [21]). Can the energy be made arbitrary small 7
Arnold showed in [4] that

E(g"X) > Cl2 (X)), (1.14)
for any g € Diffy(R?, 1) and for some positive constant C' which depends on the “geometry”
(i.e. on a choice of the Riemannian metric on R?). Since (X)) is invariant under the action
(1.4), the above inequality gives a lower bound for the magnetic energy of X along the orbit,
whenever (X)) # 0. Since the bound (1.14) is ineffective for vanishing #(X), Freedman
and He [22] showed a sharper bound for the L*/?-energy® of X in terms of the asymptotic
crossing number® ¢(X) of X:

16

Fs(X) > (?) Y ex) > (16

1/4 »

?) 2(X) /4. (1.15)
Asymptotic crossing number is not an invariant under the action (1.4), but it leads to a
topological lower bound for fluid knots, i.e. divergence-free vector fields constrained to a
tube around a knotted core curve K in 3-space. Namely, denoting by g(K) the genus of K|
the following estimate is shown in [22]:
16

Es)5(X) > (?

where Flux(X) is the flux of X through the cross—sectional disk of the tube. In Section 5
of this paper we consider the quadratic helicity 7#*(X) (recently proposed by Akhmetiev in
[1]). Note that 5#%(X) is well defined, thanks to Theorem A applied to the square of the

linking number?. Based on the estimate (1.15) we show

Theorem C. We have
Baa(X) > (

We end this introduction by saying that our techniques are rather different from [24,

)”4(29(1!{) — 1)¥* Flux(X), (1.16)

E)w%"z(x )7 > (E)MI%"(X )L (1.17)
e e

25], where the authors build a “combinatorial model” for an ergodic field, and base their
considerations on this model. The configuration space integrals have been used by Cantarella
and Parsley in [16] to derive an alternative formula for #(X) and its “higher dimensional”
versions. Considerations of the current paper are measure-theoretic and in the simplest case
can be compared to the work of Contreras and Iturriaga on the asymptotic linking number
in [18].

Lastly, we wish to indicate that in addition to the results mentioned above, there exists a
wealth of approaches to the problem of defining helicity-style invariants of volume-preserving
fields, or more generally measurable foliations; see for example papers [2, 42, 40, 19, 31, 35,
26, 30| and references given therein.

2recall that L2—energy majorizes the L3/2—energy via the Holder inequality.
3denoted in [22] by ¢(X, X).
4Kk2, which is the simplest finite type 2 invariant of 2-component links
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2. SOME METRIC PROPERTIES OF BLOWUPS

Before we review configuration space integrals, in this short section we discuss certain
properties of blowups needed for later constructions. Throughout this section, M is a smooth
compact manifold with corners. We say that L is a submanifold of a smooth compact
manifold with corners whenever it is a p-submanifold in the sense of [33, Page [.12], which
means that local charts come from restriction of the ambient charts to coordinate subspaces.
The intersection of two submanifolds N and L is called clean if and only if it is transverse
and N N L is a p-submanifold. Recall, following [13] and [39, p. 19],

Definition 2.1. The blowup of a smooth manifold with corners M along a closed embedded
submanifold with corners L is the manifold with boundary BI(M, L) that is M with L replaced
by those points of the unit normal sphere bundle S(N(L)) that are actually the images of
paths in M. There is a natural smooth map

B: BI(M,L) — M, (2.1)
called the blowdown map, and a partial inverse
B: M — L — BI(M,L)— (B)*(L), (2.2)
called the blowup map.

Given a submanifold N of M such that N = cl(N — L) (“cl]” denoting the closure), we
define, following [33, Page V.7|, the lift of N to BI(M, L) as

N =cl(B(N — L)).

Lifting a vector field on M to Bl(M, L) amounts to lifting the orbits of the flow (c.f. [33]).
Then we have the following natural fact about lifts given as Proposition 5.7.2 in [33, Page
V.10], which we paraphrase as

Proposition 2.2. Suppose submanifolds N and L have a clean intersection in M. Then the
lift N in BI(M, L) is an embedded submanifold of BI(M, L) diffeomeorphic to BI(N, NN L).

As a next step we equip M with a smooth Riemannian metric gy; and construct a certain
smooth metric §y; on BI(M, L) which agrees with g outside of a 6—tubular neighborhood®
Us(L) of L and turns Us(L) — L into a “cylindrical end” of Bl(M, L) as in Figure 2. More

5T.e. the image of a §-disk bundle of L under the normal exponential map.
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precisely, we define

,\ {dt? + gouyy; on (L x S¥1) x (0,6] 2 Us(L) — L,
gBI(M,L) =

(2.3)
gnr; outside of Us(L).

Here k = codim(L), ¢ parametrizes (0, 6] segments in (L x S*71) x (0, 4], and gs(,(z)) is the
restriction of gy to O(Us(L)). Since gy may not be smooth along 9(Us(L)), we set g, r)
to be obtained by smoothing ggi(u,z) in the intermediate region Us;(L) —Uss(L) (see Figure
2). The above construction will be used later in the case of C[k;R?] where R? is considered
to have the standard metric.

Next, we indicate a natural estimate which will be very useful in the next section.

FIGURE 2. Illustration of the metric introduced on the blowup of a point in R2.

Lemma 2.3. Let M be a smooth manifold with corners, L a submanifold of M, and w a
smooth m—form on BI(M, L). Consider a submanifold N of M whose closure is compact and

its lift N to BI(M, L). Define

Ay = sup max _ |w(vy, -, vm)l. (2.4)
peN Vi wmelpN;
[vilg=1

Then
| A Brw| = /ﬁ w| < Aggvol(N). (2.5)

The proof is clear from definitions since Az measures a C°—norm of w along N.

3. CONFIGURATION SPACE INTEGRALS

This section contains a brief overview of configuration space integrals (also known as Bott—
Taubes integrals). This summary is based on [44] and [39]. We also include some technical
results about configuration space integrals that will be needed later. The main result for us
is Theorem 3.6. Before we describe configuration space integrals, we briefly review the basic
notions from the theory of finite type knot invariants. These invariants have been studied
extensively in the last twenty years; for more details, see [41], [10] and [17]. In particular,
they are conjectured to separate knots.

Let X be the space of knots, i.e. smooth embeddings of S* in R3, with the € topology.
Any knot invariant V: X — R can be extended to singular knots, which are knots except
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for a finite number of transverse self-intersections, using the Vassiliev skein relation given
in Figure 3. The figure is supposed to indicate that all the singularities have been resolved

(DGR GRS

FIGURE 3. Vassiliev skein relation.

(so a knot with n singularities produces 2" ordinary knots) and V' is evaluated on all the
resulting knots.

Definition 3.1. An invariant V is finite type n or Vassiliev of type n if it vanishes on
singular knots with n + 1 singularities.

Let V,, be the real vector space generated by all type n invariants and let V = @©,5¢Vy.
It is immediate that V,,_; C V,, so that one can consider the quotient V,,/V,_; (which will
appear in Theorem 3.6).

Finite type invariants are intimately connected to the combinatorics of trivalent diagrams.

Definition 3.2. A trivalent diagram D of degree n is a connected graph consisting of an
oriented circle, k = k(D) vertices on the circle (circle vertices), s = s(D) vertices off the
circle (free vertices), and some number of edges connecting those vertices. The vertex set
V(D) has cardinality k + s = 2n, and all vertices are trivalent (the circle adds two to the
valence of a circle vertex), from which it follows that the edge set &(D) is of cardinality ££3:.
The vertices are labeled by the set {1,--- ,2n}, and this labeling induces an orientation on
the edges in (D) (from the lower-labeled end vertex to the higher-labeled one). We will
denote by (i, j) the edge connecting vertices i and j where i < j. The diagram is regarded

up to orientation-preserving diffeomorphisms of the circle.

Examples of trivalent diagrams (without labels or edge orientations) are presented in
Figure 1. Let T'D,, denote the set of trivalent diagrams of degree n and let D,, be the real
vector space generated by T'D,, modulo subspaces generated by the STU relation illustrated
in Figure 4.° Vector space D = €P,, ., D, is in fact a commutative and co-commutative Hopf

[ X

Ficurke 4. The STU relation: S=T —U.

6See [44, p. 3] for more details on the STU relation.
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algebra [10, Theorem 7], where the product (and co—product) is derived from the operation
of connected sum of knots. The dual W = D* of D is known as the space of weight systems,
with 'W,, denoting its degree n subspace, i.e. the dual of D,,. Since W also has the structure
of a Hopf algebra it is sufficient to understand its primitive elements, called primitive weight
systems. These generate the entire algebra. A primitive weight system is one that vanishes
on reducible diagrams, namely those that are not obtained from two diagrams by connected
sum (this informally means that, in an irreducible diagram, one cannot draw a line separating
V(D) and (D) into two nonempty disjoint subsets).

We now turn our attention to the configuration space integrals. For a manifold M, let
C(q; M) be the ordered configuration space of g points in M (i.e. the g—fold product M9,
with the thick diagonal removed). Also recall that, given a submanifold N of a manifold M,
the blowup of M along N, BI(M, N), is obtained by replacing N by the unit normal bundle
of N in M (see Definition 2.1). Finally, for S a subset of {1, ...,q}, let M* be the product
of |S| copies of M in M1, indexed by the elements of S, and let Ag be the corresponding
(thin) diagonal in M.

Now let

Alk; M] = M* x 1T BI(M?®, Ag).

Sc{1,...k}, |S|>2

Definition 3.3. The Fulton-MacPherson compactification of C(k; M), denoted by C[k; M],

is the closure of the image of the inclusion
ay : C(k; M) — Alk; M, (3.1)

where the S—factors of this map are given by the blowup maps’. We denote ayr by a if M is
understood, and we will also refer to it as the blowup map of C(k, M). The blowdown map
@y : Clk; M) — MPF is obtained by the obvious restriction of the projection of Alk, M| onto
its M* factor.

Equivalently, C[k; M] can be obtained from M’ by successive blowups of Ag diagonals
in M* [13, 39]. These blowups have to be performed in the order dictated by the inclusion
relation C on the indexing sets S. More precisely, if S’ c 5, then Ag should be blown
up before Ag/. Yet another equivalent definition is due to Sinha [37]. All these definitions
produce diffeomorphic smooth manifolds with corners, compact when M is compact, and
homeomorphic to a complement of a tubular neighborhood of the thick diagonal in M*. The
interior of C[k; M| equals the image of C(k; M) under a and will be denoted by Cy(k; M).
For the remainder of this section we will mostly need the case M = R3. In this situation,
one needs to equip the compactification C[k; R?] with a face at infinity for it to be a compact
manifold with corners . We also point out that compactification is functorial and in particular
we have

"see Equation (2.2)
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Proposition 3.4 ([23, 37]). Suppose g : M — N is an embedding of a smooth manifold M
into a smooth manifold N. We then have an induced embedding

g : Clk; M] — Clk; N]
of manifolds with corners, which respects the boundary stratifications and extends the obvious

product map g* : C(k; M) — C(k;N), g = g x --- x g, such that the following diagram
commutes

Clk; M] ! ~ C[k; N
o ax (3.2)
C(k: M) o . C(k; N).

The reader may consult, for example, [37, Corollary 4.8| for a proof of this proposition.

Given the compactified configuration space C[q;R?] and any two positive integers k and
s, define C[k, s; X, R3] to be the pullback bundle in the following diagram

Clk, s; K, R?] Phs Clk + s;R?]

Tk Tk (33)

&v

Clk; 8"l x KX - Clk; R,
where 7 is the usual projection onto the first k coordinates and
ev(-,K) : Clk; S'] — C[k; R

is the evaluation map induced from the knot embedding map K : S' < R3; see Proposition
3.4. In other words it is a “lift” of the product map

ev: C(k; S") x K — C(k; R?)

((ty, -+ te), K) — (K(ty),- -+, K(t&)) (3.4)

to the compactified spaces. All maps in Diagram (3.3) are smooth maps of manifolds with
corners [13, 37], which is equivalent to saying that they admit smooth extensions to some
open neighborhoods of the domains of their charts.

Returning now to the diagram algebra D, for a trivalent diagram D € D,,, define the
associated Gauss map to be the product

hp= [[ hi:Cles; KR — ][] S° (3.5)
(i,7)e€(D) (i.7)e€(D)
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where h; j: Clk, s; X, R3] — S? is the lift to the compactification of the classical Gauss map

C(k + s;R%) — S2,
CL’j — I;
(3:1, vy Ty oy T, ...,$k+s) — m
Maps h; ; extend smoothly to the boundary of C[k, s; X, R3], [13, Appendix]. Thus hp is
also smooth, and as a result we obtain a smooth (k + 3s)-form wp on C[k, s; K, R3] via the
pullback:
wWp = h"‘D(w X o X LU) = H Wi 5, Wi = h:‘,jw. (36)
(i.9)€E(D)
Here w is the area form on S?, usually chosen in standard coordinates on R? as
zdy ANdz —ydx ANdz+ zdx A dy
(a2 + 92 + 2%)2 |
One now has a smooth bundle of manifolds with corners,

px : Clk, s; K, R%] — X,

w(z,y,2) =

which is the composition of 7, with the trivial projection of C[k;S'] x X onto the second
factor. The fiber of px over a knot K is the configuration space of k + s points in R3, first
k of which are constrained to lie on K. Integration along the (k + 3s) dimensional fiber of
px produces a O-form (a function) on K. We will denote its value at K € K by Ip(K). In
other words,

Ip(K) := ((px)swp) (K). (3.7)

Remark 3.5. Note that wp vanishes to the order 1/7" at “infinity” of C[k + s; R®], where r
is the distance from the origin. It is therefore integrable along fibers of px and thus (px).wp
is well-defined.

We now have the following fundamental result originally due to Altschuler and Freidel (3],
but reproved by Thurston [39] in the form we use here.

Theorem 3.6 ([3, 39]). Given a primitive weight system W € W,,, n > 0, the map defined
by

Vw : KX —R (3.8)

1
K+— (@) > W(D)(Ip(K) — mp Ie(K)),
DeTD,

where mp is a real number which depends only on D, is a finite type n knot invariant.
Moreover, any finite type invariant of type n can be expressed as Viy for some primitive
weight system W € W,,. More precisely, Viy gives an isomorphism V,/V,_1 = W, for all
n > 0 (where by V_, we mean the one-dimensional space of constant invariants).
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Notice that the statement above is a more elaborate version of (1.9), with a = 55W (D)
and b = 55mp. The term mp Ig(K) is known as the anomalous correction. The integral
Ig(K) Computeb the writhing number® of K (see [14]).

We next wish to clarify some technical aspects of the integration in (3.7) that will be
needed for later constructions. Let K € X and D € D,. The Gauss map hp from (3.5)
factors as hp = hp o p s (see Diagram (3.3)), where

hp:Clk+s,R]— [[ &
(1,7)€€(D)
has an identical definition as hp in (3.5). We also have the analog of the form wp on
Clk + s,R3], given as h}(w X -+ x w). We will also denote this form by wp. Integrating

along the 3s-dimensional fiber of 7 in Diagram (3.3), we obtain a smooth k-form (see [13,
p. 5281))

Wp = (?Tk)*wp (39)
on Clk; R3] (see Remark 3.5). On the other hand, the evaluation map (3.4), produces at
each point

ev((tlﬂ o :tk): K) = (K(tl): e 3K(tk)) € C(k;R3): (tla e :tk) € C(k} Sl):

a frame
= {K(t), -, K(ts)}, K(t;) = d%

Lifting this frame to C[k; R%], via the map pushforward «. induced by a = ags from (3.1),

K(t,).

we obtain the frame K} = a, K. Contracting into wp, given by (3.9), we obtain a (distri-
butional) function over C[k; R3], determined by

fpk(t) = wp(Ki)(t) = e’ wp(Ki)(t) = (evia @p)(t)[d:], (3.10)
for t = (¢1,--- ,tx). Here a* denotes the pullback induced by a.

Proposition 3.7. With fp k as defined in (3.10), we have the following identity for Ip(K):

Ip(K fpx(t (3.11)
N

k times

where the interval [0, T] parametrizes the knot K.

Proof. Restricting 7, in Diagram (3.3) to the fiber over the point K € X and the rest of the
maps to the subset of the interior of the compactifications Cy( -;R?) C C[-; R3], we have a

8Note that the writhing number is an average writhe over all possible projections of the knot.
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diagram
Colk,s; K,R¥) «——2L+ Co(k; SY) x Co(k + 5;R%) ’ Co(k + s; R?)
T
Tk
Co(k; S™) K Co(k;RY),

where p = v o j. Since C(k + s;R?) c (R3)* x (R3)*, we may work with the standard
coordinates (x,y) = (1, , Tk, Y1, - ,¥s) on (R®)F x (R?)® imposed by the blowup map
a: C(k+s;R3) — Co(k+s;R?) c Clk+s; R3] of (3.1). Let components of vectors z; and y;
in (x,y) be further indexed as z; = (z})i=1.23, ¥ = (¥})i=1,2.3 and denote by t = (t1,--- , tx)
the coordinates on C/(k;S') C (S')*. Then the (k + 3s)form a*wp can be written as

or*wD = dy A éD + &D,

where dy is the top degree form on (R*)* and &p some (k + 3s)—form not containing the
term dy. Using the multi-index notation, let us write

ap = Z ar,g(x,y)dx].

1,J

Here dx] = d&:;i A=A d:t?;i and I, J are appropriate multiindices. After integrating along
the fiber, we get

(?Tk)*a*wD - Of*wD(X) - Z(/—l aI,J(X:Y) dy) dx{:
1,J VT (%)
where 7} '(x) = C(s,R® — {x1,--- ,x¢}).° From (3.10), we have

fox®=3( [, anal (), Kty dy )bt o)
1.J

m, (K (t))
where b} (t,,--- , ;) = dxj[K"*] and
(ev}af*wD)(t) = fD,K(t) dt, dt = dﬁ] JANCERIVAY dtk.

On the other hand, v*a*wp has the identical expression as a*wp, so we may write j*a*wp
for j*v*a*wp. In the (t,x,y) coordinates, we obtain

j*Oi*QJD - Zal,J(K(tl): e :K(tk):Y) b{(tli e :tk) dy A dtl VANEERIAN dtk-
1,J

MNe. ?Tk_l(X) is a configuration space of s points in R® with k points deleted, see [20].
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Since the boundary of the configuration space C|[k; S'] is measure zero, it does not contribute
to the integral in (3.7) and we easily see that the following identities, proving (3.11), hold:

In(K) = ((px)sawp) (K) = ] (7)x(a"wp)

C(k;S1)

:f (ﬁ'k)*(j*a*wD):/ fD,K(t) dt. ]
C(k;S1) C(k;S1)

4. PrRoOOFS OoF THEOREMS A AND B

In the setting of a volume-preserving vector field X on a domain 8 from Theorem A,
we wish to apply constructions of Section 3 to the family of knots {€r(z)} obtained from
the “closed up” orbits of X. Note that any such orbit &r(z) (as in (1.1)) is generically a
piecewise smooth knot in R3. In order to define &7(x), one needs a system {o(z,y)} of short
paths on 8, which can in general be defined from geodesics after an appropriate choice of
the metric on 8 [43]. Short paths will in particular be dealt with in Lemma 4.5. The main
property of short paths we will use is that their length is uniformly bounded. Note that we
can assume Op(z) is smooth, because its corners can be rounded and & (z) is the C° limit
of these “rounded” parametrizations.

Recall that the basic ingredient of the formula (3.8) for any finite type n invariant Vjy is
the integration function I'p associated with a diagram D € D,,. Following the ideas outlined
in the Introduction we focus on the family of functions

8§ — R,
xTr — ID(é_)T(LE))

that is dependent on T'. For any = € 8, we wish to study the time average

- 1 _
Ap(z) = 311_1}130 ﬁfp(ﬁfp(iv)): k=k(D). (4.1)
Naturally, we need to investigate if Ap is a well-defined function on 8 and whether it is
integrable.

Recall that X (z) = &r(x). Given a smooth k—form wp on C[k; R3] as defined in (3.9),
we have a global analog of the function fp g in (3.10):

fox :C(k;8) — R, fox =a'wp(X, -+, X), (4.2)

where the frame of fields { X . .., X'} spans the tangent space to the product of orbits &(z;) x
.-+ x @(z}) through any point (zy,--- , ) in 8. It is convenient to think about the above
constructions in terms of the underlying foliation #% of 8¥ defined by the orbits of the action
of the k—fold product flow ¢% on 8*. Note that .#% has complete leaves because X is tangent
to 08, and orbits &(z) thus exist for all time. The function fp x is well-defined on C(k;8),
but, except for along the orbits, it generally blows up close to the diagonals of 8. We can
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also consider the function
fD,X . OO(k?S) —>]R: fD,X = wD()?:"' :5{’): (43)

where {X,..., X} is a lift of the frame {X, ..., X} of vector fields to C[k; S]. Note that even
though zwp is smooth on C[k; 8], the vector field X = a, X undergoes “infinite stretching”
close to the boundary of C[k; 8] (see Remark 4.3). Clearly, fp x factors as

fox=fpxoa.

Since Or(z) is parametrized by the interval [0, T + 1] (where [T, T + 1] parametrizes a
short segment o(z, dx(z,T))), Proposition 3.7 applied to (4.1) pointwise yields

3 T+1 T+1
Ip(6r(z)) = f | (U t). -  (@U 0w ) di -,
| k times | (44)

Here (¢ U o) is a shorthand notation for the flow ¢ of X followed by the short path
parametrization.

This is thus the setup in which we will prove our main theorems in this section. But before
we can do that, we will establish a useful lemma.

4.1. Key Lemma. Here is the lemma that will be used in the proofs of Lemma 4.5 and

Theorems A and B.

Key Lemma. Let pu be the underlying measure on the domain 8 C R?, invariant under the
flow of X. Consider the time average of fpx over Fy, defined as

T T
do@) = Jim 7 [ [ foxt@le,t). bt d-edt, aes, @5)

where in comparison to (4.1), we skipped the integrals over short paths. Then this limit exists
almost everywhere on 8 and Ap is in L'(8, u).

Before we prove this, we need to make several observations. Note that y induces a measure
on 8% by the pushforward via the thin diagonal inclusion 8§ < 8%, z — (x,---,z). Let
us denote the resulting measure by pa. Clearly pa is a finite Borel measure supported on
the thin diagonal of 8¥. Averaging over the R*-action of ¢¥ = ¢% we obtain a ¢*-invariant
measure

1 (T T
—00 0 0

For the k—fold product 8¥, the above is a well defined limit in the space of Borel measures
M(8%), c.f. [12]. Note that jin is supported on the set of leaves of the foliation .Z% intersecting
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the thin diagonal in 8*. From the definitions, we may write fs Apdy as
T
f)\pﬂ fs’c Tll_f)lolo ﬁ/ /0 fox(d(z,ty), -, dar, te)) dty - - dfk)dﬂa.

sk
where in the third identity we used (4.6). Therefore the question of whether A\p is in L'(8, p)
is equivalent to the question of whether fp x of (4.2) is in L'(8*, ia).

(4.7)

Remark 4.1. In place of jin one can consider any other invariant measure, in particular
we may restrict just to any measure supported on the k—product €(z) x --- x €(z) of a
single long orbit, or equivalently obtained by averaging, as in (4.6), a Dirac delta measure
of a point (z,---,z) € 8. It is well known (c.f. [12, 15]) that jia can be arbitrarily well
approximated by finite sums of such Dirac delta averages. (We will use this fact in Section
5.)

In order to investigate integrability of fp x, we employ the following natural generalization
of [15, Proposition 10.3.2] to a product of flows.

Proposition 4.2 ([15]). Any ¢*-invariant measure p on 8* corresponds to a holonomy
invariant measure of the foliation F¥.

Let us choose a finite regular foliated atlas for #% where a domain V*, a = (ay, -+ ,ay),
of each each chart is a product of regular flow boxes {V,} of the vector field X covering 8.
In other words,

V=V, x - x Vg, Vo, =Ty X 1n,, I, = (—€a,,€a;)y 0 < €q, <E¢, (4.8)

where each T, is a transverse disk to the flow of X. V® can be expressed as the product
Ve =7 x 1 = (][ 7a) x ([ ] 1a)-

Recall from [15] that a holonomy invariant measure v of & = % is a measure defined on
L], T* that is invariant under the action of the holonomy pseudogroup of .#. The Ruelle-
Sullivan Theorem [36] (see also [15, p. 245]) and Proposition 4.2 imply the existence of a
holonomy invariant (finite) measure vg corresponding to fia, given in (4.6), such that

[ oxa =3 /T ([ e )0 x0x )t} v ), (4.9)

where (x,t) = (21, @k, t1,-- - ,tx) are coordinates on Ve, {£4} a partition of unity sub-
ordinate to the cover of 8 by {V*}, and dt is induced from the usual Riemannian length
measure along the orbits of X.

Remark 4.3 (Illustration for proof of Key Lemma). Let us illustrate our strategy in the
case of the simplest diagram D = €. For a fixed ¢x—invariant measure p on 8, the question
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is whether the following time average is pu—integrable:
Ap(z) = lim %ID(ﬁT(x)), reS8
For simplicity, here we disregard short paths.

Considering a finite cover of 82 by flowboxes V* (defined for k = 2 in (4.8)), formula (4.9)
tells us that it suffices to prove that fp x is locally integrable with respect to dt x v# in each
Ve, Away from the diagonal Ay 2y of 82, fp x is smooth, and so the hardest case is that of
flowboxes intersecting Ay 23. Without loss of generality consider a flowbox V*, a = (o4, o)
with a; = ay. To simplify the notation we denote it by V = (T x I) x (T x I), (where T x I
is a flowbox of X in 8, with I = (—¢,¢)). Let F: T x T — R be defined by

F(z,y) = e fpx(z,y,t)dt, (4.10)
T,y

where
I(z,y) ={z} x{y} x I xICV, I = (—¢€).

Since C'[2; 8] C C[2;R?] and C[2;R?] is obtained by blowing up the diagonal Ay oy of (R?)?,
we can construct the metric g on C[2;R?] from the standard Euclidean metric of R* and
pull it back to C[2;T x I] via the map qpba induced from the product flow ¢? = ¢ x ¢. The
resulting metric on C[2; T x I]| will also be denoted by g. Recall that wp = wg is a smooth
2—form on C[2;8] C C[2;R?], defined via the Gauss map in (3.5). Thanks to Proposition
3.4, it pulls back to a smooth form on C[2;T x I|. The resulting pullback form will also be
denoted by wp. In the case of configurations of two points, C[2; T x I], the blowup map
(3.1) can be set equal to the map defined in (2.2), namely

B:C(2;TxI)—C[2;T xI| =BT x I,Apz;)
Equations (4.2) and (4.3) imply

F(z,y) :f «"wp = /N wp, (4.11)
I(z,y) I(zy)

where I(z,y) is the lift of I(z,y) C V to C[2;T x I|. Using the metric g, Lemma 2.3 yields
|F(z,y)| < Agp g vol(I(z,y)). (4.12)

Claim: Volumes of lifts I(z,y) in the metric g are uniformly bounded over T x 7.

Given the claim, estimate (4.12) implies that F is pointwise bounded and thus vg—
integrable (because vg is a finite measure). Applying this argument to each flow box chart
{Ve}, we can conclude that fp x is ia—integrable as required.

Remark 4.4. One can regard the above reasoning as an alternative to the proof of Lemma
2.4 in [18, p. 1429].
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Justification of Claim: The claim is intuitively clear, because the blowup map [ “stretches”
I(z,y) locally by adding a “bump” (which is illustrated on the right side of Figure 5). To
give a more precise argument, recall that C[2; T x I]| is a subspace of C[2;R? x R] and
C[2; R? x R] is diffeomorphic to (R? x R) x S% x [0, 00), (i.e. it is the complement of a tubular
neighborhood of the thin diagonal). The blowup map

B ((Ri’ x R)? — A{l,g}) — (0[2;R2 x R] — (E)—I(A{l,g})) ~ C(2;R? x R),

can be written explicitly as

B ((z9), () — (

r+y s+t (s—t,x—y) 1
AN BT ST

Let (z,y) € Tx T, z # y, and set p = 1(z+y), ¢ = 3(z—y), conveniently changing variables

tou=3(s+t),v=3(s—t), st € (—¢ce). Weobtain for (u,v) € (—¢,€) X (—¢,¢€)

) 3\ _. ,
(2w, (5,0)) — (p,u; T Vo ) = @@ thg(),  (413)

which, for a fixed z an y, gives a (u,v)-parametrization of the lift I(z,y). Here ¢y, 1,

V=07 +lz—F).

denotes the curves given by respectively first and last two coordinates of the map (4.13).

The volume vol(I(z,y)) can now be estimated as

vol(I(z,y)) < ez £(y) (E(t) + 2me),

where £(1p), £(1),) are lengths of the curves 1, and 1), in the metric § and ¢5 is a constant
which depends only on g. Lengths #(1,) and £(1,) are proportional to € and thus (z,y) —

vol(I(z,y)) is uniformly bounded on T x T by a constant dependent only on the metric and
the size of the flow box neighborhood. O

FIGURE 5. Lift of orbits of a vector field on R? (left) to BI(R?, {z}) = S' x [1,4c0) (right).
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Proof of Key Lemma. Fix a flowbox chart V* = T% x [* as defined in (4.8). It suffices to

prove that the function

Fpa: T —R (4.14)

x+— | fox(x,t)dt
Ja

is bounded for any @. Then, because the atlas {V*} is finite, (4.9) implies | [s. fpx fia] < 00

as required. Note that fpx is smooth away from the diagonals Ag of 8%, where Q C
{1,---,k}, #Q = 2, and

AQ = {(3:1: e :xk) € 8* | Ly =Ty for 1,J € Q}

Let A = UQ Ag. We can cover the e-neighborhood of A by open sets
k

VS = || Ve, where o;=a;, for i,j€Q,
@ 1:[1 ! je@ (4.15)
and Vo, NVy, =0, for i€Q, j¢Q.

Then the sup—norm of fpx is bounded on the complement of the eneighborhood of A
by some constant which only depends on X and wp; see (4.2). Generally, we want to
pick ¢ much smaller than e, which is the size of the flow box charts. Thus, it suffices
to prove that the functions F' = Fpe are bounded on V{ for any @ and Q). Up to a
permutation of factors, suppose that Q = {1,...,r} Cc {1,--- ,k}, 2 <r <k, r = #Q and
a= (o, ,00,P1, ,Brr) fora=a; =---=a,). Then Vg =T x I" x TP x I?, where

T=T, I=1I, TP=Ts x--xTs , and IP=1I5 x - xIs .

Proposition 3.4 implies that the flow ¢ = ¢x of X restricted to the flow box T x I lifts to
an embedding ¢ : C[r; T x I| — C[r; R3], which, by the second condition in (4.15), extends
trivially to the embedding

¢q : W — Clk; R, & =CrTx | x TP x IP.
Let ag : W§ — V{§ be the obvious projection induced by the restriction of the blowdown

———

map (of Definition 3.3). Recall that for any x € T"x T?, the lift I5(x) of I5(x) = {x} x I"x I#
to W3 equals to the closure of a@l (Ig(x)) in W§. The k-form wp (3.9) pulls back to a
smooth form on W§, and we may also pull back the metric g from C[k; R*] to W§. By (4.2)
and (4.14), a point value of F', for any x € 7" x T%, is given as

Flx) = ﬁg@ =, (4.16)

Using Lemma 2.3, for some universal constant Ap we obtain a bound

|F(x)| < Ap vol(Ip(x)). (4.17)
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———

Therefore, analogously to what is outlined in Remark 4.3, it suffices to show that vol(Ig(x))
is uniformly bounded over J” x T?. This is intuitively clear because vol(Ig(x)) is uniformly
bounded by a constant proportional to €* (c.f. (4.8)) and C[k; R?] is obtained from (R?)* by a

sequence of blowups. Hence the philosophy presented in Remark 4.3 implies that vol(Ig(x))
is uniformly bounded as well. The remaining part of this proof provides details of this
intuitive claim.

Summarizing, given a bounded “flow box”: W§ = C[r; T x I] x TP x I? embedded via the
flow in C[k; R3], we intend to estimate the volume of the lift of Io(x) = {x} x I" x I? C
(T x TPy x I" x IP = V§ to W§ for every x € " x T8, Specifically, we consider V§ sitting
in R? x R where the I factors of Vg are mapped into the R factors under the inclusion, and
the corresponding blowup map

a:C(k;R? x R) — Alk; R? x R],
AR xRl = (R xRFx  J]  BUR®xR)S,Ag). (4.18)

Sc{l,...k}, |S|>2
Recall from Section 3 that C[k;R? x R] is obtained as a closure of the graph of the above
map. The projection of the map « to the first factor of A[k;R? x R] is just the inclusion
and the projections restricted to the Bl(-) factors are determined by the blowup maps as in
(2.2). The metric on each Blg = BI((R? x R)*, Ag), further denoted by gs(¢), is obtained via

the construction of Section 2. The parameter ¢ is set to be sufficiently small, in particular
smaller than the diameter of any flowbox chart. Recall that Blg is diffeomorphic to the
complement of a tubular neighborhood of the thin diagonal Ag in (R? x R)S, namely

Bls = (R? x R) x S*517% x [0, 00). (4.19)

and the map « restricted to factors of A[k;R? x R], indexed by S = {s;,---, 55/}, can be
specifically chosen as
Y1— ¥ %1 Ys|,

Ty
This gives an embedding into the interior of Blg, i.e. into (R? x R) x S%5I=4 x (0, c0).

For simplicity, suppose x € T% =2 J" x 7% and x € C(k;7), i.e. x is away from the thick
diagonal of T%. The restriction of the map a to I(x) = {x} x I*,!° gives a parametrization
of the lift fi;) in C[k;R? x R]. Let us denote this parametrization by 7(¢,- - ,tz), where
t = (t1,--- , 1) are the variables of I* and fE;) = v(I(x)). Further let

Xi(t) = galt), =10k,

Y=, ys) " >(y1; Iy’l); Y ==y, y1—ys). (4.20)

10Where we abbreviate I” x I? to I* with k =7+ |f|.
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be images in A[k;R? x R] of coordinate vector fields under the derivative Dv. Then, for
In(x) = ¢ o a(I(x)) we have

—

vol(Io(x)) < esvol(I(x)) = ¢4 /; (1Xa A A Xilz)? dt, (4.21)

where ¢, accounts for the C'-norm of the map 5 Each vector X; has coordinates (Xf , X?),
where j = 1,--- , k indexes factors: (R? x R)* in A[k;R? x R] and S C {1,...,k}, |S| > 2,
indexes the Blg factors, we call j the front index and S the set indez in the above decom-
position of X;. Substituting X; =" X, where m ranges over both j and S type indices,
we estimate

I Xi A A Xl < Z |X?‘1A---/\X;Tk|§

m=(mi,mz, - my)

k kL 422
<Y [T 1xME < ZEZUX?‘WE) ,
m [=1 m =1
where the last step is a consequence of the arithmetic mean and Jensen’s inequality (c.f. [32]).
Consequently, estimating the integral in (4.21), boils down to estimating integrals in the form

I(my) / (XM ds,  1=1,---,k
Ik

Without loss of generality (as we may always change the order of integration) suppose [ = 1,

and let
1= [ ([0xm - ) dn) - do
I I

For a fixed to = (ta, - , ), the inner integral:

Ei(vm,) = Z;OX?I (t1, to)b’)kdtla

represents the L*—energy'! of the curve parametrized by Y, : t; — T, (7(t1, t0)), where
Tm, 1S a projection onto the m;—coordinate of A[k;R? x R|. If m, is a front index then
| XT" (t1,t0)|z = 1 and Ex(ym,) < €(Ym,). Since {(ym,) < cc€, for some constant ¢, > 0, we
obtain
J(m,) < (cee)*.

In the case m; = S is a set index, the map vy, parametrizes a curve in Blg, which projected
via (4.20) onto the S®°I=* factor is a ”piece” of a great circle. Then a simple computation
in the metric gs(¢) leads to the following estimate

Ey(Ym,) < cre(2m + l)kfk;
where we used ¢ < ¢, again J(m1) is uniformly bounded. Applying [ (-) to both sides of
(4.22) we obtain from (4.21) that vol(/p(x)) is estimated by a sum of J-type terms. Therefore

1 e. the L¥—norm to the kth power.
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using estimates for J(m,) we obtain the required uniform bound

vol(Ig(x)) < e (1 + 2me)k(e)?".
In the case x belongs to the thick diagonal of 7%, we obtain the above bound by considering
x as a limit of points from C(k; 7). O
4.2. Short paths. We are now ready to show that the short paths do not contribute to the
limits in (4.1) and (4.4).
Lemma 4.5. We have
Ap(z) = Ap(x), a.e. (4.23)

Proof. We will adapt the classical argument of Arnold from [4].'? Recall that the short curves
are denoted by {o(z,y)}zyes. The difference of integrals in the limits defining Ap (4.5) and

Ap (4.1) respectively is a sum of the following terms (up to permutation of fg and fﬂl) for
i>1,and i +j = k:

Jig = f / f L / :ifn,x(vm,:v(sl)w- Oar(s), 8 t) -+ ) Bl ) d s,

g o~
1 J

where 0,7 : [0,1] — 8 is a parametrization of o(z,¢(z,T)). Here fg is an integral over
the orbit of X and fol is an integral over the short path segment, from (4.4). Fixing small
enough ¢ > 0, we may subdivide each [0,7] so that the integral fOT is roughly the sum

f;—l—ffe—l— ff(; E;]] 1y and each e-interval [e (k — 1),ek], 1 < k < [T], parametrizes
a piece of an orbit within a flowbox chart of X. Analogously, we may subdivide the unit
intervals parametrizing the short paths and therefore split the fol integral into the e—pieces,
also fitting into flowbox neighborhoods of X. Let the index k;, 1 < [ < j, enumerate the
sums for the fg’s and the index m,, 1 < z < i, enumerate the sums for fﬂl ’s. Then, the

above formula for J; ; yields

| 3] < / / / / fo.x dtds|.
7 Z e(my1— 1) e(mi—1) Je(k1— 1) e(ki—1) DX

k17 o skj'

Each integral term in the above sum can be expressed, similarly as in (4.16), as an integral
over a lift of the product of the short e—pieces of ¢’s and the orbits of X, over a smooth
differential form wp on C[k; R?]. Therefore, by the estimate (4.17) each integral in the above
sum can be bounded above by a constant Ax p which only depends on the vector field, wp,
and the metric. Since the number of terms in the sum J;; is given by ([1/€])*([T/€])’ we
obtain

| Ji 5] < Ax,p([1/€])'([T/€]).

20ne needs to be cautious about this argument in the case the domain of the vector field cannot be covered
by finitely many flowbox type neighborhoods; see Example 4 in [43].
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Since there are (%) terms of type J; ; in the difference Ap — Ap and j = k — 4, we obtain, for
any r € 8,

_ 1 /K _ _

Role) = 20(@) < Axo fim e 3 () (/DD =0 0

=1

4.3. Proofs of Theorems A, Corollary A, and Theorem B. Recall the statements of
these three results from the Introduction.

Proof of Theorem A and Corollary A. Part (7) has already been proven in Key Lemma. For
part (ii), following Theorem 3.6, any finite type n invariant Vi is a linear combination of
integrals Ip of (3.7). Specifically, for appropriate coefficients ap € R and D, = €, we can
express Vi as

K)=> Ji(K)+blp,(K), for J(K)= Y aplp(K), KeX. (424)
DeTDy; k(D)=k

In order to observe the almost everywhere convergence in

Aw(z) = lim —Vw(ﬁT( ),

T—oo T2

we take the corresponding linear combination of 7T2"-time averages of terms in (4.24).
Namely, we have

ZT]L“SO T (Fr(@) + b Jim I, (Gr(x). (4.25)

By Key Lemma, for n > 1, the terms in the sum (4.25) with k < n vanish in the limit as
does the Ip, term. As a result, we have

Aw(@) =Xw=(z)= Y apip(a).

DETD,;k(D)=2n
Further, if Jo,(Or(z)) is o(T?"'), then we may consider 72" !-time averages of Vi and
obtain

M (z) = Az (z) = > ap Ap(z).

DETD,; k(D)=2n—1
This reasoning further applies, if the terms J; are of lower order, and this therefore gives
the proof of Corollary A.

It remains to prove invariance under volume-preserving deformations as claimed in (¢47).
Note that, given h € Diffy(R3, 11), the short path system AYX = {hoo} on 8 = h(8) obtained
from ¥ = {o} has the same properties as the original system 3 on 8 with respect to the
pulled-back metric on 8. In particular, Lemma 4.5 holds for hY¥. Now, for any 7" > 0 and
z € 8, consider knots Kj,x = " (z) and Kx = 65 (h~*(z)) (where we used hX to close
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up Kj,x and ¥ to close up Kx). By (1.6), we have
Kh.x = h(Kx).
Since h € Diffy(R?, 1), we conclude that Kj_x and Kx are isotopic, implying
Vw (Kn.x) = Viw(KXx).
Taking limr_, %( : ) of both sides in the above equation yields
X (z) = X (Rl (2),  ae.
After a change of variables (using the fact that h is p-preserving), we obtain
Yw (hX) = Yw(X). O
From the above argument, observe that Ay«(z) is a time average of the L'-functions

fwxr: C2n;R®) — R, fwx k= Z ap fp.xk,
DeTDpik(D)=k

for fp xx = fp.x as defined in (4.2). Applying the Multiparameter Ergodic Theorem [11, 38]

to fw.xk, we obtain the following formula for the vector field invariant %y : Vect(S, p) —
R:

Twr(X) = /; . Jwxkfia (4.26)

(recall jia is a diagonal invariant measure on 8* given in (4.6)).

I

d ZWC@D ()

FIGURE 6. A top degree diagram perturbation leads to pairwise linking number diagrams.

Proof of Theorem B. By assumption, the domain 8 is equipped with the standard volume
form g and X is an ergodic p—preserving nonvanishing vector field. For simplicity, we assume
that p induces a probability measure on 8. Ergodicity of X on 8 implies, among other things,
that almost every orbit of X densely fills the interior of 8. Clearly, u induces a ¢% —invariant
ergodic probability measure on 8* via the 3k—form p*F = X X By Key Lemma, fi x

k times

is in L'(p?"), and thus the ergodicity of the ¢¥'—action implies that the integral

fwx "
§2n
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equals
1 (T T
qll_?éoﬁ/ / fwan x(9(z1,t1), - -+, @(22n, ton)) diy - - - diom, (4.27)
0 0
2n times
for almost every point x = (zy,--+,T2,) € 8*. Choosing x to be away from the thick

diagonal, we have 2n distinct orbits Or(x) = Or(z;) x -+ x Op(xa,) through each coor-
dinate point. For each top degree diagram (i.e. a chord diagram) D € D, k(D) = 2n,
the integral of the associated differential form wp over & (x) splits as a product of linking
numbers of pairs of points associated with the chords of D. This can be thought of as a
perturbation of the diagram, as the vertices are no longer on the same orbit; see Figure 6
for an illustration. Explicitly, for &7p(x) and wp = [1ij)ee(py Wiy, from (4.2) and the fact
that ffr(m:-)xt?r(rj) w;j = k(Or(xz;), 6r(x;)), we have (up to short paths)

T T
/{;.../{; fox (@@, ty),  ¢(@am tan)) dby -+ dtzn =  [[  k(Or(z:), Or(xy)). (4.28)

(i,7)e€(D)
2n times

By definition of J#(X) (see (1.3)) and the ergodicity assumption, summing up over all top
order diagrams D € D,,, we obtain from (4.27) the independence of the limit of short paths
and from (4.28) we obtain
™ = ew (A OV, (429)
S T
where ¢y is a constant independent of X.

Next, we turn to the proof of the identity in (1.12). Observe that in the space of probability
measures M(8%"), the diagonal measure pua can be approximated by a sequence of probability
measures supported on the d—tubular neighborhood Us = Us(A) of the thin diagonal A of
82" These measures can be precisely defined as

2n Xeé 2n _ 1? X € UJ?
= oyl X = {o, x & Us.

Since p2™ — pa, & — 0 in M(8?"). Thanks to the weak compactness of M(8%"), the sequence
of the associated invariant measures 7z3", built via the formula (4.6), converges to the diagonal
invariant measure 7, in M(8?"). From Key Lemma, for each d, fw x is in L!(zz3"). Since
the right hand side in (4.27) is independent of the choice of x (as long as it is generic), for
a given § we may suppose x € U; and obtain from (4.29) and the assumption of ergodicity
the identity
1 (T T
i = Jim o [ oo [ e ) dt = e (PO
g2n T—oo T 0 0
I

2n times

Since 2" — Jip in M(8?"), we deduce (1.12). The second part of Theorem B can be justified
analogously. O
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5. QUADRATIC HELICITY, ENERGY, AND PROOF OF THEOREM C.

The methods presented in the previous sections can be applied almost without any changes
to the setting of asymptotic links. One difference between the case of knots and links
is a choice of the diagonal invariant measure g, in (4.6). Rather than presenting this
obvious generalization, the rest of this section is devoted to an illustration of the relevant
constructions for the simplest finite type 2 invariant associated with a 2—component link,
the square of the linking number 1k?. We observe that in the setting of asymptotic links, 1k
leads to quadratic helicity that was recently proposed by Akhmetiev in [1]. Further, it is the
simplest invariant that can provide a sharper lower bound for the fluid energy than J#(X),
as claimed in Theorem C.

The weight system associated to lk? is given by just one trivalent diagram which we
denote by Dy2, pictured in Figure 7. The configuration of points and chords on D2 implies

FIGURE 7. A trivalent diagram Dy for 1k2.

a choice of the invariant measure on 8% associated with the flow of X. Namely, we start
with the product ¢% = ¢x X ¢x—invariant measure p x g on 8 x 8 and push it forward to
the 4-fold product 8* by the inclusion j: (z,y) — (z,z,y,y). Let us denote the diagonal,
parametrized by j, by A = A13}{24}}- Also denote the pushforward measure by BA o

and the associated ¢} —invariant measure by 7i, @ (i.e. fip @ = T,U,A @2)- By virtue of Theorem

A, the asymptotic invariant of X associated with 1k® equals the quadratic helicity of [1] and
is by (4.26) given as

HX) = [ @0 (XXX, X) i, (5.1)

where

Wp , = a'wia A a*wsy.

k2
(because Dp2 has no free vertices). Observe that #?(X) > 0, whereas #(X) can be
negative. We can easily show examples when 57 (X) = 0 but 5#2(X) > 0 (see [4, p. 344]).

Therefore it is of general interest to derive an analog of inequality (1.15) for 5#2(X).
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Proof of Theorem C. Recall [15] that the diagonal invariant measure Ji, @ can be arbitrarily
well approximated in M(8*) by positive finite linear combinations

n

P, = Zai it_"‘xi: a > 0: (52)

i=1

where 71, is a ¢%—invariant measure obtained from averaging a Dirac delta d, supported
at a point x; = (;,;,¥;, ;) on the diagonal Ag). More precisely, if p, = >, a; 0k, as
an approximation of pa @ Pn = T,un is an approximation of [N In fact, approximating
px by S0 b 0z, ), bi > 0, and applying the pushforward under j we conclude that the
coefficients in (5.2) are given as

a; = b.f
Note that each Tz, is a product measure, i.e.
where ,U,E_T ;) is a pushforward of f,, ) = f 5(1':',1%) under the inclusion of 8 x 8 into the

(k,1)-coordinates factor of (8 x 8)? = 8*. By the proof of Theorem A, the function fw =
a*wia A a*wsg(XN') is T,—integrable for each n. Moreover, if we set
fi2= Of*wl,2(Xa X), [faa=dwsu(X, X),
then
* * 4 & *
fw =a*wip Aa*ws g (X)) = a*wio(X, X) a*ws g (X, X) = fi2 faa.
Note that the functions f; 5 and f34 are constant on appropriate 82 factors of 8. Using (5.2)
and (5.3), we obtain

=[S 8 ([ nanli) (] et
i=1

‘ fW Pn
54

< (S [ Ihalne) (b [ 1ol
i=1
—

Passing to the limit in M(8?*) as n — oo, we have p, — [N and > ;b iy, gy > X
Therefore

H*(X) < / la*wy o( X, X)|,u><,u / |a* w34XX)|,u,x,u,)—c(X)2 (5.4)

where ¢(X) stands for the asymptotic crossing number as defined in [22; p. 191], and the
last identity is a consequence of ¢(X) = [, |o*w(X, X)|pu x p given in [22]. The estimate
[22, Equation (1.9)]

16
Bya(X) > () e(x)?
immediately yields the required bound in (1.17). O
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