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Abstract. Weconsiderthegeneralnonvanishing,divergence-freevectorfieldsdefinedona

domainin3-spaceandtangenttoitsboundary.Basedonthetheoryoffinitetypeinvariants,

wedefineafamilyofinvariantsforsuchfields,inthestyleofArnold’sasymptoticlinking

number.OurapproachisbasedontheconfigurationspaceintegralsduetoBottandTaubes.
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1.Introduction

Supposewehaveavolume-preservingvectorfieldXdefinedinsomecompactdomainS

ofR3andtangenttoitsboundary.Intheidealhydrodynamicsormagnetohydrodynamics

(MHD),c.f.[6]foracomprehensivereference,Xplaysaroleofavorticityfieldoramagnetic

field.Eulerequations(intheidealhydrodynamicsortheidealMHD)tellusthattheflowφX
ofXevolvesintimeundervolume-preservingdeformations.Therefore,quantitiesassociated
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2 R.KOMENDARCZYKANDI.VOLIĆ

withφX thatareinvariantundersuchdeformationsareofparticularinteresttotheseareas

ofresearch.

ThebestknownsuchinvariantisthehelicityofX,whichwewilldenotebyH(X).Itwas

firstdiscoveredby Woltjerin[45].Itstopologicalnature,i.e.theconnectiontothelinking

numberofapairofclosedcurvesinspace,wasfirstobservedintheworkofMoffatt[34]and

thenfullydescribedbyArnoldin[4].Thispaperconcernstheexistenceandpropertiesof

otherinvariantsofvolume-preservingfieldsderivedinthestyleofArnoldfromthefinitetype

(orVassiliev)invariantsofknotsandlinks[41,10,3,44](seealsoquestionsin[5,Problem

1990–16]and[6,p.176]).

Inmoredetail,andfollowingthegeneralideaof[4],recallthatalongpieceofanorbit

OT(x)ofavectorfieldXthroughx∈SfortimeT(oracollectionoforbitsthroughdifferent

pointsinS)canbemadeintoaknot(link)byaddinga“shortarc”(orasmanyshortarcs

asthereareorbits)σ(x,y)connectingitsendpoints,i.e.

ŌT(x)=OT(x)∪σ(x,y),where y=OT(x)(T). (1.1)

ThusforanyT>0weobtainafamilyofknots{̄OT(x)}x∈S. NowletKbethespaceof

knots(thesetofembeddingsofS1inR3endowedwiththeC∞ topology)andlet

F:K−→R

beafunction,typicallyaknotinvariant. Thisfunctioncanberestrictedtothefamily

{̄OT(x)}x∈S,resultinginafunction

λS,T:S−→R

x−→F(OT(x)).

ThisisaprototypeforaninvariantofφXundersmoothisotopiesviadiffeomorphismsisotopic

totheidentity.InordertoproduceanactualnumericalinvariantofφX,andconsequently

ofX,weneedtoremovethedependenceonshortarcs.Forthatreason,forsomem>0

(usuallyaninteger),oneconsidersthelimit

Fm(X)=lim
T→∞ S

1

Tm
λS,T(x) (1.2)

WewillcallFm(X)theasymptoticvalueofF alongtheflowofX(oforderm). Whenever

theordermisspecified,wemaydenoteFm(X)simplybyF(X).IfF isaknotinvariant,

thisusuallygivesaninvariantofXundervolume-preservingdeformations.Inthiscase,we

willrefertoF(X)asanasymptoticinvariantofX(oforderm).

ReplacingasingleorbitOT(x)byacollectionofnorbits{OT(x1),···,OT(xn)}atdistinct

pointsx1,···,xnofS,theabovephilosophycanbeappliedtoaninvariantF:Ln→ R,

whereLnisthespaceofn-componentlinks(definedandtopologizedanalogouslytoK).

Arnoldshowedin[4]thatthistechniquegives,inthecasewhenF isthethelinking

numberlkofpairsoforbits{O(x),O(y)},awelldefinedinvariantH(X)whichequalsthe
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abovementioned Woltjer’shelicity.Namely,givenadivergence-freefieldXonS,wehave

H(X)=
S×S

lim
T→∞

1

T2
lk(̄OT(x),̄OT(y))µ(x)×µ(y), (1.3)

whereµisavolumeformonR3,andthefunctionundertheintegralisawell-definedµalmost

everywhereintegrablefunctiononS. ArnoldcalledH(X)theaverageasymptoticlinking

numberofXandshowedthatH(X)isinvariantunderthevolume-preservingdeformations

ofX.

Moreprecisely,letVect(S,µ)betheLiealgebraofsmoothvolume-preservingvectorfields

onS⊂R3equippedwithavolumeformµ. Considertheactionbythegroupofsmooth

volume-preservingdiffeomorphismsofR3(isotopictotheidentity),Diff0(R
3,µ):

Diff0(R
3,µ)×Vect(S,µ)−→Vect(g(S),µ) (1.4)

(g,X)−→g∗X,

whereg∗standsforthepushforwardofthevectorfieldXbythediffeomorphismg.Then

invarianceunderthevolume-preservingdeformationsmeanstheinvarianceundertheabove

action.Inotherwords,

H(X)=H(g∗X). (1.5)

Remark.Observethatg∗X(x)=
d
dt
g◦φX(t,g

−1(x))
t=0
. Thusonthelevelofflows,the

actionin(1.4)mapstheflowφX=φX(t,x)ofXtotheflowg◦φX◦g
−1=g◦φX(t,g

−1(x))

ofg∗X,i.e.

φX−→g◦φX◦g
−1. (1.6)

Inordertostateourmainresultswefirstneedtoprovidesomegeneralinformationabout

finitetypeinvariants,leavingfurtherdetailsforSection3(orsee,forexample,[44]foramore

detailedreference). Thebasicobjectinthetheoryoftheseinvariantsisagradedalgebra

(overanyring,butforus,thiswillbeR)oftrivalentdiagrams(seeFigure1)whichwe

willdenotebyD.Thesubspaceofdiagramsofdegreenconsistsofthosediagramswith2n

verticesandisdenotedbyDn,wherek=k(D)verticesareonthecircle(circlevertices),

ands=s(D)verticesareoffthecircle(freevertices).ThenDisthedirectsumofDnforall

n≥1.ForeachdiagramD∈D,wemayconstructafunctiononaknotspaceKbymeans

ofconfigurationspaceintegrals,denotedas

ID:K−→R. (1.7)

DetailsaboutthemapID aregiveninSection3.

BothDanditsdual,W=D∗,calledthespaceofweightsystems,areHopfalgebras. More

formally,anyW ∈W isafinitelinearcombinationofdiagramsinD.Finitetypeinvariants

ofknots1areindexedbythesubspaceofprimitiveweightsystems,andthisisthecontent

ofthefundamentaltheoremoffinitetypeinvariants,originallyduetoKontsevich[29].An

1Thesetupforlinksisanalogous.
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wedonotanswerthisquestioninfullgeneralityweobtainthefollowingdirectconsequence

of(i)inTheoremAand(1.10).

CorollaryA.ConsideraprimitiveweightsystemW andsupposeforagivenk(k<n),

wehaveWk=0.SupposealsothattheasymptoticvalueVjW(X)ofW vanishesforevery

k<j≤2n−1asdoestheasymptoticvalueVk
Wk+1
(X). Thentheasymptoticinvariant

VW(X)oforderkexistsandequalstheasymptoticvalueV
k
Wk
(X)ofVWkalongtheflowX.

Themeaningoflowerorderinvariantsisuncleartousatthispoint.However,theworkin

[27,28]onasymptoticBrunnianlinksshowsonepossiblesettingwheretheymightappear.

AcloselyrelatedresulttoTheoremAisprovenin[25]byGambaudoandGhyswho

considerasignatureinvariantσ:K −→ Zofknotsanditsasymptoticcounterpartfor

ergodicvolume-preservingfieldsX.Inparticular,theyprovethat,inthesettingofergodic

fields,theassociatedasymptoticsignatureσ(X)isoforder2andsatisfies

σ(X)=
1

2
H(X). (1.11)

Anextensionofthisworkonergodicfieldstootherknotinvariantsappearsmorerecentlyin

theworkofBaader[7,8].Inaddition,BaaderandMarch́e[9]considerasymptoticfinitetype

invariants.Themainresultof[9]givesananalogoftheidentity(1.11)foranyasymptotic

finitetypeinvariantVW(X)ofordernwheneverXisergodicandW isdegreen.Notethat

TheoremAshowsthatVW(X)=V
2n
W (X)iswell-definedforageneralnonvanishingfield

X(onadomainSinR3),andalsoindicatesapossibilityforlowerorderinvariants. Our

techniquesalsoleadustothefollowingcounterpartofaresultin[9].

TheoremB.LetµbethestandardvolumeformonR3andletXbeanergodicµ-preserving

nonvanishingvectorfieldonadomainS.Thenthereexistsasingulardifferentialform W,2n

ofdegree4nonS2n,suchthat

VW(X)=cW (H(X))
n=

S2n
W,2n∧(ιXµ×···×ιXµ

ntimes

), (1.12)

wherecW isaconstantindependentofX,ιXµisthecontractionofXintotheformµ,and

H(X)isthehelicitydefinedin(1.3). Moreover,thelowerorderinvariants(iftheyexist)

aregivenasfollows

VmW(X)=
S2m

W,m∧(ιXµ×···×ιXµ
m times

).

Anotheravenueweexplorehereareapplicationstotheenergy–helicityproblemasconsid-

eredbyArnoldin[4](seealso[6]).Definethe(magnetic)energyofXby

E(X)=
S

|X|2dµ, (1.13)

i.e.asthesquareoftheL2–normofX. Considertheproblemofminimizingtheenergy

functionalEontheorbitoX ={g∗X|g∈Diff0(R
3,µ)}oftheaction(1.4)throughafixed
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vectorfieldX.IfoX isanorbitthroughageneralvolume-preservingfieldXtheremaynot

beaminimizing(smooth)vectorfield(c.f.[21]).Cantheenergybemadearbitrarysmall?

Arnoldshowedin[4]that

E(g∗X)≥C|H(X)|, (1.14)

foranyg∈Diff0(R
3,µ)andforsomepositiveconstantCwhichdependsonthe“geometry”

(i.e.onachoiceoftheRiemannianmetriconR3).SinceH(X)isinvariantundertheaction

(1.4),theaboveinequalitygivesalowerboundforthemagneticenergyofXalongtheorbit,

wheneverH(X)=0.Sincethebound(1.14)isineffectiveforvanishingH(X),Freedman

andHe[22]showedasharperboundfortheL3/2–energy2ofXintermsoftheasymptotic

crossingnumber3c(X)ofX:

E3/2(X)≥
16

π

1/4

c(X)3/4≥
16

π

1/4

|H(X)|3/4. (1.15)

Asymptoticcrossingnumberisnotaninvariantundertheaction(1.4),butitleadstoa

topologicallowerboundforfluidknots,i.e.divergence-freevectorfieldsconstrainedtoa

tubearoundaknottedcorecurveKin3–space.Namely,denotingbyg(K)thegenusofK,

thefollowingestimateisshownin[22]:

E3/2(X)≥
16

π

1/4

2g(K)−1
3/4
Flux(X), (1.16)

whereFlux(X)isthefluxofXthroughthecross–sectionaldiskofthetube.InSection5

ofthispaperweconsiderthequadratichelicityH 2(X)(recentlyproposedbyAkhmetievin

[1]). NotethatH 2(X)iswelldefined,thankstoTheoremAappliedtothesquareofthe

linkingnumber4.Basedontheestimate(1.15)weshow

TheoremC.Wehave

E3/2(X)≥
16

π

1/4

H 2(X)3/8≥
16

π

1/4

|H(X)|3/4. (1.17)

Weendthisintroductionbysayingthatourtechniquesareratherdifferentfrom[24,

25],wheretheauthorsbuilda“combinatorialmodel”foranergodicfield,andbasetheir

considerationsonthismodel.TheconfigurationspaceintegralshavebeenusedbyCantarella

andParsleyin[16]toderiveanalternativeformulaforH(X)andits“higherdimensional”

versions.Considerationsofthecurrentpaperaremeasure–theoreticandinthesimplestcase

canbecomparedtotheworkofContrerasandIturriagaontheasymptoticlinkingnumber

in[18].

Lastly,wewishtoindicatethatinadditiontotheresultsmentionedabove,thereexistsa

wealthofapproachestotheproblemofdefininghelicity-styleinvariantsofvolume-preserving

fields,ormoregenerallymeasurablefoliations;seeforexamplepapers[2,42,40,19,31,35,

26,30]andreferencesgiventherein.

2recallthatL2–energymajorizestheL3/2–energyviatheḦolderinequality.
3denotedin[22]byc(X,X).
4lk2,whichisthesimplestfinitetype2invariantof2–componentlinks



VOLUME-PRESERVINGVECTORFIELDSANDFINITETYPEINVARIANTS 7

Acknowledgments. WearegratefultoRobGhrist,ChrisKottkeandPaulMelvinforthe

emailcorrespondence.ThefirstauthorthankstheorganizersofEntanglementandlinking

inPisa2011,andinparticularPetrAkhmetievforaninterestingconversationduringthat

meeting.

2.Somemetricpropertiesofblowups

Beforewereviewconfigurationspaceintegrals,inthisshortsectionwediscusscertain

propertiesofblowupsneededforlaterconstructions.Throughoutthissection,Misasmooth

compactmanifoldwithcorners. WesaythatLisasubmanifoldofasmoothcompact

manifoldwithcornerswheneveritisap–submanifoldinthesenseof[33,PageI.12],which

meansthatlocalchartscomefromrestrictionoftheambientchartstocoordinatesubspaces.

TheintersectionoftwosubmanifoldsNandLiscalledcleanifandonlyifitistransverse

andN∩Lisap–submanifold.Recall,following[13]and[39,p.19],

Definition2.1.TheblowupofasmoothmanifoldwithcornersM alongaclosedembedded

submanifoldwithcornersListhemanifoldwithboundaryBl(M,L)thatisM withLreplaced

bythosepointsoftheunitnormalspherebundleS(N(L))thatareactuallytheimagesof

pathsinM.Thereisanaturalsmoothmap

β:Bl(M,L)−→M, (2.1)

calledtheblowdownmap,andapartialinverse

β:M−L−→Bl(M,L)−(β)−1(L), (2.2)

calledtheblowupmap.

GivenasubmanifoldNofM suchthatN=cl(N−L)(“cl”denotingtheclosure),we

define,following[33,PageV.7],theliftofNtoBl(M,L)as

N=cl(β(N−L)).

LiftingavectorfieldonM toBl(M,L)amountstoliftingtheorbitsoftheflow(c.f.[33]).

ThenwehavethefollowingnaturalfactaboutliftsgivenasProposition5.7.2in[33,Page

V.10],whichweparaphraseas

Proposition2.2.SupposesubmanifoldsNandLhaveacleanintersectioninM.Thenthe

liftNinBl(M,L)isanembeddedsubmanifoldofBl(M,L)diffeomeorphictoBl(N,N∩L).

AsanextstepweequipM withasmoothRiemannianmetricgM andconstructacertain

smoothmetricgM onBl(M,L)whichagreeswithgoutsideofaδ–tubularneighborhood
5

Uδ(L)ofLandturnsUδ(L)−Lintoa“cylindricalend”ofBl(M,L)asinFigure2. More

5I.e.theimageofaδ-diskbundleofLunderthenormalexponentialmap.
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precisely,wedefine

ĝBl(M,L)=
dt2+g∂Uδ(L); on (L×S

k−1)×(0,δ]∼=Uδ(L)−L,

gM; outsideofUδ(L).
(2.3)

Herek=codim(L),tparametrizes(0,δ]segmentsin(L×Sk−1)×(0,δ],andg∂(Uδ(L))isthe

restrictionofgM to∂(Uδ(L)).SinceĝM maynotbesmoothalong∂(Uδ(L)),wesetgBl(M,L)
tobeobtainedbysmoothinĝgBl(M,L)intheintermediateregionU5

4
δ(L)−U3

4
δ(L)(seeFigure

2).TheaboveconstructionwillbeusedlaterinthecaseofC[k;R3]whereR3isconsidered

tohavethestandardmetric.

Next,weindicateanaturalestimatewhichwillbeveryusefulinthenextsection.

Figure2.IllustrationofthemetricintroducedontheblowupofapointinR2.

Lemma2.3.LetM beasmoothmanifoldwithcorners,LasubmanifoldofM,and a

smoothm–formonBl(M,L).ConsiderasubmanifoldNofM whoseclosureiscompactand

itsliftNtoBl(M,L).Define

A ,g=sup
p∈N

max
v1,···,vm∈TpN;
|vi|g=1

|(v1,···,vm)|. (2.4)

Then

N

β∗ =
N

≤A ,gvol(N). (2.5)

TheproofisclearfromdefinitionssinceA ,gmeasuresaC
0–normof alongN.

3.Configurationspaceintegrals

Thissectioncontainsabriefoverviewofconfigurationspaceintegrals(alsoknownasBott–

Taubesintegrals).Thissummaryisbasedon[44]and[39]. Wealsoincludesometechnical

resultsaboutconfigurationspaceintegralsthatwillbeneededlater.Themainresultforus

isTheorem3.6.Beforewedescribeconfigurationspaceintegrals,webrieflyreviewthebasic

notionsfromthetheoryoffinitetypeknotinvariants.Theseinvariantshavebeenstudied

extensivelyinthelasttwentyyears;formoredetails,see[41],[10]and[17].Inparticular,

theyareconjecturedtoseparateknots.

LetKbethespaceofknots,i.e.smoothembeddingsofS1inR3,withtheC∞ topology.

AnyknotinvariantV:K−→Rcanbeextendedtosingularknots,whichareknotsexcept
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forafinitenumberoftransverseself-intersections,usingtheVassilievskeinrelationgiven

inFigure3.Thefigureissupposedtoindicatethatallthesingularitieshavebeenresolved

Figure3.Vassilievskeinrelation.

(soaknotwithnsingularitiesproduces2nordinaryknots)andVisevaluatedonallthe

resultingknots.

Definition3.1. AninvariantVisfinitetypenorVassilievoftypenifitvanisheson

singularknotswithn+1singularities.

LetVnbetherealvectorspacegeneratedbyalltypeninvariantsandletV=⊕n≥0Vn.

ItisimmediatethatVn−1⊂Vn,sothatonecanconsiderthequotientVn/Vn−1(whichwill

appearinTheorem3.6).

Finitetypeinvariantsareintimatelyconnectedtothecombinatoricsoftrivalentdiagrams.

Definition3.2. AtrivalentdiagramDofdegreenisaconnectedgraphconsistingofan

orientedcircle,k=k(D)verticesonthecircle(circlevertices),s=s(D)verticesoffthe

circle(freevertices),andsomenumberofedgesconnectingthosevertices. Thevertexset

V(D)hascardinalityk+s=2n,andallverticesaretrivalent(thecircleaddstwotothe

valenceofacirclevertex),fromwhichitfollowsthattheedgesetE(D)isofcardinalityk+3s
2
.

Theverticesarelabeledbytheset{1,···,2n},andthislabelinginducesanorientationon

theedgesinE(D)(fromthelower-labeledendvertextothehigher-labeledone). Wewill

denoteby(i,j)theedgeconnectingverticesiandjwherei<j.Thediagramisregarded

uptoorientation-preservingdiffeomorphismsofthecircle.

Examplesoftrivalentdiagrams(withoutlabelsoredgeorientations)arepresentedin

Figure1.LetTDndenotethesetoftrivalentdiagramsofdegreenandletDnbethereal

vectorspacegeneratedbyTDnmodulosubspacesgeneratedbytheSTUrelationillustrated

inFigure4.6VectorspaceD= n≥0Dnisinfactacommutativeandco–commutativeHopf

S −T U

i

j

ij i j

Figure4.TheSTUrelation:S=T−U.

6See[44,p.3]formoredetailsontheSTUrelation.
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algebra[10,Theorem7],wheretheproduct(andco–product)isderivedfromtheoperation

ofconnectedsumofknots.ThedualW=D∗ofDisknownasthespaceofweightsystems,

withWndenotingitsdegreensubspace,i.e.thedualofDn.SinceWalsohasthestructure

ofaHopfalgebraitissufficienttounderstanditsprimitiveelements,calledprimitiveweight

systems.Thesegeneratetheentirealgebra.Aprimitiveweightsystemisonethatvanishes

onreduciblediagrams,namelythosethatarenotobtainedfromtwodiagramsbyconnected

sum(thisinformallymeansthat,inanirreduciblediagram,onecannotdrawalineseparating

V(D)andE(D)intotwononemptydisjointsubsets).

Wenowturnourattentiontotheconfigurationspaceintegrals.Foramanifold M,let

C(q;M)betheorderedconfigurationspaceofqpointsinM (i.e.theq–foldproductMq,

withthethickdiagonalremoved).Alsorecallthat,givenasubmanifoldNofamanifoldM,

theblowupofM alongN,Bl(M,N),isobtainedbyreplacingNbytheunitnormalbundle

ofNinM (seeDefinition2.1).Finally,forSasubsetof{1,...,q},letMSbetheproduct

of|S|copiesofM inMq,indexedbytheelementsofS,andlet∆Sbethecorresponding

(thin)diagonalinMS.

Nowlet

A[k;M]=Mk×
S⊂{1,...,k},|S|≥2

Bl(MS,∆S).

Definition3.3.TheFulton-MacPhersoncompactificationofC(k;M),denotedbyC[k;M],

istheclosureoftheimageoftheinclusion

αM:C(k;M)−→A[k;M], (3.1)

wheretheS–factorsofthismaparegivenbytheblowupmaps7. WedenoteαM byαifM is

understood,andwewillalsorefertoitastheblowupmapofC(k,M).Theblowdownmap

αM :C[k;M]−→M
kisobtainedbytheobviousrestrictionoftheprojectionofA[k,M]onto

itsMkfactor.

Equivalently,C[k;M]canbeobtainedfromMkbysuccessiveblowupsof∆Sdiagonals

inMk[13,39].Theseblowupshavetobeperformedintheorderdictatedbytheinclusion

relation⊂ontheindexingsetsS. Moreprecisely,ifS ⊂S,then∆Sshouldbeblown

upbefore∆S.YetanotherequivalentdefinitionisduetoSinha[37].Allthesedefinitions

producediffeomorphicsmoothmanifoldswithcorners,compactwhenM iscompact,and

homeomorphictoacomplementofatubularneighborhoodofthethickdiagonalinMk.The

interiorofC[k;M]equalstheimageofC(k;M)underαandwillbedenotedbyC0(k;M).

FortheremainderofthissectionwewillmostlyneedthecaseM =R3.Inthissituation,

oneneedstoequipthecompactificationC[k;R3]withafaceatinfinityforittobeacompact

manifoldwithcorners. Wealsopointoutthatcompactificationisfunctorialandinparticular

wehave

7seeEquation(2.2)
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Proposition3.4([23,37]).Supposeg:M →NisanembeddingofasmoothmanifoldM

intoasmoothmanifoldN. Wethenhaveaninducedembedding

g:C[k;M]−→C[k;N]

ofmanifoldswithcorners,whichrespectstheboundarystratificationsandextendstheobvious

productmapgk:C(k;M)−→C(k;N),gk=g×···×g,suchthatthefollowingdiagram

commutes
C[k;M]

g ✲ C[k;N]

C(k;M)

αM

✻

gk ✲ C(k;N).

αN

✻

(3.2)

Thereadermayconsult,forexample,[37,Corollary4.8]foraproofofthisproposition.

GiventhecompactifiedconfigurationspaceC[q;R3]andanytwopositiveintegerskand

s,defineC[k,s;K,R3]tobethepullbackbundleinthefollowingdiagram

C[k,s;K,R3]
pk,s ✲ C[k+s;R3]

C[k;S1]×K

π̄k

❄
ev ✲ C[k;R3],

πk

❄

(3.3)

whereπkistheusualprojectionontothefirstkcoordinatesand

ev(·,K):C[k;S1]−→C[k;R3]

istheevaluationmapinducedfromtheknotembeddingmapK:S1→R3;seeProposition

3.4.Inotherwordsitisa“lift”oftheproductmap

ev:C(k;S1)×K−→C(k;R3)

((t1,···,tk),K)−→(K(t1),···,K(tk))
(3.4)

tothecompactifiedspaces.AllmapsinDiagram(3.3)aresmoothmapsofmanifoldswith

corners[13,37],whichisequivalenttosayingthattheyadmitsmoothextensionstosome

openneighborhoodsofthedomainsoftheircharts.

ReturningnowtothediagramalgebraD,foratrivalentdiagramD∈Dn,definethe

associatedGaussmaptobetheproduct

hD=
(i,j)∈E(D)

hi,j:C[k,s;K,R
3]−→

(i,j)∈E(D)

S2, (3.5)
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diagram

C0(k,s;K,R
3)⊂

j ✲ C0(k;S
1)×C0(k+s;R

3)
v ✲ C0(k+s;R

3)

C0(k;S
1)

❄
evK ✲

π̄
k

✲

C0(k;R
3),

πk

❄

wherep=v◦j. SinceC(k+s;R3)⊂(R3)k×(R3)s,wemayworkwiththestandard

coordinates(x,y)=(x1,···,xk,y1,···,ys)on(R
3)k×(R3)simposedbytheblowupmap

α:C(k+s;R3)−→C0(k+s;R
3)⊂C[k+s;R3]of(3.1).Letcomponentsofvectorsxjandyj

in(x,y)befurtherindexedasxj=(x
i
j)i=1,2,3,yj=(y

i
j)i=1,2,3anddenotebyt=(t1,···,tk)

thecoordinatesonC(k;S1)⊂(S1)k.Thenthe(k+3s)–formα∗ωD canbewrittenas

α∗ωD=dy∧α̂D+ˆ̂αD,

wheredyisthetopdegreeformon(R3)sandˆ̂αD some(k+3s)–formnotcontainingthe

termdy.Usingthemulti-indexnotation,letuswrite

α̂D=
I,J

âI,J(x,y)dx
J
I.

HeredxJI=dx
i1
j1
∧···∧dxikjkandI,Jareappropriatemultiindices.Afterintegratingalong

thefiber,weget

(πk)∗α
∗ωD=α

∗
D(x)=

I,J π−1k (x)

âI,J(x,y)dydx
J
I,

whereπ−1k (x)=C(s,R
3−{x1,···,xk}).

9From(3.10),wehave

fD,K(t)=
I,J π−1k (K(t))

âI,J(K(t1),···,K(tk),y)dyb
J
I(t1,···,tk),

wherebJI(t1,···,tk)=dx
J
I[̇K

∧k]and

(ev∗Kα∗ D)(t)=fD,K(t)dt, dt=dt1∧···∧dtk.

Ontheotherhand,v∗α∗ωD hastheidenticalexpressionasα
∗ωD,sowemaywritej

∗α∗ωD
forj∗v∗α∗ωD.Inthe(t,x,y)coordinates,weobtain

j∗α∗ωD=
I,J

âI,J(K(t1),···,K(tk),y)b
J
I(t1,···,tk)dy∧dt1∧···∧dtk.

9I.e.π−1k (x)isaconfigurationspaceofspointsinR
3withkpointsdeleted,see[20].
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SincetheboundaryoftheconfigurationspaceC[k;S1]ismeasurezero,itdoesnotcontribute

totheintegralin(3.7)andweeasilyseethatthefollowingidentities,proving(3.11),hold:

ID(K)=(pK)∗α
∗ωD (K)=

C(k;S1)

(̄πk)∗(α
∗ωD)

=
C(k;S1)

(̄πk)∗(j
∗α∗ωD)=

C(k;S1)

fD,K(t)dt.

4.ProofsofTheoremsAandB

Inthesettingofavolume-preservingvectorfieldX onadomainSfromTheoremA,

wewishtoapplyconstructionsofSection3tothefamilyofknots{̄OT(x)}obtainedfrom

the“closedup”orbitsofX. NotethatanysuchorbitŌT(x)(asin(1.1))isgenericallya

piecewisesmoothknotinR3.InordertodefineŌT(x),oneneedsasystem{σ(x,y)}ofshort

pathsonS,whichcaningeneralbedefinedfromgeodesicsafteranappropriatechoiceof

themetriconS[43].ShortpathswillinparticularbedealtwithinLemma4.5.Themain

propertyofshortpathswewilluseisthattheirlengthisuniformlybounded.Notethatwe

canassumeŌT(x)issmooth,becauseitscornerscanberoundedandŌT(x)istheC
0limit

ofthese“rounded”parametrizations.

Recallthatthebasicingredientoftheformula(3.8)foranyfinitetypeninvariantVW is

theintegrationfunctionIDassociatedwithadiagramD∈Dn.Followingtheideasoutlined

intheIntroductionwefocusonthefamilyoffunctions

S−→R,

x−→ID(̄OT(x))

thatisdependentonT.Foranyx∈S,wewishtostudythetimeaverage

λ̄D(x)=lim
T→∞

1

Tk
ID(̄OT(x)), k=k(D). (4.1)

Naturally,weneedtoinvestigateifλ̄D isawell-definedfunctiononSandwhetheritis

integrable.

RecallthatX(x)=ȮT(x). Givenasmoothk–form D onC[k;R
3]asdefinedin(3.9),

wehaveaglobalanalogofthefunctionfD,K in(3.10):

fD,X:C(k;S)−→R, fD,X:=α
∗
D(X,···,X), (4.2)

wheretheframeoffields{X,...,X}spansthetangentspacetotheproductoforbitsO(x1)×

···×O(xk)throughanypoint(x1,···,xk)inS
k.Itisconvenienttothinkabouttheabove

constructionsintermsoftheunderlyingfoliationFkXofS
kdefinedbytheorbitsoftheaction

ofthek–foldproductflowφkXonS
k.NotethatFkXhascompleteleavesbecauseXistangent

to∂S,andorbitsO(x)thusexistforalltime.ThefunctionfD,X iswell-definedonC(k;S),

but,exceptforalongtheorbits,itgenerallyblowsupclosetothediagonalsofSk. Wecan
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alsoconsiderthefunction

fD,X:C0(k;S)−→R, fD,X:= D(X,···,X), (4.3)

where{X,...,X}isaliftoftheframe{X,...,X}ofvectorfieldstoC[k;S].Notethateven

though D issmoothonC[k;S],thevectorfieldX=α∗Xundergoes“infinitestretching”

closetotheboundaryofC[k;S](seeRemark4.3).Clearly,fD,X factorsas

fD,X=fD,X◦α.

SinceŌT(x)isparametrizedbytheinterval[0,T+1](where[T,T+1]parametrizesa

shortsegmentσ(x,φX(x,T))),Proposition3.7appliedto(4.1)pointwiseyields

ID(̄OT(x))=
T+1

0

···
T+1

0

ktimes

fD,X((φ∪σ)(x,t1),···,(φ∪σ)(x,tk))dt1···dtk,

λ̄D(x)=lim
T→∞

1

Tk
ID(̄OT(x)).

(4.4)

Here(φ∪σ)isashorthandnotationfortheflowφofX followedbytheshortpath

parametrization.

Thisisthusthesetupinwhichwewillproveourmaintheoremsinthissection.Butbefore

wecandothat,wewillestablishausefullemma.

4.1.KeyLemma. HereisthelemmathatwillbeusedintheproofsofLemma4.5and

TheoremsAandB.

KeyLemma.LetµbetheunderlyingmeasureonthedomainS⊂R3,invariantunderthe

flowofX.ConsiderthetimeaverageoffD,X overF
k
X,definedas

λD(x)=lim
T→∞

1

Tk

T

0

···
T

0

fD,X(φ(x,t1),···,φ(x,tk))dt1···dtk, x∈S, (4.5)

whereincomparisonto(4.1),weskippedtheintegralsovershortpaths.Thenthislimitexists

almosteverywhereonSandλD isinL
1(S,µ).

Beforeweprovethis,weneedtomakeseveralobservations.Notethatµinducesameasure

onSkbythepushforwardviathethindiagonalinclusionS→ Sk,x−→(x,···,x).Let

usdenotetheresultingmeasurebyµ∆.Clearlyµ∆ isafiniteBorelmeasuresupportedon

thethindiagonalofSk.AveragingovertheRk–actionofφk=φkX weobtainaφ
k–invariant

measure

µ̄∆=lim
T→∞

1

Tk

T

0

···
T

0

(φk)∗µ∆ dt1···dtk. (4.6)

Forthek–foldproductSk,theaboveisawelldefinedlimitinthespaceofBorelmeasures

M(Sk),c.f.[12].Notethat̄µ∆issupportedonthesetofleavesofthefoliationF
k
Xintersecting
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JustificationofClaim:Theclaimisintuitivelyclear,becausetheblowupmapβ“stretches”

I(x,y)locallybyaddinga“bump”(whichisillustratedontherightsideofFigure5).To

giveamorepreciseargument,recallthatC[2;T×I]isasubspaceofC[2;R2×R]and

C[2;R2×R]isdiffeomorphicto(R2×R)×S2×[0,∞),(i.e.itisthecomplementofatubular

neighborhoodofthethindiagonal).Theblowupmap

β:(R2×R)2−∆{1,2} −→ C[2;R2×R]−(β)−1(∆{1,2})∼=C(2;R
2×R),

canbewrittenexplicitlyas

β:((x,s),(y,t))−→
x+y

2
,
s+t

2
,

(s−t,x−y)

(s−t)2+|x−y|2
,
1

2
(s−t)2+|x−y|2 .

Let(x,y)∈T×T,x=y,andsetp=1
2
(x+y),q=1

2
(x−y),convenientlychangingvariables

tou=1
2
(s+t),v=1

2
(s−t),s,t∈(−,). Weobtainfor(u,v)∈(−,)×(−,)

((x,u),(y,v))−→ p,u;
(v,q)

v2+|q|2
, v2+|q|2 =:(ψp(u);ψq(v)), (4.13)

which,forafixedxany,givesa(u,v)–parametrizationoftheliftI(x,y). Hereψp,ψq
denotesthecurvesgivenbyrespectivelyfirstandlasttwocoordinatesofthemap(4.13).

Thevolumevol(I(x,y))cannowbeestimatedas

vol(I(x,y))≤cg (ψp)((ψq)+2π),

where (ψp),(ψq)arelengthsofthecurvesψpandψqinthemetricgandcgisaconstant

whichdependsonlyong.Lengths(ψp)and(ψq)areproportionalto andthus(x,y)−→

vol(I(x,y))isuniformlyboundedonT×Tbyaconstantdependentonlyonthemetricand

thesizeoftheflowboxneighborhood.

x
x

Figure5.LiftoforbitsofavectorfieldonR2(left)toBl(R2,{x})∼=S1×[1,+∞)(right).
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ProofofKeyLemma.FixaflowboxchartVααα=Tααα×Iαααasdefinedin(4.8).Itsufficesto

provethatthefunction

FD,ααα:T
ααα−→R (4.14)

x−→
Iααα
fD,X(x,t)dt

isboundedforanyααα.Then,becausetheatlas{Vααα}isfinite,(4.9)implies|
Sk
fD,X µ̄∆|≤∞

asrequired. NotethatfD,X issmoothawayfromthediagonals∆Q ofS
k,whereQ⊂

{1,···,k},#Q≥2,and

∆Q={(x1,···,xk)∈S
k|xi=xjfori,j∈Q}.

Let∆= Q∆Q. Wecancoverthe–neighborhoodof∆byopensets

VαααQ =
k

i=1

Vαi,where αi=αj, fori,j∈Q,

and Vαi∩Vαj=Ø, fori∈Q,j∈Q.

(4.15)

Thenthesup–normoffD,X isboundedonthecomplementoftheε–neighborhoodof∆

bysomeconstantwhichonlydependsonX and D;see(4.2). Generally,wewantto

pickεmuchsmallerthan ,whichisthesizeoftheflowboxcharts. Thus,itsuffices

toprovethatthefunctionsF =FD,ααα areboundedonV
ααα
Q foranyαααandQ. Uptoa

permutationoffactors,supposethatQ={1,...,r}⊂{1,···,k},2≤r≤k,r=#Qand

ααα=(α1,···,αr,β1,···,βk−r)(forα=α1=···=αr).ThenV
ααα
Q =T

r×Ir×Tβ×Iβ,where

T=Tα, I=Iα, T
β=Tβ1×···×Tβk−r, and I

β=Iβ1×···×Iβk−r.

Proposition3.4impliesthattheflowφ=φX ofXrestrictedtotheflowboxT×Iliftsto

anembeddingφ:C[r;T×I]−→C[r;R3],which,bythesecondconditionin(4.15),extends

triviallytotheembedding

φQ:W
ααα
Q−→C[k;R

3], WαααQ:=C[r;T×I]×T
β×Iβ.

LetαQ:W
ααα
Q−→V

ααα
Q betheobviousprojectioninducedbytherestrictionoftheblowdown

map(ofDefinition3.3).Recallthatforanyx∈Tr×Tβ,theliftIQ(x)ofIQ(x)={x}×I
r×Iβ

toWαααQ equalstotheclosureofα
−1
Q(IQ(x))inW

ααα
Q. Thek–form D (3.9)pullsbacktoa

smoothformonWαααQ,andwemayalsopullbackthemetricgfromC[k;R
3]toWαααQ.By(4.2)

and(4.14),apointvalueofF,foranyx∈Tr×Tβ,isgivenas

F(x)=
IQ(x)

D. (4.16)

UsingLemma2.3,forsomeuniversalconstantAD weobtainabound

|F(x)|≤ADvol(IQ(x)). (4.17)
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Therefore,analogouslytowhatisoutlinedinRemark4.3,itsufficestoshowthatvol(IQ(x))

isuniformlyboundedoverTr×Tβ.Thisisintuitivelyclearbecausevol(IQ(x))isuniformly

boundedbyaconstantproportionaltok(c.f.(4.8))andC[k;R3]isobtainedfrom(R3)kbya

sequenceofblowups.HencethephilosophypresentedinRemark4.3impliesthatvol(IQ(x))

isuniformlyboundedaswell. Theremainingpartofthisproofprovidesdetailsofthis

intuitiveclaim.

Summarizing,givenabounded“flowbox”:WαααQ=C[r;T×I]×T
β×Iβembeddedviathe

flowinC[k;R3],weintendtoestimatethevolumeoftheliftofIQ(x)={x}×I
r×Iβ⊂

(Tr×Tβ)×Ir×Iβ=VαααQ toW
ααα
Qforeveryx∈T

r×Tβ.Specifically,weconsiderVαααQ sitting

inR2×RwheretheIfactorsofVαααQ aremappedintotheRfactorsundertheinclusion,and

thecorrespondingblowupmap

α:C(k;R2×R)−→A[k;R2×R],

A[k;R2×R]=(R2×R)k×
S⊂{1,...,k},|S|≥2

Bl((R2×R)S,∆S).
(4.18)

RecallfromSection3thatC[k;R2×R]isobtainedasaclosureofthegraphoftheabove

map. TheprojectionofthemapαtothefirstfactorofA[k;R2×R]isjusttheinclusion

andtheprojectionsrestrictedtotheBl(·)factorsaredeterminedbytheblowupmapsasin

(2.2).ThemetriconeachBlS=Bl((R
2×R)k,∆S),furtherdenotedbygS(ε),isobtainedvia

theconstructionofSection2.Theparameterεissettobesufficientlysmall,inparticular

smallerthanthediameterofanyflowboxchart. RecallthatBlSisdiffeomorphictothe

complementofatubularneighborhoodofthethindiagonal∆Sin(R
2×R)S,namely

BlS∼=(R
2×R)×S3|S|−4×[0,∞). (4.19)

andthemapαrestrictedtofactorsofA[k;R2×R],indexedbyS={s1,···,s|S|},canbe

specificallychosenas

y=(y1,···,y|S|)−→ y1;
y1−y2
|y|

,···,
y1−y|S|
|y|

;|y|, y=(y1−y2,···,y1−y|S|).(4.20)

ThisgivesanembeddingintotheinteriorofBlS,i.e.into(R
2×R)×S3|S|−4×(0,∞).

Forsimplicity,supposex∈Tk∼=Tr×Tβandx∈C(k;T),i.e.xisawayfromthethick

diagonalofTk.TherestrictionofthemapαtoI(x)={x}×Ik,10givesaparametrization

oftheliftI(x)inC[k;R2×R].Letusdenotethisparametrizationbyγ(t1,···,tk),where

t=(t1,···,tk)arethevariablesofI
kandI(x)=γ(I(x)).Furtherlet

Xi(t)=
∂

∂ti
γ(t), i=1,···,k,

10Whereweabbreviate Ir×IβtoIkwithk=r+|β|.
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beimagesinA[k;R2×R]ofcoordinatevectorfieldsunderthederivativeDγ. Then,for

IQ(x)=φ◦α(I(x))wehave

vol(IQ(x))≤cφvol(I(x))=cφ
Ik
(|X1∧···∧Xk|g)

1
2dt, (4.21)

wherecφaccountsfortheC
1–normofthemapφ.EachvectorXihascoordinates(X

j
i,X

S
i),

wherej=1,···,kindexesfactors:(R2×R)kinA[k;R2×R]andS⊂{1,...,k},|S|≥2,

indexestheBlSfactors,wecalljthefrontindexandSthesetindexintheabovedecom-

positionofXi.SubstitutingXi= mmmX
mmm
i,wheremmmrangesoverbothjandStypeindices,

weestimate

|X1∧···∧Xk|g≤
mmm=(mmm1,mmm2,···,mmmk)

|Xmmm11 ∧···∧X
mmmk
k |g

≤
mmm

k

l=1

|Xmmmll |g≤
mmm

1

k

k

l=1

|Xmmmll |g
k
,

(4.22)

wherethelaststepisaconsequenceofthearithmeticmeanandJensen’sinequality(c.f.[32]).

Consequently,estimatingtheintegralin(4.21),boilsdowntoestimatingintegralsintheform

I(mmml)=
Ik
|Xmmmll |g

k
dt, l=1,···,k.

Withoutlossofgenerality(aswemayalwayschangetheorderofintegration)supposel=1,

andlet

I=
I

···
I

|Xmmm11 (t1,···,tk)|g
k
dt1 ···dtk.

Forafixedt0=(t2,···,tk),theinnerintegral:

Ek(γmmm1)=
I

|Xmmm11 (t1,t0)|g
k
dt1,

representstheLk–energy11ofthecurveparametrizedbyγmmm1:t1−→πmmm1(γ(t1,t0)),where

πmmm1 isaprojectionontothemmm1–coordinateofA[k;R
2×R].Ifmmm1isafrontindexthen

|Xmmm11 (t1,t0)|g=1andEk(γmmm1)≤ (γmmm1).Since(γmmm1)≤c,forsomeconstantc>0,we

obtain

I(mmm1)≤(c)
k.

Inthecasemmm1=Sisasetindex,themapγmmm1parametrizesacurveinBlS,whichprojected

via(4.20)ontotheS3|S|−4factorisa”piece”ofagreatcircle.Thenasimplecomputation

inthemetricgS(ε)leadstothefollowingestimate

Ek(γmmm1)≤ck,(2π+1)
kk,

whereweusedε ,againI(mmm1)isuniformlybounded.Applying Ik
(·)tobothsidesof

(4.22)weobtainfrom(4.21)thatvol(IQ(x))isestimatedbyasumofI–typeterms.Therefore

11i.e.theLk–normtothekthpower.
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usingestimatesforI(mmm1)weobtaintherequireduniformbound

vol(IQ(x))≤ck,,φ(1+2π)
k()2k.

InthecasexbelongstothethickdiagonalofTk,weobtaintheaboveboundbyconsidering

xasalimitofpointsfromC(k;T).

4.2.Shortpaths.Wearenowreadytoshowthattheshortpathsdonotcontributetothe

limitsin(4.1)and(4.4).

Lemma4.5.Wehave

λ̄D(x)=λD(x), a.e. (4.23)

Proof.WewilladapttheclassicalargumentofArnoldfrom[4].12Recallthattheshortcurves

aredenotedby{σ(x,y)}x,y∈S.ThedifferenceofintegralsinthelimitsdefiningλD(4.5)and

λ̄D (4.1)respectivelyisasumofthefollowingterms(uptopermutationof
T

0
and

1

0
)for

i≥1,andi+j=k:

Ji,j=
1

0

···
1

0

i

T

0

···
T

0

j

fD,X(σx,T(s1),···,σx,T(si),φ(x,t1)···,φ(x,tj))dtds,

whereσx,T:[0,1]→ Sisaparametrizationofσ(x,φ(x,T)). Here
T

0
isanintegralover

theorbitofXand
1

0
isanintegralovertheshortpathsegment,from(4.4).Fixingsmall

enough >0,wemaysubdivideeach[0,T]sothattheintegral
T

0
isroughlythesum

0
+

2
+···+

1T

(1T−1)
,andeach–interval[(k−1),k],1≤k≤ T ,parametrizes

apieceofanorbitwithinaflowboxchartofX. Analogously,wemaysubdividetheunit

intervalsparametrizingtheshortpathsandthereforesplitthe
1

0
integralintothe–pieces,

alsofittingintoflowboxneighborhoodsofX.Lettheindexkl,1≤l≤j,enumeratethe

sumsforthe
T

0
’sandtheindexmz,1≤z≤i,enumeratethesumsfor

1

0
’s. Then,the

aboveformulaforJi,jyields

|Ji,j|≤
m1,···,mi
k1,···,kj

m1

(m1−1)

···
mi

(mi−1)

k1

(k1−1)

···
kj

(kj−1)

fD,Xdtds.

Eachintegraltermintheabovesumcanbeexpressed,similarlyasin(4.16),asanintegral

overaliftoftheproductoftheshort–piecesofσ’sandtheorbitsofX,overasmooth

differentialform DonC[k;R
3].Therefore,bytheestimate(4.17)eachintegralintheabove

sumcanbeboundedabovebyaconstantAX,Dwhichonlydependsonthevectorfield, D,

andthemetric.SincethenumberoftermsinthesumJi,jisgivenby(1/ )
i(T/ )jwe

obtain

|Ji,j|≤AX,D(1/ )
i(T/ )j.

12Oneneedstobecautiousaboutthisargumentinthecasethedomainofthevectorfieldcannotbecovered
byfinitelymanyflowboxtypeneighborhoods;seeExample4in[43].
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upKh∗X andΣtocloseupKX).By(1.6),wehave

Kh∗X=h(KX).

Sinceh∈Diff0(R
3,µ),weconcludethatKh∗X andKX areisotopic,implying

VW(Kh∗X)=VW(KX).

TakinglimT→∞
1
T2n

· ofbothsidesintheaboveequationyields

λ
h∗X

W (x)=λ
X

W(h
−1(x)), a.e.

Afterachangeofvariables(usingthefactthathisµ-preserving),weobtain

VW(h∗X)=VW(X).

Fromtheaboveargument,observethatλWk(x)isatimeaverageoftheL
1–functions

fW,X,k :C(2n;R
3)−→R, fW,X,k :=

D∈TDn;k(D)=k

aDfD,X,k,

forfD,X,k=fD,Xasdefinedin(4.2).ApplyingtheMultiparameterErgodicTheorem[11,38]

tofW,X,k,weobtainthefollowingformulaforthevectorfieldinvariantVW,k :Vect(S,µ)−→

R:

VW,k(X)=
Sk
fW,X,k µ̄∆ (4.26)

(recallµ̄∆isadiagonalinvariantmeasureonS
k

1

2

3

4

4

3

1

2

1 4

3 2

givenin(4.6)).

Figure6. Atopdegreediagramperturbationleadstopairwiselinkingnumberdiagrams.

ProofofTheoremB.Byassumption,thedomainSisequippedwiththestandardvolume

formµandXisanergodicµ–preservingnonvanishingvectorfield.Forsimplicity,weassume

thatµinducesaprobabilitymeasureonS.ErgodicityofXonSimplies,amongotherthings,

thatalmosteveryorbitofXdenselyfillstheinteriorofS.Clearly,µinducesaφkX–invariant

ergodicprobabilitymeasureonSkviathe3k–formµk=µ×···×µ

ktimes

.ByKeyLemma,fW,X

isinL1(µ2n),andthustheergodicityoftheφ2nX–actionimpliesthattheintegral

S2n
fW,Xµ

2n
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equals

lim
T→∞

1

T2n

T

0

···
T

0

2ntimes

fW2n,X(φ(x1,t1),···,φ(x2n,t2n))dt1···dt2n, (4.27)

foralmosteverypointx=(x1,···,x2n)∈S
2n. Choosingxtobeawayfromthethick

diagonal,wehave2ndistinctorbitsŌT(x)=ŌT(x1)×···×ŌT(x2n)througheachcoor-

dinatepoint. Foreachtopdegreediagram(i.e.achorddiagram)D∈Dn,k(D)=2n,

theintegraloftheassociateddifferentialform D overŌT(x)splitsasaproductoflinking

numbersofpairsofpointsassociatedwiththechordsofD. Thiscanbethoughtofasa

perturbationofthediagram,astheverticesarenolongeronthesameorbit;seeFigure6

foranillustration.Explicitly,forŌT(x)and D = (i,j)∈E(D)ωi,j,from(4.2)andthefact

that
ŌT(xi)×ŌT(xj)

ωi,j=lk(ŌT(xi),̄OT(xj)),wehave(uptoshortpaths)

T

0

···
T

0

2ntimes

fD,X(φ(x1,t1),···,φ(x2n,t2n))dt1···dt2n=
(i,j)∈E(D)

lk(̄OT(xi),̄OT(xj)).(4.28)

BydefinitionofH(X)(see(1.3))andtheergodicityassumption,summingupoveralltop

orderdiagramsD∈Dn,weobtainfrom(4.27)theindependenceofthelimitofshortpaths

andfrom(4.28)weobtain

S2n
fW,Xµ

2n=cW(H(X))
n, (4.29)

wherecW isaconstantindependentofX.

Next,weturntotheproofoftheidentityin(1.12).Observethatinthespaceofprobability

measuresM(S2n),thediagonalmeasureµ∆canbeapproximatedbyasequenceofprobability

measuressupportedontheδ–tubularneighborhoodUδ=Uδ(∆)ofthethindiagonal∆of

S2n.Thesemeasurescanbepreciselydefinedas

ν2nδ =
χδ

vol(Uδ)
ν2n, χδ(x)=

1, x∈Uδ,

0, x∈Uδ.

Sinceµ2nδ →µ∆,δ→0inM(S
2n).ThankstotheweakcompactnessofM(S2n),thesequence

oftheassociatedinvariantmeasuresµ2nδ,builtviatheformula(4.6),convergestothediagonal

invariantmeasureµ∆ inM(S
2n).FromKeyLemma,foreachδ,fW,X isinL

1(µ2nδ).Since

therighthandsidein(4.27)isindependentofthechoiceofx(aslongasitisgeneric),for

agivenδwemaysupposex∈Uδandobtainfrom(4.29)andtheassumptionofergodicity

theidentity

S2n
fW,Xµ

2n
δ =lim

T→∞

1

T2n

T

0

···
T

0

2ntimes

fW,X(x,t)dt=cW(H(X))
n.

Sinceµ2nδ →µ∆inM(S
2n),wededuce(1.12).ThesecondpartofTheoremBcanbejustified

analogously.



VOLUME-PRESERVINGVECTORFIELDSANDFINITETYPEINVARIANTS 27

5.Quadratichelicity,energy,andproofofTheoremC.

Themethodspresentedintheprevioussectionscanbeappliedalmostwithoutanychanges

tothesettingofasymptoticlinks. Onedifferencebetweenthecaseofknotsandlinks

isachoiceofthediagonalinvariantmeasureµ∆ in(4.6). Ratherthanpresentingthis

obviousgeneralization,therestofthissectionisdevotedtoanillustrationoftherelevant

constructionsforthesimplestfinitetype2invariantassociatedwitha2–componentlink,

thesquareofthelinkingnumberlk2. Weobservethatinthesettingofasymptoticlinks,lk2

leadstoquadratichelicitythatwasrecentlyproposedbyAkhmetievin[1].Further,itisthe

simplestinvariantthatcanprovideasharperlowerboundforthefluidenergythanH(X),

asclaimedinTheoremC.

Theweightsystemassociatedtolk2isgivenbyjustonetrivalentdiagramwhichwe

denotebyDlk2,picturedinFigure7.TheconfigurationofpointsandchordsonDlk2

1 2

3 4

implies

Figure7.AtrivalentdiagramDlk2forlk
2.

achoiceoftheinvariantmeasureonS4associatedwiththeflowofX. Namely,westart

withtheproductφ2X =φX×φX–invariantmeasureµ×µonS×Sandpushitforwardto

the4–foldproductS4bytheinclusionj:(x,y)−→(x,x,y,y).Letusdenotethediagonal,

parametrizedbyj,by∆(2)=∆{{1,3},{2,4}}. Alsodenotethepushforwardmeasurebyµ∆(2)
andtheassociatedφ4X–invariantmeasurebyµ∆(2)(i.e.µ∆(2)= µ∆(2)).ByvirtueofTheorem

A,theasymptoticinvariantofXassociatedwithlk2equalsthequadratichelicityof[1]and

isby(4.26)givenas

H 2(X)=
S4

Dlk2
(X,X,X,X)µ∆(2), (5.1)

where

Dlk2
=α∗ω1,2∧α

∗ω3,4.

(becauseDlk2 hasnofreevertices). ObservethatH 2(X)≥0,whereasH(X)canbe

negative. WecaneasilyshowexampleswhenH(X)=0butH 2(X)>0(see[4,p.344]).

Thereforeitisofgeneralinteresttoderiveananalogofinequality(1.15)forH 2(X).
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ProofofTheoremC.Recall[15]thatthediagonalinvariantmeasureµ∆(2)canbearbitrarily

wellapproximatedinM(S4)bypositivefinitelinearcombinations

µn=
n

i=1

aiµxi, ai>0, (5.2)

whereµxiisaφ
4
X–invariantmeasureobtainedfromaveragingaDiracdeltaδxisupported

atapointxi=(xi,xi,yi,yi)onthediagonal∆(2). Moreprecisely,ifµn=
n
i=1aiδxias

anapproximationofµ∆(2),µn= µnisanapproximationofµ∆(2).Infact,approximating

µ×µby n
i=1biδ(xi,yi),bi>0,andapplyingthepushforwardunderjweconcludethatthe

coefficientsin(5.2)aregivenas

ai=b
2
i.

Notethateachµxiisaproductmeasure,i.e.

µxi=µ
{1,2}
(xi,yi)

×µ
{3,4}
(xi,yi)

, (5.3)

whereµ
{k,l}
(xi,yi)

isapushforwardofµ(xi,yi)= δ(xi,yi)undertheinclusionofS×Sintothe

(k,l)-coordinatesfactorof(S×S)2=S4.BytheproofofTheoremA,thefunctionfW =

α∗ω1,2∧α
∗ω3,4(X

∧4)isµn–integrableforeachn. Moreover,ifweset

f1,2=α
∗ω1,2(X,X), f3,4=α

∗ω3,4(X,X),

then

fW =α
∗ω1,2∧α

∗ω3,4(X
∧4)=α∗ω1,2(X,X)α

∗ω3,4(X,X)=f1,2f3,4.

Notethatthefunctionsf1,2andf3,4areconstantonappropriateS
2factorsofS4.Using(5.2)

and(5.3),weobtain

S4
fW µn =

n

i=1

b2i
S2
f1,2µ

{1,2}
(xi,yi)

S2
f3,4µ

{3,4}
(xi,yi)

≤
n

i=1

bi
S2
|f1,2|µ

{1,2}
(xi,yi)

n

i=1

bi
S2
|f3,4|µ

{3,4}
(xi,yi)

.

PassingtothelimitinM(S4)asn→ ∞,wehaveµn→ µ∆(2)and ibiµ
{k,l}
(xi,yi)

→ µ×µ.

Therefore

H 2(X)≤
S2
|α∗ω1,2(X,X)|µ×µ

S2
|α∗ω3,4(X,X)|µ×µ =c(X)

2, (5.4)

wherec(X)standsfortheasymptoticcrossingnumberasdefinedin[22,p.191],andthe

lastidentityisaconsequenceofc(X)=
S2
|α∗ω(X,X)|µ×µgivenin[22].Theestimate

[22,Equation(1.9)]

E3/2(X)≥
16

π

1/4

c(X)3/4

immediatelyyieldstherequiredboundin(1.17).
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