FINITE RANDOM COVERINGS OF ONE-COMPLEXES
AND THE EULER CHARACTERISTIC

R. KOMENDARCZYK AND J. PULLEN

ABSTRACT. This article presents an algebraic topology perspective on the problem of finding
a complete coverage probability of a one dimensional domain X by a random covering,
and develops techniques applicable to the problem beyond the one dimensional case. In
particular we obtain a general formula for the chance that a collection of finitely many
compact connected random sets placed on X has a union equal to X. The result is derived
under certain topological assumptions on the shape of the covering sets (the covering ought
to be good, which holds if the diameter of the covering elements does not exceed a certain
size), but no a priori requirements on their distribution. An upper bound for the coverage
probability is also obtained as a consequence of the concentration inequality. The techniques
rely on a formulation of the coverage criteria in terms of the Euler characteristic of the nerve
complex associated to the random covering.

Dedicated to Professor Yuli Rudyak, on the occasion of his 65th birthday.

1. INTRODUCTION

We consider finite random coverings of a metric space X, i.e. finite collections of compact
random sets: A = {Agy}, i =1,...,n, understood as measurable maps [17, p. 121]

Ay i (Q,0,P) ———— (C(X) U {D}, TBorel),

where (2, 0, P) is an underlying probability space, and C(X) is the set of nonempty compact
subsets of X, topologized by the Hausdorff distance and given the associated Borel algebra
OBorel- The set C(X) L {} is a disjoint union with the point {}, which plays a role of the
empty set. The term covering may be misleading in this context, as it sometimes assumes
that the union of its elements contains the domain X. In this work a covering is simply a
collection of subsets of X, as it has been previously used e.g. in [14, 15].

A typical example of an infinite random covering is a coverage process on the Euclidean
space, [17] i.e. a sequence of random sets: A = {& + G1,& + Ga, -+ , & + Gy, ...}, where
{GL} is a fixed family of subsets of R" called grains of the process, and & = {;} a sequence
of random vectors in R™. In applications G;’s are often round balls of a fixed radius, and &
defines a Poisson process (in which case A is refereed to as a Boolean model, [17]). In the
current paper, we make no a priori assumptions on the distribution of A except a topological
requirement on the covering, namely it almost surely must be good, which means that each
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intersection (;c; Agy, I = {41, ..., i} is almost surely contractible (in general some form of
convexity of Ay validates this assumption).

Problem 1. Given a random covering {Ag}, @ = 1,...,n of a metric space X, find a
complete coverage probability: P(X C |A]), where |A] =, Agy-

Reviewing the history of Problem 1: it was first considered by Whitworth, [35] in the basic
case of a finite collection of independent identically distributed fixed a—length arcs on a unit
circumference circle. Much later, Stevens [32] provided a complete answer to the question of
Whitworth in the form

L2] .

(st ca) = (- (1) (1-da) (11)

=1 J
The Stevens’ result was further improved by Siegel and Holst [31] where they allowed varying
lengths for the arcs. In [14], Flatto obtained an asymptotic expression for coverage as v — 0.
The extension of the circle problem to the 2-sphere S? was considered by Moran and Groth
28], who derived an approximation for the probability P(S? C |A|), and later Gilbert [16]
showed the bounds

(1- )" < P(S? C A]) < gn(n — A1 = A",

where A = (sin %)2 is the fraction of the surface of S? covered by spherical a—caps; i.e. caps
of radius a.. For « € [, 7], the explicit expression for P(S? C |A|) has been found by Miles
[26]. Work in [7] provides explicit formulas for the complete coverage probability for a—caps
on the m-dimensional unit sphere S™ when « € |7, 7] and upper bounds for o € [0, 7). The
literature concerning the coverage probability in the asymptotic regimes (where the diameter
of grains tends to zero) is vast and we only list a small fraction here [15, 30, 2, 27, 5]. Further,
the reader may consult the recent work in [7] for a more accurate account of the history of
Problem 1.
In this work we focus solely on the case of finite coverings of 1-dimensional domains X
which are homeomorphic to finite multigraphs, equipped with an intrinsic distance
dx(z,y) = 7:[5’1}}{1}}(’ length(y). (1.2)
7(0)=z, v(1)=y.
Le. dx(x,y) is the length of the shortest path between x an y, which in practice is just a
smallest sum of edge-lengths (and their pieces) connecting x and y (the lengths come from
some choice of geometric realization of X in R?). Let X denote the set of leaf vertices
of X, (this notation is justified by the case when X is an interval in R) and diam(Y") the
intrinsic diameter of a subset ¥ C X. Our random covering A = {Ay;;} on X, will always be
finite (i = 1,...,n). As already mentioned before, the basic example of a random covering
is e-balls: {B(&;,€)}, i = 1,...,n in the intrinsic metric dy, with centers §; distributed in
an arbitrary fashion. We approach the coverage problem by considering a random complex
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N (A) directly obtained from the usual topological nerve (c.f. [33]) of realizations of A and
its Euler characteristic x(A) = x (N (A)).

Let €, be the set of labeled abstract subcomplexes on n vertices (i.e. subcomplexes of
the full (n — 1)-simplex A,). By the labeling we understand that every subcomplex s € €,
comes with an indexing of its vertices by numbers from 1,...,n. Elements s,r,k € €, can
be identified, in a non-unique way, with subsets of the power set 2", [n] = {1,...,n} (see
Section 2.1.) For instance, a singleton r = {I/} (where I C {1,...,n}) labels a face of A,,.
By a finite random complex on n vertices we understand an arbitrary discrete probability
space K = (Qn,]P’K). In order to define the random nerve A (A), one builds a distribution
on €, in a way dictated by the usual nerve construction. For instance, the probability of a
k—face I = {iy,...,ix41} in €,, we denote by p; equals

pr = ]P({S ec, | Ie S}) = P(A{il} N A{iQ} Nn...N A{ik+1} =+ @) (13)

Identity (1.3) can then be extended from faces to subcomplexes. L.e. given s € €,
ps =P({r € ¢, | s Cr}) =P(Vie{[ A # 0}).
el

P =P(s) = P(Vieo{[ A # O}, Yinee{[ ) Ay = 0}).

iel jeJ

(1.4)

Generally, we make an underlying assumption that the covering A is good i.e. to satisfy
(almost surely) the hypotheses of the Nerve Lemma (c.f. Section 4). In Proposition 4.7 of
Section 4.2, we show that a covering A of a 1-complex X is always good, if its elements Ag;
are connected and sufficiently small in diameter. The first version of our main theorem is
stated below.

Theorem 1.1 (Coverage probability for compact connected 1-complexes X, with 90X = ).
Let A = {Apy}, i = 1,...,n be a random good covering of X (with 0X = @). Then, the
range of x = x(A) can be restricted to

m = x(X) < x(A) <n=m, (1.5)
and the complete coverage probability equals
P(X C |A]) = P(x(A) = x(X))

= Z Ps = Z OJS(X) Ds, (16)

where



4 R. KOMENDARCZYK AND J. PULLEN

with ps given in (1.4), and

ve(x) = % Z JiJ2 - JN—k; on(x) = NI (1.7)

m<j1<je<..<jN_x<m

(170(5) 770y (9) v (@ (1 (s) .
(aymei (o) (T (i o) - o)
=0 j= ! J
w0 =8 ik > r(s)
0,
( ik <r(s),
where v = rE(s), i, = 1i0,(8), T, (s) = 1T — g, (s) stand for a number of respectively

total, top and lower: even(odd) dimensional faces of s € €,, and r(s) denotes a number of
all faces.

If the diameter of Ay is smaller than %C almost surely (where C is a length of the shortest
cycle in X, known as girth), then ps further simplifies as

ps = P(Yajen@ici{Am N Ay # 0}), (1.8)
where E(s) is the edge set of s.

An extension of the above result to the case of a 1-complex X with no assumptions on
0X 1is provided in Theorem 5.1 of Section 5. One obvious corollary of the above result
is the fact that the complete coverage probability of any good random covering {Agy} is
determined by finitely many numbers, which is not obvious when considering e.g. vacancy,
i.e. the volume of X — |A| c.f. [17]. The complexity of computing P(X C |A|) via the
formula of Theorem 1.1 is not addressed here. However, one may expect that, due to the
size of the set €,, computation of coefficients as(x) or the set {s € €, | x(s) = x(X)} is
double exponentially hard in n. On a positive note, coefficients as(x) are independent of
the underlying distribution vector (ps), therefore once computed for a certain size problem
can be reapplied as (ps) changes. The vector (ps) can be conveniently estimated numerically
(e.g. via the standard maximum likelihood estimation, c.f. [23]) but again in the simplest
case of Equation (1.8) it is of exponential size: 2 2), Therefore, in practical situations the
formula derived in Theorem 1.1 can apply to the covering problems with small n.

In a longer perspective, one may be interested asymptotic distributions of x(A) (asn — o0)
which would lead to parametric estimators or useful bounds for P(X C |A|). Currently
available results (e.g. in [21, 20]) concern sparse regimes and they are not applicable, unless
we allow the diameter of random sets in A = {A;} to tend to 0 sufficiently fast as n tends
to infinity (see e.g. [15]). Concerning the question of useful bounds for P(X C |A|), as a first
step we derive an upper bound for the coverage probability, via the concentration inequality
[3] in the following
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Theorem 1.2. Let A= {A}, i =1,...,n be a random good covering of X, then

—13
P S ) < e (g pr o) 9

where o denotes the expected value of the relative Euler characteristic X,e(A, Asx) of the
random pair (N (A), N (Aox)).

Although, Theorem 1.1 is restricted to the case of 1-complexes, the question of complete
coverage probability for such spaces is not without a practical meaning. One may consider
the 1-complex to be e.g. a system of streets in the city or underground channels. In such
cases random coverings can be associated with sensing regions of e.g. vehicles equipped with
sensors (c.f. [8]). Beyond l-complexes, techniques of algebraic topology provide coverage
criteria for higher dimensional objects. For instance, if an underlying space X is an m-
dimensional manifold a necessary and sufficient condition for coverage is nonvanishing of the
m-th(top) Betti number of the nerve A/(A). We aim to develop these ideas in subsequent
papers.

The article is organized as follows: In Section 2 we further discuss the general setup of
random complexes and their associated invariants — mainly x(A). In Section 3, we derive
relevant formulas for distributions of the random relative Euler characteristic, see Corollary
3.5. Further, in Section 4, we prove several basic topological results showing that the Euler
characteristic of the nerve of a covering determines complete coverage of a 1-complex. In
Proposition 4.7, we also provide a sufficient condition for a covering to be good (in terms
of the girth of a 1-complex). We collect relevant facts and prove Theorem 1.1 in Section 5.
The upper bound for P(X C |A|) of Theorem 1.2 is shown in Section 6.
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berhan for many useful suggestions and help with combinatorial aspects of Section 3.3. We
are also grateful to Robert Ghrist for introducing us to the subject both via his work [8, 10, 9]
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ing the First National Forum of Young Topologists at Tulane University in 2009. The first
author would like to thank the organizers of Applied Topology Conference in Bedlewo, 2013.
Both authors wish to thank the anonymous referee for corrections to the manuscript.

Theorem 1.1 is a part of the doctoral thesis of [29] of the second author. Both authors ac-
knowledge the support of NSF DMS #1043009. The first author was also partially supported
by DARPA YFA N66001-11-1-4132.

2. RANDOM COMPLEXES AND THEIR TOPOLOGICAL INVARIANTS.

2.1. Random complexes. We refer the reader to [18] for background on algebraic topology.
Consider A,, to be a full simplex on n—vertices indexed by 1,...,n (geometrically A, is
the convex hull of n points given by the standard basis vectors in R"™!). Recall that a d-
dimensional face in A,, can indexed by the collection of its d+1 vertices: I = {iy,1s,... %441},
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where 1 < 41 < iy < ... < igr1 < n. Denote the set of all faces of A,, by f(n), and
particularly, d—dimensional faces by fq4(n). Le.

f(n)={I|1cC2m}, fam)={1|1C2" |I|=d+1}. (2.1)

Consider the set of all labeled sub-complezes €, of A, union a special point {} playing
a role of the empty set. By a labeled sub-complexr we understand a subcomplex of A,
determined by all its faces with labeling given by vertices of A,,. A natural set to consider
for enumerating labeled subcomplexes is the power set 27 of f(n), which is further denoted
by B,, (we assume B,, contains the empty set). Here and thereafter, we use notation s, r, k
for elements of both €, and ‘B,,.

Clearly, there is a surjective correspondence II : 9B,, — €,, which to a given subset s € °B3,,
assigns a subcomplex I1(s) in €, given by the union of elements I of s and their subsets (i.e.
the lattice of subsets associated to the faces of subcomplex s). II is clearly not bijective,
however, with certain choices we may easily build right inverses. In particular, we will
be interested in two cases, which we refer to as the antichain and chain representations:
€, =P, €, — P,,. The antichain representative s € B,, of s € €, contains only its
top dimensional faces, also known as facets, i.e.

s ={I € s | such that for any J € s,J # [ either J C T or (JZ [ and I Z J)}.

The chain representative s of s € &, is obtained from the antichain representative by adding
all remaining subfaces of s. Clearly, s=sifs e, thus ¢, = Cn, we also have projections
1 : B, — an, I : B, — Qﬁ = (€, where Il = II. Note that the cardinality of Qﬁm and
therefore €, and En, is given by the Dedekind number M (n), c.f. [22]. For any s € &, we
call the elements of 8, top faces or facets of s.

Recall from Section 1 that by finite random complex on n vertices we understand a discrete
probability space K = ((’:n,IP’K). It is easy to see that Py satisfies the following equivalent
conditions! (for I C I)

(A) Pe(I|(I'))=Pc({se¢,|Ies}|{ree,|{I'}¢r})=
B)Px(I'|I)=P({se¢,|[{I'}es}|{re¢,|ler}) =1

In short (A) says that if a subface I’ of I has not occurred then I cannot occur either;
equivalently, (B) says that I’ occurs whenever I has occurred. We say that K is supported
on a subcomplex, k € €, if and only if for any I ¢ k we have Px({/}) = 0. Given random
complexes K and L on n-vertices, the joint probability space (K,L) := (&, x €,,Px ) is a
random pair if and only if L is almost surely a subcomplex of K, i.e. the following condition

holds
(C) for every (s,r) € €, x €, such that r Z s we have P (s,r) =0.

'because events {s € €, |I € s} and {r € &, | {I'} ¢ r} are disjoint
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For a given K (or (K, L)) it will be convenient to consider Bernoulli random variables which
are indicator functions of faces in K, i.e. for I € f(n) we define

1, I es,
(2.2)
0, otherwise,

er: €, — {0,1}, er(s) = {

For any s € &,, we set e; = [[,, er an indicator function of the subcompler s. Clearly eq
takes value 1 on r if and only if s C r. Let us define vectors (ps) and (Ps) (directly related
to vectors in (1.4), when the underlying random complex is N'(A)):

ps:P(es:H€I:1>7

Ies

Ps:]P’(( H er H (1—€J>):1>.

Ief(n),les  Jef(n),J¢s

(2.3)

Clearly, a random complex K is fully determined by indicator functions {e;} of faces
and their joint distribution. In the next section e;s will serve as formal indeterminates for
functions defining topological random variables on K, such as the Euler characteristic. The
main use of conditions (A)((B)) and (C) is to define (in Section 2.3) a natural polynomial
ring for random topological invariants such as x(K).

Remark 2.1. In general, one could consider a more flexible model of a finite random complex
with (,,,P) as the underlying probability space. It can be thought of as a distribution on
open faces of A,, (i.e. interiors of faces) with an exception of the zero dimension (the vertices.)
In this model it is possible, for instance, for an edge to occur without its vertices (i.e. (A)
can be violated).

Remark 2.2. We may easily generalize the definition of the random complex K to the case
n = oo, and thus removing dependence on n in the definition. This is done by considering
all labeled subcomplexes €., of the infinite simplex A, = J,, A,, and regarding a random
complexr K as a probability space (€, Px). Such random complex is finite provided the
support of K is contained in A,, for sufficiently big n.

2.2. Topological invariants in the random setting. Recall that, thanks to the Poincare-
Euler formula [18], the Euler characteristic of a general n-complex K is given by

n

X(K) =) (~1) dim C;(K; R), (2.4)

J=0

where dim C;(K;R) denotes the dimension, as a vector space, of the real coefficient jth
chain group C;(K;R), and equals (in the absolute case) to the number of j-dimensional
faces f;(K) of K. We will also need a relative version of x. Given a pair (K, L) where L is
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a subcomplex of K we have

Xret(K, L) = zn:(—nj dim C;(K, L; R), (2.5)

=0
where dim C; (K, L;R) denotes the dimension of the jth relative chain group C;(K, L;R) =
C;(K:;R)/C;(L;R), as a real vector space (c.f. [18]). Note that

dim C;(K, L;R) = f;(K) — f;(L). (2.6)

Invariants x = x(K) and X, = Xre(K, L) can be expressed in terms of Betti numbers
{Be(K)}, {Bk(K, L)} of the chain complexes C\(K) and C,(K, L), (c.f. [18]). Specifically,

n

X = Z(_1>j Bj(K)7 Xrel = Z(_l)j BJ(K’ L) (27)

J=0

2.3. Random polynomials. Given a random complex K let us treat the indicator functions
of faces {e;} (or in a case of a random pair {e;,w;}) as formal indeterminates and consider
a polynomial ring in e; (without loss of generality we work over R):

Rler] :==Rleqiy, -, €qn}r €12} - - €{inrin}s - - -+ €{1,m} >

or Rler,wy] in the case of random pairs. Observe that any random variable X on K is given
as such polynomial, i.e.

x=>x( II « II a-en). (2.8)
sed, Ief(n),les  Jef(n),J¢s

where Xs is a value of X at s € €,. Based on (2.4) we may express the random Euler

characteristic x = x(K)
X : (€, Px) —s Z,
(€. Py) o
x(s) = x(s),

as the following polynomial in Rle;]:
_ RN
X = ]gf(n)( D ey (2.10)

Lemma 2.3. Given a random compler K = (&€,,Px) and its collection of the indicator
functions {er}, consider Q,Q € Rles] as two representatives of the same coset in Rles|/Z
where I is an ideal generated by the following relations

{ejer=ey | forall I C J}, (2.11)

(in particular: e? = e;). Then Q = Q' almost surely.
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Proof. 1t suffices to show that P(eje; = e;) =1 for any I, J where I C J. We have
Plejer =0) =Pley =0, =1)+Pley =1,e; =0) + P(e; = 0,e; = 0).
Thanks to (A) : P(e; = 1,e; = 0) = 0, thus
Plejer =0) =P(ey =0,ey =1) +P(e; = 0,e; = 0) = P(ey = 0),
and Plejer=1)=1—-Plejer=0)=1—-P(e; =0) =P(e; =1). O

We will further denote the quotient ring Rle;|/Z by Rz[e;]. Clearly, Rz[e;] has an additive
basis of monomials indexed by the chain representatives: s € &€,:

es =]]er (2.12)

Ies

In the case of pairs (K, L) we have a pair of sets of face indicator functions {e;,w;} corre-
sponding to K and L respectively. Then, it is relevant to consider a polynomial ring Rle;, w]
modulo relations in (2.11) and additionally (thanks to property (C)):

{wyw; =wy | forall I C J},

2.13
{w; = wyey, | forall J C I}. (2.13)

The resulting quotient ring will be denoted by Rzle;,w;], and the analogous statement
as Lemma 2.3 is true for random variables expressed as representatives in Rzle;,w;]. An
important for us example of a polynomial in Rz[e;, w,] is the relative Euler characteristic

Xrel(K7 L) : (Q:n X Qtna]P)K) — Z,
Xrei(s,8') = xra(s,s'), if s Cs, ie. the relative Euler characteristic of (s,s’) (2.14)
=0, if s’ ¢ s.
Note, that thanks to (C), the set of pairs (s,s’) such that s’ € s is of measure zero in

(K,L) and thus the value of X, = Xre(K, L) on such pairs is irrelevant. Thanks to (2.6), the
polynomial expression for x,; is given as follows

Xrel = Z (_1>|I‘71(€I - wI)' (215)

Ief(n)

3. MOMENTS AND DISTRIBUTIONS OF THE RANDOM EULER CHARACTERISTIC.

We begin with basic review of the method of moments for the finite range discrete random
variable X, and provide a specific formulation based on the recent work in [12]. Alternatively,
one could use factorial moments (see e.g. [4, p. 17]), however they do not offer any advantage
in the setting of the random Euler characteristic.
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3.1. Method of moments. First, we need basic information on the Vandermonde matriz
V (c.f. [25]). Given a fixed sequence of real numbers x = {zg,z1,...,2y5}, Visan (N +1) X
(N + 1) matrix explicitly given as follows

1‘0 DY xév
1 oz o a2l

V=V(x)=
1 oy -+ i

Note that V is invertible provided the x;’s are distinct (c.f. [25]). A closed form of V™! has
been derived in [12] in terms of the elementary symmetric polynomials. Denote by ¢;(j)(x)
the ith-elementary symmetric polynomial in variables: xg,--- ,Zj,--- , oy for j =0,--- | N,
where 7; means that z; is omitted. Specifically
1 ifi=0
el(])(x) = Z B3 R b P 17 ifi>0. (31)

1<l <la<...<li <Nl #j

By [12, p. 647], we have

V(%) = (v(x)), where vy;(x) = (—1)NH* en (1) () , 3.2
(%) (vki(x)) ki(x) = (=1) T —2) (32)

0,...,N. In the case x is an integer interval [m,...,m|, m,m € Z,

fori =0,...,N, k =
m < m of size N = — m we obtain

Vi (X) = vgi(m, M) =

(_jlv);ﬂc (ZZV) en—k(i)(m, ..., ). (3.3)

Lemma 3.1. Let X be a discrete random variable of a finite range x = {xg,x1,..., TN},
and let py, = E(X¥) denote the k-th moment of X. Given the vector u = (g, . .., jin) we can
recover the distribution of X explicitly as follows

N
pi:P(X:xi):kaipk, 1=0,...,N, (3.4)

k=0

where vy; = vg;(x) are the Vandermonde coefficients.

Proof. By definition we have a linear system of N equations

N
uk:fopi, for =0,1,...,N.
i=0

In matrix form this system reads: pV = pu where p = (po,...,pn), and g = (fo, - -, Un)-
Since all z;’s are distinct det(V) = [[,;(z; — x;) # 0. Thus V is invertible and we have the
unique solution p = pV~!. Identity (3.4) is now a direct consequence of (3.2). O
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Our goal for the next subsection is to provide expressions for distributions of polynomial
random variables in Rz[ef].

3.2. Distributions of random polynomials. Since the differences between Rz[e;] and
Rzler, w ] are mostly notational, we choose to work with the former. Recall from Section
2.3 that any representative polynomial in R|e;] is a linear combination of monomials e, from
(2.12)

Q= Z Cxk €x, & € R, (3.5)

kEPn

where the constant coefficient ¢y = cg is indexed by the empty set. Note that if Q € Rz[e;]
then, thanks to the relations in Rz[e;|, we may always pick expansions of Q in terms of the
antichain or chain representatives i.e.

Q= Z cs ez, or Q= Z cses = Z Cs €5, (3.6)
3¢, 3¢¢, seC,
where in the second expansion we just applied our convention from Section 2.1 to identify
elements of &, with their chain representatives. We refer to 3.6(left) as the antichain repre-
sentative and 3.6(right) as the chain representative of Q in Rz[es]. Note that from Lemma
2.3 it is irrelevant which expansion of Q we choose. Below, we outline a strategy to determine
coefficients ¢ of (3.5) via the inclusion—exclusion principle.
Recall, the general form of the inclusion—exclusion principle, [24]: Given a finite set F' and
functions f, g : 2 — R,

g(8)= Y f(5), SCF (3.7)
S:SCS’
we have
[ = 3 (~1)Fgs), S CF (3.8)
S:SCS’

Recall the following notation: given Q € R[e;] and s € ,, define
Q(s) :=Q{er=1]1 € s}). (3.9)
L.e. Q(s) is a polynomial obtained from Q by substituting e; = 1 for all I € s, and Q(s)(0)

its constant coeflicient.

Lemma 3.2. Consider any representative Q € Rzles] in a general form (3.5). For any
k € B, the coefficient ¢y of Q in the expansion (3.5) is given as follows

a«@= Y (=DM @) 0). (3.10)
rePB,,rCk

In the case Q is represented by the chain expansion (right)(3.6), for any s € €,, s # {0} we
have

c@= Y ()M (@E)(0) - ), (3.11)

red,,rCs
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where ¢y = cg = Q(0) is the constant term of Q.

Proof. In the inclusion—exclusion principle set ' = k. Then any subset S C F' is just a
subset of faces r of k, i.e. r € B,, and r C k. Directly from (3.5) and (3.9) for any r C k,
we have
Q(r)(0) =) e
r'Cr

thus setting g(r) = Q(r)(0) and f(r) = ¢, Equation (3.10) follows from (3.8). To obtain
(3.11) consider the polynomial Q = Q — ¢g. If r C k and r # T, then Q(r)(0) = 0. Therefore,
for s € €,, Equation (3.10) yields

@= ) (DEFRE)©) = ) (1))

reP,,rCs red¢, ,rCs

Because ¢5(Q) = ¢5(Q) for s # O, the identity in (3.11) follows. O

For a polynomial random variable Q € Rle;| in a general form (3.5), define constants

m(Q) = Z c., c¢; =min{c, 0}, mQ) = Z ct, = max{c, 0}. (3.12)
Semn Se(«nn
Denote the coefficients of the general expansion (3.5) of the chain representative of the k-th
power (Q)* by ¢sx(Q), i.e.
Qk = Z Cs,k(Q) €s . (313)
Seen

We summarize efforts of this section by stating the following result which is a direct conse-
quence of Lemma 3.1 and Lemma 3.2.

Theorem 3.3. Given Q as a chain representative in Rzle;], suppose that the set of realiza-
tions of Q is in the integer interval [m,m]. Then the distribution of Q and its moments are
given as follows

e =E@) = (Qs)(0)*Ps = Y con(@ps,

Seqn SEQ:’VL
]P)(Q:m_l_]): Z Pszzas,j(g)psa jG[O,N], N:m_m 14
s€€n;Q(s)(0)=m+j sel, (3' )

N
for as;(Q) = kaj(Q) cs.x(Q),
k=0

where vi;(Q) were defined in (3.2). Further, co = Q(0) and coy = ci, and for s # O:
k(@ =Y (=DFTF@)(0) - o). (3.15)

re¢,,;rCs
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Proof. Since eg are Bernoulli random variables

e =E(Q") = > car(@E(es) = > canl(Q) s,
sel, s€Pn
thus (3.14) is an immediate consequence of (3.4). Formula (3.15) follows from (3.11) applied
to QF. O

3.3. Formulas for x(K), f4(K) and x,(K,L). In this section we aim to provide slightly
more tractable formulas for the coefficients ¢ (- ) and the integer ranges [m( - ), m( - )] for the
polynomials x = x(K), fa = fa(K) and X,e; = Xrer(K, L), where K is a given random complex
on n vertices. Thanks to Theorem 3.3, it will provide us with a more precise characterization
of distributions for these polynomials.

We begin with the case of f4(K). Clearly, the range of f; is contained in between

m(fs) =0,  and m(fd>=( " ) (3.16)

d+1

For a subcomplex s € €, and its corresponding antichain s, recall the following notation

Ty = Top(s) = {numer of even dimensional faces in §},

Tiop = Tiop(8) = {numer of odd dimensional faces in s},

{numer of even dimensional faces in s — s},

) =

) =
_ ) = (3.17)
)

s) = {numer of odd dimensional faces in s — s},

Tlow - Tlow

(
Tiow = ng(s
tou
Ttop = TtOP(S Ttop + Tiop = 5],
Tlow = Tiow(8) = |s| — [8], r=1(8) = Ttop + Tiow = |8|.

Given a random complex K, a basic example of interest is the number of its d—dimensional
faces

fa= > e (3.18)

{I}eC,;|I|=d+1
and the Fuler characteristic of K. By the Euler—Poincare formula (see Equation (2.4), c.f.
[18]) we have the following relation between (3.18) and (2.9)

x=) (-1)fa (3.19)
Moreover,
x(s)(0) = x(s) =717 (s) =77 (s).
Proposition 3.4. We have the following formulas for the coefficients of fq and x:

Ttop(s)
Cs,k(fd) _ Z (_1)mop(5)w’ (Ttop.<s>>ik’ (3'20)

- 2
=1



14 R. KOMENDARCZYK AND J. PULLEN

cxl) = D (D)) = YT ()G ) - ()

(3.21)

() Tiop(s) N

=3 S (i (Ttop.(s)) (th’l;(s>) (i — G+ 1 (8) = i (s)"

; - 1
=0 j=0

Proof of Formula (3.20). Applying (3.15) directly to f4 we obtain the first identity in (3.20).
For the second equation in (3.20), let 1 € B,, be the set of all d-faces. Since fq =), er,
for any k C 1, Equation (3.10) implies

k|

w(f)= Y <—1>'k'-r'<fd<r><o>>’“=Z<—1>k'—i(".")z'k. (3.22)

1
rePB,;rCk i=1

Considering f4 as an element of Rz[e;] and choosing a chain representative for f%, we conclude
that its coefficients cgx(f%) vanish unless the corresponding antichain § consists of purely
d—faces. In the latter case we obtain from (3.22)

csi((fa)') = eu((fa)"),  for k=5,

which implies the identity in (3.20) via the notation of (3.17). O

Next, we turn to the random polynomial ¥ = x(K). The range of x(K) is contained in
[m(x), m(x)] where

mx)=- Y (Wi 1), and WX):M;@ (;) (3.23)

r;0<2r4+1<n

If K is supported on some subcomplex k € €,, smaller than the full n—simplex, the above
range can be narrowed to

m(x(K)) = — Z foria1(k), m(x(K)) = Z far(k).

0<2r+1<dim(k) 0<2r<dim(k)

Proof of Formula (3.21). Applying (3.15) to Q = x directly, one obtains the first part of
(3.21). To obtain the second part we choose to present a different argument for the purpose
of cross verification. Recall that given indeterminates z1,...,x,,, we have the following
multinomial formula (c.f. [13])

k
k ay Qo am
(x1+ x4+ ... +x)" = E a)xl 9., (3.24)
O‘i(alaoQ ----- am)
o=k
where (i) = m, a; >0, la] =) . o; and o form all possible partitions of k. Let a

have coordinates indexed by f(n) (i.e. faces of A,). A direct application of (3.24) to (2.10)



RANDOM COVERINGS AND THE EULER CHARACTERISTIC 15

yields

a|=|(g§€), €f(n)
o . (3.25)
— — Z s(a)(ll‘_l)al>
S (B (e
a=(ay),
la|=E
where we denoted
s(a) ={I € f(n) | af > 0}. (3.26)
Observe that for any a and o/,
Cs(a) = Cs(a’)s in Rzleg], (3.27)

if and only if the corresponding antichains are the same i.e. s/(\a) = s/(\a’). Fix a chain
representative of some complex s € €, and let § be the corresponding antichain. Clearly,
s C s, consider partitions a of k& which are in the form a = 8 + v where 8 = (3;), satisfies:
Br>0for I € sand f; =0 for I € s —§, and v = () satisfies: 7y > 0 for I € s —§ and
~vr = 0 for I € 8. The following claim immediately follows

Claim: Given s € €, and any partition a of k indexed by f(n), we have Il(s(a)) = s if and
only if a has the above decomposition: 8 + 4.

Therefore, the cg;(x) coefficient of the chain representative of (x)* is a sum of coefficients
of eg(q) for all a in the form B ++. Applying notation (3.17) we may express it as

)" =) canlx)es,  where (3.28)

SECn

Z (_1)22011’(\11'\—1)5#2;2'1“(\le—l)%' ( k >7 it k>,

C k = (ﬂ’ry):(ﬂlrﬂzﬁrtop7711'“)77‘1011,)7
* (X) |B+1v|=k, 8;>0,7;>0

0, otherwise,
where we indexed the faces of §'in s by {;}, i =1,...,74, and faces of s — 8 in s by {J;},
Jj=1,..., 7. To set up the inclusion-exclusion principle, note that the sum for ¢ (x) is

a part of the larger sum (where we allow §; > 0, and (B,7) = (81, - - Briops V15 - - s Vrigw)):

Ttop

Tlow
> Comenn () - (et )
Y ,
j=1

B) i=1
|B|+|v|=F, Bi>0,7; >0

We stratify the above sum with respect to number of ;s strictly greater than zero, and
set up the inclusion-exclusion as follows. Let F' = {1,...,r,} and define for any S C F,
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functions f, ¢g (in (3.7), (3.8)) as

f(S) = > (—1)Zi (Ll=DBF T (51-1)y; ( " )

(BA)={B: } {75 ) IBI+vI=k,7; >0, P
B;>0, ifi € S, B;=0ifi ¢ S.

Tlow

o(5) = (-0 Do)
€S
Observe that > 7y (=)= = r;gw — 1}, Which yields

+ - + 1\
g(S):(|S |_|S |+Tlow_rlow> :

where |ST[(|S™|) denotes number of even(odd) dimensional faces of § indexed by S. By (3.8)

we obtain
k

) = 32 (= S(18H = 87 4 1ih, = i)
S:SCF

+
top

i € [0,rf,] and j € [0,7;,] there are exactly (T:Z;’P) (T?P) subsets S C F satisfying i = |S™],
j = 157|. Thus the second part of (3.21) now follows from f(F') = cs(x)- O

Since there are r;j,, even dimensional faces and r,,, odd dimensional faces in s, for a fixed

As the last case of interest, we consider is the relative Euler characteristic X,e; = Xrer(K, L)
of a random pair (K, L). Denoting the characteristic functions of K by {e;} and of L by {w,},
(2.5) and (2.6) imply the following polynomial expression

n—1

xet = D (=1 3 (er —wi). (3.29)

d=0 1€ f4(n)
Analogously, as in the absolute case, the distribution of (K, L) is determined by
Psxr = Ples = 1wy = 1) = P(esw, = 1). (3.30)
The maximal constants for the range of x,(K,L) are

m(Xra) = m(x) —m(x), and M(xra) =m(x) — m(x)- (3.31)

For convenience we state the following corollary of Theorem 3.3:

Corollary 3.5 (Distribution of x,«(K,L)). Given a random pair (K,L), the distribution of
Xret 0N [M(Xrer)s T (Xrer)] 15 given as follows, for j € [0, N], N =M (Xret) — m(Xrer)
P(Xrel - M(Xrel) + ]) - Z as,r,j(Xrel)ps,m (332)

(s,r)EC, X&),
N

Qs r.j Xrel Z Uk Xrel Csr k(Xrel))
k=0
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where (using the notation of (3.17))
E((Xrel(Kv I—))k) = Z Cs,r,k ps,r> Cs,r,k = Cs,r,k(Xrel) (333)

(s,r)€Cy, Xy

( Z (—1)reon(E)riop(e)=i=i=i' 7 (*()) <ws>) (<>> <<>)
i j i’ 5’

i€[0,rh, (8)],5€E[0,7 10, (5)],
i €[0,rf, (1)), €[0,77,, (7))

Csrk — k
ok (=)@ =)+ ()10 () (@ =15, &)) 5 for k>,

L 0, for k<.

The proof is as fully analogous the previous arguments and is omitted. Note that the
expression for cg i (Xre) in (3.33) simplifies to (3.21) whenever L = .

4. COVERINGS OF ONE—COMPLEXES AND THE EULER CHARACTERISTIC.

Given a deterministic covering of a finite simplicial complex X, i.e. a collection of compact
connected subsets A = {Af;}, we can define its nerve, N(A) as a finite complex where
vertices {i} are just elements Ay; of the covering and a k-face I = {i1,...,ix41} belongs to

N(A), if and only if Ay N AR,y N N A, 3 # O (et [33]).

VAN

Figure 4: An example of a 1-complex with marked realization of a good cover.

The following result, due to Borsuk [6], is of fundamental importance in algebraic topology

Lemma 4.1 (The Nerve Lemma [6]). Let A = {Ag;} be a covering of X and N(A) the
associated nerve. If all intersections Ay N Agy N ... N Agi oy, for k>0 are contractible,
then N'(A) has a homotopy type of the subspace |A] =, Apy of X.

Recall that a subset of X is contractible if it can be deformed continuously to a point [18].
If A= {A(} satisfies the assumption of this lemma then we call it a good covering (of X).
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In the remainder of this section we collect elementary facts from algebraic topology and
show how the Euler characteristic of N'(A) provides a criteria for a good deterministic cov-
ering A = {Ag;}, to completely cover a connected 1-complex X, the proofs are basic and
are either omitted or deferred to Appendix A.

4.1. Coverage and the nerve complex. We assume throughout that X is a connected
1-complex (c.f. [18, p. 103]) homeomorphic to a multi-graph, and denote dX the set of leaf
vertices of X.

Proposition 4.2. Let {A;} be a good covering of X, |A| = U, Agy, denote U = |A| and
V = |A|¢. Then,

Bi1(X) = Bi(U), (4.1)
and

X(X) < x(U). (42)
Moreover, if the inequality in (4.1) is strict then (4.2) is also strict.

By the Nerve Lemma, an obvious necessary condition for X C |A| is

X(X) = x(|4]) = x(N(A4)). (4.3)
If 0X = @, we have the following
Corollary 4.3. Suppose X satisfies 0X = O, then (4.3) implies X C |A|.

When 0X # @, the condition (4.3) is insufficient; however we may adjust it by using the
relative version x,.;(X, 0X) of the Euler characteristic (2.5). Note that for the pair (X, 0X),
Xrer (X, 0X) reduces to

Xret(X; 0X) = x(X) — #{0X},
where #{0X} is a number of points in 9X. By [18, p. 102] we may consider the quotient
complex X’ = X/0X which is a 1-complex ([18, p. 103]) with 0X’ = @, and

Xrel(Xa aX) = X(X/@X)

Let ¢ : X — X’ be the quotient projection, then the covering A of X projects to the covering
A’ of X’. Tt is not true that A’ is automatically a good covering of X', one may easily find
examples where this is the case. However, the following fact is available (proof left to the
reader)

Lemma 4.4. Given A = {Agy} is a good covering of X, let for every i the intersection
Ay NOX be either empty or a point (in other words Apx = {Apy NOX} is a good covering
of 0X ). Then the quotient covering A" of X' is also good.

Consequently, we say that A is a good covering of the pair (X,0X) provided A is good for X
and Ayx is good for 0X. Then by the above lemma A’ is good for X’ and Corollary 4.3 says
that A’ covers X', if and only if x(|A'|) = x(X’). It leads us to the following generalization
of Corollary 4.3.
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Lemma 4.5. Given a good covering A = { Ay} of (X,0X) let |A| = U, Apy. Then X C |A],
if and only iof

Xret(N(A), N (Aax)) = Xra (X, 0X) (4.4)
or equivalently

X([A]) = x(X) — #{0X} + #{[A[ N 0X}. (4.5)

Remark 4.6. Equivalently, the coverage condition for (X,0X) can be obtained by looking
at the covering A, equal to a union of A and the boundary vertices: 0X = {x1,...,T410x}}
Then A is good if satisfies the conditions of Lemma 4.4

XA = x(JA] U 0X) = x(|A]) + x(9X) = x(|A| N 9X)
= x([A]) + #{0X} = #{[A|naX},
which together with (4.3) leads us to (4.4).

4.2. Coverage of X by e-balls. Vietoris—Rips complex. A special case of interest (see
e.g. [34, 10]) is when a connected 1—complex X ought to be covered by e-size neighborhoods,
and ¢ can be sufficiently small. In such cases the topology of N(A) simplifies and one may
work with Vietoris—Rips complex [19], as we show in the following paragraphs.
Recall that given a simplicial complex K its Vietoris—Rips complex R(K), [19] is defined to
be a maximal simplicial complex (with respect to inclusion) which has the same 1-skeleton
as K. In practice, this means that R(K) is obtained by filling every k-clique in the graph
KW with a (k — 1)-dimensional face, e.g. 3-cycles are filled with 2-simplices in R(K), etc.
We will consider a finite covering A = {Agy,..., Ay} of (X, dx) by closed e-balls. Pos-
sible shapes of such balls for ¢ sufficiently small are depicted on Figure 4.2.

Figure 4.2: Possible shapes of closed e-balls in X with the intrinsic distance dx.

Let us denote by R(A) the Vietoris—Rips complex of the nerve of the cover, and record the
following

Proposition 4.7. Suppose C is the girth of X', i.e. the length of the shortest cycle in the
quotient complex X' = X/0X. Then,

(i) if e < 3C, the covering A by e-balls in (X,dx) is a good cover.

(11) if e < %C, the nerve N'(A) of A equals R(A).
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Proof. For (i) we must show that every k-fold intersection Ay, N Ag,y N ... N A,y has a
homotopy type of a point. Because diam(Ay) < C, Ay is a connected tree and therefore
contractible, which shows the claim for £ = 1. For & = 2, first suppose that a nonempty
intersection Ay N Ayjy is disconnected i.e. dim(ﬁo(A{i} N Agy)) > 1 (where H,(-) denotes
the reduced homology groups c.f. [18]). Since Agy and Ay, are connected, the reduced
Mayer-Vietoris sequence for Ay N Aygjy then simplifies to

0 — Hy(Agy UAgy) — Ho(Agy N Agy) — Ho(Agy) @ Ho(Agy) 2 {0},

We obtain ﬁl(A{i} UAgy) = ﬁO(A{i} N Agjy) = R for some & > 1, which implies that
Ay U Agjy contains a nontrivial cycle. This however contradicts the fact that diam(A{i} U
Agjy) <4e < C. Thus k has to vanish and Agy N Agjy must be connected, contain no cycle,
and is therefore contractible. Now, for an induction step with respect to k, it suffices to
apply the previous step to A" = Ay y N A,y N ... N Ag,y and A" = A,y

Before proving (i), recall the 1-dimensional version of Helly’s Theorem (c.f. [11]) implies
that given a finite collection of intervals {C7,Cs,...,C,} on R, if the intersection of each
pair is nonempty, i.e. C;NC; # O, for every 1 <1i,j <n, then ;_, C; # Q.

First consider the case of 3-fold intersections, i.e. supposing that Ay N Ay # 9, 1 <
k # j < 3. We aim to show that AgyNApyNAg # . Observe that V = Ay UApy UAgs,
is connected and by the argument of (i) it must be a connected tree, i.e. contains no cycles.
Let p1,2, P23, p1,3 be distinct points in V' such that p; ; € Ay N Ay;y. Note that for each pair:
Dij, Dst there exists a path in V' connecting these points. We now consider two cases: (1)
one of these paths, we denote by [, contains all three points p; ;, then the collection {C;},
Ci = INAgy, © = 1,2, 3 satisfies the assumptions of Helly’s Theorem which implies the claim.
(2) none of the paths between paris of p; ;’s contain the third point. Consider two shortest
paths: [; between p; o and ps 3, and Il between p; 5 and py 3 then 15 = 13 Ny is a segment
between p; o and some vertex of v € V. The vertex v has to be in one of Agj;’s, w.lo.g.
suppose v € Agg (as other cases are analogous.) Then if v is also in Agy or Agsy we can
take p1 2 or py3 equal to v and use (1). If v ¢ Agy and v ¢ Aggy then we observe that either
Agy or Aggy is disconnected which is not the case. This concludes the proof of (i) for the
3-fold case, the general case can be obtained by induction. 0

5. COMPLETE COVERAGE PROBABILITY.

In this section we interpret results of Sections 4.1-4.2 in the random setting.

5.1. Random coverings and the random nerve. Suppose A = {A;;} is a random cov-
ering of a metric space X. We define the nerve N'(A) of A by defining a probability measure
Pa on €, via the process elucidated in Section 1 in (1.3) and (1.4). Observe that given a
subspace Y C X we obtain an induced random covering Ay from A:

Ay = {A{l} ny, A{2} ny, ... ,A{n} N Y}
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The definition of Pa extends to pairs (NM(A), N(Ay)) in an obvious way. In particular given
(s,r) € €, X €,, we set

{(k1) €€, xC [sCkrC1l})

(vfés{ﬂA{i} #@}av{J}Er{ﬂ Ay NY £01). (5.1)
el jeJ

Clearly, N(A) is a random complex, and (N(A), N'(Ay)) is a random pair. We say a finite

Psxr = P
P

.....

surely. Further, we say a random covering A = {Ag;} of a pair (X,0X) is good provided it
is a good covering of X and Agx is a good covering of 0X. |A| will denote the random set

U Agy-

5.2. Proof of the extended version of Theorem 1.1. Let x, (A, Asx) be the relative
Euler characteristic of the pair (N (A),N(Asx)). We may now state Theorem 1.1 for a
general 1-complex X.

Theorem 5.1 (Coverage probability of a l1-complex X with 0X # ). Let A = {Agy},
i=1,...,n be a random good covering of the pair (X,0X). Then, the range of X e1(A, Asx)
can be restricted to

m = Xre(X,0X) < xra(A, Agx) <n =, (5.2)
and the complete coverage probability equals

P(X C |A]) = P(xsa(A Asx) = xra(X, 0X)),
- Z Qs,r (Xrel) Dsr; (53)

(s,r)€Cp Xy

where as y(Xrel) = Asro(Xrer) are defined in (3.32) of Corollary 3.5, and psy in (5.1).

Proof. Under the given assumptions, Lemma 4.5 implies
]P<X - ’AD = P(Xrel(Av Aax) = X?"el(Xa aX)) (54)

At this point the formula (3.32) of Corollary 3.5 can be applied to the random pair (N (A),
N(Apx)) to give an exact expression for ]P)(Xrel(A7A8X> = Xret(X,0X )) In this particular
case the range of x(A, Asx) is given by (5.2), where the lower bound follows from Proposition
4.2, and the upper bound corresponds to the case when elements of the covering A are
pairwise disjoint and contained in X — 90X, i.e. N(A) is just n distinct points. The formula
for ps in (1.8) is a direct consequence of Proposition 4.7, (see also Remark 5.3). O

Remark 5.2. Note that M (Asx) generally contains high dimensional faces and therefore
the chain expansion of x*, in Rz[e;, w;] involves monomials in e; and w,. To simplify this
expansion one may observe that N'(Asx) has a homotopy type of finitely many points or is
empty. Specifically, from (4.5) we have

Xrel(Aa ABX) = X(A) - #{A N aX}
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The random variable #{A N 0X} (counting points in Agx) can be expressed as follows:

Xret(A, Aox) = X(A) — Z Wy - (5.5)

where {1,..., ¢} label points of 0X and {wg;}i—1,. 4 are the indicator functions of points in
Asx. Consequently, we may derive expressions for powers x%, as polynomials in Rley, wy;y].
These expansions of x* ; involve products of e5 and wy;y only, which may provide a different

way to express P(X C |A]).

Remark 5.3. In order to be more explicit about how the computation of ps, simplifies in
the case the nerve N(A) equals the Vietoris-Rips complex R(A), let us suppose Ay are
e-radius closed balls in X with random centers §; € X. In R(A) any simplex indexed by
I ={i1,19,...,ix} is determined by its edges, and an edge {7, 7} in R(A) occurs if and only
if [ — &;| < 2¢ (where | - — - | is a short notation for the distance dx(-,-) on X). For
instance, we have

pr = P(A{il} N A{iQ} n...N A{ik} #+ @) = P(l&s - th| < 2e | V87t s # t).

Enumerate points in 0X as follows {z1,22,..., 2y}, M = #{0X}. Now, ps, given in (5.1)
is just a volume of the set

As,r = {(517 o 7671) e X" ‘ vIEsvS,tif, ‘55 - gt’ < 257 VIEI E|1§5§M vie[ |§z - xs‘ S 5}7
s#t

which in the case P = d&; d&, . . . d&, (i.e. &’s are independent) can be computed via ordinary
calculus techniques or estimated numerically. These formulas further simplify, if 0X = O,
but we do not attempt these computations here.

6. PROOF OF THEOREM 1.2

In this section we use the method of finite differences, c.f. [1], to give an upper bound for
the complete coverage probability in terms of the expected Euler characteristic and prove
Theorem 1.2. Let {Agy}, i =1,...,n be a finite good covering of X, consider the following
shifted version of the relative Euler characteristic x,« (A, Agx) of (N (A), N (Asx)):

Xo = Xret(A, Apx) —m,
where m = (X, 0X). From (2.7) we obtain

Xrel(AaAaX) 2130_1317 (61)
where B, = B.(A,Agx) stand for the random relative Betti numbers. Recall that {e;,w;},
I,J € f(n) stand for the indicator functions of faces in (N'(A), N(Asx)).

We will consider a filtration by random vectors V; denoting (e, f.¢)) where 1(2), J(i) €
f(n) are subsets of {1,...,i}. Note that V; reveals subcomplexes in €, spanned by vertices
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1 through i. By analogy to the setting of Erdés—Rényi model [1], we set up a vertex exposure
martingale, associated with xo and {V;} as follows:

Yo = po = E(x0): Y; = E(xo | Vi), 1=1,...,n. (6.2)

Clearly, Y,, = xo and the sequence {Y;} is an instance of Doob’s martingale [1]. Recall the
following variant of the Azuma-Hoeffding inequality [1, 3], for {Y;}:
2

—a
P(Y, — Yo < —a) < (7) 6.3
( 0 < ~a) < exp 2> ¢ (6:3)
where a > 0, and ¢; is a difference estimate

Exposing a vertex (or a face containing it) changes By by at most 1 and #; by at most
B1(X,0X) =1 — xpa(X,0X) thus we obtain

|Yz — Yi—1| < 2+ |Xrel(X7 8X>|

Let a = pg, then
P(xo =0) =P(xo < po — a) = P(Y, — Yo < —a).
Using the above estimates for ¢; and (6.3) yields

— 15
P(X C |A)) =P(xo =0) < eXp<2n(|Xrel(X7 0X)| + 2)2>’

which completes the proof of Theorem 1.2.

APPENDIX A. AUXILIARY PROOFS FOR SECTION 4
Proof of Proposition 4.2. Consider the Mayer-Vietoris sequence applied to U and V:
0— H(UNV) EIN H(U)oH (V) — Hi(X) = Hy(UNV) = Ho(U)®Ho(V) — Ho(X) — 0.
Since U NV = 0A is just finitely many points, in real coefficients we have

0 — ROW g RAMV) Ay RA)

From (2.7), x(X) =1 —1(X), x(U) = Bo(U) = p1(U), x(V) = Bo(V) — (V). Since d; is
injective we have B1(U) + 31(V) < B1(X), which implies —3;(X) + 8,(U) < 0. This proves
(4.1).

Now to prove (4.2) we have two cases to consider: [Bo(U) > 1 and [By(U) = 1. First
assume [o(U) > 1. We argue by contradiction. That is, suppose x(U) < x(X). Then
Bo(U) = B1(U) < Bo(X) — 1(X) so that Fo(U) < f1(U) + 1 = 1 (X). But 51(A4) — fi(X) <
0 by the previous lemma. Therefore we obtain Fy(U) < 1 contrary to our assumption.
Now assume [y(U) = 1. Then x(U) = 1 — p1(U) and x(X) = 1 — p1(X) which yields
W(U) = X(X) = —Bi(U) + Bi(X) > 0. Thus y(U) > x(X). O
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Proof of Corollary 4.3. Notice that generally X (even with X # () is homotopy equivalent
to a bouquet of circles. If |A|° # @ in X, then (since |A|° is open) we pick p € |A| which is
not a vertex of X. Then p is in the interior of one of the edges which we denote by e. We
may homotopy X away from the interior of e to a bouquet of r circles S = \/" S in such
a way that p is away from the wedge point (just collapse along the edges different from e).
From Proposition 4.2,

r—1
B(AD < Bi(V SV (S" = {ph) < Bi(S) = Bi(X).
Thus 51(|A]) < £1(X) and therefore x(X) < x(|A|), which implies the claim. O

Proof of Lemma 4.5. Observe that X C |A’| to X C |A|. Indeed, since |A]| is closed if
X — |A| # O then we may choose a point in x € X — |A| such that x ¢ 90X, since the
projection ¢ is a homeomorphism on X — 90X, we conclude that g(z) ¢ X’ — |A’|. Next,
Equation (4.4) follows immediately from Corollary 4.3, the fact that A and Ayx are good
and the identities

X(A) = xra(lA] [A| N 0X),  X(X') = xra(X, 0X).
Now, thanks to (2.5) we compute

XTel(Xv 8X> - X(X) - #{aX}u
X?"el(|A’7 ‘A’ N 8X> = X(|AD - #{|A| M aX}?
which yields (4.5). O
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