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Abstract. This article presents an algebraic topology perspective on the problem of finding

a complete coverage probability of a one dimensional domain X by a random covering,

and develops techniques applicable to the problem beyond the one dimensional case. In

particular we obtain a general formula for the chance that a collection of finitely many

compact connected random sets placed on X has a union equal to X. The result is derived

under certain topological assumptions on the shape of the covering sets (the covering ought

to be good, which holds if the diameter of the covering elements does not exceed a certain

size), but no a priori requirements on their distribution. An upper bound for the coverage

probability is also obtained as a consequence of the concentration inequality. The techniques

rely on a formulation of the coverage criteria in terms of the Euler characteristic of the nerve

complex associated to the random covering.

Dedicated to Professor Yuli Rudyak, on the occasion of his 65th birthday.

1. Introduction

We consider finite random coverings of a metric space X, i.e. finite collections of compact

random sets: A = {A{i}}, i = 1, . . . , n, understood as measurable maps [17, p. 121]

A{i} : (Ω, σ,P) −−−−−−−→ (C(X) t {Ø}, σBorel),

where (Ω, σ,P) is an underlying probability space, and C(X) is the set of nonempty compact

subsets of X, topologized by the Hausdorff distance and given the associated Borel algebra

σBorel. The set C(X) t {Ø} is a disjoint union with the point {Ø}, which plays a role of the

empty set. The term covering may be misleading in this context, as it sometimes assumes

that the union of its elements contains the domain X. In this work a covering is simply a

collection of subsets of X, as it has been previously used e.g. in [14, 15].

A typical example of an infinite random covering is a coverage process on the Euclidean

space, [17] i.e. a sequence of random sets: A = {ξ1 + G1, ξ2 + G2, · · · , ξk + Gk, . . .}, where

{Gk} is a fixed family of subsets of Rn called grains of the process, and ξξξ = {ξi} a sequence

of random vectors in Rn. In applications Gi’s are often round balls of a fixed radius, and ξξξ

defines a Poisson process (in which case A is refereed to as a Boolean model, [17]). In the

current paper, we make no a priori assumptions on the distribution of A except a topological

requirement on the covering, namely it almost surely must be good, which means that each
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intersection
⋂
i∈I A{i}, I = {i1, . . . , ik} is almost surely contractible (in general some form of

convexity of A{i} validates this assumption).

Problem 1. Given a random covering {A{i}}, i = 1, . . . , n of a metric space X, find a

complete coverage probability: P
(
X ⊆ |A|

)
, where |A| =

⋃
i A{i}.

Reviewing the history of Problem 1: it was first considered by Whitworth, [35] in the basic

case of a finite collection of independent identically distributed fixed α–length arcs on a unit

circumference circle. Much later, Stevens [32] provided a complete answer to the question of

Whitworth in the form

P(S1 ⊆ |A|) =

b 1
α
c∑

j=1

(−1)j+1

(
n

j

)(
1− jα

)n−1

. (1.1)

The Stevens’ result was further improved by Siegel and Holst [31] where they allowed varying

lengths for the arcs. In [14], Flatto obtained an asymptotic expression for coverage as α→ 0.

The extension of the circle problem to the 2-sphere S2 was considered by Moran and Groth

[28], who derived an approximation for the probability P(S2 ⊂ |A|), and later Gilbert [16]

showed the bounds

(1− λ)n ≤ P (S2 ⊆ |A|) ≤ 4

3
n(n− 1)λ(1− λ)n−1,

where λ = (sin α
2
)2 is the fraction of the surface of S2 covered by spherical α–caps; i.e. caps

of radius α. For α ∈ [π
2
, π], the explicit expression for P (S2 ⊆ |A|) has been found by Miles

[26]. Work in [7] provides explicit formulas for the complete coverage probability for α–caps

on the m-dimensional unit sphere Sm when α ∈ [π
2
, π] and upper bounds for α ∈ [0, π). The

literature concerning the coverage probability in the asymptotic regimes (where the diameter

of grains tends to zero) is vast and we only list a small fraction here [15, 30, 2, 27, 5]. Further,

the reader may consult the recent work in [7] for a more accurate account of the history of

Problem 1.

In this work we focus solely on the case of finite coverings of 1-dimensional domains X

which are homeomorphic to finite multigraphs, equipped with an intrinsic distance

dX(x, y) = min
γ:[0,1]7→X,

γ(0)=x, γ(1)=y.

length(γ). (1.2)

I.e. dX(x, y) is the length of the shortest path between x an y, which in practice is just a

smallest sum of edge-lengths (and their pieces) connecting x and y (the lengths come from

some choice of geometric realization of X in R3). Let ∂X denote the set of leaf vertices

of X, (this notation is justified by the case when X is an interval in R) and diam(Y ) the

intrinsic diameter of a subset Y ⊆ X. Our random covering A = {A{i}} on X, will always be

finite (i = 1, . . . , n). As already mentioned before, the basic example of a random covering

is ε-balls: {B(ξξξi, ε)}, i = 1, . . . , n in the intrinsic metric dX , with centers ξξξi distributed in

an arbitrary fashion. We approach the coverage problem by considering a random complex
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N (A) directly obtained from the usual topological nerve (c.f. [33]) of realizations of A and

its Euler characteristic χχχ(A) = χχχ(N (A)).

Let Cn be the set of labeled abstract subcomplexes on n vertices (i.e. subcomplexes of

the full (n− 1)–simplex ∆∆∆n). By the labeling we understand that every subcomplex s ∈ Cn
comes with an indexing of its vertices by numbers from 1, . . . , n. Elements s, r, k ∈ Cn can

be identified, in a non-unique way, with subsets of the power set 2[n], [n] = {1, . . . , n} (see

Section 2.1.) For instance, a singleton r = {I} (where I ⊆ {1, . . . , n}) labels a face of ∆∆∆n.

By a finite random complex on n vertices we understand an arbitrary discrete probability

space K =
(
Cn,PK

)
. In order to define the random nerve N (A), one builds a distribution

on Cn in a way dictated by the usual nerve construction. For instance, the probability of a

k–face I = {i1, . . . , ik+1} in Cn, we denote by pI equals

pI = P({s ∈ Cn | I ∈ s}) = P
(
A{i1} ∩ A{i2} ∩ . . . ∩ A{ik+1} 6= Ø

)
. (1.3)

Identity (1.3) can then be extended from faces to subcomplexes. I.e. given s ∈ Cn

ps = P({r ∈ Cn | s ⊆ r}) = P
(
∀I∈s

{⋂
i∈I

A{i} 6= Ø
} )
,

Ps = P(s) = P
(
∀I∈s

{⋂
i∈I

A{i} 6= Ø
}
,∀{J}6∈s

{⋂
j∈J

A{j} = Ø
} )
.

(1.4)

Generally, we make an underlying assumption that the covering A is good i.e. to satisfy

(almost surely) the hypotheses of the Nerve Lemma (c.f. Section 4). In Proposition 4.7 of

Section 4.2, we show that a covering A of a 1-complex X is always good, if its elements A{i}
are connected and sufficiently small in diameter. The first version of our main theorem is

stated below.

Theorem 1.1 (Coverage probability for compact connected 1–complexes X, with ∂X = Ø).

Let A = {A{i}}, i = 1, . . . , n be a random good covering of X (with ∂X = Ø). Then, the

range of χχχ = χχχ(A) can be restricted to

m = χ(X) ≤ χχχ(A) ≤ n = m, (1.5)

and the complete coverage probability equals

P(X ⊆ |A|) = P
(
χχχ(A) = χ(X)

)
=

∑
s∈Cn;χ(s)=χ(X)

Ps =
∑
s∈Cn

as(χχχ) ps,
(1.6)

where

as(χχχ) =
N∑
k=0

vk(χχχ) cs,k(χχχ), N = m−m,
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with ps given in (1.4), and

vk(χχχ) =
(−1)k

N !

∑
m<j1<j2<...<jN−k≤m

j1j2 . . . jN−k, vN(χχχ) =
(−1)N

N !
, (1.7)

cs,k(χχχ) =



r+top(s)∑
i=0

r−top(s)∑
j=0

(−1)rtop(s)−i−j
(
r+
top(s)

i

)(
r−top(s)

j

)(
i− j + r+

low(s)− r−low(s)
)k
,

if k ≥ r(s),

0,

if k < r(s),

where r± = r±(s), r±top = r±top(s), r±low(s) = r± − r±top(s) stand for a number of respectively

total, top and lower: even(odd) dimensional faces of s ∈ Cn, and r(s) denotes a number of

all faces.

If the diameter of A{i} is smaller than 1
6
C almost surely (where C is a length of the shortest

cycle in X, known as girth), then ps further simplifies as

ps = P
(
∀(i,j)∈E(s),i<j

{
A{i} ∩ A{j} 6= Ø

} )
, (1.8)

where E(s) is the edge set of s.

An extension of the above result to the case of a 1–complex X with no assumptions on

∂X is provided in Theorem 5.1 of Section 5. One obvious corollary of the above result

is the fact that the complete coverage probability of any good random covering {A{i}} is

determined by finitely many numbers, which is not obvious when considering e.g. vacancy,

i.e. the volume of X − |A| c.f. [17]. The complexity of computing P(X ⊆ |A|) via the

formula of Theorem 1.1 is not addressed here. However, one may expect that, due to the

size of the set Cn, computation of coefficients as(χχχ) or the set {s ∈ Cn | χχχ(s) = χ(X)} is

double exponentially hard in n. On a positive note, coefficients as(χχχ) are independent of

the underlying distribution vector (ps), therefore once computed for a certain size problem

can be reapplied as (ps) changes. The vector (ps) can be conveniently estimated numerically

(e.g. via the standard maximum likelihood estimation, c.f. [23]) but again in the simplest

case of Equation (1.8) it is of exponential size: 2(n2). Therefore, in practical situations the

formula derived in Theorem 1.1 can apply to the covering problems with small n.

In a longer perspective, one may be interested asymptotic distributions ofχχχ(A) (as n→∞)

which would lead to parametric estimators or useful bounds for P(X ⊆ |A|). Currently

available results (e.g. in [21, 20]) concern sparse regimes and they are not applicable, unless

we allow the diameter of random sets in A = {A{i}} to tend to 0 sufficiently fast as n tends

to infinity (see e.g. [15]). Concerning the question of useful bounds for P(X ⊆ |A|), as a first

step we derive an upper bound for the coverage probability, via the concentration inequality

[3] in the following
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Theorem 1.2. Let A = {A{i}}, i = 1, . . . , n be a random good covering of X, then

P(X ⊆ |A|) ≤ exp
( −µ2

0

2n(|χrel(X, ∂X)|+ 2)2

)
, (1.9)

where µ0 denotes the expected value of the relative Euler characteristic χχχrel(A,A∂X) of the

random pair (N (A),N (A∂X)).

Although, Theorem 1.1 is restricted to the case of 1–complexes, the question of complete

coverage probability for such spaces is not without a practical meaning. One may consider

the 1–complex to be e.g. a system of streets in the city or underground channels. In such

cases random coverings can be associated with sensing regions of e.g. vehicles equipped with

sensors (c.f. [8]). Beyond 1–complexes, techniques of algebraic topology provide coverage

criteria for higher dimensional objects. For instance, if an underlying space X is an m-

dimensional manifold a necessary and sufficient condition for coverage is nonvanishing of the

m-th(top) Betti number of the nerve N (A). We aim to develop these ideas in subsequent

papers.

The article is organized as follows: In Section 2 we further discuss the general setup of

random complexes and their associated invariants – mainly χχχ(A). In Section 3, we derive

relevant formulas for distributions of the random relative Euler characteristic, see Corollary

3.5. Further, in Section 4, we prove several basic topological results showing that the Euler

characteristic of the nerve of a covering determines complete coverage of a 1–complex. In

Proposition 4.7, we also provide a sufficient condition for a covering to be good (in terms

of the girth of a 1–complex). We collect relevant facts and prove Theorem 1.1 in Section 5.

The upper bound for P(X ⊆ |A|) of Theorem 1.2 is shown in Section 6.

Acknowledgments. We wish to thank Gustavo Didier for discussions and Tewodros Amde-

berhan for many useful suggestions and help with combinatorial aspects of Section 3.3. We

are also grateful to Robert Ghrist for introducing us to the subject both via his work [8, 10, 9]

with vin de Silva on coverage problems in sensor networks, and inspiring conversations dur-

ing the First National Forum of Young Topologists at Tulane University in 2009. The first

author would like to thank the organizers of Applied Topology Conference in Bedlewo, 2013.

Both authors wish to thank the anonymous referee for corrections to the manuscript.

Theorem 1.1 is a part of the doctoral thesis of [29] of the second author. Both authors ac-

knowledge the support of NSF DMS #1043009. The first author was also partially supported

by DARPA YFA N66001-11-1-4132.

2. Random complexes and their topological invariants.

2.1. Random complexes. We refer the reader to [18] for background on algebraic topology.

Consider ∆n to be a full simplex on n–vertices indexed by 1, . . . , n (geometrically ∆n is

the convex hull of n points given by the standard basis vectors in Rn+1). Recall that a d-

dimensional face in ∆n can indexed by the collection of its d+1 vertices: I = {i1, i2, . . . , id+1},
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where 1 ≤ i1 < i2 < . . . < id+1 ≤ n. Denote the set of all faces of ∆n by f(n), and

particularly, d–dimensional faces by fd(n). I.e.

f(n) = {I | I ⊆ 2[n]}, fd(n) = {I | I ⊆ 2[n], |I| = d+ 1}. (2.1)

Consider the set of all labeled sub-complexes Cn of ∆n union a special point {Ø} playing

a role of the empty set. By a labeled sub-complex we understand a subcomplex of ∆n,

determined by all its faces with labeling given by vertices of ∆∆∆n. A natural set to consider

for enumerating labeled subcomplexes is the power set 2f(n) of f(n), which is further denoted

by Pn (we assume Pn contains the empty set). Here and thereafter, we use notation s, r, k

for elements of both Cn and Pn.

Clearly, there is a surjective correspondence Π : Pn 7→ Cn which to a given subset s ∈ Pn

assigns a subcomplex Π(s) in Cn given by the union of elements I of s and their subsets (i.e.

the lattice of subsets associated to the faces of subcomplex s). Π is clearly not bijective,

however, with certain choices we may easily build right inverses. In particular, we will

be interested in two cases, which we refer to as the antichain and chain representations:

·̂ : Cn 7→ Pn, ·̃ : Cn 7→ Pn. The antichain representative ŝ ∈ Pn of s ∈ Cn, contains only its

top dimensional faces, also known as facets, i.e.

ŝ = {I ∈ s | such that for any J ∈ s, J 6= I either J ⊂ I or (J 6⊆ I and I 6⊆ J)}.

The chain representative s̃ of s ∈ Cn is obtained from the antichain representative by adding

all remaining subfaces of s. Clearly, s̃ = s if s ∈ Cn thus Cn = C̃n, we also have projections

Π̂ : Pn 7→ Ĉn, Π̃ : Pn 7→ C̃n = Cn, where Π̃ = Π. Note that the cardinality of Ĉn, and

therefore Cn and C̃n, is given by the Dedekind number M(n), c.f. [22]. For any s ∈ Cn, we

call the elements of ŝ, top faces or facets of s.

Recall from Section 1 that by finite random complex on n vertices we understand a discrete

probability space K =
(
Cn,PK

)
. It is easy to see that PK satisfies the following equivalent

conditions1 (for I ′ ⊆ I)

(A) PK

(
I | (I ′)c

)
= PK

(
{s ∈ Cn | I ∈ s} | {r ∈ Cn | {I ′} /∈ r}

)
= 0,

(B) PK

(
I ′ | I

)
= P

(
{s ∈ Cn | {I ′} ∈ s} | {r ∈ Cn | I ∈ r}

)
= 1.

In short (A) says that if a subface I ′ of I has not occurred then I cannot occur either;

equivalently, (B) says that I ′ occurs whenever I has occurred. We say that K is supported

on a subcomplex, k ∈ Cn if and only if for any I 6∈ k we have PK({I}) = 0. Given random

complexes K and L on n-vertices, the joint probability space (K, L) := (Cn × Cn,PK,L) is a

random pair if and only if L is almost surely a subcomplex of K, i.e. the following condition

holds

(C) for every (s, r) ∈ Cn × Cn such that r 6⊆ s we have PK,L( s, r ) = 0.

1because events {s ∈ Cn | I ∈ s} and {r ∈ Cn | {I ′} /∈ r} are disjoint
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For a given K (or (K, L)) it will be convenient to consider Bernoulli random variables which

are indicator functions of faces in K, i.e. for I ∈ f(n) we define

eI : Cn −→ {0, 1}, eI(s) =

{
1, I ∈ s,

0, otherwise,
(2.2)

For any s ∈ Cn, we set es =
∏

I∈s eI an indicator function of the subcomplex s. Clearly es
takes value 1 on r if and only if s ⊆ r. Let us define vectors (ps) and (Ps) (directly related

to vectors in (1.4), when the underlying random complex is N (A)):

ps = P
(
es =

∏
I∈s

eI = 1
)
,

Ps = P
(( ∏

I∈f(n),I∈s

eI
∏

J∈f(n),J 6∈s

(1− eJ)
)

= 1
)
.

(2.3)

Clearly, a random complex K is fully determined by indicator functions {eI} of faces

and their joint distribution. In the next section eIs will serve as formal indeterminates for

functions defining topological random variables on K, such as the Euler characteristic. The

main use of conditions (A)((B)) and (C) is to define (in Section 2.3) a natural polynomial

ring for random topological invariants such as χχχ(K).

Remark 2.1. In general, one could consider a more flexible model of a finite random complex

with (Pn, P̄) as the underlying probability space. It can be thought of as a distribution on

open faces of ∆∆∆n (i.e. interiors of faces) with an exception of the zero dimension (the vertices.)

In this model it is possible, for instance, for an edge to occur without its vertices (i.e. (A)

can be violated).

Remark 2.2. We may easily generalize the definition of the random complex K to the case

n = ∞, and thus removing dependence on n in the definition. This is done by considering

all labeled subcomplexes C∞ of the infinite simplex ∆∞ =
⋃
n ∆n, and regarding a random

complex K as a probability space (C∞,PK). Such random complex is finite provided the

support of K is contained in ∆n for sufficiently big n.

2.2. Topological invariants in the random setting. Recall that, thanks to the Poincare-

Euler formula [18], the Euler characteristic of a general n-complex K is given by

χ(K) =
n∑
j=0

(−1)j dimCj(K;R), (2.4)

where dimCj(K;R) denotes the dimension, as a vector space, of the real coefficient jth

chain group Cj(K;R), and equals (in the absolute case) to the number of j-dimensional

faces fff j(K) of K. We will also need a relative version of χ. Given a pair (K,L) where L is



8 R. KOMENDARCZYK AND J. PULLEN

a subcomplex of K we have

χrel(K,L) =
n∑
j=0

(−1)j dimCj(K,L;R), (2.5)

where dimCj(K,L;R) denotes the dimension of the jth relative chain group Cj(K,L;R) =

Cj(K;R)/Cj(L;R), as a real vector space (c.f. [18]). Note that

dimCj(K,L;R) = fff j(K)− fff j(L). (2.6)

Invariants χ = χ(K) and χrel = χrel(K,L) can be expressed in terms of Betti numbers

{βk(K)}, {βk(K,L)} of the chain complexes C∗(K) and C∗(K,L), (c.f. [18]). Specifically,

χ =
n∑
j=0

(−1)j βj(K), χrel =
n∑
j=0

(−1)j βj(K,L). (2.7)

2.3. Random polynomials. Given a random complex K let us treat the indicator functions

of faces {eI} (or in a case of a random pair {eI , wJ}) as formal indeterminates and consider

a polynomial ring in eI (without loss of generality we work over R):

R[eI ] := R[e{1}, . . . , e{n}, e{1,2}, . . . , e{i1,...,ik}, . . . , e{1,...,n}],

or R[eI , wJ ] in the case of random pairs. Observe that any random variable X on K is given

as such polynomial, i.e.

X =
∑
s∈Cn

Xs

( ∏
I∈f(n),I∈s

eI
∏

J∈f(n),J 6∈s

(1− eJ)
)
, (2.8)

where Xs is a value of X at s ∈ Cn. Based on (2.4) we may express the random Euler

characteristic χχχ = χχχ(K)

χχχ : (Cn,PK) −→ Z,
χχχ(s) = χ(s),

(2.9)

as the following polynomial in R[eI ]:

χχχ =
∑
I∈f(n)

(−1)|I|−1eI . (2.10)

Lemma 2.3. Given a random complex K = (Cn,PK) and its collection of the indicator

functions {eI}, consider Q, Q′ ∈ R[eI ] as two representatives of the same coset in R[eI ]/I
where I is an ideal generated by the following relations

{eJ eI = eJ | for all I ⊆ J}, (2.11)

(in particular: e2
I = eI). Then Q = Q′ almost surely.
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Proof. It suffices to show that P(eJ eI = eJ) = 1 for any I, J where I ⊆ J . We have

P(eJ eI = 0) = P(eJ = 0, eI = 1) + P(eJ = 1, eI = 0) + P(eJ = 0, eI = 0).

Thanks to (A) : P(eJ = 1, eI = 0) = 0, thus

P(eJ eI = 0) = P(eJ = 0, eI = 1) + P(eJ = 0, eI = 0) = P(eJ = 0),

and P(eJ eI = 1) = 1− P(eJ eI = 0) = 1− P(eJ = 0) = P(eJ = 1). �

We will further denote the quotient ring R[eI ]/I by RI [eI ]. Clearly, RI [eI ] has an additive

basis of monomials indexed by the chain representatives: s ∈ Cn:

es =
∏
I∈s

eI . (2.12)

In the case of pairs (K, L) we have a pair of sets of face indicator functions {eI , wJ} corre-

sponding to K and L respectively. Then, it is relevant to consider a polynomial ring R[eI , wJ ]

modulo relations in (2.11) and additionally (thanks to property (C)):

{wJ wI = wJ | for all I ⊆ J},
{wI = wIeJ , | for all J ⊆ I}.

(2.13)

The resulting quotient ring will be denoted by RI [eI , wJ ], and the analogous statement

as Lemma 2.3 is true for random variables expressed as representatives in RI [eI , wJ ]. An

important for us example of a polynomial in RI [eI , wJ ] is the relative Euler characteristic

χχχrel(K, L) : (Cn × Cn,PK) −→ Z,
χχχrel(s, s

′) = χrel(s, s
′), if s′ ⊆ s, i.e. the relative Euler characteristic of (s, s′)

= 0, if s′ 6⊆ s.

(2.14)

Note, that thanks to (C), the set of pairs (s, s′) such that s′ 6⊆ s is of measure zero in

(K, L) and thus the value of χχχrel = χχχrel(K, L) on such pairs is irrelevant. Thanks to (2.6), the

polynomial expression for χχχrel is given as follows

χχχrel =
∑
I∈f(n)

(−1)|I|−1(eI − wI). (2.15)

3. Moments and distributions of the random Euler characteristic.

We begin with basic review of the method of moments for the finite range discrete random

variable X, and provide a specific formulation based on the recent work in [12]. Alternatively,

one could use factorial moments (see e.g. [4, p. 17]), however they do not offer any advantage

in the setting of the random Euler characteristic.
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3.1. Method of moments. First, we need basic information on the Vandermonde matrix

V (c.f. [25]). Given a fixed sequence of real numbers x = {x0, x1, . . . , xN}, V is an (N + 1)×
(N + 1) matrix explicitly given as follows

V = V(x) =


1 x0 · · · xN0
1 x1 · · · xN1
...

...
. . .

...

1 xN · · · xNN

 .

Note that V is invertible provided the xi’s are distinct (c.f. [25]). A closed form of V−1 has

been derived in [12] in terms of the elementary symmetric polynomials. Denote by ei(j)(x)

the ith–elementary symmetric polynomial in variables: x0, · · · , x̂j, · · · , xN for j = 0, · · · , N ,

where x̂j means that xj is omitted. Specifically

ei(j)(x) =


1 if i = 0∑

1≤l1<l2<...<li≤N ;lk 6=j

xl1xl2 . . . xli if i > 0 . (3.1)

By [12, p. 647], we have

V(x)−1 = (vki(x)), where vki(x) = (−1)N+k eN−k(i)(x)∏N
j=0,j 6=i(xi − xj)

, (3.2)

for i = 0, . . . , N , k = 0, . . . , N . In the case x is an integer interval [m, . . . ,m], m,m ∈ Z,

m ≤ m of size N = m−m we obtain

vki(x) = vki(m,m) =
(−1)i+k

N !

(
N

i

)
eN−k(i)(m, . . . ,m). (3.3)

Lemma 3.1. Let X be a discrete random variable of a finite range x = {x0, x1, . . . , xN},
and let µk = E(Xk) denote the k-th moment of X. Given the vector µ = (µ0, . . . , µN) we can

recover the distribution of X explicitly as follows

pi = P(X = xi) =
N∑
k=0

vki µk, i = 0, . . . , N, (3.4)

where vki = vki(x) are the Vandermonde coefficients.

Proof. By definition we have a linear system of N equations

µk =
N∑
i=0

xki pi, for k = 0, 1, . . . , N.

In matrix form this system reads: pV = µ where p = (p0, . . . , pN), and µ = (µ0, . . . , µN).

Since all xi’s are distinct det(V) =
∏

i6=j(xi − xj) 6= 0. Thus V is invertible and we have the

unique solution p = µV−1. Identity (3.4) is now a direct consequence of (3.2). �
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Our goal for the next subsection is to provide expressions for distributions of polynomial

random variables in RI [eI ].

3.2. Distributions of random polynomials. Since the differences between RI [eI ] and

RI [eI , wJ ] are mostly notational, we choose to work with the former. Recall from Section

2.3 that any representative polynomial in R[eI ] is a linear combination of monomials ek from

(2.12)

Q =
∑
k∈Pn

ck ek, ck ∈ R, (3.5)

where the constant coefficient c0 = cØ is indexed by the empty set. Note that if Q ∈ RI [eI ]
then, thanks to the relations in RI [eI ], we may always pick expansions of Q in terms of the

antichain or chain representatives i.e.

Q =
∑
ŝ∈Ĉn

cŝ eŝ, or Q =
∑
s̃∈C̃n

cs̃ es̃ =
∑
s∈Cn

cs es, (3.6)

where in the second expansion we just applied our convention from Section 2.1 to identify

elements of Cn with their chain representatives. We refer to 3.6(left) as the antichain repre-

sentative and 3.6(right) as the chain representative of Q in RI [eI ]. Note that from Lemma

2.3 it is irrelevant which expansion of Q we choose. Below, we outline a strategy to determine

coefficients ck of (3.5) via the inclusion–exclusion principle.

Recall, the general form of the inclusion–exclusion principle, [24]: Given a finite set F and

functions f, g : 2F −→ R,

g(S ′) =
∑

S:S⊆S′
f(S), S ′ ⊆ F, (3.7)

we have

f(S ′) =
∑

S:S⊆S′
(−1)|S

′|−|S|g(S), S ′ ⊆ F. (3.8)

Recall the following notation: given Q ∈ R[eI ] and s ∈ Pn define

Q(s) := Q({eI = 1 | I ∈ s}). (3.9)

I.e. Q(s) is a polynomial obtained from Q by substituting eI = 1 for all I ∈ s, and Q(s)(0)

its constant coefficient.

Lemma 3.2. Consider any representative Q ∈ RI [eI ] in a general form (3.5). For any

k ∈ Pn the coefficient ck of Q in the expansion (3.5) is given as follows

ck(Q) =
∑

r∈Pn,r⊆k

(−1)|k|−|r| Q(r)(0). (3.10)

In the case Q is represented by the chain expansion (right)(3.6), for any s ∈ Cn, s 6= {Ø} we

have

cs(Q) =
∑

r∈Cn,r⊆s

(−1)|s|−|r| (Q(r)(0)− c0), (3.11)
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where c0 = cØ = Q(0) is the constant term of Q.

Proof. In the inclusion–exclusion principle set F = k. Then any subset S ⊆ F is just a

subset of faces r of k, i.e. r ∈ Pn and r ⊆ k. Directly from (3.5) and (3.9) for any r ⊆ k,

we have

Q(r)(0) =
∑
r′⊆r

cr′

thus setting g(r) = Q(r)(0) and f(r) = cr, Equation (3.10) follows from (3.8). To obtain

(3.11) consider the polynomial Q̄ = Q− c0. If r ⊆ k and r 6= r̂, then Q̄(r)(0) = 0. Therefore,

for s ∈ Cn, Equation (3.10) yields

cs(Q̄) =
∑

r∈Pn,r⊆s

(−1)|s|−|r| Q̄(r)(0) =
∑

r∈Cn,r⊆s

(−1)|s|−|r| Q̄(r)(0).

Because cs(Q) = cs(Q̄) for s 6= Ø, the identity in (3.11) follows. �

For a polynomial random variable Q ∈ R[eI ] in a general form (3.5), define constants

m(Q) =
∑
s∈Pn

c−s , c−s = min{cs, 0}, m(Q) =
∑
s∈Pn

c+
s , c+

s = max{cs, 0}. (3.12)

Denote the coefficients of the general expansion (3.5) of the chain representative of the k-th

power (Q)k by cs,k(Q), i.e.

Qk =
∑
s∈Cn

cs,k(Q) es . (3.13)

We summarize efforts of this section by stating the following result which is a direct conse-

quence of Lemma 3.1 and Lemma 3.2.

Theorem 3.3. Given Q as a chain representative in RI [eI ], suppose that the set of realiza-

tions of Q is in the integer interval [m,m]. Then the distribution of Q and its moments are

given as follows

µk = E(Qk) =
∑
s∈Cn

(Q(s)(0))kPs =
∑
s∈Cn

cs,k(Q)ps,

P(Q = m+ j) =
∑

s∈Cn;Q(s)(0)=m+j

Ps =
∑
s∈Cn

as,j(Q) ps, j ∈ [0, N ], N = m−m

for as,j(Q) =
N∑
k=0

vkj(Q) cs,k(Q),

(3.14)

where vkj(Q) were defined in (3.2). Further, c0 = Q(0) and c0,k = ck0, and for s 6= Ø:

cs,k(Q) =
∑

r∈Cn;r⊆s

(−1)|s|−|r|(Q(r)(0)− c0)k. (3.15)
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Proof. Since es are Bernoulli random variables

µk = E(Qk) =
∑
s∈Cn

cs,k(Q)E(es) =
∑
s∈Pn

cs,k(Q) ps,

thus (3.14) is an immediate consequence of (3.4). Formula (3.15) follows from (3.11) applied

to Qk. �

3.3. Formulas for χχχ(K), fffd(K) and χχχrel(K, L). In this section we aim to provide slightly

more tractable formulas for the coefficients cs,k( · ) and the integer ranges [m( · ),m( · )] for the

polynomials χχχ = χχχ(K), fffd = fffd(K) and χχχrel = χχχrel(K, L), where K is a given random complex

on n vertices. Thanks to Theorem 3.3, it will provide us with a more precise characterization

of distributions for these polynomials.

We begin with the case of fffd(K). Clearly, the range of fffd is contained in between

m(fffd) = 0, and m(fffd) =

(
n

d+ 1

)
. (3.16)

For a subcomplex s ∈ Cn and its corresponding antichain ŝ, recall the following notation

r+
top = r+

top(s) = {numer of even dimensional faces in ŝ},
r−top = r−top(s) = {numer of odd dimensional faces in ŝ},
r+
low = r+

low(s) = {numer of even dimensional faces in s− ŝ},
r−low = r−low(s) = {numer of odd dimensional faces in s− ŝ},
rtop = rtop(s) = r+

top + r−top = |ŝ|,
rlow = rlow(s) = |s| − |ŝ|, r = r(s) = rtop + rlow = |s|.

(3.17)

Given a random complex K, a basic example of interest is the number of its d–dimensional

faces

fffd =
∑

{I}∈Cn;|I|=d+1

eI , (3.18)

and the Euler characteristic of K. By the Euler–Poincare formula (see Equation (2.4), c.f.

[18]) we have the following relation between (3.18) and (2.9)

χχχ =
n−1∑
d=0

(−1)dfffd. (3.19)

Moreover,

χχχ(s)(0) = χ(s) = r+(s)− r−(s).

Proposition 3.4. We have the following formulas for the coefficients of fffd and χχχ:

cs,k(fffd) =

rtop(s)∑
i=1

(−1)rtop(s)−i
(
rtop(s)

i

)
ik, (3.20)
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cs,k(χχχ) =
∑

l∈Cn;l⊆s

(−1)|s|−|l|(χχχ(l)(0))k =
∑

l∈Cn;l⊆s

(−1)|s|−|l|
(
r+(l)− r−(l)

)k
=

r+top(s)∑
i=0

r−top(s)∑
j=0

(−1)rtop(s)−i−j
(
r+
top(s)

i

)(
r−top(s)

j

)(
i− j + r+

low(s)− r−low(s)
)k (3.21)

Proof of Formula (3.20). Applying (3.15) directly to fffd we obtain the first identity in (3.20).

For the second equation in (3.20), let l ∈ Pn be the set of all d–faces. Since fffd =
∑

I∈l eI ,

for any k ⊆ l, Equation (3.10) implies

ck((fffd)
k) =

∑
r∈Pn;r⊆k

(−1)|k|−|r| (fffd(r)(0))k =

|k|∑
i=1

(−1)|k|−i
(
|k|
i

)
ik. (3.22)

Considering fffd as an element of RI [eI ] and choosing a chain representative for fffkd, we conclude

that its coefficients cs,k(fff
k
d) vanish unless the corresponding antichain ŝ consists of purely

d–faces. In the latter case we obtain from (3.22)

cs,k((fffd)
k) = ck((fffd)

k), for k = ŝ,

which implies the identity in (3.20) via the notation of (3.17). �

Next, we turn to the random polynomial χχχ = χχχ(K). The range of χχχ(K) is contained in

[m(χχχ),m(χχχ)] where

m(χχχ) = −
∑

r;0<2r+1≤n

(
n

2r + 1

)
, and m(χχχ) =

∑
r;0<2r≤n

(
n

2r

)
. (3.23)

If K is supported on some subcomplex k ∈ Cn, smaller than the full n–simplex, the above

range can be narrowed to

m(χχχ(K)) = −
∑

0≤2r+1≤dim(k)

fff 2r+1(k), m(χχχ(K)) =
∑

0≤2r≤dim(k)

fff 2r(k).

Proof of Formula (3.21). Applying (3.15) to Q = χχχ directly, one obtains the first part of

(3.21). To obtain the second part we choose to present a different argument for the purpose

of cross verification. Recall that given indeterminates x1, . . . , xm, we have the following

multinomial formula (c.f. [13])

(x1 + x2 + . . .+ xm)k =
∑

α=(α1,α2,...,αm),
|ααα|=k

(
k

α

)
xα1

1 x
α2
2 . . . xαmm , (3.24)

where
(
k
α

)
= k!

α1!α2!...αm!
, αi ≥ 0, |ααα| =

∑
i αi and α form all possible partitions of k. Let ααα

have coordinates indexed by f(n) (i.e. faces of ∆n). A direct application of (3.24) to (2.10)
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yields

(χχχ)k =
∑

ααα=(αI),
|ααα|=k

(
k

ααα

) ∏
I∈f(n)

(
(−1)|I|−1eI

)αI

=
∑

ααα=(αI),
|ααα|=k

(
(−1)

∑
I∈s(α)(|I|−1)αI

)(k
α

)
es(α),

(3.25)

where we denoted

s(ααα) = {I ∈ f(n) | αI > 0}. (3.26)

Observe that for any ααα and ααα′,

es(ααα) = es(ααα′), in RI [eI ], (3.27)

if and only if the corresponding antichains are the same i.e. ŝ(ααα) = ŝ(ααα′). Fix a chain

representative of some complex s ∈ Cn and let ŝ be the corresponding antichain. Clearly,

ŝ ⊆ s, consider partitions ααα of k which are in the form ααα = βββ + γγγ where βββ = (βI), satisfies:

βI > 0 for I ∈ ŝ and βI = 0 for I ∈ s − ŝ, and γγγ = (γI) satisfies: γI ≥ 0 for I ∈ s − ŝ and

γI = 0 for I ∈ ŝ. The following claim immediately follows

Claim: Given s ∈ Cn and any partition ααα of k indexed by f(n), we have Π̃(s(ααα)) = s if and

only if ααα has the above decomposition: βββ + γγγ.

Therefore, the cs,k(χχχ) coefficient of the chain representative of (χχχ)k is a sum of coefficients

of es(ααα) for all ααα in the form βββ + γγγ. Applying notation (3.17) we may express it as

(χχχ)k =
∑
s∈Cn

cs,k(χχχ) es, where (3.28)

cs,k(χχχ) =


∑

(βββ,γγγ)=(β1,...,βrtop ,γ1,...,γrlow ),

|βββ|+|γγγ|=k, βi>0,γj≥0

(−1)
∑rtop
i=1 (|Ii|−1)βi+

∑rlow
j=1 (|Jj |−1)γj

(
k

βββ,γγγ

)
, if k ≥ r,

0, otherwise,

where we indexed the faces of ŝ in s by {Ii}, i = 1, . . . , rtop and faces of s− ŝ in s by {Jj},
j = 1, . . . , rlow. To set up the inclusion–exclusion principle, note that the sum for cs,k(χχχ) is

a part of the larger sum (where we allow βi ≥ 0, and (βββ,γγγ) = (β1, . . . , βrtop , γ1, . . . , γrlow)):

∑
(βββ,γγγ)

|βββ|+|γγγ|=k, βi≥0,γj≥0

(−1)
∑rtop
i=1 (|Ii|−1)βi+

∑rlow
j=1 (|Jj |−1)γj

(
k

βββ,γγγ

)
=
(rlow∑
i=1

(−1)(|Ii|−1) +

rtop∑
j=1

(−1)(|Jj |−1)
)k
.

We stratify the above sum with respect to number of βi’s strictly greater than zero, and

set up the inclusion–exclusion as follows. Let F = {1, . . . , rtop} and define for any S ⊆ F ,
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functions f , g (in (3.7), (3.8)) as

f(S) =
∑

(βββ,γγγ)=({βi},{γj}),|βββ|+|γγγ|=k,γj≥0,
βi>0, if i ∈ S, βi=0 if i 6∈ S.

(−1)
∑rtop
i=1 (|Ii|−1)βi+

∑rlow
j=1 (|Jj |−1)γj

(
k

βββ,γγγ

)
,

g(S) =
(∑
i∈S

(−1)(|Ii|−1) +

rlow∑
j=1

(−1)(|Jj |−1)
)k
.

Observe that
∑rlow

j=1 (−1)(|Jj |−1) = r+
low − r

−
low, which yields

g(S) =
(
|S+| − |S−|+ r+

low − r
−
low

)k
.

where |S+|(|S−|) denotes number of even(odd) dimensional faces of ŝ indexed by S. By (3.8)

we obtain

f(F ) =
∑
S:S⊆F

(−1)rtop−|S|
(
|S+| − |S−|+ r+

low − r
−
low

)k
.

Since there are r+
top even dimensional faces and r−top odd dimensional faces in ŝ, for a fixed

i ∈ [0, r+
top] and j ∈ [0, r−top] there are exactly

(r+top
i

)(r−top
j

)
subsets S ⊆ F satisfying i = |S+|,

j = |S−|. Thus the second part of (3.21) now follows from f(F ) = cs,k(χχχ). �

As the last case of interest, we consider is the relative Euler characteristic χχχrel = χχχrel(K, L)

of a random pair (K, L). Denoting the characteristic functions of K by {eI} and of L by {wJ},
(2.5) and (2.6) imply the following polynomial expression

χχχrel =
n−1∑
d=0

(−1)k
( ∑
I∈fd(n)

(eI − wI)
)
. (3.29)

Analogously, as in the absolute case, the distribution of (K, L) is determined by

ps,r = P(es = 1, wr = 1) = P(eswr = 1). (3.30)

The maximal constants for the range of χχχrel(K, L) are

m(χχχrel) = m(χχχ)−m(χχχ), and m(χχχrel) = m(χχχ)−m(χχχ). (3.31)

For convenience we state the following corollary of Theorem 3.3:

Corollary 3.5 (Distribution of χχχrel(K, L)). Given a random pair (K, L), the distribution of

χχχrel on [m(χχχrel),m(χχχrel)] is given as follows, for j ∈ [0, N ], N = m(χχχrel)−m(χχχrel)

P
(
χχχrel = m(χχχrel) + j

)
=

∑
(s,r)∈Cn×Cn

as,r,j(χχχrel) ps,r, (3.32)

as,r,j(χχχrel) =
N∑
k=0

(
vkj(χχχrel) cs,r,k(χχχrel)

)
,



RANDOM COVERINGS AND THE EULER CHARACTERISTIC 17

where (using the notation of (3.17))

E((χχχrel(K, L))k) =
∑

(s,r)∈Cn×Cn

cs,r,k ps,r, cs,r,k = cs,r,k(χχχrel) (3.33)

cs,r,k =



∑
i∈[0,r+top(s)],j∈[0,r−top(s)],

i′∈[0,r+top(r)],j′∈[0,r−top(r)]

(−1)rtop(s)+rtop(r)−i−j−i′−j′
(
r+top(s)

i

)(
r−top(s)

j

)(
r+top(r)

i′

)(
r−top(r)

j′

)
·

·
(

(i−j)+(i′−j′)+(r+low(s)−r−low(s))+(r+low(r)−r−low(r))
)k
, for k ≥ r,

0, for k < r.

The proof is as fully analogous the previous arguments and is omitted. Note that the

expression for cs,r,k(χχχrel) in (3.33) simplifies to (3.21) whenever L = Ø.

4. Coverings of one–complexes and the Euler characteristic.

Given a deterministic covering of a finite simplicial complex X, i.e. a collection of compact

connected subsets A = {A{i}}, we can define its nerve, N (A) as a finite complex where

vertices {i} are just elements A{i} of the covering and a k-face I = {i1, . . . , ik+1} belongs to

N (A), if and only if A{i1} ∩ A{i2} ∩ . . . ∩ A{ik+1} 6= Ø (c.f. [33]).

Figure 4: An example of a 1-complex with marked realization of a good cover.

The following result, due to Borsuk [6], is of fundamental importance in algebraic topology

Lemma 4.1 (The Nerve Lemma [6]). Let A = {A{i}} be a covering of X and N (A) the

associated nerve. If all intersections A{i1} ∩ A{i2} ∩ . . . ∩ A{ik+1}, for k > 0 are contractible,

then N (A) has a homotopy type of the subspace |A| =
⋃
iA{i} of X.

Recall that a subset of X is contractible if it can be deformed continuously to a point [18].

If A = {A{i}} satisfies the assumption of this lemma then we call it a good covering (of X).
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In the remainder of this section we collect elementary facts from algebraic topology and

show how the Euler characteristic of N (A) provides a criteria for a good deterministic cov-

ering A = {A{i}}, to completely cover a connected 1–complex X, the proofs are basic and

are either omitted or deferred to Appendix A.

4.1. Coverage and the nerve complex. We assume throughout that X is a connected

1–complex (c.f. [18, p. 103]) homeomorphic to a multi-graph, and denote ∂X the set of leaf

vertices of X.

Proposition 4.2. Let {A{i}} be a good covering of X, |A| =
⋃
iA{i}, denote U = |A| and

V = |A|c. Then,

β1(X) ≥ β1(U), (4.1)

and

χ(X) ≤ χ(U). (4.2)

Moreover, if the inequality in (4.1) is strict then (4.2) is also strict.

By the Nerve Lemma, an obvious necessary condition for X ⊆ |A| is

χ(X) = χ(|A|) = χ(N (A)). (4.3)

If ∂X = Ø, we have the following

Corollary 4.3. Suppose X satisfies ∂X = Ø, then (4.3) implies X ⊆ |A|.

When ∂X 6= Ø, the condition (4.3) is insufficient; however we may adjust it by using the

relative version χrel(X, ∂X) of the Euler characteristic (2.5). Note that for the pair (X, ∂X),

χrel(X, ∂X) reduces to

χrel(X, ∂X) = χ(X)−#{∂X},
where #{∂X} is a number of points in ∂X. By [18, p. 102] we may consider the quotient

complex X ′ = X/∂X which is a 1–complex ([18, p. 103]) with ∂X ′ = Ø, and

χrel(X, ∂X) = χ(X/∂X).

Let q : X 7→ X ′ be the quotient projection, then the covering A of X projects to the covering

A′ of X ′. It is not true that A′ is automatically a good covering of X ′, one may easily find

examples where this is the case. However, the following fact is available (proof left to the

reader)

Lemma 4.4. Given A = {A{i}} is a good covering of X, let for every i the intersection

A{i} ∩ ∂X be either empty or a point (in other words A∂X = {A{i} ∩ ∂X} is a good covering

of ∂X). Then the quotient covering A′ of X ′ is also good.

Consequently, we say that A is a good covering of the pair (X, ∂X) provided A is good for X

and A∂X is good for ∂X. Then by the above lemma A′ is good for X ′ and Corollary 4.3 says

that A′ covers X ′, if and only if χ(|A′|) = χ(X ′). It leads us to the following generalization

of Corollary 4.3.
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Lemma 4.5. Given a good covering A = {A{i}} of (X, ∂X) let |A| =
⋃
iA{i}. Then X ⊆ |A|,

if and only if

χrel(N (A),N (A∂X)) = χrel(X, ∂X) (4.4)

or equivalently

χ(|A|) = χ(X)−#{∂X}+ #{|A| ∩ ∂X}. (4.5)

Remark 4.6. Equivalently, the coverage condition for (X, ∂X) can be obtained by looking

at the covering Â, equal to a union of A and the boundary vertices: ∂X = {x1, . . . , x#{∂X}}.
Then Â is good if satisfies the conditions of Lemma 4.4

χ(|Â|) = χ(|A| ∪ ∂X) = χ(|A|) + χ(∂X)− χ(|A| ∩ ∂X)

= χ(|A|) + #{∂X} −#{|A| ∩ ∂X},

which together with (4.3) leads us to (4.4).

4.2. Coverage of X by ε-balls. Vietoris–Rips complex. A special case of interest (see

e.g. [34, 10]) is when a connected 1–complex X ought to be covered by ε-size neighborhoods,

and ε can be sufficiently small. In such cases the topology of N (A) simplifies and one may

work with Vietoris–Rips complex [19], as we show in the following paragraphs.

Recall that given a simplicial complex K its Vietoris–Rips complex R(K), [19] is defined to

be a maximal simplicial complex (with respect to inclusion) which has the same 1-skeleton

as K. In practice, this means that R(K) is obtained by filling every k-clique in the graph

K(1) with a (k − 1)-dimensional face, e.g. 3-cycles are filled with 2-simplices in R(K), etc.

We will consider a finite covering A = {A{1}, . . . , A{n}} of (X, dX) by closed ε-balls. Pos-

sible shapes of such balls for ε sufficiently small are depicted on Figure 4.2.

Figure 4.2: Possible shapes of closed ε-balls in X with the intrinsic distance dX .

Let us denote by R(A) the Vietoris–Rips complex of the nerve of the cover, and record the

following

Proposition 4.7. Suppose C is the girth of X ′, i.e. the length of the shortest cycle in the

quotient complex X ′ = X/∂X. Then,

(i) if ε < 1
4
C, the covering A by ε-balls in (X, dX) is a good cover.

(ii) if ε < 1
6
C, the nerve N (A) of A equals R(A).
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Proof. For (i) we must show that every k-fold intersection A{i1} ∩ A{i2} ∩ . . . ∩ A{ik} has a

homotopy type of a point. Because diam(A{i}) < C, A{i} is a connected tree and therefore

contractible, which shows the claim for k = 1. For k = 2, first suppose that a nonempty

intersection A{i} ∩ A{j} is disconnected i.e. dim(H̃0(A{i} ∩ A{j})) ≥ 1 (where H̃∗( · ) denotes

the reduced homology groups c.f. [18]). Since A{i} and A{j} are connected, the reduced

Mayer-Vietoris sequence for A{i} ∩ A{j} then simplifies to

0 −→ H̃1(A{i} ∪ A{j}) −→ H̃0(A{i} ∩ A{j}) −→ H̃0(A{i})⊕ H̃0(A{j}) ∼= {0},

We obtain H̃1(A{i} ∪ A{j}) ∼= H̃0(A{i} ∩ A{j}) ∼= Rk for some k ≥ 1, which implies that

A{i} ∪ A{j} contains a nontrivial cycle. This however contradicts the fact that diam(A{i} ∪
A{j}) ≤ 4 ε < C. Thus k has to vanish and A{i} ∩A{j} must be connected, contain no cycle,

and is therefore contractible. Now, for an induction step with respect to k, it suffices to

apply the previous step to A′ = A{i1} ∩ A{i2} ∩ . . . ∩ A{ik} and A′′ = A{ik+1}.

Before proving (ii), recall the 1-dimensional version of Helly’s Theorem (c.f. [11]) implies

that given a finite collection of intervals {C1, C2, . . . , Cn} on R, if the intersection of each

pair is nonempty, i.e. Ci ∩ Cj 6= Ø, for every 1 ≤ i, j ≤ n, then
⋂n
i=1 Ci 6= Ø.

First consider the case of 3-fold intersections, i.e. supposing that A{j} ∩ A{k} 6= Ø, 1 ≤
k 6= j ≤ 3. We aim to show that A{1}∩A{2}∩A{3} 6= Ø. Observe that V = A{1}∪A{2}∪A{3}
is connected and by the argument of (i) it must be a connected tree, i.e. contains no cycles.

Let p1,2, p2,3, p1,3 be distinct points in V such that pi,j ∈ A{i}∩A{j}. Note that for each pair:

pi,j, ps,t there exists a path in V connecting these points. We now consider two cases: (1)

one of these paths, we denote by l, contains all three points pi,j, then the collection {Ci},
Ci = l∩A{i}, i = 1, 2, 3 satisfies the assumptions of Helly’s Theorem which implies the claim.

(2) none of the paths between paris of pi,j’s contain the third point. Consider two shortest

paths: l1 between p1,2 and p2,3, and l2 between p1,2 and p2,3 then l1,2 = l1 ∩ l2 is a segment

between p1,2 and some vertex of v ∈ V . The vertex v has to be in one of A{j}’s, w.l.o.g.

suppose v ∈ A{2} (as other cases are analogous.) Then if v is also in A{1} or A{3} we can

take p1,2 or p2,3 equal to v and use (1). If v /∈ A{1} and v /∈ A{3} then we observe that either

A{1} or A{3} is disconnected which is not the case. This concludes the proof of (ii) for the

3-fold case, the general case can be obtained by induction. �

5. Complete coverage probability.

In this section we interpret results of Sections 4.1–4.2 in the random setting.

5.1. Random coverings and the random nerve. Suppose A = {A{i}} is a random cov-

ering of a metric space X. We define the nerve N (A) of A by defining a probability measure

PA on Cn via the process elucidated in Section 1 in (1.3) and (1.4). Observe that given a

subspace Y ⊆ X we obtain an induced random covering AY from A:

AY = {A{1} ∩ Y,A{2} ∩ Y, . . . ,A{n} ∩ Y }
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The definition of PA extends to pairs (N (A),N (AY )) in an obvious way. In particular given

(s, r) ∈ Cn × Cn, we set

ps,r = P({(k, l) ∈ Cn × Cn | s ⊆ k, r ⊆ l})

= P
(
∀I∈s

{⋂
i∈I

A{i} 6= Ø
}
,∀{J}∈r

{⋂
j∈J

A{j} ∩ Y 6= Ø
} )
. (5.1)

Clearly, N (A) is a random complex, and (N (A),N (AY )) is a random pair. We say a finite

random covering {A{i}}i=1,...,n of X is good if and only if it is a good covering on X almost

surely. Further, we say a random covering A = {A{i}} of a pair (X, ∂X) is good provided it

is a good covering of X and A∂X is a good covering of ∂X. |A| will denote the random set⋃
i A{i}.

5.2. Proof of the extended version of Theorem 1.1. Let χχχrel(A,A∂X) be the relative

Euler characteristic of the pair (N (A),N (A∂X)). We may now state Theorem 1.1 for a

general 1–complex X.

Theorem 5.1 (Coverage probability of a 1-complex X with ∂X 6= Ø). Let A = {A{i}},
i = 1, . . . , n be a random good covering of the pair (X, ∂X). Then, the range of χχχrel(A,A∂X)

can be restricted to

m = χrel(X, ∂X) ≤ χχχrel(A,A∂X) ≤ n = m, (5.2)

and the complete coverage probability equals

P(X ⊆ |A|) = P
(
χχχrel(A,A∂X) = χrel(X, ∂X)

)
,

=
∑

(s,r)∈Cn×Cn

as,r(χχχrel) ps,r,
(5.3)

where as,r(χχχrel) = as,r,0(χχχrel) are defined in (3.32) of Corollary 3.5, and ps,r in (5.1).

Proof. Under the given assumptions, Lemma 4.5 implies

P(X ⊆ |A|) = P
(
χχχrel(A,A∂X) = χrel(X, ∂X)

)
. (5.4)

At this point the formula (3.32) of Corollary 3.5 can be applied to the random pair (N (A),

N (A∂X)) to give an exact expression for P
(
χχχrel(A,A∂X) = χrel(X, ∂X)

)
. In this particular

case the range of χχχ(A,A∂X) is given by (5.2), where the lower bound follows from Proposition

4.2, and the upper bound corresponds to the case when elements of the covering A are

pairwise disjoint and contained in X − ∂X, i.e. N (A) is just n distinct points. The formula

for ps in (1.8) is a direct consequence of Proposition 4.7, (see also Remark 5.3). �

Remark 5.2. Note that N (A∂X) generally contains high dimensional faces and therefore

the chain expansion of χχχkrel in RI [eI , wJ ] involves monomials in es and wr. To simplify this

expansion one may observe that N (A∂X) has a homotopy type of finitely many points or is

empty. Specifically, from (4.5) we have

χχχrel(A,A∂X) = χχχ(A)−#{A ∩ ∂X}.
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The random variable #{A ∩ ∂X} (counting points in A∂X) can be expressed as follows:

χχχrel(A,A∂X) = χχχ(A)−
q∑
i=1

w{i}. (5.5)

where {1, . . . , q} label points of ∂X and {w{i}}i=1,...,q are the indicator functions of points in

A∂X . Consequently, we may derive expressions for powers χχχkrel as polynomials in R[eI , w{i}].

These expansions of χχχkrel involve products of es and w{i} only, which may provide a different

way to express P(X ⊆ |A|).

Remark 5.3. In order to be more explicit about how the computation of ps,r simplifies in

the case the nerve N (A) equals the Vietoris–Rips complex R(A), let us suppose A{i} are

ε-radius closed balls in X with random centers ξi ∈ X. In R(A) any simplex indexed by

I = {i1, i2, . . . , ik} is determined by its edges, and an edge {i, j} in R(A) occurs if and only

if |ξi − ξj| ≤ 2ε (where | · − · | is a short notation for the distance dX(·, ·) on X). For

instance, we have

pI = P(A{i1} ∩ A{i2} ∩ . . . ∩ A{ik} 6= Ø) = P
(
|ξis − ξit| ≤ 2ε | ∀s,t s 6= t

)
.

Enumerate points in ∂X as follows {x1, x2, . . . , xM}, M = #{∂X}. Now, ps,r given in (5.1)

is just a volume of the set

As,r = {(ξ1, . . . , ξn) ∈ Xn | ∀I∈s∀s,t∈I,
s6=t
|ξs − ξt| ≤ 2ε, ∀I∈r ∃1≤s≤M ∀i∈I |ξi − xs| ≤ ε},

which in the case P = dξ1 dξ2 . . . dξn (i.e. ξi’s are independent) can be computed via ordinary

calculus techniques or estimated numerically. These formulas further simplify, if ∂X = Ø,

but we do not attempt these computations here.

6. Proof of Theorem 1.2

In this section we use the method of finite differences, c.f. [1], to give an upper bound for

the complete coverage probability in terms of the expected Euler characteristic and prove

Theorem 1.2. Let {A{i}}, i = 1, . . . , n be a finite good covering of X, consider the following

shifted version of the relative Euler characteristic χχχrel(A,A∂X) of (N (A),N (A∂X)):

χχχ0 = χχχrel(A,A∂X)−m,

where m = χrel(X, ∂X). From (2.7) we obtain

χχχrel(A,A∂X) = βββ0 − βββ1, (6.1)

where βββ∗ = βββ∗(A,A∂X) stand for the random relative Betti numbers. Recall that {eI , wJ},
I, J ∈ f(n) stand for the indicator functions of faces in (N (A),N (A∂X)).

We will consider a filtration by random vectors Vi denoting (eI(i), fJ(i)) where I(i), J(i) ∈
f(n) are subsets of {1, . . . , i}. Note that Vi reveals subcomplexes in Cn spanned by vertices
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1 through i. By analogy to the setting of Erdős–Rényi model [1], we set up a vertex exposure

martingale, associated with χχχ0 and {Vi} as follows:

Y0 = µ0 = E(χχχ0), Yi = E(χχχ0 | Vi), i = 1, . . . , n. (6.2)

Clearly, Yn = χχχ0 and the sequence {Yi} is an instance of Doob’s martingale [1]. Recall the

following variant of the Azuma-Hoeffding inequality [1, 3], for {Yi}:

P(Yn − Y0 ≤ −a) ≤ exp
( −a2

2
∑n

i=1 c
2
i

)
(6.3)

where a > 0, and ci is a difference estimate

|Yi − Yi−1| ≤ ci. (6.4)

Exposing a vertex (or a face containing it) changes βββ0 by at most 1 and βββ1 by at most

βββ1(X, ∂X) = 1− χrel(X, ∂X) thus we obtain

|Yi − Yi−1| ≤ 2 + |χrel(X, ∂X)|.

Let a = µ0, then

P(χχχ0 = 0) = P(χχχ0 ≤ µ0 − a) = P(Yn − Y0 ≤ −a).

Using the above estimates for ci and (6.3) yields

P(X ⊆ |A|) = P(χχχ0 = 0) ≤ exp
( −µ2

0

2n(|χrel(X, ∂X)|+ 2)2

)
,

which completes the proof of Theorem 1.2.

Appendix A. Auxiliary proofs for Section 4

Proof of Proposition 4.2. Consider the Mayer-Vietoris sequence applied to U and V :

0→ H1(U∩V )
j1→ H1(U)⊕H1(V )→ H1(X)→ H0(U∩V )→ H0(U)⊕H0(V )→ H0(X)→ 0.

Since U ∩ V = ∂A is just finitely many points, in real coefficients we have

0 −→ Rβ1(U) ⊕ Rβ1(V ) d1−→ Rβ1(X) −→ . . .

From (2.7), χ(X) = 1− β1(X), χ(U) = β0(U)− β1(U), χ(V ) = β0(V )− β1(V ). Since d1 is

injective we have β1(U) + β1(V ) ≤ β1(X), which implies −β1(X) + β1(U) ≤ 0. This proves

(4.1).

Now to prove (4.2) we have two cases to consider: β0(U) > 1 and β0(U) = 1. First

assume β0(U) > 1. We argue by contradiction. That is, suppose χ(U) ≤ χ(X). Then

β0(U)− β1(U) ≤ β0(X)− β1(X) so that β0(U) ≤ β1(U) + 1− β1(X). But β1(A)− β1(X) ≤
0 by the previous lemma. Therefore we obtain β0(U) ≤ 1 contrary to our assumption.

Now assume β0(U) = 1. Then χ(U) = 1 − β1(U) and χ(X) = 1 − β1(X) which yields

χ(U)− χ(X) = −β1(U) + β1(X) ≥ 0. Thus χ(U) ≥ χ(X). �



24 R. KOMENDARCZYK AND J. PULLEN

Proof of Corollary 4.3. Notice that generally X (even with ∂X 6= Ø) is homotopy equivalent

to a bouquet of circles. If |A|c 6= Ø in X, then (since |A|c is open) we pick p ∈ |A|c which is

not a vertex of X. Then p is in the interior of one of the edges which we denote by e. We

may homotopy X away from the interior of e to a bouquet of r circles S =
∨r S1 in such

a way that p is away from the wedge point (just collapse along the edges different from e).

From Proposition 4.2,

β1(|A|) ≤ β1

(r−1∨
S1 ∨ (S1 − {p})

)
< β1(S) = β1(X).

Thus β1(|A|) < β1(X) and therefore χ(X) < χ(|A|), which implies the claim. �

Proof of Lemma 4.5. Observe that X ⊆ |A′| to X ⊆ |A|. Indeed, since |A| is closed if

X − |A| 6= Ø then we may choose a point in x ∈ X − |A| such that x 6∈ ∂X, since the

projection q is a homeomorphism on X − ∂X, we conclude that q(x) 6∈ X ′ − |A′|. Next,

Equation (4.4) follows immediately from Corollary 4.3, the fact that A and A∂X are good

and the identities

χ(|A′|) = χrel(|A|, |A| ∩ ∂X), χ(X ′) = χrel(X, ∂X).

Now, thanks to (2.5) we compute

χrel(X, ∂X) = χ(X)−#{∂X},
χrel(|A|, |A| ∩ ∂X) = χ(|A|)−#{|A| ∩ ∂X},

which yields (4.5). �
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