ON THE BORSUK CONJECTURE CONCERNING
HOMOTOPY DOMINATION.

R. KOMENDARCZYK, S. KWASIK, AND W. ROSICKI

ABSTRACT. In the seminal monograph Theory of retracts, Borsuk raised the following ques-
tion: suppose two compact ANR spaces are h—equal, i.e. mutually homotopy dominate each
other, are they homotopy equivalent? The current paper approaches this question in two
ways. On one end, we provide conditions on the fundamental group which guarantee a
positive answer to the Borsuk question. On the other end, we construct various examples
of compact h—equal, not homotopy equivalent continua, with distinct properties. The first
class of these examples has trivial all known algebraic invariants (such as homology, homo-
topy groups etc.) The second class is given by n—connected continua, for any n, which are
infinite CW-complexes, and hence ANR spaces, on a complement of a point.

1. INTRODUCTION

Given two topological spaces X and Y, X is homotopy dominated by Y; denoted by
X <, Y, if and only if there exist maps f: X — Y and g: Y — X, such that go f ~idy.
If X <, YandY <, X, the spaces X and Y are called h—equal, the latter denoted by
X =, Y. In particular if X is homotopy equivalent to Y, i.e. X ~ Y, then they are h—equal.
In the homotopy theory of Borsuk’s ANR spaces, c.f. [5], two basic problems are raised.
Paraphrasing Borsuk [5], the first one can be stated as follows:

1) Is every compact ANR space homotopy equivalent to a finite CW-complex?
and the second one:

2) Are two h—equal compact ANR spaces homotopy equivalent? In other words,
giwen compact ANR spaces X andY , does X =, Y imply X ~Y ?

Both questions become less challenging if the compactness condition is relaxed, since the
answer to the first question is positive [19], and negative for the second one, [22]. Problem 1
(with the compactness assumption) became known as the Borsuk conjecture and attracted a
considerable interest (c.f. [19, 15, 21, 8]) which culminated in the positive solution by West
in [24]. In contrast, for the second question surprisingly little progress has been made over
the years. One of the goals of the current paper is to renew interest in Problem 2.
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The paper consists of essentially two parts. In the first part, which is mostly of expository
nature, we make some comments on the role of the fundamental group in Problem 2. By
analogy to Hopfian groups, we define a notion of a Hopfian pair for h—equal spaces and make
the following observation.

Observation 1.1. The pair of ANR spaces X, Y is a Hopfian pair, if and only if, X and
Y are homotopy equivalent.

This observation is in essence a reformulation of the classical Whitehead theorem, but it
helps to put the Borsuk problem (Problem 2) in a proper perspective. In particular, it yields
the following consequence

Theorem 1.2. Suppose X, and Y are h—equal ANR spaces, such that m(X) or m(Y)
1s Hopfian, where X is compact, or more generally has finitely generated homology groups
Hy(X) for all k. If one of the group rings A is a Noetherian ring, then X andY is a Hopfian
pair, and hence X and 'Y are homotopy equivalent.

The following corollary is well known to the experts [17, 11, 16] in this research area:

Corollary 1.3. Suppose X andY are compact, h—equal ANR spaces with the polycyclic-by-
finite fundamental groups, then X andY 1is a Hopfian pair.

In Section 2, we also make several related observations in the context of Hopfian pairs,
Poincaré complexes and H—spaces.

The second part, the main part of the paper, is where we construct 2-dimensional con-
tinua which are h—equal but not homotopy equivalent, see Theorem 3.5, these constructions
are inspired by [14] and [22]. A basic building block of these examples is a well known
“topological broom” pictured on Figure 1. An interesting feature of these constructions is
that these spaces have trivial all basic known algebraic invariants, such as singular or Cech
homology groups, homotopy groups etc. Consequently, to prove that the spaces are not ho-
motopy equivalent requires a more direct, approach via techniques of set theoretic topology.
Further, in Theorem 3.5, we provide examples of pairs 8y, 8; of 2n—dimensional continua
(for n > 2), modeled on the Hawaiian earrings, c.f [9], and satisfying:

(a) 8o, 81 are singular ANR spaces, i.e. for specific points sy € 8y, and s; € 81, comple-
ments 85 = 8y — {so}, 8 = 8, — {51} are countable disjoint’ sums of connected ANR
spaces.

(b) 8¢, 81 are (n — 1)—connected, and each connected component of 8 and 8 is locally
contractible.

(c) 8o =i 81 but 8y % 8.

The point of this construction is to obtain examples of compact spaces which are as close as
possible to ANR spaces. The construction is a generalization of the earlier result in [22] and
relies on the fairly recent work in [9].

1A simple modification of this construction (see Section 3.2) yields a path connected complement of analogs
of 8¢ and 8;.
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2. ON A ROLE OF THE FUNDAMENTAL GROUP IN BORSUK’S PROBLEM.

2.1. Hopfian pairs. We recall that a finitely presented group G is called Hopfian, if every
epimorphism h : G — G is an isomorphism. Analogously, given a ring R, a finitely gener-
ated R—module M is Hopfian, if any module epimorphism h : M — M is an isomorphism.
Let X and Y be a pair of h—equal spaces then, from definition, there are maps

FiX—Y, i:Y —X, foic~idy,

‘ . (2.1)
g:Y —X j:X—Y, goj~idy.

In particular it implies that induced homomorphisms f,, g. on the fundamental group and
homology groups, are epimorphisms.

Definition 2.1 A pair of spaces X, Y is called Hopfian pair, if and only if X =, Y and one
of the epimorphisms (g o f), or (f o ¢g). induced on the fundamental groups and homology
modules from maps in (2.1) is an isomorphism.

Note that, in the above definition, if one of the epimorphisms is an isomorphism the second
one is an isomorphism as well. For convenience, let us restate Observation 1.1:

Observation. The pair of ANR spaces: X, Y is Hopfian pair, if and only if, X and'Y are
homotopy equivalent.

Proof. From the above definition, both compositions

gl =(go [)s: m(X) — m(X),

fege = (f og)* :m((Y) — 7T1(Y>7
are isomorphisms. Thus, f, and g, are monomorphisms and consequently they have to
be isomorphisms as well. The same reasoning applies to the module homomorphisms f, :
Hi(X;A) — Hp(Y;A), go 0 H(Y;A) — Hi(X;A), A = Z[rn]. As a consequence, maps f
and ¢ induce isomorhisms on 7, and all homology with local coefficients, and the Whitehead
Theorem implies that f and g are homotopy equivalences. Let f : X — Y be a homotopy

equivalence with the inverse g : Y — X. Then, go f ~idyx and fog ~ idy, then obviously
the pair X, Y is a Hopfian pair. ([l

Remark 2.2 Note that in the above observation, it suffices to only have one ANR space;
X or Y, then the result of Milnor [19], implies that the other space (homotopy dominated
by the former) is also an ANR, up to homotopy.

Proof of Theorem 1.2 and Corollary 1.3. Since the group rings are Noetherian rings, and
modules H,(X; Z[m (X)]) and H.(Y;Z[m(Y)]) are finitely generated, they in turn are Hop-
fian, c.f. [18]. Given that X and Y are h—equal they must form a Hopfian pair, implying
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Theorem 1.2. Since polycyclic-by-finite groups are Hopfian and their group rings Noetherian,
Corollary 1.3 is a special case of Theorem 1.2, . O

The class of Hopfian groups is considerably larger than the polycyclic-by-finite groups. In
particular, the following question is a weaker form of Problem 2.

Question 2.3. Let X, Y be finite CW-complexes (compact ANR’s) such that X =, Y,
suppose further m(X) (and hence m(Y')) is Hopfian. Is X, Y a Hopfian pair?

The following example, guided by the results of [2, 10], illustrates a delicate nature of the
above question. Indeed, if G = m(X) = m(Y) and G is Hopfian, it is not necessarily the
case that X =, Y, even for 2-dimensional CWW—complexes X and Y.

Example 2.4 Let G = (z,y|z*> = y*) be the standard presentation for the fundamental
group of the trefoil knot, and let

241 _ =2i+1  3i+1 _ ~3it1 :
="y = ) 1 €N,

Gi=(r.yz,yla"=y" 2" =7 x
be different presentations of G (c.f. [2, 10]). For infinitely many i, there are 2-dimensional
CW—complexes K; of distinct homotopy type, with m (K;) = G; = G, c.f. [10]. Note that
the commutator subgroup [G, G] of G is isomorphic to Fy, i.e. free group on two generators,
and G/[G,G] = H,(G;Z) = Z.

Also, G is Hopfian, since both [G,G] = F; and G/[G, G] = 7Z are Hopfian and it is well
known that G is not polycyclic-by—finite. We claim that there are infinitely many pairs ¢
and j, 7 # j, such that K; #, K;.

Recall that it is shown in [2, 10] that there are infinitely many pairs ¢ and j, i # j,
such that K; is not homotopy equivalent to K, because HQ(I?i; Z) and Hg([?j; Z) are not
isomorphic as Z[G]-modules. More precisely, for some prime number p, there are infinitely
many distinct ¢ and j such that Z, ®z HQ(I?i; Z) has just one generator and Z, ®z, H2([?j; 7)
has at least two generators. Suppose K; =; Kj, for i # j, where the above holds, then
one obtains an epimorphism f, : Hy(K;; Z[G]) — Ha(K;; Z|G]) (see Definition 2.1), and
therefore an obvious epimorphism

this however contradicts that H,(K;; Z[G]) has just one generator versus H,(K;; Z[G]) having
two generators. Thus by contradiction, we conclude that K; #, K; and hence the pair K;
and K is not a Hopfian pair.

The above considerations lead one to a surprising outcome when one considers spaces
K;V S? and K; V S? in place of K; and K. By work in [2, 10] we know that

K;vS*~K;VvS*  thus K;VS*=,K;V5s

Note that G = m(K; V S?) = 7 (K; vV 5§?%), and the pair K; V 5% K; V S? is Hopfian.
Indeed the modules Hy(K;V S% Z[G]), H2(K; V S% Z|G]) are Hopfian as both are isomorphic
to the free Z[G]-module Z|G]| & Z[G] (c.f. [2]). This shows a difficulty in dealing with
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modules H.(X;Z[G]) and H.(Y;Z[G]), in the context of Question 2.3, even if the group
m(X) 2 m(Y) is a “nice” group.

2.2. Poincaré complexes. Now, let M™ be a closed n—dimensional manifold and Y any
space (see Remark 2.2), such that M™ =, Y, then M"Y is a Hopfian pair [3, 17]. More
generally, let X be a finite Poincaré complex of formal dimension n, c.f. [23]. To be specific,
X has a homotopy type of a finite CW—complex and there exists a class [X] € H,(X;Z),
such that for all r the cap product with [X] induces an isomorphism

(X]N-: H(X;A) — H,_.(X;A), A =7Z[m(X)].
If Y is any space, such that X =, Y then X, Y is a Hopfian pair, [17].

Theorem 2.5. Suppose X is a homology manifold of formal dimension n, i.e. X is a finite
dimensional ANR space such that

Z7 * =,

H.(X, X — {pt}) = H.(R", R" — {pt}) = {0 * # 0.

Then X is a finite Poincaré complex of formal dimension n.

The above theorem is stated without a proof in [13, p. 5099]. It is a well known fact
that X satisifies the Poincaré duality with integer coefficients, [4]. The only argument we
are aware of, that shows X is a Poincaré complex, is based on the existence of a spectral
sequence for the indentity map idy : X — X in sheaf homology giving a very general
version of Poincaré duality in Theorem 9.2 of [7]. It should be noted that if X is polyhedral
homology manifold then a much simpler argument shows that X is a Poincaré complex (see
Theorem 2.1 in [23]).

Corollary 2.6. Let X be a homology manifold of formal dimension n and 'Y any space with
X =,Y, then X, Y is a Hopfian pair.

Recall, that the well known conjecture asserts that finite dimensional homogeneous ANRs
are homology manifolds, [8].

Following, [6], recall that X is locally isotopic if for each path A : [0,1] — X, there is
a neighborhood N of A(0) in X and a map H : I x N — X, such that H(¢,A(0)) = A(¢)
and such that each H(t, -) is a homeomorphism of N onto a neighborhood of A(t). Clearly,
manifolds are locally isotopic. Suppose X is a compact finite dimensional ANR space which
is locally isotopic. By Theorem 4.6 of [6], X is a homology manifold of some formal dimension
n. Thereore, we obtain

Corollary 2.7. Let X be a compact finite dimensional ANR space which is locally isotopic,
and let Y any space such that X =, Y. Then X, Y is a Hopfian pair.

In the case X admits an H-space structure, 7 (X) is abelian, in particular polycyclic-by-
finite, thus if H,(X) to be finitely generated in each degree (where we allow the degree to
go to infinity), we obtain
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Proposition 2.8. Let X be an H-space, such that Hx(X) is finitely generated for each k,
and 'Y any space such that X =, Y. Then X, Y s a Hopfian pair.

Clearly, if X is a compact H-space the above homological condition holds. Curiously enough,
compact H-spaces are also Poincaré complexes, as can be deduced from the work in [1].

3. ABOUT h-EQUAL BUT NOT HOMOTOPY EQUIVALENT SPACES

Looking for a counterexample to Problem 2, one may consider the following problem in
the combinatorial group theory; suppose G and H, G 2 H are two finitely presented groups
and retracts of each other, which would make such pair of groups “strongly” non-Hopfian.
If both G and H are finite dimensional, i.e. K(G;1) and K(H;1) are chosen to be finite
CW-—complexes, then the functoriality of the construction of K(m;1)-spaces would imply
the existence of a counterexample to Problem 2, namely

K(G;1) =, K(H;1), and K(G;1)# K(H;1).

Consequently, the following algebraic question is of crucial importance and of an independent
interest.

Question 3.1. Find two finitely presented groups G and H, such that G % H which are
retracts of each other.

If one considers a more general class of spaces, then the answer to Problem 2 is negative,
as first observed by Stewart in [22], who provided examples of noncompact ANR spaces. The
remainder of this paper is devoted to a construction of compact examples with particular
properties as described in the introduction, Section 1.

3.1. Infinite wedges of “hairy disks”. Our example is inspired by constructions of both
[14] and [22], and based on the “hairy disk” depicted in Figure 2. First, consider a double
broom B as shown on Figure 1. B is a well known space which is not contractible but
has all trivial known algebraic invariants, such as homology and homotopy groups etc. [12,
p. 295]. Denote the center point of the broom B by v and the left and right sequence of
broom’s endpoints converging to v by {a,} and {b,} respectively. Generally, J,, provided it
is uniquely determined, will refer to a segment of B containing = € B. An exception to this
are the following cases: for z = v, ag, by, we set

Jy = [v,a0) Ulv,bo], Jay = [v,00], T, = [v,bo]. (3.1)

In particular,

Jan = [an, a0l,  Jb, = [bn, bo]. (3.2)
Naturally, we may view B as a wedge product of two pieces A and B, containing sequences
{a,} and {b,}, i.e.

B=AVB, A=J,U|JJo, B=J,Ul ). (3.3)
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Further, we order points in B along segments J,; simply assuming the order is “increasing”
from the bottom to top, for instance any z € J,, satisfies a, < z < aq¢. In particular, if
x,y € Jy, and x < y with respect to this order, then [z,y| will denote a portion of the
segment J,, containing all z such that z < 2z <.

FiGURE 1. Topological broom denoted by B, with the center point v, and a
location of the point u, and its neighborhood U, considered in the proof of
Lemma 3.8.

Definition 3.2 Given a space X, we say x € X is homotopically fixed in X, if x is fixed
under any homotopy f;, where fy = idx. The set of homotopically fixed points in X is
denoted by

hf(X)={z € X | x is homotopically fixed in X}. (3.4)
The set hf(X) is a closed subset of X, in particular we have the following fact about B:

Lemma 3.3. Suppose f : B — B fizes v, i.e. f(v) = v, and v is a limit point for both
sets: ZNA and ZNB, Z = f(B). Then, any homotopy f; : B — B, fo = [ keeps v fized,

i.e. fi(v) =w.

Sketch of Proof. Choose sequences {u,}, u, € J,, in ZN A and {w,}, w, € J,, in ZN B
respectively, such that

Uy — U, and Wy, — U in B.
Let v; = f;(v), by continuity, for each t:
fi(un) — vy, and fi(wy) — vy

Note that a point u,, can only move up along the arm J, C A of B and w, move up along
Jw, C B (for large enough n). Thus v; = vy for all ¢, because AN B = {v}. O

The above lemma is completely analogous to [14, Lemma 2.3], where a similar topological
broom is considered?.

Corollary 3.4. hf(B) = {v}.

2We choose the broom B, shown on Figure 1, over the one constructed in [14] to simplify certain arguments
of this section.
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Proof. We already know that v € hf(B) by Lemma 3.3. It is easy to rule out other points
in B as homotopically fixed, with an exception of possibly ag and by. Observe however, that
ap and by cannot be homotopically fixed as we may construct a homotopy which lets ag or
by to “flow out” along one of the arms of B, e.g J,, and J,, respectively. U

Before introducing relevant spaces we make the following convenient definition of a wedge
product Y of spaces X and Y disjointly embedded in R (for some N):

XY,y Y i=XUJ[z,y]UY, reX, yey, (3.5)

where [z,y] is an arc in RY connecting points x and y, with its interior (z,%) disjoint from
X and Y. The disk H is constructed by densely attaching brooms B, Figure 1, along the

FIGURE 2. The “hairy disk” H from [14, p. 286], with countably many copies
of B densely attached along the boundary of the unit disk in R2.

boundary of the unit disk D? in R?, c.f. [14]. More precisely, let
M = {m;};2, (3.6)

to be a countable dense subset of the boundary of D?. Then K is obtained by attaching to
each point m; the broom B at the center vertex v, so that the copies of B do not intersect
each other and their diameters tend to zero as i — oo. Denote by ¢ the center of interior
disk D? in H. Following the ideas of [22] we consider a countable wedge product of H, with
center points at ¢(k) = (—1,0,0) along the z—axis of R®. Each copy of H is denoted by H(k)
and contained in the translated yz—plane to the point ¢(k), together with the connecting
segments [c(k), c(k + 1)] along the z—axis. In addition, each factor H(k) is scaled down to
have the diameter % This process yields a non—compact space we denote by WH®. The
second space, denoted by WBH?® is obtained from WH?® by wedging a copy of B at the first

factor. Using the notation in (3.5), we express these spaces as follows
WH? = H(1) Yey.e2) H(2) Ye@e@) = Yetr-1).cr) HE) Yewm).eern) -
WBH® =B Yoo H'(1) Yoo  Yew-, f}f’(/f) (k). (k1) "

I

(3.7)
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ﬁ i

FIGURE 3. Infinite wedge products of hairy disks: WBH(left) and
WH?(right) embedded in R3. The segment connecting ¢(1) and my, in the
right picture, indicates a choice of embedding WBH® — WH?.

where b denotes the center point v of the B factor, and H-factors of WBH® are denoted by
H'(k) for clarity. The countable dense subset M of H given in (3.6) will be further denoted
by M (k) for each H(k) in WH®, and by M'(k) for each H'(k) in WBH®. Including the
origin of R? in both WH® and WBH?" yields

WH = WH° U {(0,0,0)},  WBH = WBH° U {(0,0,0)}. (3.8)

Observe that WH and WBH are homeomorphic with one-point compactifications of WH?°
and WBFH°. We claim WH® and WBH?® are h—equal, in particular there exist retractions®

TWy - WBH® — Wg{o, TWBH - WH® — WBH". (39)

Since WH is naturally a subset of WBH, rws can be chosen as a quotient projection
mapping the B-factor, together with the segment [b, ¢/ (1)], to the point ¢(1) € H(1) of WH".
The retraction rwasc of WH® onto WBH® can be defined once we choose an embedding
L WBH® — WH". Once a point my € M(1) is selected, the embedding ¢ can be chosen to
map the B-factor of WBH to the factor B,,, of H(1) and identifying the segment [b, ¢/(1)]
with the segment [my, ¢(1)] in H(1), as shown on Figure 3(right). Having identified WBH"
with a subset of WH® we may define the retraction rysg next. It will be done in two stages;
first we retract all the broom factors of H(1), except B,,, to the boundary circle of the
interior disk D? in H(1) via the following obvious map

m; x € By, CH'(1), i#k

x, otherwise.

2z WH® — WH?, z(z) = {

Continuity of z is a direct consequence of the “hairy disk” construction. Indeed given a
convergent sequence of points {h,} in the complement of B,,,, i.e. {h,} C H(1) — B,,,. If

3thus, WH® and WBH?® are r—equal, c.f. [5].
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the limit of {h,} is in B,,, then it has to be my, proving continuity of z. For the second
stage, in the construction of rygsc, we define a map y : 2(WH®) — WBFH" on the image
of z, simply by collapsing the interior disk D? C H(1) onto the segment [my, c(1)] in H(1).
The required retraction rywsgc can be now defined as rywss = y o 2.

Theorem 3.5. Both pairs: WH®, WBH® and WH, WBH are h—equal but not homotopy
equivalent.

The proof requires the following two lemmas.

Lemma 3.6. We have the following homeomorphisms
hfOWH®) 2| |hf(FH(K)), hf(WBH) = {b} U| |nf(3H'(K)),
i=1 i=1

hf(WH) = hf(WH?) U {(0,0,0)}, hf(WBH)=hf(WBH")L {(0,0,0)},

where each hf(H(k)) or hf(H(k)) is just a boundary of the interior disk D?* in each factor
H(k) of WH® (WH) or H'(k) in WBH® (WBH ), and therefore homeomorphic to S*. The
topology is the subspace topology induced from R? via the embeddings constructed in (3.7).

(3.10)

Corollary 3.7. In particular, hf(WH®) (hf(WH)) is not homeomorphic to hf(WBH?)
(hf(WBH)).

Proof of Lemma 3.6. Lemma 3.4 and the construction of the hairy disk 3 imply*
M C hf(3H).
Since M is dense in the boundary S' = 9D? C H, we obtain
S'=M C hf(H).

Since, none of the interior points in D? C # is homotopically fixed, and by Lemma 3.4, for
each B,,, —factor of H, my, is the only homotopically fixed point of B,,, , we conclude

hf(H) = S

It in turn implies equalities in (3.10), note that {(0,0,0)} is homotopically fixed as a limit
of points in hf(H(k)) fixed points from the H-factors of WH or WBH. O

Further, we obtain the following key lemma,

Lemma 3.8. Let f be the homotopy equivalence between WH®, and WBH®, and g its
imverse. Then,

f(Rf(WFH)) C hf(WBFH®),  g(hf(WBH?)) C hf(WIH"). (3.11)
The same inclusions holds for the compactifications: WH and WBH.

It is easy to see that broom centers along H—factors cannot be moved, by a homotopy, to the interior of
the disk D? C H, c.f. [14, (v) on p. 288].
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Proof. We will prove the first inclusion in (3.11), as the proof of the second is analogous. It
suffices to prove for each k:

f(M(k)) C hf( WBH?®). (3.12)
Then the claim follows from continuity of f, and the fact that the closure of |J, M (k) in
WIH? is equal to hf(WH?) (see Lemma 3.6). (Note that for the second inclusion in (3.11),
the only difference is the point b (the center of the first broom factor of WBH?) which needs
to be added to the union |J, M (k)).

To prove (3.12), consider a point v in M (k). By definition it has to be the center point of
one of a broom factors in H(k) C WH?®, see (3.7). We further denote this factor by B (i.e.
veEBCH(k)). Let u= f(v), and suppose by contradiction u & hf(WBH?), then

either 1°, WBJH? is locally path connected at u;

or 2°, WBH? is not locally path connected at wu.

Observation (3.13): Since v € hf(WH), we must have g o f(v) = v (as go f =~ idws).
Consider sequences a,, — v, b, — v of points in B (see Figure 1). Denote by a, = go f(a,),
by = g o f(b,), then we have a,, — v and b, — v. We claim that for large n:

an € Jg,, b, € J,. (3.13)

Proof. Indeed, denoting the homotopy g o f =~ idwsc by hy = h(t, -), h: [ x WH — WH
we observe that for every n: 7, (t) = hi(a,) defines a path in WH connecting a,, = 7,, (1)
and @, = 7a,(0) = g o f(a,) (analogously for the sequence {b,}). Since for the limit point
v = lima,, 7, is a constant path, for a small e-ball B,(¢) around v, the inverse image
h=Y(B,(¢)) C I x WH contains I x {v} and therefore some small neighborhood I x B,(¢) is
also in h™*(B,(¢)). For large enough n, a,’s are in B,(d) and hence the paths ~,, have image
in B,(¢). It follows that each ~,, is contained in the connected component J, N B,(¢) C B
of B,(¢). Hence, for small positive £ we obtain .J,, N J,, N By(e) = 0 and the first part of
(3.13). The second part follows analogously. O

Now we consider Case 1° and Case 2°.

Case 1°: Suppose WBH?® is locally path connected at u = f(v). Choose a small path
connected ball B, (&) around u, such that f(B,(0)) C B,(€) then g(B,(€)) C B,(e) with ¢
and ¢ chosen as in the proof of Observation (3.13) above. Since g(B,(¢)) is connected, and
all {a,} for large n are contained in g(B,(£)), {a@,} would have to belong entirely to one of
the arms J,, N B,(g) of B. But, this leads to a contradiction with Observation (3.13).

Case 2°: Suppose WBH?® is not locally connected at u = f(v). Since u € hf(WBH), u
belongs to one of the broom factors of WBH?®, we denote by B’ (i.e. B’ is either the B—factor
of WBH?® or belongs to one of the H'(k)-factors). We also endow B’ with decorations of
Figure 1, where v’ stands for the center of B’, and a,, b/, correspond to a,, and b, etc. Note
that the set of points where B’ is not locally path connected is given by V' = J,, —({agy }U{by})
and therefore u € V'. Since u ¢ hf(WBH®) and also u # v/, without loss of generality, we
assume u € Jo — {ag}. Further, continuity of f implies f(a,) — v and f(b,) — u and for
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large n, both sequences { f(a,)} and { f(b,)} belong to a small neighborhood U of u consisting
of infinitely many disjoint segments accumulating on J,,NU (see Figure 1 for the illustration).
Consider the shortest piece-wise linear paths a,, : I — B’; joining «,(0) = f(a,) € U and
an(1) =w; B, : I — B’ joining f(b,) € U and u. Clearly, both «,, and 3, trace segments
respectively:

Qp = [f(an)’ G'IO] U [U’> (16] - B/a 571 = [f(bn)7 ai)] U [U, a()] - Bl?

(we identify o, and (3, with their images for simplicity). In turn, the paths go«, and go 5,
join points &, = g(f(a,)) and v = g(f(u)), see Equation (3.13). Since points d, (resp. by)
are close to a, (resp. b,), and belong to J,, (resp. J, ). The image of g o c, contains
[Gin, a) U [v, ag] and the image of g o 8, contains segments [b,, bo] U [v, by]. Therefore, for n
large enough, we can find s, € «,, and t,, € [3,, such that

9(sn) = ao,  g(tn) = bo. (3.14)

Moreover, for each n we can choose minimal such s, and ¢, (i.e. closest to the initial point
of the paths «,, and f3,,). Passing to subsequences, if necessary, we have s, — s, t, — t, and
both limits belong to J, . Clearly,

g(s) =ao,  g(t) = bo. (3.15)
By (3.14), we have s # t, and both s and t are above u, i.e. s > u and t > u, according to
the order defined after Equation (3.3).

Suppose s > t > wu: the initial points f(a,) of a, converge to u, and s, € «, (or a
subsequence) converges to s as n — 0o. Since, s > t we can find points {e,} with e, € a,
and

flan) < en < sy,
(as points ordered along «,) and such that e, — t, as a consequence g(e,) — g(t) = bo.
However, s, is the first point on «,, mapped to ag under g. Further f(a,), the initial point
of a,,, is mapped to a,. By (3.13), we conclude that g(e,) € J,, for large enough n, and
therefore the limit of {g(e,)} has to belong to J,,, contradicting the fact that by & J,,.

In the case t > s > u, analogously considering paths (3,,, we may find a sequence of points
{h,}, converging to s, and such that for large n:

f(bn) < hy <t
Then, again points g(h,) can only accumulate on .J,,, contradicting
9(ha) = g(s) = a0 & Juy-

This proves (3.12) and concludes the proof of (3.11) for WH® and WBH®. To prove the
inclusion for the compactifications WH and WBH, we see that Claim (3.12) follows because
the point at oo, i.e {(0,0,0)}, is in the closure of | J, M (k). O
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Proof of Theorem 3.5. Suppose that WH® and WBH® are homotopy equivalent and take
a homotopy equivalence f : WH® — WBH", with inverse g : WBH® — WH?® (in the

notation of Lemma 3.8.) Their restrictions to the sets of homotopically fixed points are
defined by

f= f|hf(WfH°)’ 9= g|hf(WB?f°)
By Lemma 3.8, compositions § o f and f o § are well defined and by Definition 3.2 they
satisfy

go f=idnrewseys [ o g =idpswsace).
Thus f, defines a homeomorphism between hf(WH°) and hf(WBH®), and § its inverse,
contradicting Lemma 3.6. For one-point compactifications: WH and WBH, points at infinity
are homotopically fixed therefore the statement follows analogously. O

3.2. Infinite wedges of products of n—spheres. For arbitrarly high connected examples,
we follow a similar pattern as in the previous section. Let 8 be an n—sphere, and 82 = 8§ x 8,
define the following countable wedge products at a common basepoint s:

So =8 V8 V- V8V =\/8(j), S =8V8=\/8()) (3.16)
j=1 j=1

Thus 8y and &; differ just by the first factor, further we consider both &y and &; to be
metrically embedded in R?"*2, with the basepoint at the origin, and the diameters of factors
8.(j) tending to zero as j — oo, see Figure 4. Both 8§y and 8; are compact in the topology
induced from the embedding. Clearly, 8y and 8; are (n— 1)—connected in this topology since
each factor is (n — 1)—connected. Further, let 8, stand for either 8y or 8;.

The obvious retraction rs : 8§ x § — 8, can be extended by the identity (and rescailing)
to a retraction 75, : §¢ —> 83. A retraction rg, : 8 — 8y can be obtained by simply
collapsing the S—factor of 8; to the basepoint. Thus we obtain

So =n 81, So =n 81.
The strategy for proving that 8§y and 8; are not homotopy equivalent is a little different

FIGURE 4. Hawaiian earrings Sy(left) and 8;(right) based on 8 x 8§ and 8, for
n = 1.

than before and based on some homological considerations.
Both 8y and 8; are a special case of the generalized Hawaiian earrings construction con-
sidered in [9]. Following [9] consider the following homomorphisms defined on 7.(8,,s) in
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dimension n (for n > 1):
ho : (8o, ) — Hwn So(J hy : m,(81,5) — Hﬁn(Sl(j),s),

and induced by the product of obvious coordinate retractions r;, : 8, — 8.(j) onto each
factor of 8,. The main theorem of [9, p. 18] implies that both hy and h; are isomorphisms.
By the Hurewicz Theorem

H,(80) = (8o, ) HH (So(j ’:“ﬁ(ZxZ):(ZxZ)“%Z‘”,
o (3.17)
H,(81) = m,(81,5) = H,(8;7Z) XHH > 7 x (Zx L) = 7¥.

Since both Sy and S; are (n — 1)fconnected7 for n > 1, the Universal Coefficients Theorem
for cohomology and (3.17) implies additively

IIZ

é Z, (3.18)

k=1

H™(8,) = Hom(H,,(8,; 7Z); @H“

(c.f. [20, p. 67] for the second isomorphism).
Theorem 3.9. 8y and 8, are h—equal but not homotopy equivalent.

Proof. The h—equality has been already argued at the beginning of this section. For the
second claim, first we note that the graded ring structures of each factor H*(8.(j);Z) are
well known, i.e.

H*(80(1)) = Zlaj ;) [ 22 = 0.4 = 0),
H*($1(1) = Zluw] [ (w? = 0), H'($1(k)) = Zlan, ] /(0] = 0,98 = 0), k> 1,

where x;, y; and w are of degree n. Observe that the graded ring H*(8y) has the following
property:
(%) For any nontrival p in H™(8y) there exists g in H™(8y) such that p-q # 0.

(3.19)

Indeed, from (3.18) any p € H"(8y) is given as

D= Z(aiiﬁi + biyi), a;, b; € 7,

i=1
where only finitely many a;’s and b;’s are nonzero. Let r : §§ — 8o(1) V -+ V 8y(k)
be a retraction on k first factors of Sy, and r* : H*(\/f:1 S8o(l)) — H*(8¢) the induced
monomorphism. Choosing k large enough, and using the same symbols for the generators of
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H™(\/y_, 8o(1)) as in (3.19), we have

k

p=r(p) = T*(Z(ai% +biyi)),

i=1
for some p’ € H”(\/f:1 8o(l)). Note that H*(\/f:1 So(l)) = EBL H*(8¢(l)) as graded rings.
Let ¢’ = y;, for i such that a; # 0, then p’ - ¢ = a;z;y; # 0 and we obtain

pra=r"("-q)#0,

by the injectivity of r*. Clearly, the property (x) is preserved under the graded ring isomor-
phisms. Note that for H*(8;) the property (*) does not hold. Indeed, let p = w € H"(8;),

which generates the cohomology of the 8—factor of 81, (3.19). By (3.18), any ¢ € H™(8) is
represented by
q = Cow + Z(fliﬂfi + biyi), co, iy b € Z,
i=1
where only finitely many a;’s and b;’s are nonzero. Again, choosing an appropriate retraction

r of 8; onto finitely many factors, we have p = r*(p'), ¢ = r*(¢') for some p’ and ¢ in
H"(\/}_, 81(1)), and therefore

p.q — /r.*(p/-q/) — r*(w .q/) — 0.
We conclude, as graded rings
H*(80) # H"(81),

and consequently 8y and &§; cannot be homotopy equivalent. 0

Modifying slightly the construction of 8§y and 81, one may consider an infinite compact
bouquets W8, and W8, embedded in R?"*2 as pictured on Figure 5, having the same factors
as 8o and §;. We claim that W8, and W§; are homotopy equivalent to their respective
counterparts 8y and 8;. For this purpose, let us consider just the case of W8, and 8 (for
WS8; and §8; the claim follows analogously). For simplicity, we just consider the case 8 is a

e NS —
ee = =

FIGURE 5. Bouquets W8 (left) and W&, (right), for n = 1.

circle (n = 1), then all spaces can be embedded in R? as shown® on Figure 6. The following
construction can be conducted for any n, without major changes. Before we describe the
intermediate space M8 of Figure 6, let us define the map

Q : WSO — 80, (320)

SNote that Figure 4 shows a different embedding of 8¢ in R3.
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which is the required homotopy equivalence. Denote by a; C W8, arcs connecting successive
wedge points in W8y, and A = (J, a; their union. The map @ is the quotient projection
identifying A with the wedge point xq of 8.

Next, let us define an intermediate space MS8y. It is built from a contractible broom
M = Ui2, ¢ of a carefully chosen sequence of segments {¢;}32, in R?, all having the common
right endpoint, i.e. the wedge point zq of M. At the left endpoints of ¢;’s we attach 82—
factors, as shown on Figure 6. We assume that the sequence {¢;}3°, starts with a horizontal
segment ¢y = [—1,0] contained in the z—axis and all ¢; are placed above ¢y within the xz—
plane of R3. As i — oo, we require the lengths of ¢;’s, and the diameters of §2factors tend
to zero. As a result, ¢;’s and the 8§2~factors of M8, are converging to the point zq € M8 in
the limit. The map

C: 80 — MS(), (321)

in Figure 6 is defined as follows; let ¢; be a small contractible neighborhood of z( in the
ith 82factor of 8. The map C collapses each ¢; to the corresponding segment in M8,
also called ¢;. Clearly, 8o and M8, are homotopy equivalent under C, the inverse homotopy
equivalence simply contracts the broom M to the wedge point xg in M8y. Now, let M’ be

F1GURE 6. Homotopy equivalences P, ) and C on spaces 8g, WSy and MS,.

an extension of the broom M in M8, given by

oo
M/:C()U(ChUCl)U(CLQUCQ)U...:CoLJU(CLZ'UCi),
i=1
where each ¢;, for ¢ > 0, is extended by adjoining an arc a; to the left endpoint of ¢;. In
order to define the map

P M8y — WSy, (3.22)

of Figure 6, first, consider a retraction p : M’ — ¢y of M’ onto the ¢q segment of M'. The
arcs a; U ¢; can be arranged appropriately, so that p can be induced by restriction of the
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projection (z,y,2) — (x,0,0) in R? to M/, mapping each a;Uc; of the broom onto a portion
of ¢y. Clearly, p defines a deformation retraction® of M’ onto c¢y. The map P identifies the
segment ¢g C M8 with the arc A = J; a; in W8,. The map P is equal to p along M’ C M8,
and identifies the 82— factors of M8, with the corresponding factors in W$,.

Proposition 3.10. The Hawaiian earrings 8g and 81 of Figure 4 are homotopy equivalent
to infinite wedges W8y and W81 of Figure 5.

Sketch of Proof. Having the maps C' and P defined, we set @ = P o (C, and claim that it
defines a homotopy inverse of (). Indeed, the composition () o @ : 8o — Sp maps the inverse
image C~'(M) to the point zp, and is an embedding on 8§y — C~*(M). The set C~1(M) is
the union of ¢; C 8§y and arcs C~1(a;), thus C~1(M) can be continuously contracted to the
point xg € 8, implying () o @ ~ idg,. The composite @ 0@ : W§; — W8, maps small
contractible neighborhoods U(a;) of arcs a; in W8 together with paths” g; = Q~*(C~*(a;))
to the arc A = (J, a;,. Both A and the union of subsets U(a;) U g; are contractible within
WS, implying again Q\ 0 @ ~ idws,. O

Remark 3.11 Observe that, contrary to S, the complement of the infinity point in WS,
denoted by WS is an (n — 1)-connected, locally contractible, ANR. Note that if WS, were
locally 2n—connected, it would imply it was an ANR. In this sense, WS, and W8 are “close”
to being ANR spaces. In [22], Stewart shows W8 and W87 for n = 1 are examples of non-
compact h—equal ANRs, which are not homotopy equivalent. The proof of [22], relies heavily
on the non-triviality of the fundamental group 8; and &; and on the structure of isomor-
phisms between free products of groups, [22]. We wish to point out that the computation
of cohomology rings H*(WS8g), H*(WS87) is basic and the argument of Theorem 3.9 can be
easily adapted to show H*(WS;) 2 H*(WS7), which implies W87 % WS8]. Moreover, the
argument is valid for all n > 1, giving 2n—dimensional examples which are (n —1)—connected
for n > 1.

In examples, from the last two sections, homotopy dominations are given by retractions.
Consequently, these are examples of r—equal continua, which are not homotopy equivalent

(c.f. [B]).
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