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Abstract. In the seminal monograph Theory of retracts, Borsuk raised the following ques-

tion: suppose two compact ANR spaces are h–equal, i.e. mutually homotopy dominate each

other, are they homotopy equivalent? The current paper approaches this question in two

ways. On one end, we provide conditions on the fundamental group which guarantee a

positive answer to the Borsuk question. On the other end, we construct various examples

of compact h–equal, not homotopy equivalent continua, with distinct properties. The first

class of these examples has trivial all known algebraic invariants (such as homology, homo-

topy groups etc.) The second class is given by n–connected continua, for any n, which are

infinite CW–complexes, and hence ANR spaces, on a complement of a point.

1. Introduction

Given two topological spaces X and Y , X is homotopy dominated by Y ; denoted by

X ≤h Y , if and only if there exist maps f : X −→ Y and g : Y −→ X, such that g ◦f ' idX .

If X ≤h Y and Y ≤h X, the spaces X and Y are called h–equal, the latter denoted by

X =h Y . In particular if X is homotopy equivalent to Y , i.e. X ' Y , then they are h–equal.

In the homotopy theory of Borsuk’s ANR spaces, c.f. [5], two basic problems are raised.

Paraphrasing Borsuk [5], the first one can be stated as follows:

1) Is every compact ANR space homotopy equivalent to a finite CW-complex?

and the second one:

2) Are two h–equal compact ANR spaces homotopy equivalent? In other words,

given compact ANR spaces X and Y , does X =h Y imply X ' Y ?

Both questions become less challenging if the compactness condition is relaxed, since the

answer to the first question is positive [19], and negative for the second one, [22]. Problem 1

(with the compactness assumption) became known as the Borsuk conjecture and attracted a

considerable interest (c.f. [19, 15, 21, 8]) which culminated in the positive solution by West

in [24]. In contrast, for the second question surprisingly little progress has been made over

the years. One of the goals of the current paper is to renew interest in Problem 2.
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The paper consists of essentially two parts. In the first part, which is mostly of expository

nature, we make some comments on the role of the fundamental group in Problem 2. By

analogy to Hopfian groups, we define a notion of a Hopfian pair for h–equal spaces and make

the following observation.

Observation 1.1. The pair of ANR spaces X, Y is a Hopfian pair, if and only if, X and

Y are homotopy equivalent.

This observation is in essence a reformulation of the classical Whitehead theorem, but it

helps to put the Borsuk problem (Problem 2) in a proper perspective. In particular, it yields

the following consequence

Theorem 1.2. Suppose X, and Y are h–equal ANR spaces, such that π1(X) or π1(Y )

is Hopfian, where X is compact, or more generally has finitely generated homology groups

Hk(X) for all k. If one of the group rings Λ is a Noetherian ring, then X and Y is a Hopfian

pair, and hence X and Y are homotopy equivalent.

The following corollary is well known to the experts [17, 11, 16] in this research area:

Corollary 1.3. Suppose X and Y are compact, h–equal ANR spaces with the polycyclic-by-

finite fundamental groups, then X and Y is a Hopfian pair.

In Section 2, we also make several related observations in the context of Hopfian pairs,

Poincaré complexes and H–spaces.

The second part, the main part of the paper, is where we construct 2–dimensional con-

tinua which are h–equal but not homotopy equivalent, see Theorem 3.5, these constructions

are inspired by [14] and [22]. A basic building block of these examples is a well known

“topological broom” pictured on Figure 1. An interesting feature of these constructions is

that these spaces have trivial all basic known algebraic invariants, such as singular or Čech

homology groups, homotopy groups etc. Consequently, to prove that the spaces are not ho-

motopy equivalent requires a more direct, approach via techniques of set theoretic topology.

Further, in Theorem 3.5, we provide examples of pairs S0, S1 of 2n–dimensional continua

(for n ≥ 2), modeled on the Hawaiian earrings, c.f [9], and satisfying:

(a) S0, S1 are singular ANR spaces, i.e. for specific points s0 ∈ S0, and s1 ∈ S1, comple-

ments S◦0 = S0−{s0}, S◦1 = S1−{s1} are countable disjoint1 sums of connected ANR

spaces.

(b) S0, S1 are (n− 1)–connected, and each connected component of S◦0 and S◦1 is locally

contractible.

(c) S0 =h S1 but S0 6' S1.

The point of this construction is to obtain examples of compact spaces which are as close as

possible to ANR spaces. The construction is a generalization of the earlier result in [22] and

relies on the fairly recent work in [9].

1A simple modification of this construction (see Section 3.2) yields a path connected complement of analogs
of S0 and S1.
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2. On a role of the fundamental group in Borsuk’s problem.

2.1. Hopfian pairs. We recall that a finitely presented group G is called Hopfian, if every

epimorphism h : G −→ G is an isomorphism. Analogously, given a ring R, a finitely gener-

ated R–module M is Hopfian, if any module epimorphism h : M −→M is an isomorphism.

Let X and Y be a pair of h–equal spaces then, from definition, there are maps

f : X −→ Y, i : Y −→ X, f ◦ i ' idY ,

g : Y −→ X, j : X −→ Y, g ◦ j ' idX .
(2.1)

In particular it implies that induced homomorphisms f∗, g∗ on the fundamental group and

homology groups, are epimorphisms.

Definition 2.1 A pair of spaces X, Y is called Hopfian pair, if and only if X =h Y and one

of the epimorphisms (g ◦ f)∗ or (f ◦ g)∗ induced on the fundamental groups and homology

modules from maps in (2.1) is an isomorphism.

Note that, in the above definition, if one of the epimorphisms is an isomorphism the second

one is an isomorphism as well. For convenience, let us restate Observation 1.1:

Observation. The pair of ANR spaces: X, Y is Hopfian pair, if and only if, X and Y are

homotopy equivalent.

Proof. From the above definition, both compositions

g∗f∗ = (g ◦ f)∗ : π1(X) −→ π1(X),

f∗g∗ = (f ◦ g)∗ : π1(Y ) −→ π1(Y ),

are isomorphisms. Thus, f∗ and g∗ are monomorphisms and consequently they have to

be isomorphisms as well. The same reasoning applies to the module homomorphisms f∗ :

Hk(X; Λ) −→ Hk(Y ; Λ), g∗ : Hk(Y ; Λ) −→ Hk(X; Λ), Λ = Z[π]. As a consequence, maps f

and g induce isomorhisms on π1, and all homology with local coefficients, and the Whitehead

Theorem implies that f and g are homotopy equivalences. Let f : X −→ Y be a homotopy

equivalence with the inverse g : Y −→ X. Then, g ◦ f ' idX and f ◦ g ' idY , then obviously

the pair X, Y is a Hopfian pair. �

Remark 2.2 Note that in the above observation, it suffices to only have one ANR space;

X or Y , then the result of Milnor [19], implies that the other space (homotopy dominated

by the former) is also an ANR, up to homotopy.

Proof of Theorem 1.2 and Corollary 1.3. Since the group rings are Noetherian rings, and

modules H∗(X; Z[π1(X)]) and H∗(Y ;Z[π1(Y )]) are finitely generated, they in turn are Hop-

fian, c.f. [18]. Given that X and Y are h–equal they must form a Hopfian pair, implying
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Theorem 1.2. Since polycyclic-by-finite groups are Hopfian and their group rings Noetherian,

Corollary 1.3 is a special case of Theorem 1.2, . �

The class of Hopfian groups is considerably larger than the polycyclic-by-finite groups. In

particular, the following question is a weaker form of Problem 2.

Question 2.3. Let X, Y be finite CW–complexes (compact ANR’s) such that X =h Y ,

suppose further π1(X) (and hence π1(Y )) is Hopfian. Is X, Y a Hopfian pair?

The following example, guided by the results of [2, 10], illustrates a delicate nature of the

above question. Indeed, if G = π1(X) ∼= π1(Y ) and G is Hopfian, it is not necessarily the

case that X =h Y , even for 2–dimensional CW–complexes X and Y .

Example 2.4 Let G = 〈x, y |x2 = y3〉 be the standard presentation for the fundamental

group of the trefoil knot, and let

Gi = 〈x, y, x̄, ȳ |x2 = y3, x̄2 = ȳ3, x2i+1 = x̄2i+1, y3i+1 = ȳ3i+1〉, i ∈ N,

be different presentations of G (c.f. [2, 10]). For infinitely many i, there are 2–dimensional

CW–complexes Ki of distinct homotopy type, with π1(Ki) ∼= Gi
∼= G, c.f. [10]. Note that

the commutator subgroup [G,G] of G is isomorphic to F2, i.e. free group on two generators,

and G
/

[G,G] ∼= H1(G;Z) ∼= Z.

Also, G is Hopfian, since both [G,G] ∼= F2 and G
/

[G,G] ∼= Z are Hopfian and it is well

known that G is not polycyclic–by–finite. We claim that there are infinitely many pairs i

and j, i 6= j, such that Ki 6=h Kj.

Recall that it is shown in [2, 10] that there are infinitely many pairs i and j, i 6= j,

such that Ki is not homotopy equivalent to Kj, because H2(K̃i;Z) and H2(K̃j;Z) are not

isomorphic as Z[G]–modules. More precisely, for some prime number p, there are infinitely

many distinct i and j such that Zp⊗ZH2(K̃i;Z) has just one generator and Zp⊗ZH2(K̃j;Z)

has at least two generators. Suppose Ki =h Kj, for i 6= j, where the above holds, then

one obtains an epimorphism f∗ : H2(Ki;Z[G]) −→ H2(Kj;Z[G]) (see Definition 2.1), and

therefore an obvious epimorphism

id⊗ f∗ : Zp ⊗Z H∗(Ki;Z[G]) −→ Zp ⊗Z H∗(Kj;Z[G]),

this however contradicts that H∗(Ki;Z[G]) has just one generator versus H∗(Kj;Z[G]) having

two generators. Thus by contradiction, we conclude that Ki 6=h Kj and hence the pair Ki

and Kj is not a Hopfian pair.

The above considerations lead one to a surprising outcome when one considers spaces

Ki ∨ S2 and Kj ∨ S2 in place of Ki and Kj. By work in [2, 10] we know that

Ki ∨ S2 ' Kj ∨ S2, thus Ki ∨ S2 =h Kj ∨ S2.

Note that G ∼= π1(Ki ∨ S2) ∼= π1(Kj ∨ S2), and the pair Ki ∨ S2, Kj ∨ S2 is Hopfian.

Indeed the modules H2(Ki∨S2;Z[G]), H2(Kj∨S2;Z[G]) are Hopfian as both are isomorphic

to the free Z[G]–module Z[G] ⊕ Z[G] (c.f. [2]). This shows a difficulty in dealing with
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modules H∗(X;Z[G]) and H∗(Y ;Z[G]), in the context of Question 2.3, even if the group

π1(X) ∼= π1(Y ) is a “nice” group.

2.2. Poincaré complexes. Now, let Mn be a closed n–dimensional manifold and Y any

space (see Remark 2.2), such that Mn =h Y , then Mn, Y is a Hopfian pair [3, 17]. More

generally, let X be a finite Poincaré complex of formal dimension n, c.f. [23]. To be specific,

X has a homotopy type of a finite CW–complex and there exists a class [X] ∈ Hn(X;Z),

such that for all r the cap product with [X] induces an isomorphism

[X] ∩ · : Hr(X; Λ) −→ Hn−r(X; Λ), Λ = Z[π1(X)].

If Y is any space, such that X =h Y then X, Y is a Hopfian pair, [17].

Theorem 2.5. Suppose X is a homology manifold of formal dimension n, i.e. X is a finite

dimensional ANR space such that

H∗(X,X − {pt}) ∼= H∗(Rn,Rn − {pt}) =

{
Z, ∗ = n,

0, ∗ 6= 0.

Then X is a finite Poincaré complex of formal dimension n.

The above theorem is stated without a proof in [13, p. 5099]. It is a well known fact

that X satisifies the Poincaré duality with integer coefficients, [4]. The only argument we

are aware of, that shows X is a Poincaré complex, is based on the existence of a spectral

sequence for the indentity map idX : X −→ X in sheaf homology giving a very general

version of Poincaré duality in Theorem 9.2 of [7]. It should be noted that if X is polyhedral

homology manifold then a much simpler argument shows that X is a Poincaré complex (see

Theorem 2.1 in [23]).

Corollary 2.6. Let X be a homology manifold of formal dimension n and Y any space with

X =h Y , then X, Y is a Hopfian pair.

Recall, that the well known conjecture asserts that finite dimensional homogeneous ANRs

are homology manifolds, [8].

Following, [6], recall that X is locally isotopic if for each path λ : [0, 1] −→ X, there is

a neighborhood N of λ(0) in X and a map H : I × N −→ X, such that H(t, λ(0)) = λ(t)

and such that each H(t, · ) is a homeomorphism of N onto a neighborhood of λ(t). Clearly,

manifolds are locally isotopic. Suppose X is a compact finite dimensional ANR space which

is locally isotopic. By Theorem 4.6 of [6], X is a homology manifold of some formal dimension

n. Thereore, we obtain

Corollary 2.7. Let X be a compact finite dimensional ANR space which is locally isotopic,

and let Y any space such that X =h Y . Then X, Y is a Hopfian pair.

In the case X admits an H–space structure, π1(X) is abelian, in particular polycyclic-by-

finite, thus if H∗(X) to be finitely generated in each degree (where we allow the degree to

go to infinity), we obtain
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Proposition 2.8. Let X be an H–space, such that Hk(X) is finitely generated for each k,

and Y any space such that X =h Y . Then X, Y is a Hopfian pair.

Clearly, if X is a compact H–space the above homological condition holds. Curiously enough,

compact H–spaces are also Poincaré complexes, as can be deduced from the work in [1].

3. About h–equal but not homotopy equivalent spaces

Looking for a counterexample to Problem 2, one may consider the following problem in

the combinatorial group theory; suppose G and H, G 6∼= H are two finitely presented groups

and retracts of each other, which would make such pair of groups “strongly” non–Hopfian.

If both G and H are finite dimensional, i.e. K(G; 1) and K(H; 1) are chosen to be finite

CW–complexes, then the functoriality of the construction of K(π; 1)–spaces would imply

the existence of a counterexample to Problem 2, namely

K(G; 1) =h K(H; 1), and K(G; 1) 6' K(H; 1).

Consequently, the following algebraic question is of crucial importance and of an independent

interest.

Question 3.1. Find two finitely presented groups G and H, such that G 6∼= H which are

retracts of each other.

If one considers a more general class of spaces, then the answer to Problem 2 is negative,

as first observed by Stewart in [22], who provided examples of noncompact ANR spaces. The

remainder of this paper is devoted to a construction of compact examples with particular

properties as described in the introduction, Section 1.

3.1. Infinite wedges of “hairy disks”. Our example is inspired by constructions of both

[14] and [22], and based on the “hairy disk” depicted in Figure 2. First, consider a double

broom B as shown on Figure 1. B is a well known space which is not contractible but

has all trivial known algebraic invariants, such as homology and homotopy groups etc. [12,

p. 295]. Denote the center point of the broom B by v and the left and right sequence of

broom’s endpoints converging to v by {an} and {bn} respectively. Generally, Jx, provided it

is uniquely determined, will refer to a segment of B containing x ∈ B. An exception to this

are the following cases: for x = v, a0, b0, we set

Jv = [v, a0] ∪ [v, b0], Ja0 = [v, a0], Jb0 = [v, b0]. (3.1)

In particular,

Jan = [an, a0], Jbn = [bn, b0]. (3.2)

Naturally, we may view B as a wedge product of two pieces A and B, containing sequences

{an} and {bn}, i.e.

B = A ∨B, A = Ja0 ∪
⋃
n

Jan , B = Jb0 ∪
⋃
n

Jbn . (3.3)
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the limit of {hn} is in Bmk
then it has to be mk, proving continuity of z. For the second

stage, in the construction of rWBH, we define a map y : z(WH◦) −→ WBH◦ on the image

of z, simply by collapsing the interior disk D2 ⊂ H(1) onto the segment [mk, c(1)] in H(1).

The required retraction rWBH can be now defined as rWBH = y ◦ z.

Theorem 3.5. Both pairs: WH◦, WBH◦ and WH, WBH are h–equal but not homotopy

equivalent.

The proof requires the following two lemmas.

Lemma 3.6. We have the following homeomorphisms

hf(WH◦) ∼=
∞⊔
i=1

hf(H(k)), hf(WBH◦) ∼= {b} t
∞⊔
i=1

hf(H′(k)),

hf(WH) ∼= hf(WH◦) t {(0, 0, 0)}, hf(WBH) ∼= hf(WBH◦) t {(0, 0, 0)},
(3.10)

where each hf(H(k)) or hf(H(k)) is just a boundary of the interior disk D2 in each factor

H(k) of WH◦ (WH) or H′(k) in WBH◦ (WBH), and therefore homeomorphic to S1. The

topology is the subspace topology induced from R3 via the embeddings constructed in (3.7).

Corollary 3.7. In particular, hf(WH◦) (hf(WH)) is not homeomorphic to hf(WBH◦)

(hf(WBH)).

Proof of Lemma 3.6. Lemma 3.4 and the construction of the hairy disk H imply4

M ⊂ hf(H).

Since M is dense in the boundary S1 = ∂D2 ⊂ H, we obtain

S1 = M ⊂ hf(H).

Since, none of the interior points in D2 ⊂ H is homotopically fixed, and by Lemma 3.4, for

each Bmk
–factor of H, mk is the only homotopically fixed point of Bmk

, we conclude

hf(H) = S1.

It in turn implies equalities in (3.10), note that {(0, 0, 0)} is homotopically fixed as a limit

of points in hf(H(k)) fixed points from the H–factors of WH or WBH. �

Further, we obtain the following key lemma,

Lemma 3.8. Let f be the homotopy equivalence between WH◦, and WBH◦, and g its

inverse. Then,

f(hf(WH◦)) ⊂ hf(WBH◦), g(hf(WBH◦)) ⊂ hf(WH◦). (3.11)

The same inclusions holds for the compactifications: WH and WBH.

4It is easy to see that broom centers along H–factors cannot be moved, by a homotopy, to the interior of
the disk D2 ⊂ H, c.f. [14, (v) on p. 288].
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Proof. We will prove the first inclusion in (3.11), as the proof of the second is analogous. It

suffices to prove for each k:

f(M(k)) ⊂ hf(WBH◦). (3.12)

Then the claim follows from continuity of f , and the fact that the closure of
⋃

kM(k) in

WH◦ is equal to hf(WH◦) (see Lemma 3.6). (Note that for the second inclusion in (3.11),

the only difference is the point b (the center of the first broom factor of WBH◦) which needs

to be added to the union
⋃

kM(k)).

To prove (3.12), consider a point v in M(k). By definition it has to be the center point of

one of a broom factors in H(k) ⊂ WH◦, see (3.7). We further denote this factor by B (i.e.

v ∈ B ⊂ H(k)). Let u = f(v), and suppose by contradiction u 6∈ hf(WBH◦), then

either 1◦, WBH◦ is locally path connected at u;

or 2◦, WBH◦ is not locally path connected at u.

Observation (3.13): Since v ∈ hf(WH), we must have g ◦ f(v) = v (as g ◦ f ' idWH).

Consider sequences an → v, bn → v of points in B (see Figure 1). Denote by ãn = g ◦ f(an),

b̃n = g ◦ f(bn), then we have ãn → v and b̃n → v. We claim that for large n:

ãn ∈ Jan , b̃n ∈ Jbn . (3.13)

Proof. Indeed, denoting the homotopy g ◦ f ' idWH by ht = h(t, · ), h : I ×WH −→ WH

we observe that for every n: γan(t) = ht(an) defines a path in WH connecting an = γan(1)

and ãn = γan(0) = g ◦ f(an) (analogously for the sequence {bn}). Since for the limit point

v = lim an, γv is a constant path, for a small ε–ball Bv(ε) around v, the inverse image

h−1(Bv(ε)) ⊂ I ×WH contains I ×{v} and therefore some small neighborhood I ×Bv(δ) is

also in h−1(Bv(ε)). For large enough n, an’s are in Bv(δ) and hence the paths γan have image

in Bv(ε). It follows that each γan is contained in the connected component Jan ∩Bv(ε) ⊂ B

of Bv(ε). Hence, for small positive ε we obtain Jak ∩ Jaj ∩ Bv(ε) = ∅ and the first part of

(3.13). The second part follows analogously. �

Now we consider Case 1◦ and Case 2◦.

Case 1◦: Suppose WBH◦ is locally path connected at u = f(v). Choose a small path

connected ball Bu(ε̃) around u, such that f(Bv(δ)) ⊂ Bu(ε̃) then g(Bu(ε̃)) ⊂ Bv(ε) with δ

and ε chosen as in the proof of Observation (3.13) above. Since g(Bu(ε̃)) is connected, and

all {ãn} for large n are contained in g(Bu(ε̃)), {ãn} would have to belong entirely to one of

the arms Jak ∩Bv(ε) of B. But, this leads to a contradiction with Observation (3.13).

Case 2◦: Suppose WBH◦ is not locally connected at u = f(v). Since u 6∈ hf(WBH◦), u

belongs to one of the broom factors of WBH◦, we denote by B′ (i.e. B′ is either the B–factor

of WBH◦ or belongs to one of the H′(k)–factors). We also endow B′ with decorations of

Figure 1, where v′ stands for the center of B′, and a′n, b′n correspond to an and bn, etc. Note

that the set of points where B′ is not locally path connected is given by V ′ = Jv′−({a′0}∪{b′0})
and therefore u ∈ V ′. Since u 6∈ hf(WBH◦) and also u 6= v′, without loss of generality, we

assume u ∈ Ja′0 − {a
′
0}. Further, continuity of f implies f(an) → u and f(bn) → u and for
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large n, both sequences {f(an)} and {f(bn)} belong to a small neighborhood U of u consisting

of infinitely many disjoint segments accumulating on Jv′∩U (see Figure 1 for the illustration).

Consider the shortest piece-wise linear paths αn : I −→ B′, joining αn(0) = f(an) ∈ U and

αn(1) = u; βn : I −→ B′, joining f(bn) ∈ U and u. Clearly, both αn and βn trace segments

respectively:

αn = [f(an), a′0] ∪ [u, a′0] ⊂ B′, βn = [f(bn), a′0] ∪ [u, a′0] ⊂ B′,

(we identify αn and βn with their images for simplicity). In turn, the paths g ◦αn and g ◦βn,

join points ãn = g(f(an)) and v = g(f(u)), see Equation (3.13). Since points ãn (resp. b̃n)

are close to an (resp. bn), and belong to Jan (resp. Jbn). The image of g ◦ αn contains

[ãn, a0] ∪ [v, a0] and the image of g ◦ βn contains segments [b̃n, b0] ∪ [v, b0]. Therefore, for n

large enough, we can find sn ∈ αn, and tn ∈ βn, such that

g(sn) = a0, g(tn) = b0. (3.14)

Moreover, for each n we can choose minimal such sn and tn (i.e. closest to the initial point

of the paths αn and βn). Passing to subsequences, if necessary, we have sn → s, tn → t, and

both limits belong to Ja′0 . Clearly,

g(s) = a0, g(t) = b0. (3.15)

By (3.14), we have s 6= t, and both s and t are above u, i.e. s > u and t > u, according to

the order defined after Equation (3.3).

Suppose s > t > u: the initial points f(an) of αn converge to u, and sn ∈ αn (or a

subsequence) converges to s as n → ∞. Since, s > t we can find points {en} with en ∈ αn

and

f(an) ≤ en ≤ sn,

(as points ordered along αn) and such that en → t, as a consequence g(en) → g(t) = b0.

However, sn, is the first point on αn mapped to a0 under g. Further f(an), the initial point

of αn, is mapped to ãn. By (3.13), we conclude that g(en) ∈ Jan for large enough n, and

therefore the limit of {g(en)} has to belong to Ja0 , contradicting the fact that b0 6∈ Ja0 .
In the case t > s > u, analogously considering paths βn, we may find a sequence of points

{hn}, converging to s, and such that for large n:

f(bn) ≤ hn ≤ tn.

Then, again points g(hn) can only accumulate on Jb0 , contradicting

g(hn)→ g(s) = a0 6∈ Jb0 .

This proves (3.12) and concludes the proof of (3.11) for WH◦ and WBH◦. To prove the

inclusion for the compactifications WH and WBH, we see that Claim (3.12) follows because

the point at ∞, i.e {(0, 0, 0)}, is in the closure of
⋃

kM(k). �
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dimension n (for n > 1):

h0 : πn(S0, s) −→
∞∏
j=1

πn(S0(j), s), h1 : πn(S1, s) −→
∞∏
j=1

πn(S1(j), s),

and induced by the product of obvious coordinate retractions rj,∗ : S∗ −→ S∗(j) onto each

factor of S∗. The main theorem of [9, p. 18] implies that both h0 and h1 are isomorphisms.

By the Hurewicz Theorem

Hn(S0) ∼= πn(S0, s) ∼=
∞∏
j=1

Hn(S0(j);Z) ∼=
∞∏
j=1

(Z× Z) = (Z× Z)ω ∼= Zω,

Hn(S1) ∼= πn(S1, s) ∼= Hn(S;Z)×
∞∏
j=2

Hn(S1(j);Z) ∼= Z× (Z× Z)ω ∼= Zω.

(3.17)

Since both S0 and S1 are (n− 1)–connected, for n > 1, the Universal Coefficients Theorem

for cohomology and (3.17) implies additively

Hn(S∗) ∼= Hom(Hn(S∗;Z);Z) ∼=
∞⊕
j=1

Hn(S∗(j);Z) ∼=
∞⊕
k=1

Z, (3.18)

(c.f. [20, p. 67] for the second isomorphism).

Theorem 3.9. S0 and S1 are h–equal but not homotopy equivalent.

Proof. The h–equality has been already argued at the beginning of this section. For the

second claim, first we note that the graded ring structures of each factor H∗(S∗(j);Z) are

well known, i.e.

H∗(S0(j)) ∼= Z[xj, yj]
/
〈x2j = 0, y2j = 0〉,

H∗(S1(1)) ∼= Z[w]
/
〈w2 = 0〉, H∗(S1(k)) ∼= Z[xk, yk]

/
〈x2k = 0, y2k = 0〉, k > 1,

(3.19)

where xi, yi and w are of degree n. Observe that the graded ring H∗(S0) has the following

property:

(∗) For any nontrival p in Hn(S0) there exists q in Hn(S0) such that p · q 6= 0.

Indeed, from (3.18) any p ∈ Hn(S0) is given as

p =
∞∑
i=1

(aixi + biyi), ai, bi ∈ Z,

where only finitely many ai’s and bi’s are nonzero. Let r : S0 −→ S0(1) ∨ · · · ∨ S0(k)

be a retraction on k first factors of S0, and r∗ : H∗(
∨k

l=1 S0(l)) −→ H∗(S0) the induced

monomorphism. Choosing k large enough, and using the same symbols for the generators of
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projection (x, y, z) −→ (x, 0, 0) in R3 to M′, mapping each ai∪ci of the broom onto a portion

of c0. Clearly, p defines a deformation retraction6 of M′ onto c0. The map P identifies the

segment c0 ⊂MS0 with the arc A =
⋃

i ai in WS0. The map P is equal to p along M′ ⊂MS0,

and identifies the S2–factors of MS0 with the corresponding factors in WS0.

Proposition 3.10. The Hawaiian earrings S0 and S1 of Figure 4 are homotopy equivalent

to infinite wedges WS0 and WS1 of Figure 5.

Sketch of Proof. Having the maps C and P defined, we set Q̂ = P ◦ C, and claim that it

defines a homotopy inverse of Q. Indeed, the composition Q◦ Q̂ : S0 −→ S0 maps the inverse

image C−1(M) to the point x0, and is an embedding on S0 − C−1(M). The set C−1(M) is

the union of ci ⊂ S0 and arcs C−1(ai), thus C−1(M) can be continuously contracted to the

point x0 ∈ S0, implying Q ◦ Q̂ ' idS0 . The composite Q̂ ◦ Q : WS0 −→ WS0, maps small

contractible neighborhoods U(ai) of arcs ai in WS0 together with paths7 gi = Q−1(C−1(ai))

to the arc A =
⋃

i ai. Both A and the union of subsets U(ai) ∪ gi are contractible within

WS0, implying again Q̂ ◦Q ' idWS0 . �

Remark 3.11 Observe that, contrary to S∗, the complement of the infinity point in WS∗,

denoted by WS◦∗ is an (n− 1)–connected, locally contractible, ANR. Note that if WS∗ were

locally 2n–connected, it would imply it was an ANR. In this sense, WS0 and WS1 are “close”

to being ANR spaces. In [22], Stewart shows WS◦0 and WS◦1 for n = 1 are examples of non-

compact h–equal ANRs, which are not homotopy equivalent. The proof of [22], relies heavily

on the non-triviality of the fundamental group S0 and S1 and on the structure of isomor-

phisms between free products of groups, [22]. We wish to point out that the computation

of cohomology rings H∗(WS◦0), H
∗(WS◦1) is basic and the argument of Theorem 3.9 can be

easily adapted to show H∗(WS◦0) 6∼= H∗(WS◦1), which implies WS◦0 6' WS◦1. Moreover, the

argument is valid for all n ≥ 1, giving 2n–dimensional examples which are (n−1)–connected

for n ≥ 1.

In examples, from the last two sections, homotopy dominations are given by retractions.

Consequently, these are examples of r–equal continua, which are not homotopy equivalent

(c.f. [5]).
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