

1 **Somatic embryogenesis and plant regeneration of cassava (*Manihot esculenta* Crantz)**

2 **landraces from Cameroon**

3

4 Kone Mongomake¹, Oumar Doungous², Behnam Khatabi³ and Vincent N. Fondong^{3*}

5

6 Correspondence: vfondong@desu.edu

7

8 ¹Department of Natural Sciences, Laboratory of Crop Breeding, University Nangui Abrogoua,

9 Abidjan 22, Côte D'Ivoire

10 ²Institute of Agronomic Research for Development, Ekona Research Center, Cameroon

11 ³Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA

12

13

14

15

16

17

18

19

20

21

22

23

24 **Abstract**

25 A procedure to regenerate cassava (*Manihot esculenta* Crantz) cultivars from Cameroon via
26 somatic embryogenesis (SE) was developed. Shoot apical meristems and immature leaf lobes
27 (SAM-ILL) were used as explants on Murashige and Skoog (MS) basal medium containing 33 or
28 50 μ M of the auxins Picloram (Pic), 2,4- Dichlorophenoxyacetic acid (2,4-D), Dicamba (Dic),
29 and α -Naphthalene acetic acid (NAA). Cultivar performance was assessed using SE and number
30 of somatic embryos produced. Overall, the frequency of primary somatic embryogenesis (PSE)
31 and the mean number of somatic embryos produced varied considerably with genotype, type of
32 auxin and concentration tested. For example, cultivar (cv.) Ngan Mbada showed the best
33 performance on MS medium supplemented with 50 μ M Pic with a SE frequency of 40% and an
34 average number of somatic embryos of 90. The second best performance was recorded in cv.
35 Local Red on MS medium supplemented with 33 μ M 2,4-D, where the SE frequency was 40%
36 and an average number of somatic embryos of 60.5. Cultivar Ekona Red recorded the best
37 performance on medium supplemented with 50 μ M Pic showing a SE frequency of 47% and an
38 average number of somatic embryos of 45. We further examined secondary and cyclic somatic
39 embryogenesis (SSE, CSE) and both were also observed to vary with genotype, however, both
40 exhibited significantly higher frequencies of SE compared with PSE. SE started to decline at the
41 fourth cycle of embryogenesis. Examination of organogenesis showed that shoot bud induction
42 from green cotyledons varied across cultivars and benzylaminopurine (BAP) was shown to
43 outperform Tidiazuron (TDZ) in the ability to induce organogenesis. Furthermore, the
44 frequencies of bud induction were identical under light and dark conditions. Finally, regenerated
45 plants grew easily in the greenhouse with 90-100% survival rate and did not display detectable
46 variation in morphology.

47 **Key words:** Cassava, Somatic embryogenesis, Organogenesis, Plant growth regulators

48 **Background**

49 Cassava (*Manihot esculenta* Crantz) is a staple food to nearly a billion people in about 105
50 countries, providing as much as a third of daily calorie intake (FAO 2008a, b). World production
51 was estimated at 250 million tons in 2011 (FAO 2012). In Africa, the continent with the largest
52 production (53% of world production), the crop plays an important role as famine-reserve crop,
53 rural staple food, cash crop for both rural and urban households and, to a lesser extent, raw
54 material for feed and chemical industries (Nweke et al. 2002). Because of its resilience and
55 capacity to grow on marginal lands, it is predicted that the importance of cassava cultivation in
56 farming systems affected by climate change will increase in the future (Lobell et al. 2008).
57 Furthermore, cassava starch exhibits high purity, solubility, low tendency to retrograde compared
58 with other starches such as potato, rice and corn; this makes cassava a promising source for
59 biofuel production (Zamora et al. 2010).

60 Despite its potentials for achieving food security and economic growth, biotic and abiotic
61 constraints such as diseases, pests, weeds, and drought are limiting cassava production
62 (Barceloux 2009; Bull et al. 2011). In addition to these constraints, production has several other
63 constraints, including toxic cyanogenic compounds, very low protein content (1-2% dried
64 weight) and short fresh tissue shelf life of 1-3 days (Westby 2002). To improve the crop,
65 therefore, important traits have been introgressed through traditional breeding, leading to major
66 improvements in resistance to bacterial blight and viruses (Okogbenin et al. 2007). Furthermore,
67 advances have been made in improving protein content (Chavez et al. 2005) and starch quality
68 (Ceballos et al. 2007) through breeding. However, traditional breeding techniques face several
69 limitations, notably, high heterozygosity, allopolyploidy, low fertility, unsynchronized flowering
70 and limited knowledge of inheritance traits that have agronomic importance (Nassar and Ortiz
71 2010). Thus, production of improved plant lines by conventional breeding is a long and tedious

72 process (Ceballos et al. 2004; Rudi et al. 2010). Therefore, cassava genetic transformation has
73 emerged as a valuable alternative and complementary approach to improve the crop (Sayre et al.
74 2011; Liu et al. 2011).

75 An important prerequisite to developing a genetic transformation system is the
76 availability of morphogenic culture that can easily be used in gene transfer techniques (Taylor et
77 al. 2004). In cassava, the most efficient procedure to producing morphogenic culture is through
78 somatic embryogenesis, which has become an integral component of genetic transformation
79 systems in cassava (Osorio et al. 2012). Regeneration studies have shown that the frequency and
80 efficiency of somatic embryogenesis are genotype-dependent, and not all cassava cultivars are
81 amenable to somatic embryogenesis, regeneration and/or transformation (Hankoua et al. 2005;
82 Atehnkeng et al. 2006). This is yet an additional challenge to cassava improvement efforts. It
83 therefore becomes necessary to optimize production of embryogenic structures for each cassava
84 cultivar; yet, much of the research on cassava regeneration and transformation is currently
85 largely devoted to varieties from South America (Taylor et al. 1993; Konan et al. 1994) even
86 though much of the production is in Africa. Furthermore, previous reports showed that cassava
87 cultivars from Africa respond differently in culture compared with South American varieties
88 (Ihemere 2003). This study is aimed at investigating the ability of cassava genotypes from
89 Cameroon to induce somatic embryos and regenerate plants via direct shoot regeneration from
90 somatic cotyledons of maturing embryos. Results show that these Cameroonian cultivars are
91 amenable to regeneration, even though the efficiency varied considerably with cultivar, auxin
92 type and concentration. These results expand the range of African cassava cultivars that can be
93 engineered using recombinant DNA technologies.

94

95

96 **Results**

97 **Effect of plant growth regulators on induction of primary somatic embryogenesis**

98 In this study, seven cassava cultivars from Cameroon were tested for their ability to induce
99 primary somatic embryos on MS basal medium containing two concentrations (33 and 50 μ M) of
100 2,4-D, Pic, NAA and Dic. The apical immature meristem leaf lobe explants (Figure 1A)
101 developed into a swollen callus mass on callus induction medium (CIM) within five days. From
102 three to four weeks of culture, a compact non-embryogenic white callus (Figure 1B) and
103 translucent gelatinous callus with proembryogenic masses (Figure 1C) were observed in all
104 cultivars. These proembryogenic masses produced globular somatic embryos (Figure 1D), which
105 developed through the characteristic somatic embryogenesis stages of heart shape, torpedo and
106 cotyledonary (Figures 1E, F, G, H).

107 The potential of somatic embryogenesis, as indicated by the frequency of somatic embryo
108 production, and the number of somatic embryos per explant, was assessed in each cultivar (Table
109 1). Results showed that both parameters varied widely across cultivar, auxin type and
110 concentration. No primary somatic embryos were induced in medium containing 50 μ M NAA
111 and Dic, respectively (Table 1). Generally, the callus induced on NAA medium was soft and
112 primary somatic embryos were not formed, instead, all explants formed abundant adventitious
113 roots. Three cultivars produced no somatic embryos on medium supplemented with 33 μ M Dic,
114 while the other cultivars recorded a low frequency embryogenesis and few embryos were
115 produced. The highest frequencies and number of somatic embryos per explant were observed in
116 cv. Ngan Mbada (40.00%; 90.00) on 50 μ M Pic, followed by Local Red (40.00%; 60.50) on 33
117 μ M 2,4-D, and Ekona Red (46.67%; 44.83) on 50 μ M Pic (Table 1).

118 The Pearson correlation coefficient was used to relate the frequency of somatic
119 embryogenesis to average number of somatic embryos per explant. Except for cv. Local Red, a

120 significant positive correlation was observed between both parameters, indicating that the higher
121 the frequency of somatic embryogenesis the more somatic embryos are formed (Table 2).

122

123 **Analysis of primary and secondary somatic embryogenesis on medium supplemented with**
124 **Pic, 2,4-D and NAA**

125 We compared primary and secondary somatic embryogenesis on medium supplemented with 50
126 μM Pic and 2,4-D and NAA, since the concentration of 50 μM was found to be better than 33
127 μM in inducing embryo proliferation (Table 1). In this experiment, we used five cultivars
128 (Sekelen, Ngan Mbada, Ekona White, Local Red, and Ekona Red). All five cultivars exhibited
129 100% secondary somatic embryogenesis (Figure 2A). However, cultivars behaved differently in
130 the number of somatic embryos produced per explant (Figure 2B). For example, cvs. Ngan
131 Mbada and Ekona Red produced significantly higher average numbers of primary somatic
132 embryos than the number of secondary embryos while cvs. Ekona White and Ekona Red
133 produced significantly higher average numbers of secondary somatic embryos. As for cvs.
134 Sekelen, there was no statistical difference between the numbers of primary and secondary
135 embryos (Figure 2B).

136 The effects of the three auxins on embryo induction frequency, number of somatic
137 embryos per explant, and time (days) to complete the process, were determined. All three auxins
138 induced secondary somatic embryogenesis in all five cultivars with frequencies varying from
139 57% to 100% (Table 3). The frequencies of somatic embryogenesis were similar in cvs. Ekona
140 White and Local Red under all three auxins. Pic and, to a lesser extent, 2,4-D induced a
141 significantly higher frequency of somatic embryos than NAA in cvs. Sekelen, Ngan Mbada and
142 Ekona Red. The lowest numbers of somatic embryos produced in all five cultivars were observed
143 on medium supplemented with NAA (Table 3). The average number of days to complete somatic

144 embryogenesis was significantly lower on NAA medium than on Pic or 2,4-D, both of which
145 behaved similarly.

146

147 **Effect of embryo cycling on plant regeneration**

148 We investigated the effect of successive embryo cycling on induction of somatic embryos by
149 determining the frequency and number of somatic embryos induced during the third and fourth
150 cycles in the presence of Pic, 2,4-D and NAA. Results showed that on media supplemented with
151 Pic and NAA, somatic embryo induction was observed to be 100% in both third and fourth
152 cycles (Figure 3A). In contrast, a lower frequency was observed in medium supplemented with
153 2,4-D in the fourth cycle. As for the effect of cycling on the number of embryos, the third cycle
154 showed a significantly higher number than the fourth cycle (Figure 3B).

155

156 **Effect of BAP and TDZ on organogenesis under light and dark conditions**

157 The effect of cytokinin BAP (1 mg/L) and cytokinin-like growth regulator, TDZ (0.022 mg/L),
158 on organ production from green cotyledon somatic embryos was investigated under light and
159 dark conditions. Frequencies of callus and bud formation as well as number of buds produced per
160 explant are presented in Table 4. In medium supplemented with TDZ, no callus induction was
161 observed under light or dark in all five cultivars. In medium supplemented with BAP, however,
162 frequencies ranged from 81 to 100% with no significant differences in the frequency of callus
163 production under light and dark conditions across all five cultivars assessed.

164 As for shoot regeneration, all five cultivars produced shoots from secondary and cyclic
165 embryos (Figure 1I). Overall, the frequencies of bud formation were similar under light and dark
166 conditions with higher values recorded in medium supplemented with BAP (53.00–71.55%) than
167 in medium containing TDZ (0.00–34.00%) where the frequency of budding tended to be higher

168 under dark (6.40–34.00%) than under light (0.00– 20.00%) (Table 4). As for the number of buds
169 formed, medium supplemented with BAP performed better than TDZ supplemented medium
170 (Table 4). Taken together, organogenesis was higher in cvs. Ekona Red (62.72%; 19.67 buds),
171 Red Local (56.00%; 18.82 buds) and Sekelen (69.00%; 13.48 buds), while cv. Ngan Mbada
172 recorded the lowest values (66.00%; 8.30 buds) in medium supplemented with BAP.

173

174 **Rooting and acclimatization of regenerated plantlets**

175 Prior to transplanting to the greenhouse, lengths of shoots regenerated on maturation medium
176 were measured; values ranged from 0.8 to 1.08 cm and showed no statistical differences (Figure
177 4A). Shoots (Figure 1J) of all cultivars developed roots efficiently on elongation medium
178 supplemented with 0.4 mg/L BAP. We assessed the ability of regenerated plantlets to acclimatize
179 and grow in the greenhouse by measuring the proportion of plantlets recovered as well as plantlet
180 height. Cultivars Ngan Mbada and Ekona Red showed a significantly higher regeneration rate
181 than cultivars Ekona White and Local Red (Figure 4B). The regenerated plants were
182 morphologically normal and grew rapidly (Figure 1N) and after six weeks under greenhouse
183 conditions, plantlets height ranged from 18 to 27 cm (Figure 4A).

184

185 **Discussion**

186 Despite its immense importance in the developing world, cassava has historically received less
187 attention by researchers than have temperate crops (Olsen and Schaal 1999). Much of the genetic
188 improvements of this crop have been through traditional breeding, which has resulted in the
189 introgression into the cassava germplasm of bacterial and virus resistance (Hahn et al. 1980;
190 Okogbenin et al. 2007) as well as other useful traits (Chávez et al. 2005; Ceballos et al. 2007;
191 Morante et al. 2010; Rudi et al. 2010). Traditional breeding techniques face several limitations,

192 notably the heterozygous nature of the crop, which renders it difficult to identify the true
193 breeding value of parental lines. Furthermore, there is limited knowledge of inheritance traits
194 that have agronomic importance (Ceballos et al. 2004; Olsen and Schaal 1999; Nassar and Ortiz
195 2010). These challenges, together with the fact that not all cultivated genotypes are amenable to
196 breeding, not being able to produce flowers, make cassava improvement difficult. Thus,
197 improvement through genetic engineering, which principally is carried out using *Agrobacterium*-
198 mediated transformation of friable embryogenic callus (González et al. 1998; Zhang et al. 2001),
199 has become a method of choice in cassava improvement.

200 Efficient *Agrobacterium*-mediated transformation of a recalcitrant crop as cassava
201 depends on the ability to deliver intact DNA molecules into the genome of regenerable cells and
202 to recover adult plants. Thus, production of somatic embryos, which are used as target tissue for
203 insertion of T-DNA in the cassava genome, is a critical step in cassava transformation. In this
204 study, we investigated the regeneration proficiency of cassava cultivars from Cameroon on
205 media supplemented with Pic, Dic, NAA and 2,4-D. Visual assessment of culture using
206 stereomicroscopy revealed the formation of somatic embryos exhibiting globular, heart shape,
207 torpedo and cotyledonary stages on the same piece of callus tissue. This suggested that somatic
208 embryogenesis is asynchronous, characterized by the presence of globular somatic embryos and
209 embryos at more advanced stages of development on the same callus structure, similar to
210 structures reported recently on cv. Cigana Preta, a Brazilian cassava cultivar (Vidal et al. 2014).

211 Addition of a strong auxin to the culture medium is known to efficiently induce *in vitro*
212 somatic embryogenesis. Thus, 2,4-D was shown to be very efficient in inducing embryogenesis
213 in *Anthurium andraeanum* (Pinheiro et al. 2013) and sweet potato (*Ipomoea batatas* (L.) Lam)
214 (Magalhães et al. 2006). Here, we observed that all Cameroonian cassava cultivars were
215 amenable to embryogenesis on media supplemented with Pic, 2,4-D and, to a lesser extent, Dic.

216 In contrast, NAA failed to induce embryogenesis from leaf-lobe explants in all cultivars. These
217 results were consistent with those of Sofiari et al. (1997), who assessed cultivars from Africa,
218 South America and Asia. NAA tended to induce production of soft callus, which is not proficient
219 in developing somatic embryos. Prolific induction of somatic embryos was obtained on media
220 supplemented with 2,4-D and Pic. Both auxins have commonly been used in the induction of
221 cassava somatic embryos (Li et al. 1996; Taylor et al. 2001; Zhang and Puonti-Kaerlas 2005). In
222 our hands, Pic and 2,4-D at a concentration of 50 μ M was more effective in inducing somatic
223 embryos than 33 μ M. Pic has constantly been shown to be more efficient in inducing embryo
224 formation in African cassava cultivars (Ng and Adeniyi 1994; Raemakers 1993; Rossin and Rey
225 2011), South America (Feitosa et al. 2007), and Asia (Li et al. 1998; Saelim et al. 2006). We also
226 showed that the frequency of somatic embryogenesis and the number of embryos produced per
227 explant varied with cultivar and auxin, suggesting a genotype-auxin interaction effect as reported
228 by others (Feitosa et al. 2007; Saelim et al. 2006; Rossin and Rey 2011).

229 Somatic embryogenesis has consistently been assessed using induction frequency
230 (Hankoua et al. 2005; Szabados et al. 1987) or number of somatic embryos per explant (Danso
231 and Ford- Lloyd 2002; Feitosa et al. 2007; Ibrahim et al. 2008). These studies, however, have not
232 investigated the possibility of a correlation between frequency and number of embryos formed.
233 We have shown here that a significant positive correlation exists between frequency and number
234 of somatic embryos produced in six of the seven cultivars investigated. This indicates that for
235 most cassava cultivars, there is a high efficiency of proembryogenic mass conversion to various
236 developmental stages of somatic embryos. It is therefore likely that these proembryogenic
237 masses originate from cells that have acquired the capacity to induce formation of somatic
238 embryos.

239 Consistent with previous reports on other cultivars (Hankoua et al. 2005; Sofiari et al.
240 1997; Zhang et al. 2001), we found that secondary somatic embryogenesis was induced in all
241 five Cameroonian cultivars assessed in this study. However, we found that the frequency and
242 number of somatic embryos varied across cultivars. The frequency of secondary embryogenesis
243 was 100% for all cultivars investigated, however, the number of embryos produced varied in
244 primary and secondary embryogenesis, consistent with previous reports (Saelim et al. 2006;
245 Sofiari et al. 1997). Furthermore, green secondary embryo explants were observed to produce
246 more somatic embryos than isolated shoot apices and would likely be excellent targets for
247 genetic transformation. Cyclic embryogenesis appeared to affect the number of somatic embryos
248 produced than the frequency. It is possible that loss of competence to convert proembryogenic
249 masses to different developmental stages declines with successive embryo cycles, starting from
250 the fourth cycle.

251 This study showed the inability of NAA to induce formation of primary somatic embryos
252 from meristem leaf lobe explants even though it induced production of secondary somatic
253 embryos from primary somatic embryos. This result is in agreement with results from others
254 (Guohua and Qiusheng 2002; Sofiari et al. 1997; Raemakers et al. 1995). The efficiency of
255 induction of secondary embryogenesis by 2,4-D, and especially NAA, varied considerably
256 amongst all five cultivars assessed, thus, contrast with those of Sofiari et al. (1997), who reported
257 that NAA was more proficient in inducing secondary embryogenesis than 2,4-D. We further
258 found that NAA supplemented medium was more efficient at induction and maturation of
259 secondary embryos compared with medium supplemented with Pic or 2,4-D. Indeed, production
260 of green cotyledons from embryos took only 10 days on NAA medium whereas three to four
261 weeks were required for Pic and 2,4-D. Thus, the whole embryogenic cycle using secondary
262 somatic embryos can be completed in 14 days on NAA compared with at least 30 days for Pic or

263 2,4-D. Therefore, depending on the genotype, NAA is a plausible regeneration supplement since
264 time is an important limiting factor in cassava regeneration.

265 Organogenesis from cotyledons of maturing somatic embryos is the most commonly used
266 regeneration method for cassava (Fregene and Puonti-Kaerlas 2002). In contrast to the medium
267 supplemented TDZ, callus induction was observed on the medium containing BAP. It is obvious
268 that the auxin IBA combined with BAP might be responsible for this callus induction. Our
269 results showed that BAP treatment gave the best organogenesis responses and thus in agreement
270 with others (Guohua and Qiusheng 2002; Hankoua et al. 2005). It is not clear why TDZ was less
271 efficient in inducing organogenesis from maturing somatic embryos, it is possible that the
272 concentration may be an important factor and subsequent studies will need to assess different
273 levels.

274 Although the frequency of bud induction was found in this study to be similar under light
275 and dark conditions, the numbers of buds formed per explant were significantly higher when
276 green cotyledons were incubated under 16h light. The photoperiod has consistently been shown
277 to be genotype-dependent for shoot formation. For example, a photoperiod of 16h light was
278 reported to be more efficient in inducing shoot formation from green cotyledons (Hankoua et al.
279 2005), while Li et al. (1998) obtained better results under continuous dark. We found that cv.
280 Ngan Mbada was efficient in embryogenesis but less proficient in organogenesis, suggesting that
281 the ability to produce somatic embryos does not necessarily translate to shoot regeneration
282 proficiency. This result indicates that somatic embryogenesis and organogenesis may be
283 controlled by different and independently inherited traits.

284 Taken together, this study shows that the Cameroon cultivars investigated here contain
285 sufficient genetic variability for somatic embryogenesis and adventitious shoot formation and
286 can likely be improved using the *Agrobacterium*-mediated approach. It is important to indicate

287 that whereas some cassava cultivars from Colombia (Szabados et al., 1987; Mathews et al.,
288 1993), Argentina (Medina et al, 2003) and Côte d'Ivoire (Konan et al., 1994) exhibit
289 regeneration efficiencies similar to those reported here, others showed very low efficiencies.

290

291 **Conclusion**

292 Factors that produced significant differences in T-DNA delivery and regeneration include plant
293 genotype, explant source, embryo size, duration of pre-culture, inoculation and co-cultivation of
294 *Agrobacterium*. The efficient whole plantlet regeneration protocol established here, allows for
295 initiation of totipotent friable embryogenic callus, which is routinely used as target tissues for
296 transgene insertion. Therefore, important traits such as resistance to cassava mosaic diseases,
297 reduced toxic cyanogene content in tuberous roots, high protein content and drought tolerance
298 can be introduced to these cultivars.

299

300 **Materials and Methods**

301 **Plant materials**

302 Seven farmer-preferred cassava cultivars from Cameroon were used in this study. Four of the
303 cultivars are grown extensively in southwestern Cameroon, namely Ekona Red, Ekona White,
304 Local Red, and Local Ama while three are grown in the north, Sekelen, Ya Oroup, Ngan Mbada.
305 Plants were maintained by monthly subcultures of *in vitro* shoot cultures as described by
306 Hankoua et al. (2005). The culture medium consisted of MS (Murashige and Skoog 1962) basal
307 medium containing 20 g/L sucrose, 2 μ M CuSO₄ (pH 5.7), 0.8% of Noble agar [cassava basal
308 medium (CBM)]. The cultures were kept in a culture room at 25 ± 2 °C under 16 h light and light
309 intensity of 3000 lx.

310

311 **Induction of somatic embryogenesis**

312 Apical meristem-immature leaf lobes (AM-ILL) were excised from *in vitro* plantlets and cultured
313 on MS basal medium containing 20 g/L sucrose, B5 vitamins (Gamborg et al. 1968), 2 μ M
314 additional copper in the form of CuSO₄ (Schopke et al. 1992) and supplemented with 33 or 50
315 μ M of auxins 2,4-dichlorophenoxyacetic acid (2,4-D), Picloram (Pic), α -Naphthalene acetic acid
316 (NAA), and Dicamba (Dic), respectively. Embryonic structures were examined using a
317 stereomicroscope. Primary somatic embryos clusters containing globular, torpedo and heart-
318 shaped structures were divided into units of 5-10 embryos. To develop green cotyledonary
319 embryos or “maturing somatic embryos”, each cluster was transferred onto cassava maturation
320 medium (CML) (MS medium supplemented with 20 g/L sucrose, and 0.1 mg/L BAP) as
321 described by Li et al. (1996).

322 To assess primary and secondary somatic embryogenesis, we used cultivars Sekelen,
323 Ngan Mbada, Local White, Local Red and Ekona Red, which produced sufficient numbers of
324 green cotyledonary somatic embryos for downstream experimentation. Green cotyledon pieces
325 (5 mm²) were excised from the primary cotyledon embryos and transferred to P-CIM (callus
326 induction medium supplemented with 50 μ M Pic). Secondary somatic embryos were induced
327 from green cotyledons of primary somatic embryos on 50 μ M of Pic, NAA and 2,4-D,
328 respectively. Induced secondary somatic embryos were then divided into small clusters of 5-10
329 and transferred onto CML for maturation. Green cotyledon pieces obtained from two week-old
330 secondary cotyledon embryos were placed on CIM supplemented with 50 μ M Pic, NAA and 2,4-
331 D for the induction of cyclic somatic embryogenesis.

332 Somatic embryogenesis was carried out in a growth chamber set at 25 \pm 2°C in
333 continuous dark. Each treatment contained 10 Petri dishes and each Petri dish containing five
334 explants (50 explants per treatment). The frequency of somatic embryogenesis and average

335 number of somatic embryos produced at each stage per embryogenic callus were recorded from
336 three to four weeks of culture.

337

338 **Effect of BAP and Thidiazuron (TDZ) on adventitious bud formation**

339 Thidiazuron (TDZ) is an active cytokinin-like substance routinely used as a regulator, including
340 stimulation adventitious shoot formation in woody plant tissue culture. The cytokinin, 6-
341 Benzylaminopurine, benzyl adenine (BAP) also elicits plant growth and development responses.
342 Thus, we assessed the effect of both regulators on adventitious bud formation of the cassava
343 cultivars after three and four cycles of somatic embryogenesis. To do this, somatic embryos were
344 divided into clusters of 5-10 embryos, which were transferred to CML for maturation. Matured
345 green cotyledon embryos were then divided into 0.5 cm² pieces and transferred on cassava
346 organogenesis medium (COM) [MS basal medium, vitamins B5, 20 g/L sucrose and 2 µM
347 CuSO₄, supplemented with 1 mg/L BAP, 0.5 mg/L Indole butyric acid (IBA) or 0.022 mg/L
348 TDZ, pH 5.7, and Noble agar (0.8%)]. Each treatment contained 10 explants in each of five Petri
349 dishes (50 explants per treatment). Cultures were incubated either in continuous dark or fewer
350 than 16h light to determine the effect of light on bud formation. After one month in culture, the
351 frequency of callus and bud induction, the number of buds per explant and shoot bud length were
352 recorded.

353

354 **Elongation and rooting of shoot buds, and acclimatization of regenerated plantlets**

355 Shoot primordia from maturation medium were transferred onto cassava elongation medium
356 (CEM: CBM supplemented with 0.4 mg/L BAP) for shoot elongation. After four weeks, the
357 elongated shoots were transferred onto cassava rooting medium (CRM: CBM without plant
358 growth regulators) for rooting and development. After root development, agar was rinsed from

359 roots using tap water and the plantlets transferred to pots containing a Jiffy peat pellet. Pots were
360 placed in closed transparent boxes to maintain high humidity and placed in the greenhouse where
361 the temperature ranged from 18 to 25°C and the relative humidity from 80 to 60%. After 10
362 days, boxes were opened slightly to allow air circulation and one week later, the cover was
363 completely removed. The percentage of plantlet survival and their heights were recorded four
364 weeks after being transferred to the greenhouse.

365

366 **Experimental design and statistical analysis**

367 All experiments were carried out in the completely randomized design. Samples were evaluated
368 using analysis of variance (ANOVA). Newman Keuls multiple range tests were used to separate
369 treatment means found significantly different by ANOVA. All analyses were at $P \leq 0.05$
370 confidence level. Analysis was performed with the statistica 7.0 software.

371

372 **List of abbreviations**

373 2,4-D: 2,4- Dichlorophenoxyacetic acid; BAP: Benzylaminopurine; CBM: Cassava basal
374 medium; CEM: cassava elongation medium; CIM: Callus induction medium; CMML: Cassava
375 maturation medium; COM: Cassava organogenesis medium; CRM: Cassava rooting medium;
376 CSE: Cyclic Somatic Embryogenesis; NAA: α -Naphthalene acetic acid; P-CIM: Callus induction
377 medium supplemented with Pic; Pic: Picloram; PSE: Primary Somatic Embryogenesis; SAM-
378 ILL: Shoot Apical Meristems Immature Leaf Lobes; SE: Somatic embryogenesis; SSE:
379 Secondary Somatic Embryogenesis; TDZ: Thidiazuron

380

381 **Competing interests**

382 The authors declare that they have no competing interests.

383

384 **Authors' contributions**

385 VNF conceived and designed the research. KM, OD and BK conducted the experiments. KM
386 and VNF carried out the analysis. KM and VNF wrote the manuscript. All authors read and
387 approved the final manuscript.

388

389 **Acknowledgements**

390 This project was supported by NSF grant number IOS-1212576

391 **References**

392 Atehnkeng J, Adetimirin VO, Ng SYC (2006) Exploring the African cassava (*Manihot esculenta*
393 Crantz) germplasm for somatic embryogenic competence. *Afr J Biotechnol* 5:1324–1329

394 Barceloux DG (2009) Cyanogenic foods (cassava, fruit kernels, and cycad seeds). *Dis Mon*
395 55:336–352

396 Bull SE, Ndunguru J, Gruisse W, Beeching JR, Vanderschuren H (2011) Cassava constraints
397 to production and the transfer of biotechnology to African laboratories. *Plant Cell Rep*
398 30:779–787

399 Ceballos H, Iglesias CA, Perez JC, Dixon AGO (2004) Cassava breeding: opportunities and
400 challenges. *Plant Mol Biol* 56:503–516

401 Ceballos H, Sanchez T, Morante N, Fregene M, Dufour D, Smith AM, Denyer K, Perez JC,
402 Calle F, Mestres C (2007) Discovery of an amylose-free starch mutant in cassava
403 (*Manihot esculenta* Crantz). *J Agric Food Chem* 55:7469–7476

404 Chávez AL, Sánchez T, Jaramillo G, Bedoya J, Echeverry J, Bolaños EA, Ceballos H, Iglesias
405 CA (2005) Variation of quality traits in cassava roots evaluated in landraces and
406 improved clones. *Euphytica* 143:125–133

407 Danso KE, Ford-Lloyd BV (2002) Induction of high frequency somatic embryos in cassava for
408 cryopreservation. *Plant Cell Rep* 21:226–236

409 FAO (2008a) Cassava for food and energy security. FAO Media Centre, Rome.
410 <http://www.fao.org/newsroom/en/news/2008/1000899/index.html>

411 FAO (2008b) Faostat. FAO, Rome. <http://faostat.fao.org/>. Accessed Oct 2010

412 FAO (2012) <http://faostat.fao.org>. Agricultural Statistics. Food and Agricultural Organization of
413 the United Nations. Rome

414 Feitosa T, Bastos JLP, Ponte LFA, Jucá TL, Campos FAP (2007) Somatic embryogenesis in
415 cassava genotypes from the northeast of Brazil. *Braz Arch Biol Technol* 50:201–206

416 Fregene M, Puonti-Kaerlas J (2002) Cassava biotechnology. In: Hillocks RJ, Thresh JM, Bellotti
417 AC (eds) *Cassava: Biology, Production and Utilization*. CAB International, Wallingford,
418 Oxon, pp. 179–207

419 Gamborg M, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of
420 soybean root cells. *Exp Cell Biol Res* 50:151–158

421 González AE, Schöpke C, Taylor N, Beachy RN, Fauquet CM (1998) Regeneration of transgenic
422 cassava plants (*Manihot esculenta* Crantz) through Agrobacterium-mediated
423 transformation of embryogenic suspension cultures. *Plant Cell Rep* 17:827-831

424 Guohua M, Qiusheng X (2002) Induction of somatic embryogenesis and adventitious shoots
425 from immature leaves of cassava. *Plant Cell Tiss Org* 70: 281-288

426 Hahn S K, Terry ER, Leuschner K (1980) Breeding cassava for resistance to cassava mosaic
427 disease. *Euphytica* 29:673-683

428 Hankoua BB, Ng SYC, Fawole I, Puonti-Kaerlas J, Pillay M, Dixon AGO (2005) Regeneration
429 of a wide range of African cassava genotypes via shoot organogenesis from cotyledons of
430 maturing somatic embryos and conformity of the field-established regenerants. *Plant Cell*
431 *Tissue Organ Cult* 82:221–231

432 Ibrahim A, Heredia F, Pinheiro C, Aragao F, Campos F (2008) Optimization of somatic
433 embryogenesis, and selection regimes for particle bombardment of friable embryogenic
434 callus and somatic cotyledons of cassava (*Manihot esculenta* Crantz). *Afr J Biotechnol*
435 7:2790–2797

436 Ihemere UE (2003) Somatic embryogenesis and transformation of cassava for enhanced starch
437 production. PhD thesis, Ohio State University, Columbus, Ohio, USA

438 Konan NK, Sangwan RS, Sangwan-Norreel BS (1994) Efficient *In vitro* shoot-regeneration
439 systems in cassava (*Manihot esculenta* Crantz). *Plant Breed* 113:227–236

440 Li H-Q, Sautter C, Potrykus I, Puonti-Kaerlas J (1996) Genetic transformation of cassava
441 (*Manihot esculenta* Crantz). *Nat Biotechnol* 14:736–740

442 Li HQ, Huang YW, Liang CY, Guo JY, Liu HX, Potrykus I, Puonti-Kaerlas J (1998)
443 Regeneration of cassava plants via shoot organogenesis. *Plant Cell Rep* 17:410–414

444 Liu J, Zheng Q, Ma Q, Gadidasu KK, Zhang P (2011) Cassava genetic transformation and its
445 application in breeding. *J Integr Plant Biol* 53:552–569

446 Lobell DB, Burke, MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing
447 climate change adaptation needs for food security in 2030. *Science* 319:607–610

448 Magalhães JS, Santos MDM, Cunha Filho FN, Blumer L, Guerra MP, Torres AC (2006) Indução
449 de embriogênese somática em genótipos de batata-doce. *Horticultura Brasileira* 24:79–
450 83

451 Mathews H, Schopke C, Carcamo R, Chavarriaga P, Fauquet C, Beachy RN (1993)
452 Improvement of somatic embryogenesis and plant recovery in cassava. *Plant Cell Rep.*
453 12:328-33

454 Medina RD, Faloci MM, Solís Neffa V, Mroginski LA (2003) Embriogénesis somática y
455 regeneración de plantas de mandioca (*Manihot esculenta* Crantz) de cultivares de interés
456 para Argentina. *Revista de Investigaciones Agropecuarias* 32: 143-160

457 Morante N, Sanchez T, Ceballos H, Calle F, Perez JC, Egesi C, Cuambe CF, Escobar D, Ortiz D,
458 Chavez AL (2010) Tolerance to postharvest physiological deterioration in cassava roots.
459 *Crop Sci* 50:1333–1338

460 Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco
461 tissue cultures. *Physiol Plant* 15:437–496

462 Nassar N, Ortiz R (2010) Breeding cassava to feed the poor. *Sci Am* 302:78–84.

463 Ng SYC, Adeniyi OI (1994) Embryogenesis in African adapted cassava and evaluation of
464 generates. The second international scientific meeting C.B.N (CBN II). August 22–26.
465 pp. 56

466 Nweke FI, Spencer DSC, Lynam JK (2002) The cassava transformation: Africa's best-kept
467 secret. Michigan University Press, East Lansing, USA

468 Okogbenin E, Porto MCM, Egesi C, Mba C, Espinosa E, Santos LG, Ospina C, Marín J, Barrera
469 E, Gutiérrez J, Ekanayake I, Iglesias C, Fregene MA (2007) Marker-assisted
470 introgression of resistance to cassava mosaic disease into Latin American germplasm for
471 the genetic improvement of cassava in Africa. *Crop Sci* 47:1895–1904

472 Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of *Manihot*
473 *esculenta*. *Proc Natl Acad Sci USA* 96:5586–5591

474 Osorio M, Gámez E, Molina S, Infante D (2012) Evaluation of cassava plants generated by
475 somatic embryogenesis at different stages of development using molecular markers.
476 *Electron J Biotechnol* 15:3. <http://dx.doi.org/10.2225/vol15-issue4-fulltext-3>

477 Pinheiro MVM, Martins FB, da Cruz ACF, de Carvalho ACPP, Ventrella MC, Otoni WC (2013).
478 Maturation of *Anthurium andraeanum* cv. Eidibel somatic embryos from nodal segments.
479 *In Vitro Cell Dev Biol Plant* 49:304-312

480 Raemakers CJM, Amati M, Staritsky G, Jacobsen E, Visser RGF (1993) Cyclic somatic
481 embryogenesis and plant regeneration in cassava. *Ann Bot* 71:289–294

482 Raemakers CJM, Sofiari E, Kanju E, Jacobsen E, Visser RGF (1995) NAA-induced somatic
483 embryogenesis in cassava. In: cassava Biotechnology Network: Proceedings of second
484 international Scientific Meeting, Bogor, Indonesia. CIAT working document 150:355–63

485 Rossin CB, Rey MEC (2011) Effect of explant source and auxins on somatic embryogenesis of
486 selected cassava (*Manihot esculenta* Crantz) cultivars. *S Afr J Bot* 77:59–65

487 Rudi N, Norton GW, Alwang J, Asumugha G (2010) Economic impact analysis of marker-
488 assisted breeding for resistance to pests and post- harvest deterioration in cassava. *Afr J*
489 *Agric Res Econ* 4: 110-122

490 Saelim L, Phansiri S, Neatrphan S, Suksangpanomrung M, Narangajavana J (2006) Optimization
491 of *In vitro* cyclic somatic embryogenesis and regeneration of the Asian cultivars of
492 cassava (*Manihot esculenta* Crantz) for genetic manipulation system. *Glob J Biochem*
493 *Biotechnol* 1:7–15

494 Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Fregene M, Gruisse W,
495 Mallowa S, Manary M (2011) The BioCassava plus program: biofortification of cassava
496 for sub-Saharan Africa. *Annu Rev Plant Biol* 62:251–272

497 Schopke C, Chavarriaga P, Fauquet CM, Beachy RN (1992) Cassava tissue culture and
498 transformation: improvement of culture media and the effect of different antibiotics on
499 cassava. In: Roca WM, Thro AM (eds) *Proceedings of the First International Scientific*
500 *Meeting of the Cassava Biotechnology Network* pp 140–145. 25–28 August 1992,
501 Columbia

502 Sofiari E, Raemakers CJJM, Kanju E, Danso K, Van Lammeren AM, Jacobsen E, Visser RGF
503 (1997) Comparison of NAA and 2,4-D induced somatic embryogenesis in cassava. *Plant*
504 *Cell Tissue Organ Cult* 50:45–56

505 Szabados L, Hoyos R, Roca W (1987) *In vitro* somatic embryogenesis and plant regeneration in
506 cassava. *Plant cell reports* 6:248–251

507 Taylor N, Chavarriaga P, Raemakers K, Siritunga D, Zhang P (2004) Development of
508 transgenic technologies in cassava. *Plant Mol Biol* 56:671-688

509 Taylor NJ, Clarke M, Henshaw GG (1993) The induction of somatic embryogenesis in fifteen
510 African and one South American cultivars. In: Roca W and Thro AM (eds) Proceedings
511 of the First International Scientific Meeting of the Cassava Biotechnology Network
512 (Working Document No 123). CIAT, Cali, pp.137–139

513 Taylor NJ, Masona MV, Carcano R, Ho T, Schopke C, Fauquet CM (2001) Production of
514 embryogenic tissues and regeneration of transgenic plants in cassava (*Manihot esculenta*
515 Crantz). *Euphytica* 120:25–34

516 Vidal Á M, Costa MAPDC, Souza ADS, Almeida WABD Souza FVD (2014) *In vitro*
517 regeneration and morphogenesis of somatic embryos of cassava. *Revista Ciência*
518 *Agronômica* 45:558–565

519 Westby A (2002) Cassava utilization, storage and small-scale processing. In: Hillocks R J,
520 Thresh, JM, Bellotti, AC (eds) *Cassava biology, production and utilization*. CABI
521 Publishing, Wallingford, UK, pp 281–300

522 Zamora LL, Calderón JAG, Vázquez ET, Reynoso EB (2010) Optimization of ethanol
523 production process from cassava starch by surface response. *J Mex Chem Soc* 54:198–
524 203

525 Zhang P, Phansiri, S, Puonti-Kaerlas J (2001) Improvement of cassava organogenesis by the use
526 of silver nitrate in vitro. *Plant Cell Tissue Organ Cult* 67:47–54

527 Zhang P, Puonti-Kaerlas J (2005) Regeneration of transgenic cassava from transformed
528 embryogenic tissues. In: Peña L (ed) *Transgenic Plants: Methods and Protocols*. Humana
529 press Inc, New Jersey, pp. 165–176

530

531 **Figure Legend**

532 **Figure 1:** Regeneration of cassava cultivars from Cameroon. Apical immature meristematic leaf
533 lobe explants (**A**) induced compact non-embryogenic callus (**B**) and callus with proembryogenic
534 masses (**C**). Clusters of organized embryogenic structures consisting of globular (**D**) heart and
535 torpedo structures (**E**), early cotyledonary stage (**F**), asynchronous development of somatic
536 embryos (**G**) and green cotyledon (**H**) were observed. Organogenic callus with buds (**I**) derived
537 from green cotyledons developed clusters of shoot buds (**J**). Elongated shoot buds rooted and
538 developed into whole plantlets (**K**) in vitro. After transferring in boxes, hardened plantlets (**L**)
539 were acclimatized (**M**) and they established in the greenhouse and grew into normal plants (**N**).

540

541 **Figure 2:** Efficiency of primary and secondary somatic embryogenesis as indicated by frequency
542 of induction (**A**) and average number of somatic embryos per explant (**B**). Values represent the
543 mean \pm SD ($n = 50$). Different letters on error bars are significantly different at $\alpha=0.05$ (Newman
544 keuls test).

545

546 **Figure 3:** Influence of the number of cycles on somatic embryogenesis on medium
547 supplemented with auxins Pic, NAA and 2,4-D as indicated by frequency of induction (**A**) and
548 the average number of somatic embryos (**B**) were recorded. Data represent the mean \pm SD ($n =$
549 50). Different letters on error bars are significantly different at $\alpha=0.05$ (Newman keuls test).

550

551 **Figure 4:** Shoot bud length on organogenesis medium, acclimatized plants height (**A**) and
552 establishment of plants in the greenhouse (**B**). Different letters on error bars are significantly
553 different at $\alpha=0.05$ (Newman keuls test).

Table 1: Effect of plant growth regulators on somatic embryogenesis derived from immature shoot apical meristems of cassava cultivars from Cameroon

Plant growth regulators	Varieties	Frequency (%) of SE	Number of SE/ explant
Picloram 33 μM	Sekelen	20.00±5.77e	08.00±1.15 jk
	Ya Oroup	0.00±0.00	0.00±0.00
	Ngan Mbada	20.00±5.77e	59.33±11.40 c
	Ekona White	0.00±0.00	0.00±0.00
	Local Red	60.00±11.54 ab	08.00±0.57 jk
	Ekona Red	0.00±0.00	0.00±0.00
2,4-D 33μM	Local Ama	40.00±11.54 cde	14.00±3.21 ij
	Sekelen	40.00±11.54 cde	21±0.57 ghi
	Ya Oroup	0.00±0.00	0.00±0.00
	Ngan Mbada	0.00±0.00	0.00±0.00
	Ekona White	0.00±0.00	0.00±0.00
	Red Local	40.00±5.77 cde	60.50±3.50 c
NAA 33 μM	Ekona Red	40.00±11.54 cde	26.50±4.90 fg
	Local Ama	40.00±5.77 cde	17.00±3.46 hi
	Sekelen	0.00±0.00	0.00±0.00
	Ya Oroup	0.00±0.00	0.00±0.00
	Ngan Mbada	0.00±0.00	0.00±0.00
	Ekona White	0.00±0.00	0.00±0.00
Dicamba 33 μM	Local Red	0.00±0.00	0.00±0.00
	Ekona Red	0.00±0.00	0.00±0.00
	Local Ama	0.00±0.00	0.00±0.00
	Sekelen	20.00±5.77e	04.67±0.67 k
	Ya Oroup	20.00±11.54e	04.67±2.40 k
	Ngan Mbada	0.00±0.00	0.00±0.00
Picloram 50μM	Ekona White	0.00±0.00	0.00±0.00
	Local Red	20.00±11.54e	04.00±2.08 k
	Ekona Red	0.00±0.00	0.00±0.00
	Local Ama	20.00±5.77e	08.00±2.08 jk
	Sekelen	80.00±11.54 a	44±5.56 e
	Ya Oroup	0.00±0.00	0.00±0.00
2,4-D 50μM	Ngan Mbada	40.00±11.54 cde	90.00±21.96 a
	Ekona White	63.33±14.52 ab	32.00±5.19 f
	Local Red	60.00±20.00 ab	15.50±3.32 ij
	Ekona Red	46.67±17.63 bcd	44.83±21.22 e
	Local Ama	40.00±11.54 cde	47.66±14.83 de
	Sekelen	40.00±11.54 cde	21.00±0.57 ghi
NAA 50μM	Ya Oroup	20.00±0.00e	16.00±2.08 ij
	Ngan Mbada	50.00±5.77 bc	78.50±2.02 b
	Ekona White	20.00±0.00e	34.00±3.46 f
	Local Red	20.00±0.00e	22.00±5.19 ghi
	Ekona Red	20.00±0.00e	54.00±9.23 cd
	Local Ama	0.00±0.00	0.00±0.00
Dicamba 50μM	Sekelen	0.00±0.00	0.00±0.00
	Ya Oroup	0.00±0.00	0.00±0.00
	Ngan Mbada	0.00±0.00	0.00±0.00
	Ekona White	0.00±0.00	0.00±0.00
	Local Red	0.00±0.00	0.00±0.00
	Ekona Red	0.00±0.00	0.00±0.00
	Local Ama	0.00±0.00	0.00±0.00

±: Standard deviation; SE: somatic embryos

Within the same column, mean values followed by the same letter are not significantly different at $\alpha = 5\%$ (test Newman-Keuls)

558 **Table 2:** Correlations between frequency of somatic embryos induced and the average number
559 of somatic embryos of cassava cultivars from Cameroon

Varieties	Correlations (%SE - NB SE)
Sekelen	0.848 *
Ya Oroup	0.621*
Ngan Mbada	0.958*
Ekona White	0.719*
Local Red	0.382 NS
Ekona Red	0.818*
Local Ama	0.782*

560 *Significant; NS Non significant (bilateral test at $\alpha = 5\%$)

561

562 **Table 3:** Effect of auxins on secondary and cyclic somatic embryogenesis of five cassava
 563 cultivars from Cameroon

564

Varieties	Auxin (50μM)	Frequency (%) of SE induction	Average number of SE per explant	Average days to complete the process
Sekelen	Pic	100.00±0.00a	56.25±8.01c	25.00±2.22a
	NAA	60.00±0.00d	22.00±4.72fg	11.00±1.1b
	2,4-D	73.33±6.67bc	55.67±5.90c	27.00±3.5a
Ngan Mbada	Pic	96.67±3.33a	37.20±1.17e	26.00±3.7a
	NAA	57.33±1.33d	11.33±0.33h	12.00±1.5b
	2,4-D	66.67±6.67cd	26.33±2.60f	24.00±1.6a
Ekona White	Pic	100.00±0.00a	92.33±7.88a	23.00±2.3a
	NAA	84.00±2.08ab	14.67±2.72gh	11.00±1.6b
	2,4-D	84.00±2.08ab	71.00±11.23b	22.00±1.8a
Local Red	Pic	100.00±0.00a	56.00±4.93c	28.00±1.8a
	NAA	100.00±0.00a	15.58±1.52g	12.00±2.4b
	2,4-D	100.00±0.00a	49.33±8.11cd	29.00±0.8a
Ekona Red	Pic	100.00±0.00a	44.00±5.29de	22.00±4.2a
	NAA	58.00±2.00d	11.00±2.51h	10.00±0.6b
	2,4-D	100.00±0.00a	46.67±6.33de	23.00±4.5a

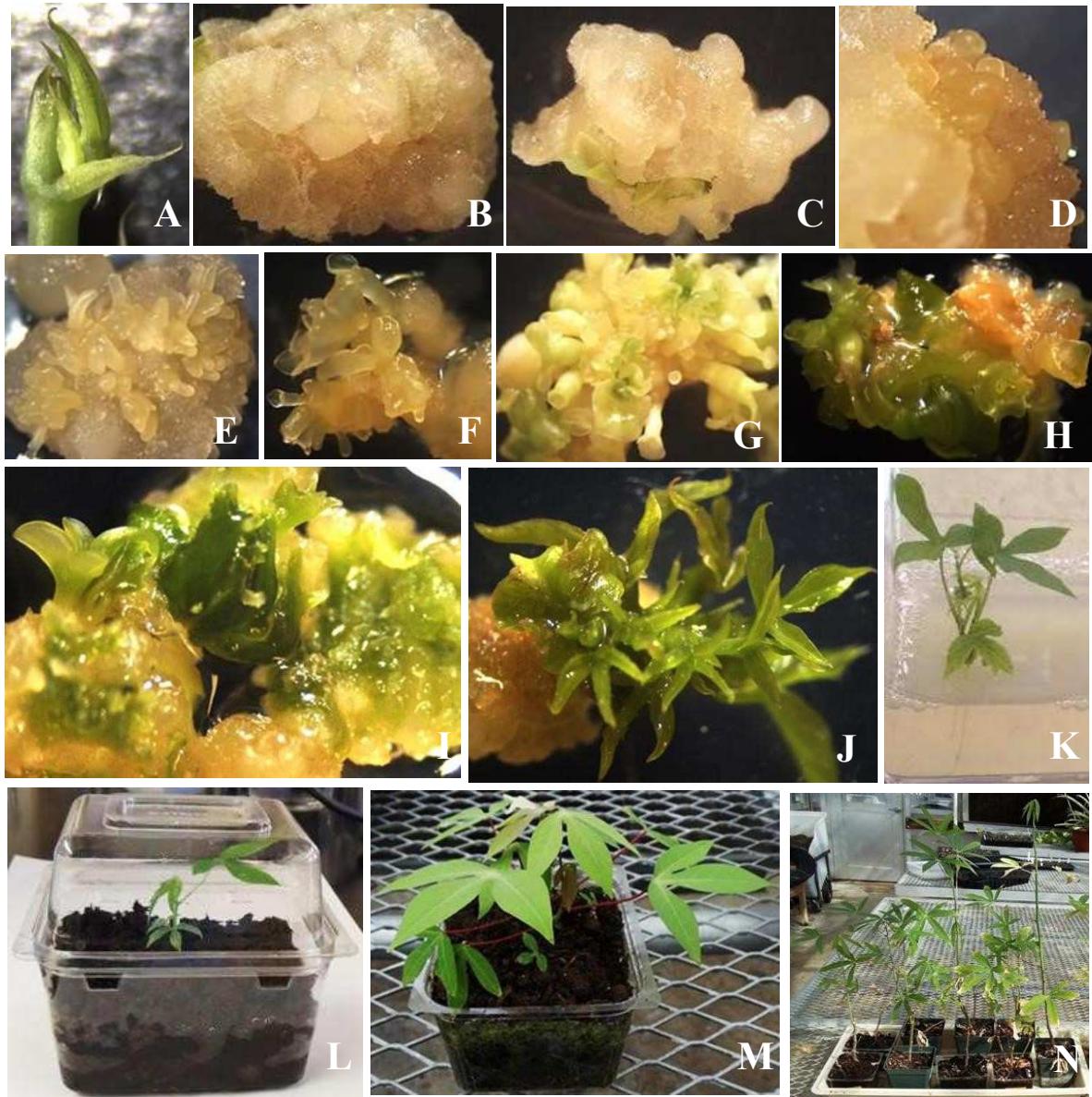
565 ±: standard deviation; SE: Somatic embryogenesis

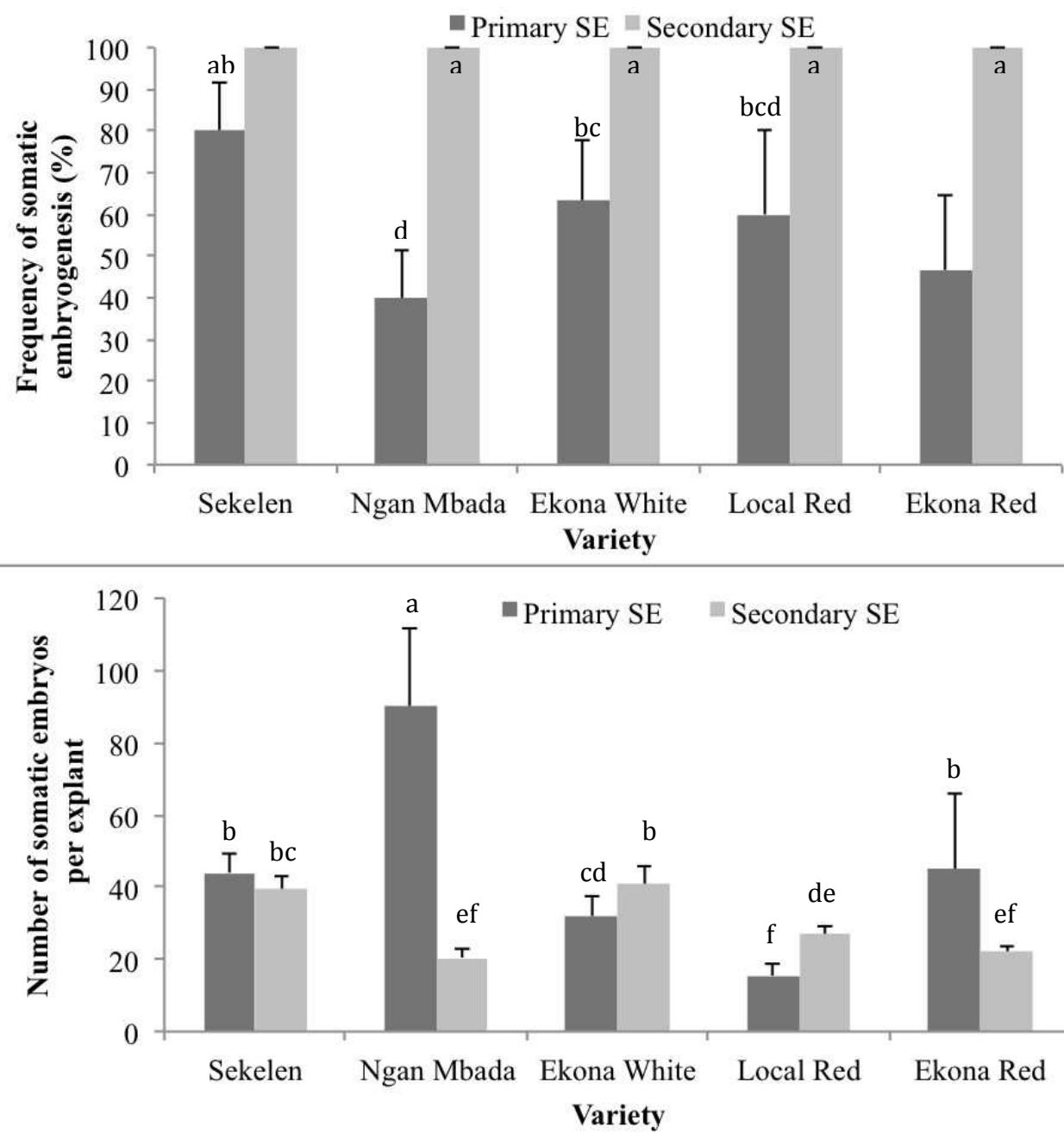
566 Within the same column, mean values followed by the same letter are not significantly different at $\alpha = 5$
 567 % (test Newman-Keuls)

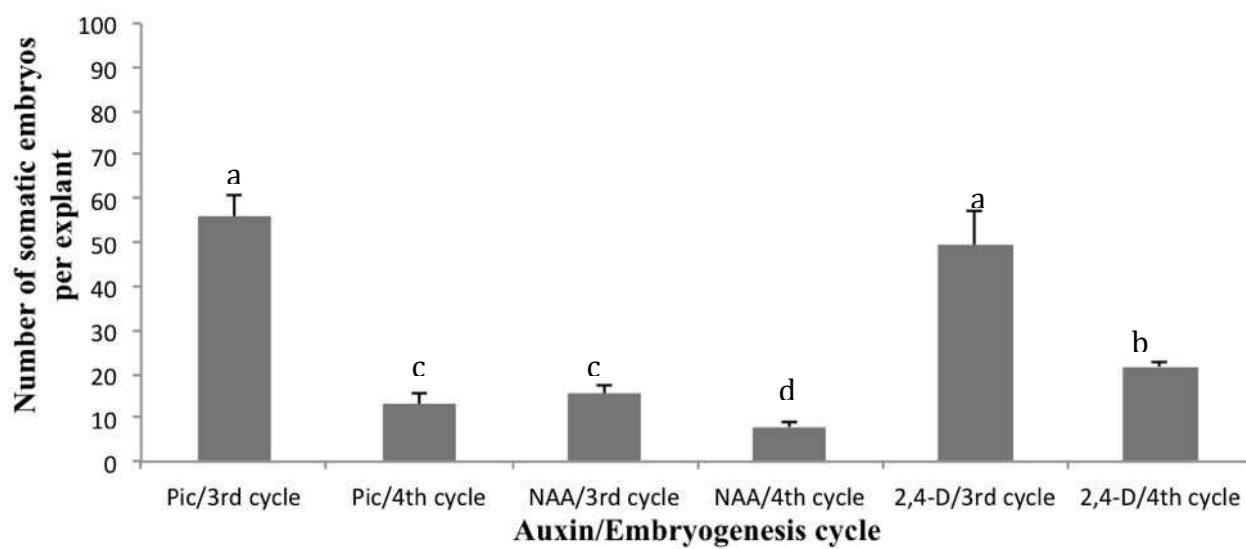
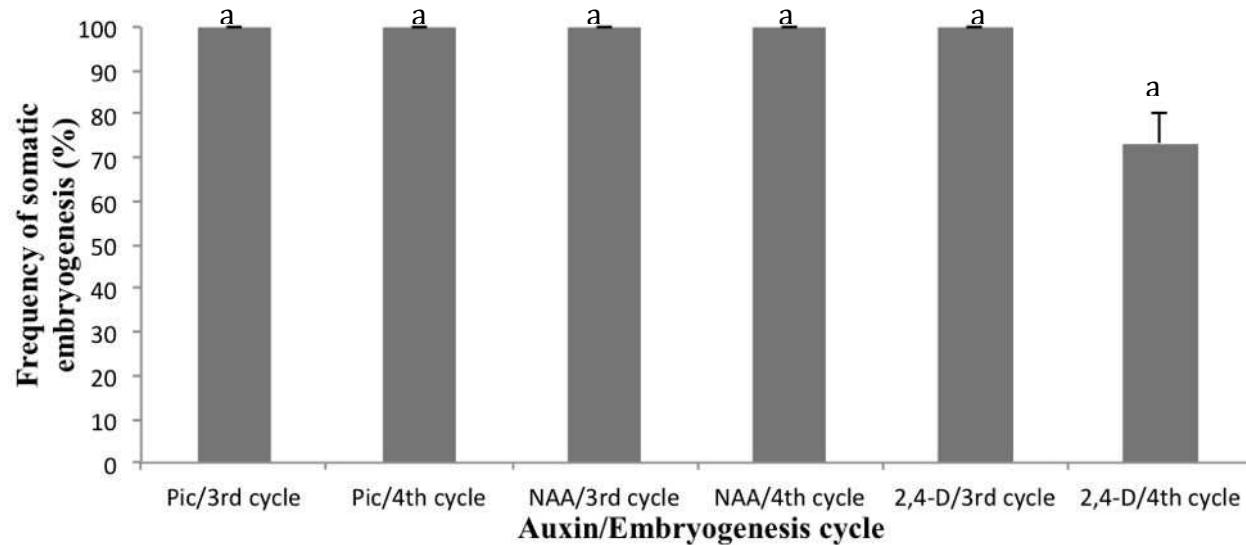
568

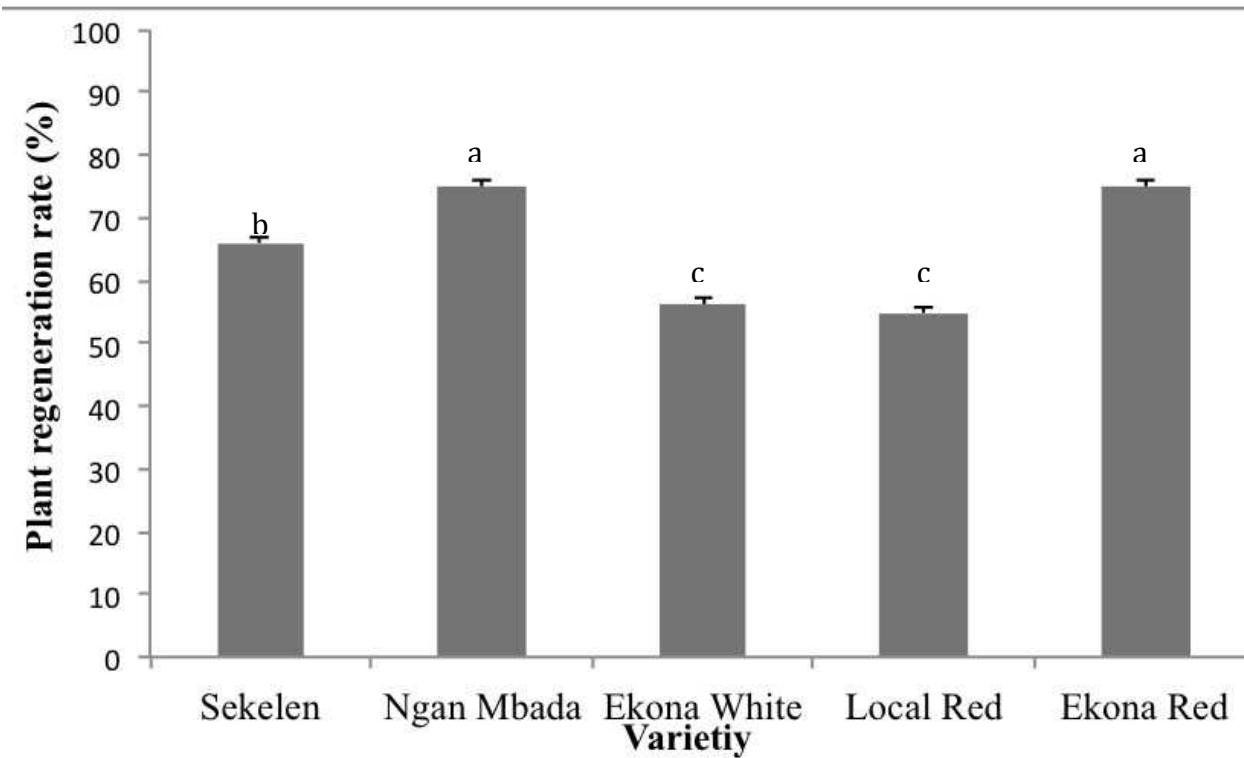
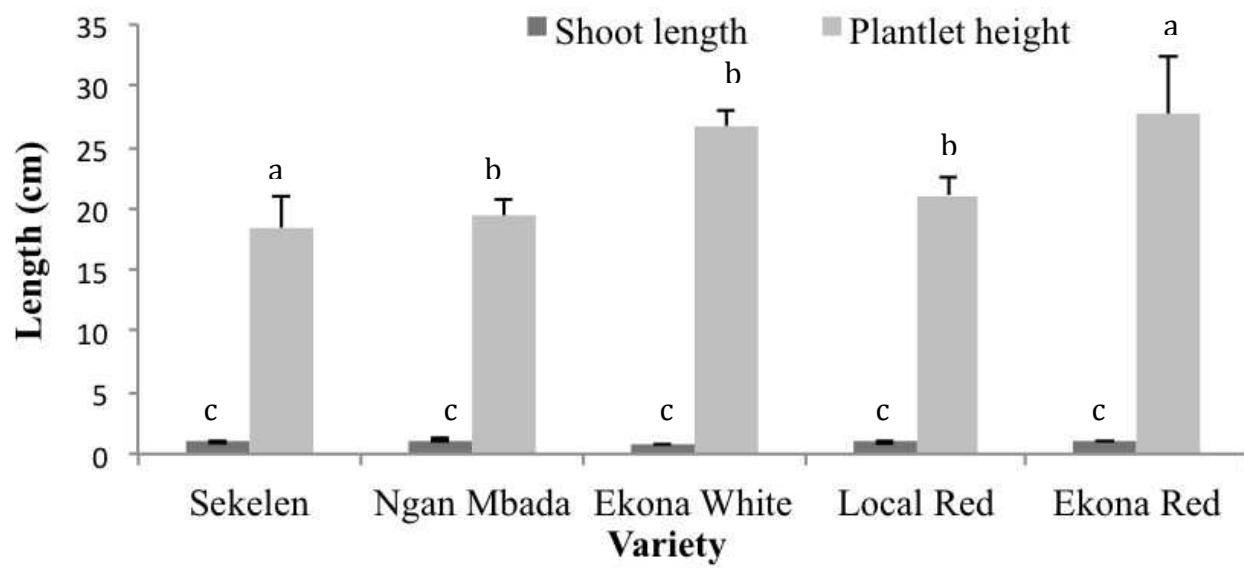
569

570 **Table 4:** Effect of cytokinins and photoperiod on callus and bud induction from green somatic
 571 embryos of five cassava cultivars from Cameroon
 572


Var	Cyt	Frequency (%) of callus induction		Frequency (%) of bud induction		Average number of buds per explant	
		Photoperiod	Dark	Photoperiod	Dark	Photoperiod	Dark
SK	BAP	91.00±3.71 a	90.00±3.33 a	69.00±6.74 a	56.00±7.18 a	13.48±0.43abcd	07.97±1.20cdef
	TDZ	0.00±0.00 b	0.00±0.00 b	12.00±3.26 de	16.00±5.81cde	02.40±0.70e	0.90±0.31f
NM	BAP	81.00±6.04 a	92.00±4.42 a	53.00±5.17 ab	66.00±4.26 a	08.30±0.72ce	06.90±0.30def
	TDZ	0.00±0.00 b	0.00±0.00 b	0.00±0.00 e	06.40±2.97 e	0.00±0.00f	0.80±0.29ef
EW	BAP	81.77±6.30 a	86.00±3.05 a	71.55±9.59 a	54.30±7.38 ab	11.30±0.74bcde	06.48±0.86def
	TDZ	0.00±0.00 b	0.00±0.00 b	20.00±0.00cde	28.00±7.42 cd	5.00±0.00ef	0.90±0.23ef
RL	BAP	100.00±0.00	100.00±0.00	56.00±6.53 a	54.00±5.81 ab	18.82±1.52ab	06.30±0.65def
	TDZ	0.00±0.00 b	06.00±3.05 b	10.00±3.33 de	34.00±7.91 bc	0.50±0.16f	02.45±0.72ef
ER	BAP	100.00±0.00	100.00±0.00	62.00±5.53 a	62.70±5.20 a	19.67±2.70a	15.26±2.22abc
	TDZ	0.00±0.00 b	0.00±0.00 b	0.00±0.00 e	06.40±2.97 e	0.00±0.00f	0.80±0.29ef


573 ±: standard deviation; Var: Varieties; Cyt: Cytokinins



574 Within the same column, mean values followed by the same letter are not significantly different at $\alpha = 5$



575 % (test Newman-Keuls)

576

