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SUMMARY

We investigate the asymptotic behavior of posterior distributions of regression coef-
ficients in high-dimensional linear models as the number of dimensions grows with the
number of observations. We show that the posterior distribution concentrates in neigh-
borhoods of the true parameter under simple sufficient conditions. These conditions hold
under popular shrinkage priors given some sparsity assumptions.

Some key words: Bayesian Lasso; Generalized double Pareto prior; Heavy tails; High-dimensional data;
Horseshoe prior; Posterior consistency; Shrinkage estimation.

1. INTRODUCTION

Consider the linear model y, = X,,% + &,, where y, is an n-dimensional vector of
responses, X, is the n x p, design matrix, &, ~ N (O,UQIn) with known o2, and some
of the components of 30 are zero. Let A, = {j : ﬂgj #0,7=1,...,pp} and |A,| = ¢n
denote the set of indices and number of nonzero elements in Y.
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In studying the behavior of regression methods in high-dimensional settings, it is in-
creasingly common to allow the number of candidate predictors p,, to grow with sample
size n. This is realistic in many applications. In genomics the number of predictors tends
to be larger by design for studies with more subjects. In collecting single nucleotide poly-
morphisms, gene expression, proteomics and so on, one can obtain an immense number
of candidate predictors. However, when n is small, attempting to measure and include
all such predictors in the statistical analysis seems unreasonable, so that one tends to
collect and analyze increasing subsets of an effectively unbounded number of candidate
predictors as sample size increases. In such applications, we are often interested in in-
ferences on the model parameters as much as building a predictive model in order to
understand the associations between the response and the candidate predictors.

Our setup is not new, and we follow Ghosal (1999) who also focused on asymptotic
properties of the posterior on the regression coefficients assuming known ¢? and growing
Prn. The increasing p,, paradigm induces some challenges relative to the traditional liter-
ature on posterior consistency in that growing dimension of 89 results in a changing fo
neighborhood around Y. This makes it more challenging to show that the posterior as-
signs all such neighborhoods probability converging to one. One way to bypass this issue
is to focus on the predictive distribution of y,, given X,, as in Jiang (2007). However, this
does not address the common interest in inferences on the regression coefficients. Ghosal
(1999) and Bontemps (2011) provide results on asymptotic normality of the posteriors
in linear models for pilogp, = o(n) and p, < n, respectively. As a corollary, Ghosal
(1999) states posterior consistency results in linear models when p? logn/n — 0 under
the usual assumptions on X,,. However, both Ghosal (1999) and Bontemps (2011) require
Lipschitz conditions ensuring that the prior is sufficiently flat in a neighborhood of the
true 3°. Such conditions are restrictive when using shrinkage priors that are designed to
concentrate on sparse 3, vectors.

Our main contribution is providing a simple sufficient condition on the prior con-
centration to achieve the desired asymptotic posterior behavior when p, = o(n). Our
particular focus is on shrinkage priors, including the Laplace, Student’s ¢, generalized
double Pareto, and horseshoe-type priors (Johnstone & Silverman, 2004; Carvalho et al.,
2010; Armagan et al., 2011, 2013). There is a rich methodological and applied literature
supporting such priors but a lack of theoretical results.

2.  SUFFICIENT CONDITIONS FOR POSTERIOR CONSISTENCY

Our results on posterior consistency rely on the following assumptions as n — oo:

(A1) Let p, = o(n);
(A2) Let Apmin and Apmax be the smallest and the largest singular values of
X, respectively. Then 0 < Apin < liminf,, 00 Ay min/v/7 < limsup,, oo Apmax/v/1 <
Amax < OO;
(A3) Let SUP;—1,....pn |52j| < 005
(A4) Let g, = o{n*=?/2/(\/pnlogn)} for p € (0,2);
(A5) Let ¢, = o(n/logn).
)

Assumptions (A4) and (A5) will be used in different settings.

LEMMA 1. Let By, = {By : |0 — BY|| > €} where € > 0. To test Hy : B, = B2 vs Hy :
B € By, we define a test function @, (yn) = I(yn € Cy) where the critical region is Cy, =
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3

{yn  |1Bn — B2 > €/2} and B = (XTX,) ' XTy,. Then, under assumptions (A1) and
(A2), as n — oo,

min

2. supg cp, Es, (1 — ®n) < exp{—€nA2; /(160%)}.

min

1. Ego(®,) < exp{—e*nAZ;, /(160%)},

THEOREM 1. Given Lemma 1, the posterior of B, under prior I1,,(5,) is strongly con-
sistent, that is, for any € > 0, I, (Bulyn) = W (Bn ¢ |Bn — 82| > €|lyn) — 0 prgo —almost
surely as n — oo, if

A
n (Bn B — B < nP/2> > exp(—dn)

forall0 < A < 2A2, /(48A2

. 2 ) and0<d< A%, /(320%) — 3AA2,. /(20?) and some
p > 0.

min

Theorem 1 provides a simple sufficient condition on the concentration of the prior
around sparse 3°. We use Theorem 1 to provide conditions on 8% under which specific
shrinkage priors achieve posterior consistency focusing on priors that assume independent
and identically distributed elements of (.

2-1.  Laplace Prior

THEOREM 2. Under assumptions (A1)-(A4), the Laplace prior f(Bnjlsn) =
(1/2s,,) exp(—|Bnjl/sn) with scale parameter s, yields a strongly consistent poste-

rior if s, = C/(\/pan?/?logn) for finite C > 0.

2-2.  Student’s t Prior
The density function for the scaled Student’s ¢ distribution is

1 52 —(do+1)/2
FBils:do) = B (12, do2) (1 " 522[)) ’

with scale s, degrees of freedom dy, and B(+) denoting the beta function.

THEOREM 3. Under assumptions (A1)-(A3) and (A5), the scaled Student’s t prior
with parameters s, and do, yields a strongly consistent posterior if do, = dy € (2,00)
and s, = C/(v/pun?/?logn) for finite p >0 and C' > 0.

2-3.  Generalized Double Pareto Prior

As defined by Armagan et al. (2013), the generalized double Pareto density is given
by

«

|6j‘ —(a+1)
j =— (14— > 0.
f(53|0477l) 217( + 77 ) ) 04,77

THEOREM 4. Under assumptions (A1)-(A3) and (A5), the generalized double Pareto
prior with parameters oy, and 1, yields a strongly consistent posterior if c, = a € (2,00)
and 1, = C/(/panP/?logn) for finite p > 0 and C > 0.
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2-4. Horseshoe-like Priors

As defined in Armagan et al. (2011), generalized beta scale mixtures of normals are
obtained by the following three equivalent representations:

B~ NO.1/2; = 1), £(65) = o€ (0 0 (L (€= Dgy) o)

ﬁj ~ N(O,Tj),Tj ~ Ga(ao, )\j), >‘j ~ Ga(bo,g)

I'(ap+0b
By~ N0, 1), () = Lot

A\ TP e—ap.a0—1 . /£~ (ao+bo)
NaolTGo)® T LH /O™

where ag, bg,§ > 0. Due to the representation in (1) and the work by Carvalho et al.
(2010), we refer to these priors as horseshoe-like. The above formulation yields a general
family that covers special cases discussed in Johnstone & Silverman (2004), a technical
report by Griffin & Brown (2007) and Carvalho et al. (2010). The resulting marginal
density on (; is

T(bo + 1/2)T(ao + bo)U{bo +1/2,3/2 — ag, B3 /(2€)}
(2m€)1/2T (ao)T (bo) ’

f(ﬁj‘a()ab(hg) = (2)

where U(-) denotes the confluent hypergeometric function of the second kind.

THEOREM 5. Under assumptions (A1)-(A3) and (A5), the prior in (2) with parame-
ters apn, = ap € (0,00), bop, = by € (1,00) and &, yields a strongly consistent posterior if
&n = C/(pnnPlogn) for finite p >0 and C > 0.

3. FINAL REMARKS

Our analysis is heavily dependent on the construction of good tests. Results can be
extended utilizing appropriate tests relying on an estimator with asymptotically vanish-
ing probability of being outside of a shrinking neighborhood of the truth. For instance,
one could use results similar to Bickel et al. (2009) given additional conditions on X,,.
Theorem 7.2 of Bickel et al. (2009) states that

R anlogp —a
oy (s — 5515 > 221082 ) < e ®)

for a, > 2,/2 and for some M > 0, where BnL denotes the Lasso estimator. Hence us-
ing (3), in a similar fashion to Lemma 1, we can obtain consistent tests with an e-
neighborhood contracting at a rate O{(a,logp,)*/?//n}. Assuming ¢, < co for sim-
plicity and letting a,, = O(logn), following Theorems 1, 3, 4 and 5, we anticipate that
under the Student’s ¢, generalized double Pareto and horseshoe-like priors, a near-optimal
contraction rate of O{(lognlogp,)'/?/+/n} is possible.

As in almost all of the Bayesian asymptotic literature, we have focused on sufficient
conditions. Our conditions are practically appealing in allowing priors to be screened for
their usefulness in high-dimensional settings. However, it would be of substantial interest
to additionally provide theory allowing one to rule out the use of certain classes of priors
in particular settings.
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4. TECHNICAL DETAILS

Proof of Lemma, 1. Noting that £, = (XTX,,) ' X y,,, Ego(®y) = prﬁg(HBn — BY >
€/2) < prgo {x% > e2nA2, /(40%)} where X127 is a chi-squared distributed random
variable with p degrees of freedom. The inequality is attained using assumption (A2).
Similarly,  supg, g, Eg, (1~ @n) < supg, g, prg, (150 — Bull = 187 = Bulll < €/2) <
Supg,,eB, prﬁn(HBn = Bull > —€/2+ ||ﬁ701 — Bull) = prﬁn(”ﬁn — Bull > €/2) < Pl"gg{xzz;n >
e2nA2. /(40?)}. Simplifying the inequality pr{x% —p > 2(px)'/? 4 22} < exp(—z) by
Laurent & Massart (2000), we state that pr(x2 > x) < exp(—z/4) if > 8p. Then, using
assumption (Al), as n — oo,

E,Bg(q)n) < exp{_€2nAr2nin/(1602)}’
sup B, (1 - @) < exp{—2nAZy, /(160%)}.

This completes the proof. O

Proof of Theorem 1. Our proof relies on a technique originally devised by Schwartz
(1965). The posterior probability of B,, is given by

I, L (ynlBn)/ £ (ynl BR)YIL(d )
S (ynlBr)/ f(ynl B5) 3T1(dB,)
(1 - (I)n)JBn
Jn
=11+ Iz/Jyn,

Hn(Bn’yn) =

< O+

where Jg, = [ {/( (Ynl|Bn)/ fynl B MI(dB,) and J,, = Jgen. We need to show that
I+ I3/ Jn — 0 prgo—almost surely as n — co. Let b= €2A%. /(160?). For sufficiently

min
large n, prgo {11 > exp(—bn/2)} < exp(bn/2)Ego (I1) = exp(—bn/2) using Lemma 1. This
implies that > >, PIrgo {I; > exp(—bn/2)} < oo and hence by the Borel-Cantelli lemma

prg, {1 > exp(—bn/2) infinitely often} = 0. We next look at the behavior of I5:

Eﬁ%([Q) = Eﬁg{(l —®,)J5,}
(ann)

= Eg {(1 ~®,) f(ynlﬁo) n(dﬁn)}

/ / (1= @) f (yn|Bn)dyn 1 ()

I1,(Bn) sup Eg,(1—®,)

Bn€By
< exp(—bn)

Then for sufficiently large n, prgo{l> > exp(—bn/2)} < exp(—bn/2) using Lemma 1.
Again Y77 prgo{l2 > exp(—bn/2)} < oo and hence by the Borel-Cantelli lemma
prg, {12 > exp(—bn/2) infinitely often} = 0.

We have shown that both I; and Iy tend towards zero exponentially fast. Now we
analyze the behavior of J,,. To complete the proof, we need to show that exp(bn/2)J, —
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6

00 prgo—almost surely as n — oco.

1. flyalBn)
exp(bn/2)J, = exp(bn/2 /exp{—n log === 3 T1,,(d 3,
(00215 = expi(bn2) Hog T i, 45,
> exp{(b/2 — v)n}1,(Dny) (4)
where Dy = {Bn n~t 10g{f(yn|ﬂg)/f(yn|5n)} <vi={Bn: n_1(||yn - XnﬁnHQ -
lyn — XuBOIP) < 20%) for any <1 <b/2. Then T(Dpy) > Ta{ By s |l -
XnBnll? = lyn — XnBY%| < 20%v}. Using the identity 22 — 22 = 22¢(x — 2¢) + (z — 70)?
for all z,zg € <,
I1,(Dy,v) > 11, {5n it ‘2Hyn - Xn@%”(“yn — X Bull = llyn — Xnﬁ?z“)
+ ([lyn — XuBull = llym — XntH)Q‘ < 202’/}

> I { B 2 07 2llyn — XSl XnBn — XnBll + 1 X0 0 — XnBpll?) < 2070}

_ 202y
S, <ﬁn X — X8l < 222 X — X8 < ) (5)

3k,

given that ||y, — X,8%| < kn. For k, = n0+)/2 with p > 0 and &2 /02 > 8n, Prao (Yo :
[yn — XnBo > > 87) = prao (yn : X5 > ki /0?) < exp{—&;/(40%)}. Since 307, pryo (yn :
lyn — XnB2|| > Kn) < o0, by the Borel-Cantelli lemma prgo (Yn : [[yn — X80 >
Ky infinitely often) = 0. Following from (5) and the fact that x,, — oo, as n — oo, for
sufficiently large n, IL,(Dy,) > I1,{5, : n_1||Xan — Xnﬁgﬂ < 202y/(3/<;n)} > 11,(B, :
180 — BYl < A/nP/?), where A = 202v/(3Amax). Hence following (4), IL,,(By,|yn) — 0
prgo—almost surely as n — oo if (8 @ [|Bn — BY < A/nP/?) > exp(—dn) for all 0 <
d < b/2 — v. This completes the proof. O

Proof of Theorem 2. We need to calculate the probability assigned to the region {f, :
18n — B°|] < A/nP/?} under the Laplace prior.

0 A 0 12 2 A?
Hn(ﬂn:uﬂn—ﬁnu<)zﬂn But 3 (B — B+ 3 B < =

ne/? jeA jgA "
> H {Hn (Bn] : ’671] - 2]’ < \/Ap/2>}
JeA, Pnn
2
JEA . > _ (o —a)A”
xII,, § BIF" Z @U < P
JEA
A P E (ngAn 57211’)
> H {Hn (an3|5nj—52j|<2>} 1 - 2 (6)
et \/pnnp/ (pn - Qn)A

where E( fm) can verified to be 2s2. Following from (6)

nP/2

A exp _SllpjeAn |ﬁ2]| B A o 1_ 2pnn98721 (7)
VPP 25, Sn Snv/Panf/? Az )0

A
I, (m NBa - B < ) >
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Taking the negative logarithm of both sides of (7) and letting s, = C/(y/pnn®/?logn)
for some C' > 0, we obtain

A
—logII, <Bn: 180 — B2 < p/2> < —gpnlog A + gy log C — ¢, loglogn

2 /P2 log nsup; v
Ctop {1 20 anlogn+q VP gNSUpPjc 4, |8n;l ®)
A2(logn)? C C

as n — o0o. It is easy to see that the dominating term in (8) is the last one and
—1og L, (Bn : [18n — BY| < A/nP/?) < dn for all d > 0. This completes the proof. O

Proof of Theorem 3. E(ﬁflj), in this case, is given by dps?/(dg — 2). For the sake of
simplicity, we let dy = 3. Then following from (6)

A 3pnnPs>
I . 0 n n
" <Bn' 180 = Bull < ﬂ/2> = (1 A? >

—27 49n
2A | 25uea, (Bnj)? 242 ©)
Vpan? s, /3B(1/2,3/2) 353 352 pan? |

Taking the negative logarithm of both sides of (9) and letting s, = C/(v/ppon?/?logn)
for some C' > 0, we obtain

A V3CB(1/2,3/2)
. 0 ’ _
—logII, (ﬁn.HBn Ball < p/2> §qnlog{ oA qn loglogn
o2 2ppn?lognsupjc 4, (82:)%  2A2(logn)?
—1 l— ——— 2qn, 1 1 n
Og{ A?(logn)Q} + 2 Og{ * 307 e

(10)

as n — o0o. It is easy to see that the dominating term in (10) is the last one and
—1ogTL,(Bn : [|18n — BUll < A/nP/?) < dn for all d > 0. The result can be easily shown
to hold for all dy € (2,00). This completes the proof. O

Proof of Theorem 4. E( ?Lj), in this case, can verified to be 212 /(a? — 3a + 2) for a >
2. For the sake of simplicity, we let o = 3. Then following from (6)

A
II, <Bn : Hﬁn /BOH < p/2> >

sup;; 0. - P2
_ 38 () Sean gl A 1- 2
\/pnnp/27]n Tn nn\/pnnp/Q A2

Taking the negative logarithm of both sides of (11) and letting 1, = C/(v/pnn?/?logn)
for some C' > 0, we obtain

A
—logIl, (Bn 1Bn = B < p/2> < —gpn log 3A — 3¢y, log C — ¢, loglogn

]En

C?
_ = p/2
log {1 2oz 1)? } + 4qy, log (C + Alogn + /ppn”’“logn sup \Bn \)12)
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as n — oo. It is easy to see that the dominating term in (12) is the last one and
—log I, (B : ||Bn — BY|| < A/nP/?) < dn for all d > 0. The result can be easily shown
to hold for all & € (2,00). This completes the proof. O

Proof of Theorem 5. Similarly to the previous cases, we can show that FE( 72”) =
&l (ap + 1)I'(by — 1) /{T'(a0)T'(bo)}. Then following from (6)

A pnan(B% ) 2A in
IL, (571 2B _BQH < W) > {1 - A2 : } <\/pnnp/2)

U{bo +1/2,3/2 — ag, supje 4, (89,)*/&n + A/ (pan?&n)} | ™ 13
(27&,) /2T (ag)T (bo)T(bo + 1/2) T (ag + bo) ! . (13)

We can use the expansion U(a,b,z)= z*a{Ei;%(a)m(l +a—0)m(—2)"/m! +
O(|z|~f)} for large z, where (a),, =a(a+1)...(a+m —1) and Rth term is the
smallest in the expansion (Abramowitz & Stegun, 1972). Letting R = 1, for sufficiently
large n, (13) can be further bounded as

n 2
1, (525 160 B2 < 0 ) > {1 _ p”gﬂ}
y V2AT (by + 1/2)T(ao + bo) o
V/PanPT JEon/aT(a0)T (bo) {5ubje 4, (BL,)2/En + A/ (pan?En) o012 |-
(14)

Taking the negative logarithm of both sides of (14) and letting &, = C/(p,n”logn) for
some C > 0, we obtain

A
. 50 2
—logIl, <,8n HBn = Ball < np/2> <

\/QAF(bo + 1/2)F(CLO + bo) Cr(ao + 1)F(b0 — 1)
o IOg{ VC/T (ao)T (bo) } ~lo {1 ~ Tlog nAT(ag)T'(bo) }

1 panflognsupseq, (Bn;)°  Alogn
_%" loglogn + qn <bo + 2) log { " e J€ LI C’g (15)
as n — oo. It is easy to see that the dominating term in (15) is the last one and
—10g L, (By : ||8n — BY| < A/nP/?) < dn for all d > 0. This completes the proof. O
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