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Summary

We investigate the asymptotic behavior of posterior distributions of regression coef-
ficients in high-dimensional linear models as the number of dimensions grows with the
number of observations. We show that the posterior distribution concentrates in neigh-
borhoods of the true parameter under simple sufficient conditions. These conditions hold
under popular shrinkage priors given some sparsity assumptions.

Some key words: Bayesian Lasso; Generalized double Pareto prior; Heavy tails; High-dimensional data;
Horseshoe prior; Posterior consistency; Shrinkage estimation.

1. Introduction

Consider the linear model yn = Xnβ
0
n + εn, where yn is an n-dimensional vector of

responses, Xn is the n× pn design matrix, εn ∼ N
(
0, σ2In

)
with known σ2, and some

of the components of β0n are zero. Let An = {j : β0nj 6= 0, j = 1, . . . , pn} and |An| = qn
denote the set of indices and number of nonzero elements in β0n.
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2

In studying the behavior of regression methods in high-dimensional settings, it is in-
creasingly common to allow the number of candidate predictors pn to grow with sample
size n. This is realistic in many applications. In genomics the number of predictors tends
to be larger by design for studies with more subjects. In collecting single nucleotide poly-
morphisms, gene expression, proteomics and so on, one can obtain an immense number
of candidate predictors. However, when n is small, attempting to measure and include
all such predictors in the statistical analysis seems unreasonable, so that one tends to
collect and analyze increasing subsets of an effectively unbounded number of candidate
predictors as sample size increases. In such applications, we are often interested in in-
ferences on the model parameters as much as building a predictive model in order to
understand the associations between the response and the candidate predictors.

Our setup is not new, and we follow Ghosal (1999) who also focused on asymptotic
properties of the posterior on the regression coefficients assuming known σ2 and growing
pn. The increasing pn paradigm induces some challenges relative to the traditional liter-
ature on posterior consistency in that growing dimension of β0n results in a changing `2
neighborhood around β0n. This makes it more challenging to show that the posterior as-
signs all such neighborhoods probability converging to one. One way to bypass this issue
is to focus on the predictive distribution of yn given Xn as in Jiang (2007). However, this
does not address the common interest in inferences on the regression coefficients. Ghosal
(1999) and Bontemps (2011) provide results on asymptotic normality of the posteriors
in linear models for p4n log pn = o(n) and pn ≤ n, respectively. As a corollary, Ghosal
(1999) states posterior consistency results in linear models when p3n log n/n→ 0 under
the usual assumptions on Xn. However, both Ghosal (1999) and Bontemps (2011) require
Lipschitz conditions ensuring that the prior is sufficiently flat in a neighborhood of the
true β0n. Such conditions are restrictive when using shrinkage priors that are designed to
concentrate on sparse βn vectors.

Our main contribution is providing a simple sufficient condition on the prior con-
centration to achieve the desired asymptotic posterior behavior when pn = o(n). Our
particular focus is on shrinkage priors, including the Laplace, Student’s t, generalized
double Pareto, and horseshoe-type priors (Johnstone & Silverman, 2004; Carvalho et al.,
2010; Armagan et al., 2011, 2013). There is a rich methodological and applied literature
supporting such priors but a lack of theoretical results.

2. Sufficient Conditions for Posterior Consistency

Our results on posterior consistency rely on the following assumptions as n→∞:

(A1) Let pn = o(n);
(A2) Let Λnmin and Λnmax be the smallest and the largest singular values of
Xn, respectively. Then 0 < Λmin < lim infn→∞ Λnmin/

√
n ≤ lim supn→∞ Λnmax/

√
n <

Λmax <∞;
(A3) Let supj=1,...,pn |β

0
nj | <∞;

(A4) Let qn = o{n1−ρ/2/(
√
pn log n)} for ρ ∈ (0, 2);

(A5) Let qn = o(n/ log n).

Assumptions (A4) and (A5) will be used in different settings.

Lemma 1. Let Bn := {βn : ‖βn − β0n‖ > ε} where ε > 0. To test H0 : βn = β0n vs H1 :
βn ∈ Bn, we define a test function Φn(yn) = I(yn ∈ Cn) where the critical region is Cn :=
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{yn : ‖β̂n − β0n‖ > ε/2} and β̂n = (XT
nXn)−1XT

n yn. Then, under assumptions (A1) and
(A2), as n→∞,

1. Eβ0
n
(Φn) ≤ exp{−ε2nΛ2

min/(16σ2)},
2. supβn∈Bn Eβn(1− Φn) ≤ exp{−ε2nΛ2

min/(16σ2)}.

Theorem 1. Given Lemma 1, the posterior of βn under prior Πn(βn) is strongly con-
sistent, that is, for any ε > 0, Πn(Bn|yn) = Πn(βn : ||βn − β0n|| > ε|yn)→ 0 prβ0

n
–almost

surely as n→∞, if

Πn

(
βn : ‖βn − β0n‖ <

∆

nρ/2

)
> exp(−dn)

for all 0 < ∆ < ε2Λ2
min/(48Λ2

max) and 0 < d < ε2Λ2
min/(32σ2)− 3∆Λ2

max/(2σ
2) and some

ρ > 0.

Theorem 1 provides a simple sufficient condition on the concentration of the prior
around sparse β0n. We use Theorem 1 to provide conditions on β0n under which specific
shrinkage priors achieve posterior consistency focusing on priors that assume independent
and identically distributed elements of βn.

2·1. Laplace Prior

Theorem 2. Under assumptions (A1)–(A4), the Laplace prior f(βnj |sn) =
(1/2sn) exp(−|βnj |/sn) with scale parameter sn yields a strongly consistent poste-

rior if sn = C/(
√
pnn

ρ/2 log n) for finite C > 0.

2·2. Student’s t Prior

The density function for the scaled Student’s t distribution is

f(βj |s, d0) =
1

s
√
d0B(1/2, d0/2)

(
1 +

β2j
s2d0

)−(d0+1)/2

,

with scale s, degrees of freedom d0, and B(·) denoting the beta function.

Theorem 3. Under assumptions (A1)–(A3) and (A5), the scaled Student’s t prior
with parameters sn and d0n yields a strongly consistent posterior if d0n = d0 ∈ (2,∞)
and sn = C/(

√
pnn

ρ/2 log n) for finite ρ > 0 and C > 0.

2·3. Generalized Double Pareto Prior

As defined by Armagan et al. (2013), the generalized double Pareto density is given
by

f(βj |α, η) =
α

2η

(
1 +
|βj |
η

)−(α+1)

, α, η > 0.

Theorem 4. Under assumptions (A1)–(A3) and (A5), the generalized double Pareto
prior with parameters αn and ηn yields a strongly consistent posterior if αn = α ∈ (2,∞)
and ηn = C/(

√
pnn

ρ/2 log n) for finite ρ > 0 and C > 0.
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2·4. Horseshoe-like Priors

As defined in Armagan et al. (2011), generalized beta scale mixtures of normals are
obtained by the following three equivalent representations:

βj ∼ N(0, 1/%j − 1), f(%j) =
Γ(a0 + b0)

Γ(a0)Γ(b0)
ξb0%b0−1j (1− %j)a0−1 {1 + (ξ − 1)%j}−(a0+b0)(1)

βj ∼ N(0, τj), τj ∼ Ga(a0, λj), λj ∼ Ga(b0, ξ)

βj ∼ N(0, τj), f(τj) =
Γ(a0 + b0)

Γ(a0)Γ(b0)
ξ−a0τa0−1(1 + τj/ξ)

−(a0+b0)

where a0, b0, ξ > 0. Due to the representation in (1) and the work by Carvalho et al.
(2010), we refer to these priors as horseshoe-like. The above formulation yields a general
family that covers special cases discussed in Johnstone & Silverman (2004), a technical
report by Griffin & Brown (2007) and Carvalho et al. (2010). The resulting marginal
density on βj is

f(βj |a0, b0, ξ) =
Γ(b0 + 1/2)Γ(a0 + b0)U{b0 + 1/2, 3/2− a0, β2j /(2ξ)}

(2πξ)1/2Γ(a0)Γ(b0)
, (2)

where U(·) denotes the confluent hypergeometric function of the second kind.

Theorem 5. Under assumptions (A1)–(A3) and (A5), the prior in (2) with parame-
ters a0n = a0 ∈ (0,∞), b0n = b0 ∈ (1,∞) and ξn yields a strongly consistent posterior if
ξn = C/(pnn

ρ log n) for finite ρ > 0 and C > 0.

3. Final Remarks

Our analysis is heavily dependent on the construction of good tests. Results can be
extended utilizing appropriate tests relying on an estimator with asymptotically vanish-
ing probability of being outside of a shrinking neighborhood of the truth. For instance,
one could use results similar to Bickel et al. (2009) given additional conditions on Xn.
Theorem 7.2 of Bickel et al. (2009) states that

prβ0
n

(
‖β̂nL − β0n‖22 > M

an log pn
n

)
≤ p1−a2n/8n (3)

for an > 2
√

2 and for some M > 0, where β̂nL denotes the Lasso estimator. Hence us-
ing (3), in a similar fashion to Lemma 1, we can obtain consistent tests with an ε-
neighborhood contracting at a rate O{(an log pn)1/2/

√
n}. Assuming qn <∞ for sim-

plicity and letting an = O(log n), following Theorems 1, 3, 4 and 5, we anticipate that
under the Student’s t, generalized double Pareto and horseshoe-like priors, a near-optimal
contraction rate of O{(log n log pn)1/2/

√
n} is possible.

As in almost all of the Bayesian asymptotic literature, we have focused on sufficient
conditions. Our conditions are practically appealing in allowing priors to be screened for
their usefulness in high-dimensional settings. However, it would be of substantial interest
to additionally provide theory allowing one to rule out the use of certain classes of priors
in particular settings.
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4. Technical Details

Proof of Lemma 1. Noting that β̂n = (XT
nXn)−1XT

nyn, Eβ0
n
(Φn) = prβ0

n
(‖β̂n − β0n‖ >

ε/2) ≤ prβ0
n
{χ2

pn > ε2nΛ2
min/(4σ

2)} where χ2
p is a chi-squared distributed random

variable with p degrees of freedom. The inequality is attained using assumption (A2).

Similarly, supβn∈Bn Eβn(1− Φn) ≤ supβn∈Bn prβn(|‖β̂n − βn‖ − ‖β0n − βn‖| ≤ ε/2) ≤
supβn∈Bn prβn(‖β̂n − βn‖ ≥ −ε/2 + ‖β0n − βn‖) = prβn(‖β̂n − βn‖ ≥ ε/2) ≤ prβ0

n
{χ2

pn >

ε2nΛ2
min/(4σ

2)}. Simplifying the inequality pr{χ2
p − p ≥ 2(px)1/2 + 2x} ≤ exp(−x) by

Laurent & Massart (2000), we state that pr(χ2
p ≥ x) ≤ exp(−x/4) if x ≥ 8p. Then, using

assumption (A1), as n→∞,

Eβ0
n
(Φn) ≤ exp{−ε2nΛ2

min/(16σ2)},
sup
βn∈Bn

Eβn(1− Φn) ≤ exp{−ε2nΛ2
min/(16σ2)}.

This completes the proof. �

Proof of Theorem 1. Our proof relies on a technique originally devised by Schwartz
(1965). The posterior probability of Bn is given by

Πn(Bn|yn) =

∫
Bn{f(yn|βn)/f(yn|β0n)}Π(dβn)∫
{f(yn|βn)/f(yn|β0n)}Π(dβn)

≤ Φn +
(1− Φn)JBn

Jn
= I1 + I2/Jn,

where JBn =
∫
Bn{f(yn|βn)/f(yn|β0n)}Π(dβn) and Jn = J<pn . We need to show that

I1 + I2/Jn → 0 prβ0
n
–almost surely as n→∞. Let b = ε2Λ2

min/(16σ2). For sufficiently
large n, prβ0

n
{I1 ≥ exp(−bn/2)} ≤ exp(bn/2)Eβ0

n
(I1) = exp(−bn/2) using Lemma 1. This

implies that
∑∞

n=1 prβ0
n
{I1 ≥ exp(−bn/2)} <∞ and hence by the Borel–Cantelli lemma

prβ0{I1 ≥ exp(−bn/2) infinitely often} = 0. We next look at the behavior of I2:

Eβ0
n
(I2) = Eβ0

n
{(1− Φn)JBn}

= Eβ0
n

{
(1− Φn)

∫
Bn

f(yn|βn)

f(yn|β0n)
Πn(dβn)

}
=

∫
Bn

∫
(1− Φn)f(yn|βn)dynΠn(dβn)

≤ Πn(Bn) sup
βn∈Bn

Eβn(1− Φn)

≤ exp(−bn)

Then for sufficiently large n, prβ0
n
{I2 ≥ exp(−bn/2)} ≤ exp(−bn/2) using Lemma 1.

Again
∑∞

n=1 prβ0
n
{I2 ≥ exp(−bn/2)} <∞ and hence by the Borel–Cantelli lemma

prβ0{I2 ≥ exp(−bn/2) infinitely often} = 0.
We have shown that both I1 and I2 tend towards zero exponentially fast. Now we

analyze the behavior of Jn. To complete the proof, we need to show that exp(bn/2)Jn →
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∞ prβ0
n
–almost surely as n→∞.

exp(bn/2)Jn = exp(bn/2)

∫
exp

{
−n 1

n
log

f(yn|β0n)

f(yn|βn)

}
Πn(dβn)

≥ exp{(b/2− ν)n}Πn(Dn,ν) (4)

where Dn,ν = {βn : n−1 log{f(yn|β0n)/f(yn|βn)} < ν} = {βn : n−1(‖yn −Xnβn‖2 −
‖yn −Xnβ

0
n‖2) < 2σ2ν} for any 0 < ν < b/2. Then Πn(Dn,ν) ≥ Πn{βn : n−1|‖yn −

Xnβn‖2 − ‖yn −Xnβ
0
n‖2| < 2σ2ν}. Using the identity x2 − x20 = 2x0(x− x0) + (x− x0)2

for all x, x0 ∈ <,

Πn(Dn,ν) ≥ Πn

{
βn : n−1

∣∣2‖yn −Xnβ
0
n‖(‖yn −Xnβn‖ − ‖yn −Xnβ

0
n‖)

+ (‖yn −Xnβn‖ − ‖yn −Xnβ
0
n‖)2

∣∣ < 2σ2ν
}

≥ Πn

{
βn : n−1(2‖yn −Xnβ

0
n‖‖Xnβn −Xnβ

0
n‖+ ‖Xnβn −Xnβ

0
n‖2) < 2σ2ν

}
≥ Πn

(
βn : n−1‖Xnβn −Xnβ

0
n‖ <

2σ2ν

3κn
, ‖Xnβn −Xnβ

0
n‖ < κn

)
(5)

given that ‖yn −Xnβ
0
n‖ ≤ κn. For κn = n(1+ρ)/2 with ρ > 0 and κ2n/σ

2 ≥ 8n, prβ0
n
(yn :

‖yn −Xnβ
0
n‖2 > κ2n) = prβ0

n
(yn : χ2

n > κ2n/σ
2) ≤ exp{−κ2n/(4σ2)}. Since

∑∞
n=1 prβ0

n
(yn :

‖yn −Xnβ
0
n‖ > κn) <∞, by the Borel–Cantelli lemma prβ0

n
(yn : ‖yn −Xnβ

0
n‖ >

κn infinitely often) = 0. Following from (5) and the fact that κn →∞, as n→∞, for
sufficiently large n, Πn(Dn,ν) ≥ Πn{βn : n−1‖Xnβn −Xnβ

0
n‖ < 2σ2ν/(3κn)} ≥ Πn(βn :

‖βn − β0n‖ < ∆/nρ/2), where ∆ = 2σ2ν/(3Λmax). Hence following (4), Πn(Bn|yn)→ 0
prβ0

n
–almost surely as n→∞ if Πn(βn : ‖βn − β0n‖ < ∆/nρ/2) > exp(−dn) for all 0 <

d < b/2− ν. This completes the proof. �

Proof of Theorem 2. We need to calculate the probability assigned to the region {βn :
‖βn − β0n‖ < ∆/nρ/2} under the Laplace prior.

Πn

(
βn : ‖βn − β0n‖ <

∆

nρ/2

)
= Πn

βn :
∑
j∈An

(βnj − β0nj)2 +
∑
j /∈An

β2nj <
∆2

nρ


≥
∏
j∈An

{
Πn

(
βnj : |βnj − β0nj | <

∆
√
pnnρ/2

)}

×Πn

βj /∈An :
∑
j /∈An

β2nj <
(pn − qn)∆2

pnnρ


≥
∏
j∈An

{
Πn

(
βnj : |βnj − β0nj | <

∆
√
pnnρ/2

)}1−
pnn

ρE
(∑

j /∈An
β2nj

)
(pn − qn)∆2

 (6)

where E(β2nj) can verified to be 2s2n. Following from (6)

Πn

(
βn : ‖βn − β0n‖ <

∆

nρ/2

)
≥{

∆
√
pnnρ/2sn

exp

(
−

supj∈An
|β0nj |

sn
− ∆

sn
√
pnnρ/2

)}qn (
1− 2pnn

ρs2n
∆2

)
. (7)
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Taking the negative logarithm of both sides of (7) and letting sn = C/(
√
pnn

ρ/2 log n)
for some C > 0, we obtain

− log Πn

(
βn : ‖βn − β0n‖ <

∆

nρ/2

)
≤ −qn log ∆ + qn logC − qn log log n

− log

{
1− 2C2

∆2(log n)2

}
+
qn∆ log n

C
+
qn
√
pnn

ρ/2 log n supj∈An
|β0nj |

C
(8)

as n→∞. It is easy to see that the dominating term in (8) is the last one and
− log Πn(βn : ‖βn − β0n‖ < ∆/nρ/2) < dn for all d > 0. This completes the proof. �

Proof of Theorem 3. E(β2nj), in this case, is given by d0s
2
n/(d0 − 2). For the sake of

simplicity, we let d0 = 3. Then following from (6)

Πn

(
βn : ‖βn − β0n‖ <

∆

nρ/2

)
≥
(

1− 3pnn
ρs2n

∆2

)

×

 2∆
√
pnnρ/2sn

√
3B(1/2, 3/2)

{
1 +

2 supj∈An
(β0nj)

2

3s2n
+

2∆2

3s2npnn
ρ

}−2qn . (9)

Taking the negative logarithm of both sides of (9) and letting sn = C/(
√
pnn

ρ/2 log n)
for some C > 0, we obtain

− log Πn

(
βn : ‖βn − β0n‖ <

∆

nρ/2

)
≤ qn log

{√
3CB(1/2, 3/2)

2∆

}
− qn log log n

− log

{
1− C2

∆2(log n)2

}
+ 2qn log

{
1 +

2pnn
ρ log n supj∈An

(β0nj)
2

3C2
+

2∆2(log n)2

3C2

}
(10)

as n→∞. It is easy to see that the dominating term in (10) is the last one and
− log Πn(βn : ‖βn − β0n‖ < ∆/nρ/2) < dn for all d > 0. The result can be easily shown
to hold for all d0 ∈ (2,∞). This completes the proof. �

Proof of Theorem 4. E(β2nj), in this case, can verified to be 2η2n/(α
2 − 3α+ 2) for α >

2. For the sake of simplicity, we let α = 3. Then following from (6)

Πn

(
βn : ‖βn − β0n‖ <

∆

nρ/2

)
≥ 3∆

√
pnnρ/2ηn

(
1 +

supj∈An
|β0nj |

ηn
+

∆

ηn
√
pnnρ/2

)−4
qn (

1− pnn
ρη2

∆2

)
. (11)

Taking the negative logarithm of both sides of (11) and letting ηn = C/(
√
pnn

ρ/2 log n)
for some C > 0, we obtain

− log Πn

(
βn : ‖βn − β0n‖ <

∆

nρ/2

)
≤ −qn log 3∆− 3qn logC − qn log log n

− log

{
1− C2

∆2(log n)2

}
+ 4qn log

(
C + ∆ log n+

√
pnn

ρ/2 log n sup
j∈An

|β0nj |

)
(12)
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as n→∞. It is easy to see that the dominating term in (12) is the last one and
− log Πn(βn : ‖βn − β0n‖ < ∆/nρ/2) < dn for all d > 0. The result can be easily shown
to hold for all α ∈ (2,∞). This completes the proof. �

Proof of Theorem 5. Similarly to the previous cases, we can show that E(β2nj) =
ξnΓ(a0 + 1)Γ(b0 − 1)/{Γ(a0)Γ(b0)}. Then following from (6)

Πn

(
βn : ‖βn − β0n‖ <

∆

nρ/2

)
≥

{
1−

pnn
ρE(β2nj)

∆2

}(
2∆

√
pnnρ/2

)qn
×

[
U{b0 + 1/2, 3/2− a0, supj∈An

(β0nj)
2/ξn + ∆/(pnn

ρξn)}
(2πξn)1/2Γ(a0)Γ(b0)Γ(b0 + 1/2)−1Γ(a0 + b0)−1

]qn
. (13)

We can use the expansion U(a, b, z) = z−a{
∑R−1

m=0(a)m(1 + a− b)m(−z)m/m! +
O(|z|−R)} for large z, where (a)m = a(a+ 1) . . . (a+m− 1) and Rth term is the
smallest in the expansion (Abramowitz & Stegun, 1972). Letting R = 1, for sufficiently
large n, (13) can be further bounded as

Πn

(
βn : ‖βn − β0n‖ <

∆

nρ/2

)
>

{
1−

pnn
ρE(β2nj)

∆2

}

×

[ √
2∆Γ(b0 + 1/2)Γ(a0 + b0)√

pnnρ/2
√
ξn
√
πΓ(a0)Γ(b0){supj∈An

(β0nj)
2/ξn + ∆/(pnnρξn)}(b0+1/2)

]qn
.

(14)

Taking the negative logarithm of both sides of (14) and letting ξn = C/(pnn
ρ log n) for

some C > 0, we obtain

− log Πn

(
βn : ‖βn − β0n‖ <

∆

nρ/2

)
<

−qn log

{√
2∆Γ(b0 + 1/2)Γ(a0 + b0)√

C
√
πΓ(a0)Γ(b0)

}
− log

{
1− CΓ(a0 + 1)Γ(b0 − 1)

log n∆Γ(a0)Γ(b0)

}
−qn

2
log log n+ qn

(
b0 +

1

2

)
log

{
pnn

ρ log n supj∈An
(β0nj)

2

C
+

∆ log n

C

}
(15)

as n→∞. It is easy to see that the dominating term in (15) is the last one and
− log Πn(βn : ‖βn − β0n‖ < ∆/nρ/2) < dn for all d > 0. This completes the proof. �
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