
LEVEL SET ESTIMATION FROM PROJECTION MEASUREMENTS:
PERFORMANCE GUARANTEES AND FAST COMPUTATION ∗

KALYANI KRISHNAMURTHY†† , WAHEED U. BAJWA‡‡ , AND REBECCA WILLETT†

Abstract. Estimation of the level set of a function (i.e., regions where the function exceeds
some value) is an important problem with applications in digital elevation mapping, medical imaging,
astronomy, etc. In many applications, the function of interest is not observed directly. Rather, it is
acquired through (linear) projection measurements, such as tomographic projections, interferometric
measurements, coded-aperture measurements, and random projections associated with compressed
sensing. This paper describes a new methodology for rapid and accurate estimation of the level set
from such projection measurements. The key defining characteristic of the proposed method, called
the projective level set estimator, is its ability to estimate the level set from projection measurements
without an intermediate reconstruction step. This leads to significantly faster computation relative
to heuristic “plug-in” methods that first estimate the function, typically with an iterative algorithm,
and then threshold the result. The paper also includes a rigorous theoretical analysis of the proposed
method, which utilizes results from the literature on concentration of measure and characterizes the
estimator’s performance in terms of geometry of the measurement operator and `1-norm of the
discretized function.

1. Introduction. Level set estimation is the process of using indirect observa-
tions of a function f defined on the unit hypercube [0, 1]d to estimate the region(s)

where f exceeds some critical value γ; i.e., S∗
4
=
{
x ∈ [0, 1]d : f(x) > γ

}
. Accurate

and efficient level set estimation plays a crucial role in a variety of scientific and en-
gineering tasks, including the localization of “hot spots” signifying tumors in medical
imaging [29, 17], significant photon sources in astronomy [23], and strong reflectors in
remote sensing [2, 33].

In this paper, we consider making observations of the form y = Af +n, where f
is a discretized version of f , A is a (discrete) linear operator that may not be invert-
ible, and n is additive noise that corrupts our observations. For instance, y might
correspond to tomographic projections in tomography [20, 28, 22], interferometric
measurements in radar interferometry [38], multiple blurred, low-resolution, dithered
snapshots in astronomy [36], or random projections in compressed sensing systems
[1, 7, 8, 11, 45]. Our goal in this y = Af + n setting is to perform level set esti-
mation of the continuous-domain function f without an intermediate step involving
time-consuming reconstruction of f . There are two reasons for this. First, level set
estimation without reconstruction of f would allow design of sequential measurement
schemes optimally adapted to the function of interest. For instance, in tomography
we would like to estimate the level set, S∗, quickly from an initial set of observations
so that additional observations focused on S∗ can be collected immediately, resulting
in an overall low radiation dose [26, 32, 31]. Some recent works [19, 18] have provided
theoretical characterizations of the significant benefits associated with certain sequen-
tial measurement schemes; the method proposed in this paper may facilitate the use
of such schemes in time-sensitive or computational-resource limited applications. Sec-
ond, “plug-in” approaches that estimate f and threshold the estimate f̂ to extract S∗
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are notoriously difficult to characterize; the performance hinges upon the statistics of
the estimation error f̂−f , which for most reconstruction methods are unknown (with
the possible exception of the first moment). More generally, reconstruction methods
aim to minimize the total error, integrated or averaged spatially over the entire func-
tion. This does little to control the error at specific locations of interest, such as in
the vicinity of the level set boundary. Finally, the Vapnik Principle [50] states that
one should never solve a complex problem as an intermediate step towards solving a
simple problem.

1.1. Problem formulation. In this work, we observe samples of a function f
supported on [0, 1]d of the form

y = Af + n ∈ RK(1.1)

where
• A ∈ RK×N is a linear operator that is assumed to be known with K often

less than N ,
• f ∈ RN corresponds to integration samples of f ; i.e.,

fi =
1

vol (Ci)

∫
Ci

f(x)dx(1.2)

for i = 0, 1, . . . , N −1, where the cells Ci’s are obtained by partitioning [0, 1]d

into nonoverlapping hypercubes such that each Ci has sidelength N−1/d and
volume 1/N , and

• n ∈ RK denotes the additive measurement noise, which is assumed to be zero-

mean, subGaussian white noise in our case; i.e., ni
i.i.d.∼ Sub(cs) is a zero-mean,

subGaussian random variable, defined by the condition (E [|ni|]p)
1/p ≤ cs

√
p

for p ≥ 1.1

We assume without loss of generality that the columns of A have unit `2 norms and
consider N to be dyadic (power of two). A γ-level set in this discrete setting can be
written as S∗N = {i : fi > γ} where the subscript N signifies that the discrete-domain
level set is a function of the N -dimensional discrete signal f .2 Throughout this paper
the dependencies of the continuous-domain level set S∗ and the discrete-domain level
set S∗N on γ are implicit.

Our main goal is to estimate the continuous-domain level set S∗ from discrete
measurements y without reconstructing the underlying signal f . In the discussion
that follows, we propose a level set estimation method to estimate the discrete-domain
level set S∗N directly from y and show that S∗N −→ S∗ as N −→∞ in Sec. 3. Similar
to [53], the error metric used to measure the closeness between S∗N and a candidate
estimate S is defined as

(1.3) εN (S, S∗N ) =
1

N

∑
i∈∆(S∗N,S)

|γ − fi|

where ∆(S∗N, S)
4
= {i ∈ (S∗N \ S) ∪ (S \ S∗N )} denotes the symmetric set difference

between S and S∗N . Note that (1.3) can be interpreted as an empirical, weighted

1Note that the subGaussian noise assumption subsumes the usual assumption of Gaussian noise;
in particular, Gaussian random variables and bounded random variables fall under the category of
subGaussian random variables [39].

2In this work, we adopt the terminology of “function” for the continuous-domain f and “signal”
for its discrete counterpart f .
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probability of error under the counting measure where the weights depend on the
amplitude of the signal relative to the level set threshold γ. Our error metric penalizes
(a) the symmetric difference between a level set estimate S and the true level set S∗N ,
and (b) the errors along regions of the level set boundary corresponding to abrupt
intensity variations more than the regions where the intensity varies smoothly. This
performance measure is ideally suited for the level set estimation problem since, in
many applications such as localizing hot-spots signifying tumor in biomedical imaging,
it is more desirable for an algorithm to accurately localize regions with sharp intensity
variations.

Instead of working directly with the error metric, we make use of the risk of a
candidate set S, defined as

(1.4) RN (S)
4
=

1

N

∑
i

`i(S)

where

`i(S)
4
= (γ − fi)

[
I{i∈S} − I{i/∈S}

]
(1.5)

is the loss function and I{E} = 1 if event E is true and 0 otherwise. The loss function
in (1.5) measures the distance between the signal value at location i, fi, and the
threshold, γ, and weights this distance by −1 or 1 according to whether i ∈ S or not.
The loss function `i(SN ) is positive if i ∈ ∆(S∗N, S) and is negative otherwise. To
see this, observe that for all i ∈ S∗N \ S, (γ − fi) ≤ 0 and

[
I{i∈S} − I{i/∈S}

]
= −1. A

similar explanation holds for all i ∈ S \ S∗N as well. Note that the risk is related to
the error metric defined in (1.3) by virtue of the fact that

RN (S)−RN (S∗N ) =
1

N

∑
i

(γ − fi)
([

I{i∈S} − I{i/∈S}
]
−
[
I{i∈S∗N} − I{i/∈S∗N}

])
=

2

N

∑
i∈∆(S∗N ,S)

|γ − fi| = 2εN (S, S∗N ).(1.6)

Finding an estimator that minimizes the excess risk error εN (S, S∗N ) is thus equivalent
to finding an estimator that minimizes RN (S) since RN (S∗N ) is simply a constant with
respect to S.

This paper presents an optimization problem for choosing an estimate of S∗N from
the data y and theoretical characterization of εN (SN , S

∗
N ) when f consists of samples

of a piecewise smooth function.

2. Our contribution and relation with previous work. In this work, we
demonstrate that, subject to certain conditions on A and the `1 norm of f , the level
set S∗ can be estimated quickly and accurately via S∗N without first reconstructing f .
For A = I, [53] provides minimax optimal, tree-based level set estimation techniques
to extract S∗ from noisy observations y = f + n ∈ RN without estimating f . We
cannot directly apply those results to our problem since A 6= I. Instead, we draw on
the key idea of constructing proxy observations

z = ATy = f +
(
ATA− I

)
f + ATn︸ ︷︷ ︸

n′

(2.1)

from the literature on support detection of sparse signals (see, e.g., [3, 14, 15]) and
then exploit some of the important insights from [53] to address our problem. A
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part of this work was previously published in [25]. This work, however, significantly
expands on the previous work and presents new and tighter theoretical bounds and
extensive simulation experiments.

Before we present our estimation method, we discuss prior work on level set
estimation and sparse support detection.

2.1. Previous work on level set estimation. Large volumes of research have
been dedicated to the problem of estimating level sets of an unknown density or a
regression function f from its noisy measurements by either using plug-in estimators
that find level sets of estimates of f [35, 10, 37, 44, 34] or direct methods that do
not involve an intermediate reconstruction step [48, 43, 53, 41, 42]. Plug-in methods
are easy to implement and in some cases lead to theoretical results on consistency
and convergence based on some smoothness assumptions on the function of interest.
For instance, [35, 10, 37] propose plug-in methods based on kernel estimators and
show that they exhibit fast rates of convergence. Mason and Polonik [34] derive the
asymptotic normality of the symmetric difference between a true level set and an
estimate derived using a kernel density based plug-in estimator. Singh, Scott and
Nowak [44] propose a plug-in method based on a regular histogram partition that
minimizes the Hausdorff distance between the true and the estimated level sets. They
also demonstrate that the proposed method adapts to unknown regularity parameters
and achieves near minimax optimality on a wide variety of density function classes.

In the specific y = Af + n case studied in this paper, a number of plug-in
methods can be proposed by exploiting the vast literature on ill-posed inverse prob-
lems [24]. Two popular and computationally simple methods in this regard are the
truncated singular value decomposition (TSVD) (also known as the pseudo-inverse
solution) and Tikhonov regularization. While both these methods lead to fast plug-in
approaches to level set estimation, essentially involving first an estimation of f from
y and then thresholding of the resulting estimate, we do not expect these approaches
to perform well in practice. This is because both TSVD and Tikhonov regularization
focus on “minimum-energy solutions,” which effectively involves projecting y onto the
principal subspace of A. In the case of underdetermined A, however, sparse signal
processing research in the last decade or so has established the suboptimal nature
of such “subspace approaches” to ill-posed inverse problems [30]. Instead, the state-
of-the-art in ill-posed linear inverse problems with an underdetermined A involves
projecting y onto a “union of subspaces” [13], accomplished through the use of either
total-variation (TV) regularization [52, 40] or `1 regularization [5].

While the aforementioned plug-in approaches to level set estimation seem at-
tractive, they solve a much harder problem as an intermediate step to solving a set
estimation problem—a problem that is simpler than function estimation. Vapnik’s
principle stated earlier, together with the minimax convergence results shown in the
context of classification problems in [54] tell us that plug-in methods are often sub-
optimal to direct estimation methods. As a result, in our work, we focus on direct set
estimation strategies.

Several researchers have considered direct set estimation methods for the case
A = I. In [48], Tsybakov proposes a direct density level set estimation method that
finds piecewise polynomial estimators of the true level set and achieves optimal min-
imax rates of convergence. The estimation method in [48] is hard to compute and
cannot be directly extended to our problem where A 6= I. In [41], the authors show
the theoretical and practical advantages of reducing a regression level set estimation
problem to a cost-sensitive classification problem. Previous work by one of the coau-
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thors [53] draws on the relationship between classification and level set estimation
frameworks, and proposes a set estimation method based on dyadic decision trees by
exploiting some of the ideas from [43]. A closely related work is the estimation of
minimum volume sets such that their masses are at least greater than some specified
γ [42]. In that work, the authors discuss tree-based techniques and provide universal
consistency results and rates of convergence.

We briefly review the basic idea in [53] on which our set estimation strategy is
built upon. The goal in that work was to design an estimator of the form

Ŝ = arg min
S∈SM

R̂N (S) + pen(S),

where SM is a class of candidate estimates, R̂N is an empirical measure of the estima-
tor risk based on N noisy observations of the signal f , and pen(·) is a regularization

term which penalizes improbable level sets. That work described choices for R̂N ,
pen(·), and SM that made Ŝ rapidly computable and minimax optimal for a large
class of level set problems. Specifically, it derived a regularizer pen(·) using Hoeffd-
ing’s inequality for bounded random variables [21] and developed a dyadic tree-based

framework to obtain Ŝ. Trees were utilized for a couple of reasons. First, they both
restricted and structured the space of potential estimators in a way that allowed the
global optimum to be both rapidly computable and very close to the best possible
(not necessarily tree-based) estimator. Second, they allowed the estimator selection
criterion to be spatially adaptive, which was critical for the formation of provably
optimal estimators. Note that while we intend to build upon the insights developed
in [53], an extension of those techniques to the case of proxy observations in (2.1)
is made nontrivial because of two reasons. First, the effective noise n′ is nonzero
mean because of the presence of

(
ATA− I

)
f . Second, and most importantly, n′ is

correlated due to the non-unitary nature of A, which prohibits the use of canonical
Hoeffding’s inequality [21] for characterization of the penalty term.

2.2. Relationship with previous work on sparse support detection.
Sparse support detection is the problem of detecting a set of locations S∗N =
{i : fi 6= 0} corresponding to a discrete signal f ∈ RN , given observations of the form
in (1.1). This is a special case of level set estimation and the two are equivalent if f
is nonnegative and γ = 0. The idea of constructing proxy observations z to deduce
certain properties of the underlying f has been successfully employed in recent com-
pressed sensing and statistics literature to solve the problem of support detection of
a discrete f having no more than m non-zero entries; see, e.g., [3, 14, 15, 18]. Specif-
ically, it is established in [3] that the support of an m-sparse f can be reliably and
quickly detected from appropriately thresholded proxy observations with overwhelm-
ing probability as long as A satisfies a certain, easily verifiable coherence property.
The success of this thresholding method stems primarily from the sparsity assumption
on f . However, when f is not sparse, as is the case in level set estimation, simply
thresholding the proxy observations will result in numerous false positives and misses
as discussed in detail in the numerical experiments in Sec. 7; see Figs. 7.1(a), 7.1(b),
and Figs. 7.2(a) through 7.2(c). These results clearly suggest that we cannot simply
use a support detection algorithm and an optimally chosen threshold to achieve an
accurate level set estimation. In contrast, our methodology relies on a novel two-step
approach that enables us to work with proxy observations without requiring f to be
sparse.
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3. Fast level set estimation from projection measurements. In order to
extract the γ-level set of f from y, we propose a novel two-step procedure. First, we
construct a proxy of f according to (2.1), which allows us to arrive at the canonical
signal plus noise observation model. Next, we perform level set estimation on the
proxy observations z, rather than on y, using a method similar to the one derived in
[53].3 We refer to the resulting estimator as the projective level set estimator. Note
that for any unitary A, z in (2.1) reduces to y = f + ñ with ñ having independent,
zero-mean entries. However, for non-unitary A, the proxy defined in (2.1) creates
a signal-dependent interference term

(
ATA− I

)
f and a zero-mean correlated noise

term ATn.
Intuitively, if we try to make a decision about each zi independently, then we

would be vulnerable to noise (see, e.g., Figs. 7.2(b) and 7.2(c)). On the other hand,
if we consider patches pjs of zi’s, defined as groups of s proxy measurements (zi’s)
centered around zj for s ∈ {1, . . . , N}, and force each patch to be wholly inside or
outside the level set estimate, then we increase our robustness to noise but also increase
our bias. Ideally, we want spatially adaptive patches that allow us to balance between
an accurate approximation of the true level set boundary and estimator variance. It is
in this vein that we theoretically analyze the impact of n′ on the level set estimation
problem and use our analysis to develop a spatially-adaptive, dyadic, tree-based level
set estimation approach that adapts to both the interference and the correlated noise
term.

The algorithm we propose basically works by using z to find a partition of f
into a collection of disjoint sets of “pixels.” For each set, we determine whether it
is inside or outside the level set with a simple voting procedure—i.e., we determine
whether the majority of the zi’s in the set are greater than gamma. Thus searching
for the optimal level set estimate amounts to searching for a good partition of f and
then performing empirical risk minimization, defined in (3.2) in the sequel, on that
partition. We restrict our attention to partitions defined using binary trees because
they yield tractable algorithms and, in the case where A = I, minimax optimality
[53].

Specifically, let SM be a collection of candidate level set estimates for a dyadic
M (i.e., M = 2q for some positive integer q), where each S ∈ SM is obtained by
recursively partitioning the domain of f in dyadic intervals. The number of dyadic
intervals along different coordinate directions is not required to be the same. In other
words, each cell in the partition can potentially have different sidelengths and the
sidelength of the smallest cell is 1/M . An estimate S ∈ SM is obtained by assigning
each cell in the partition to be inside or outside of the level set. Fig. 3.1 shows one
such estimate in two dimensions where the shaded regions are the partition cells that
are estimated to be outside the level set. Though we do not specify M in terms of
N here, we derive an upper bound on M as a function of N that achieves a certain
expected excess risk in Theorem 3.2.

Given z, our goal is to find a level set estimate

S̃N = arg min
S∈SM

RN (S)−RN (S∗N )= arg min
S∈SM

RN (S)(3.1)

3There is another equivalent understanding of our approach to level set estimation, which helps
connect it to the classical literature on inverse problems. The proxy observations z can be thought
of as setting up the normal equations ATy = ATAf̂ . Instead of first solving the normal equations
for one of infinitely-many f̂ , arising due to the underdetermined nature of A, our approach can be
construed as estimating the level set directly from the normal equations.
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Fig. 3.1. An example level set estimate S ∈ SM where the domain of the underlying signal is
[0, 1]2. Shaded regions are estimated to be outside the level set.

where RN (·) is defined in (1.4) and the second equality follows since RN (S∗N ) is a

constant. (Note that S̃N = S∗N if S∗N ∈ SM .) Since f is unknown, RN (S) cannot be
computed; instead, let us consider an empirical risk of the form

R̂N (S) =
1

N

N∑
i=1

(γ − zi)
[
I{i∈S} − I{i/∈S}

]
.(3.2)

We show that finding an estimate that minimizes a penalized empirical risk results in
an estimate that asymptotically approaches S̃N . Specifically, we find

ŜN = arg min
S∈SM

R̂N (S) + penN (S),(3.3)

where penN (S) is an interference-dependent penalty term that yields∣∣∣RN (ŜN )−RN (S̃N )
∣∣∣ N−→∞−→ 0 subject to certain conditions on A, which gen-

erally require K −→ ∞ as N −→ ∞. The penalty term plays a major role in our
estimation strategy and is crucial in finding estimates that hone in on the boundary
of the level set S∗N . We thus focus on designing a spatially adaptive penalty penN (S)
that promotes well-localized level sets with potentially non-smooth boundaries. Let
π(S) be the partition induced by an estimate S ∈ SM , i.e., π(S) is the collection of
all leaves in the estimate S ∈ SM . Fig. 3.1 shows a partition induced by one of the
estimates S ∈ SM where every white or gray shaded block is a leaf. We assign a label
`(L) to each leaf L depending on whether L is in the level set (`(L) = 1) or otherwise
(`(L) = 0). Then the risk of S in each of its leaf L ∈ π(S) is given by

RN (L)
4
=

1

N

N∑
i=1

(γ − fi)
[
I{`(L)=1} − I{`(L)=0}

]
I{i∈L}.

Note that RN (S) =
∑
L∈π(S)RN (L). We design a spatially adaptive penalty term by

analyzing RN (L) − R̂N (L) within each leaf separately. To facilitate our analysis, let
us define

R̃N (L)
4
=

1

N

N∑
i=1

(γ − E [zi])
[
I{`(L)=1} − I{`(L)=0}

]
I{i∈L}.

7



Then∣∣∣RN (L)− R̂N (L)
∣∣∣ =

∣∣∣RN (L)− R̃N (L) + R̃N (L)− R̂N (L)
∣∣∣

=

∣∣∣∣∣ 1

N

N∑
i=1

[(E [zi]− fi) + (zi − E [zi])]
[
I{`(L)=1} − I{`(L)=0}

]
I{i∈L}

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

N∑
i=1

(E [zi]− fi)
[
I{`(L)=1} − I{`(L)=0}

]
I{i∈L}

∣∣∣∣∣︸ ︷︷ ︸
T1

(3.4)

+

∣∣∣∣∣ 1

N

N∑
i=1

(zi − E [zi])
[
I{`(L)=1} − I{`(L)=0}

]
I{i∈L}

∣∣∣∣∣︸ ︷︷ ︸
T2

.

Note that while T1 is a measure of the bias in z, T2 is a measure of the concentration
of z about its mean. Since the columns of A are assumed to have unit `2 norms, one
can easily see from (2.1) that

zi = fi +

N∑
j=1,j 6=i

fj

〈
A(i),A(j)

〉
+
〈
A(i),n

〉
(3.5)

where A(i) denotes the ith column of A and 〈·, ·〉 denotes the usual innerproduct.
Since A is given, and n is zero mean, the term

E [zi]− fi =
N∑

j=1,j 6=i

fj

〈
A(i),A(j)

〉
(3.6)

in T1 is the signal-dependent interference term at the ith location due to the signal
energies at other locations. We upper bound T1 by the `1 norm of f and the worst-case
coherence of A (defined in the statement of Theorem 3.1), bound T2 using a Hoeffding-
like inequality for a weighted sum of independent subGaussian random variables [39],
and sum the risk in each leaf of the estimate S to arrive at the following result.

Theorem 3.1 (Concentration of risk around the empirical risk). Suppose that
the entries of noise n are subGaussian distributed with parameter cs. Then, for
δ ∈ [0, 1/2] and c > 0, with probability at least 1 − 2δ, the following holds for all
S ∈ SM : ∣∣∣RN (S)− R̂N (S)

∣∣∣ ≤(N − 1

N

)
µ(A)‖f‖1 + penN (S)(3.7)

where ‖f‖1 =
∑
i |fi| is the `1 norm of f ,

penN (S)
4
=

∑
L∈π(S)

1

N

√
[log(2/δ) + JLK log 2] c2s

∑
i,j∈L

〈
A(i),A(j)

〉
2c

(3.8)

is the penalty term,

µ(A)
4
= max
i,j∈{1,...,N},i6=j

∣∣∣〈A(i),A(j)
〉∣∣∣
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is the worst-case coherence of A and JLK is the number of bits in a prefix code used
to uniquely encode the position of a leaf L in the tree.

The proof of this theorem is provided in Section 5.1. The above bound holds for
any prefix code JLK. In order to achieve the error rates in Theorem 3.2, we use a
certain prefix code, which is discussed before the statement of Theorem 3.2. Note
that the bounds in (3.7) and (3.8) depend on (a) the signal-dependent interference
term in (2.1) through ‖f‖1, (b) the noise statistics through cs, (c) the choice of A
through µ(A), (d) the depth of each leaf through JLK, (e) the size of each leaf through∑
i,j∈L

〈
A(i),A(j)

〉
and (f) the parameter δ. Ideally we would like to minimize RN (S)

to obtain S̃N in (3.1). Since RN (S) is bounded by R̂N (S) + penN (S), minimizing the

bound (3.7) will ensure that our estimate ŜN in (3.3) is as close to S̃N in (3.1) as
possible. In order to minimize the risk difference in (3.7), one needs to choose an
estimate S ∈ SM that has the least penN (S) in (3.8). The penalty term in (3.8)
is directly proportional to the number of leaves in the partition π(S) and the size of
each leaf through the term

∑
i,j∈L

〈
A(i),A(j)

〉
. As a result, searching for an estimate

S ∈ SM that minimizes (3.3) will favor estimates with few, deep leaves that hone in
on the boundary of the level set.

The theoretical analysis of our method is significantly different from the analysis
in [53] because of the statistics of the noise term n′ in our problem. However, this only
changes the way the penalty is defined in our setup. As a result, we can adapt the
computational techniques discussed in [53] to compute our estimator in an efficient
way. Our method is computationally efficient since the proxy computation needs at
most O(KN) operations (fewer if A is structured; e.g., A is a Toeplitz matrix) and
the level set estimation method needs O(N logN) operations, as noted in [53].

3.1. Performance analysis. As discussed earlier in Sec. 1.1, our eventual goal
is to estimate the continuous-domain level set S∗ from discrete measurements y.
In this section, we show that estimating the discrete-domain level set S∗N helps us
achieve this goal by establishing that (i) S∗N −→ S∗ as N −→ ∞ and (ii) providing
conditions, as a function of problem parameters, under which the discrete-domain level
set estimate obtained according to (3.3) approaches S∗. To this end, we can utilize the

results of Theorem 3.1 to upper bound the expected excess risk E
[
R(ŜN )−R(S∗)

]
,

taken with respect to the noise distribution, in terms of the problem parameters,
where

R(S) =

∫
[0,1]d

(γ − f(x))
[
I{x∈S} − I{x/∈S}

]
dx

is the definition of risk in continuous-domain. The expected excess risk is a measure
of the effectiveness of our level set estimator. Before studying it, we make certain
assumptions about the smoothness of f in the vicinity of the level set boundary.
Let ∂S∗ represent the level set boundary corresponding to S∗ = {x : f(x) > γ}. We
assume that f is in a box-counting function class DBOX(κ, γ, c1, c2) for c1, c2 > 0 and
1 ≤ κ ≤ ∞ [53] such that the following hold:

(a) If we partition [0, 1]d to md equisized cells for m ≤M , with each of them having a
sidelength of 1/m and volume m−d, then the number of such cells intersected by
the level set boundary NS∗(m) ≤ c1md−1. This ensures that ∂S∗ varies smoothly
and is not an irregular, space-filling curve.

9



(b) For all dyadic m, let

S∗m = arg min
S∈Sm

λ(∆(S, S∗))(3.9)

be a candidate in Sm that minimizes the symmetric difference between any S ∈ Sm
and the true level set S∗ in terms of the Lebesgue measure λ. For this S∗m, the
excess risk in the continuous domain follows

ε(S∗m, S
∗) = R(S∗m)−R(S∗)

4
=

∫
∆(S∗,S∗m)

|γ − f(x)|dx ≤ c2m−κ.(3.10)

Parameter κ and the assumption on the excess risk in (3.10) allow us to study the
fluctuations of f around ∂S∗ and thus examine the behavior of ε(S∗m, S

∗) in the
vicinity of the level set boundary. If f exhibits a very small fluctuation around ∂S∗,
then ε(S∗m, S

∗) is small even if the symmetric difference ∆(S∗, S∗m) is very large, since
the excess risk is weighted by how close is f to γ. In other words, a high value of κ
indicates that f varies very smoothly around the level set boundary and a low value
of κ means that there is a jump in f around ∂S∗.

Recall that S∗N is obtained by partitioning the space [0, 1]d to N equisized cells of
sidelengths N−d and assigning each cell to be inside or outside of the level set. From
(3.10), for m = N1/d,

R(S∗N )−R(S∗) ≤ c2N−κ/d.

Thus S∗N −→ S∗ as N −→∞ and estimation of S∗ via S∗N is reasonable.
To achieve the results of Theorem 3.2 stated below, we adapt the prefix code

proposed in [53, 43]. According to [53, 43], a leaf L of a level set at depth j of the
tree can be uniquely encoded using a total of j(log2 d+ 2) + 1 bits. Specifically, one
needs j + 1 bits to encode the depth of the leaf, j bits to encode whether each of
its ancestors corresponded to a left or a right branch of the tree, and j log2 d bits to
encode the orientation of each of the j branches.

Before we state our main theorem, let us clarify the notation used in the following.
For a given set of sequences an and bn, an 4 bn implies that there exists a constant
C > 0 such that an ≤ Cbn for all n and an � bn implies that there exists constants
C1 and C2 such that C1an ≤ bn ≤ C2an for all n.

Theorem 3.2 (Upper bound on the expected excess risk). If f ∈
DBOX(κ, γ, c1, c2) is discretized according to (1.2), −B ≤ f(x) ≤ B for x ∈ [0, 1]d,

−B ≤ γ ≤ B, and the estimate ŜN is chosen according to (3.3) with penN (ŜN ) defined

according to Theorem. 3.1, then, for a given A, d ≥ 2, and for M <
(

N
‖A‖22 logN

)1/d

,

E
[
R(ŜN )−R(S∗)

]
4

(
‖A‖22 logN

N

) κ
2κ+d−2

+ µ(A)‖f‖1(3.11)

where the expectation is with respect to the noise distribution, ‖A‖2 is the spectral

norm of A, ‖A‖2
4
=
√
λmax (ATA), and µ(A) is the worst-case coherence of A.

The proof of this theorem is given in Section 5.2. This theorem tells us how
the expected excess risk scales with the dimensionality N of the underlying sig-
nal f , the `1 norm of f , the choice of A and the smoothness of the underlying
function around the level set boundary through the parameter κ. For a unitary
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matrix A, ‖A‖2 = 1 since its singular values are all equal to 1, µ(A) = 0 and

E
[
R(ŜN )−R(S∗)

]
4
(

logN
N

) κ
2κ+d−2

, which is the minimax optimal rate derived in

[53] without the projection matrix A. Since in practice A is dictated by the physics
of the measurement system, it is not always unitary. In such cases, the above theorem
tells us how any given A increases this bound. For some A, such as the one discussed

in the following section, µ(A) −→ 0 as N and K go to ∞ since ATA
N,K−→∞−→ I.

Note that (3.11) can be specified in terms of the continuous-domain function f by
noting that ‖f‖1 ≤ N‖f‖L1

, although it is a loose bound when the function f is not
completely positive (or negative).

Corollary 3.3 (Performance with random projections). If the entries of A ∈
RK×N are drawn from N (0, 1/K), and the columns of A are normalized to have unit
`2 norm, then

E
[
R(ŜN )−R(S∗)

]
4

(
logN

N

) κ
2κ+d−2

[ √
K +

√
N√

K −
√

12K logN

] 2κ
2κ+d−2

+

√
15 logN√

K −
√

12 logN
‖f‖1(3.12)

holds with probability at least 1 −
[
e−c(K+N) +N−2 + 11N−1

]
as long as 60 logN ≤

K ≤ N−1
4 logN .

The proof of this corollary is provided in Sec. 5.3. The result above yields an upper
bound on the expected excess risk as a function of the dimensions of the projection
operator A and ‖f‖1. In words, this corollary states that the expected excess risk in
the case of random Gaussian projections is minimized if the number of measurements
K scales linearly with N and increases if K scales sublinearly with N . Dependence
of the estimator’s performance on the `1 norm of f is due to the interference term(
ATA− I

)
f that arises during the proxy construction. The foregoing results provide

key insights into ways by which we can minimize the expected excess risk and improve
performance, as discussed in detail in the following section.

We conclude our discussion of Theorem 3.2 by pointing out that practically mean-
ingful lower bounds for this problem are unknown at this time, but would be the
subject of a future investigation. In addition, note that our focus in here has been on
very fast, easily implementable methods for real-time estimation of level sets. While
significantly slower methods could conceivably be developed to potentially provide
lower errors, such methods would not be able to compete with our proposed approach
in terms of the computational costs (see, e.g., Sec. 7).

4. Performance improvement via projected median subtraction. So far
we have shown that the signal-dependent interference term in (2.1) leads to a penalty
term proportional to ‖f‖1 in (3.7). This implies that the interference in z and thus
the performance of our method may worsen with the increase in ‖f‖1, which is indeed
confirmed by the experimental results in Sec. 7. To find a way to minimize the signal-
dependent interference, let us write f = f̃ +λ1, where λ is a constant DC offset such
that ∥∥∥f̃∥∥∥

1
≤ ‖f‖1.(4.1)

11



If we have access to an estimate λ̂ of λ, then we can minimize the signal-dependent
interference by subtracting a projection of this constant offset to obtain

ỹ = y −Aλ̂1 = A
(
f̃ + λ1

)
+ n−Aλ̂1

= A
(
f̃ +

(
λ− λ̂

)
1

)
+ n ≈ Af̃ + n,

assuming that λ̂ ≈ λ. The proxy observations in this case reduce to

z̃ = AT ỹ ≈ ATAf̃ + ATAn = f̃ +
(
ATA− I

)
f̃ + ATAn.

Since S∗N = {i : fi > γ} 4= {i : f̃i > γ̃}, where γ̃ = γ − λ, we can estimate S∗N from z̃
using our level set estimation method discussed in the previous section.

If we let λ to be the median of f , then we can easily show that (4.1) holds for this
particular choice of λ. Note that if λ is the median of f , then half the pixel values
of f are below the median and half of the pixel values are above the median. Let
G = {i : fi > λ} and Gc = {i : fi < λ}. The cardinality of G is |G| = N/2 for N even4.
By the definition of median, |G| = |Gc|. Then∥∥∥f̃∥∥∥

1
= ‖f − λ1‖1 =

∑
i∈G
|fi − λ|+

∑
i∈Gc
|fi − λ|

=
∑
i∈G

(fi − λ) +
∑
i∈Gc

(λ− fi) =
∑
i∈G

fi +
∑
i∈Gc
−fi − |G|λ+ |Gc|λ

=
∑
i∈G

fi +
∑
i∈Gc
−fi

≤
∑
i∈G
|fi|+

∑
i∈Gc
|fi| = ‖f‖1.

In practice, however, estimation of the median of f from y might be hard, though
the estimation of the mean of f might be tractable. For instance, if we construct

A′ =
[
1
T

A

]
(i.e., the first row of A′ is 1T ), then y′ = A′f + n =

[
y′1
y

]
, and λ̂ =

y′1/N = (
∑
i fi + n1)/N = λ + n1/N . If the observation noise is negligible, or if

N is large, then λ̂ ≈ λ and we can perform projected mean subtraction, instead of
a projected median subtraction, to reduce the signal-dependent interference. While
(4.1) does not always hold if λ is the mean of f , simulation results in Sec. 7 suggest
that projected mean subtraction can result in significant improvement in performance.

5. Proofs of theorems and corollaries. This section presents the proofs of
all the theorems and corollaries stated before.

5.1. Proof of Theorem 3.1 (Concentration of risk ). Let us begin by
bounding T1 and T2 in (3.4) separately. Let p̂L =

∑
i∈L

1
N be the ratio of the number

of observations in leaf L to the total number of observations N . From the statistics

4We do not consider N to be odd since our recursive dyadic partitions require N to be in powers
of two.
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of z, we can bound T1 as follows:

T1 ≤
1

N

∑
i,j:j 6=i

|fj |
∣∣∣〈A(i),A(j)

〉∣∣∣∣∣[I{`(L)=1} − I{`(L)=0}
]∣∣I{i∈L}

≤ µ(A)

N

∑
i∈L

N∑
j=1:j 6=i

|fj | =
µ(A)

N

∑
i∈L

 N∑
j=1

|fj | − |fi|


≤ µ(A)p̂L‖f‖1 −

µ(A)

N

∑
i∈L
|fi|,(5.1)

where the second inequality is due to the fact that
∣∣[I{`(L)=1} − I{`(L)=0}

]∣∣ = 1 and∣∣〈A(i),A(j)
〉∣∣ ≤ µ(A) for all j 6= i.

Rewriting T2 in terms of (3.5) and (3.6) we have

T2 =
1

N

∑
i∈L

(
K∑
k=1

ak,ink

)[
I{`(L)=1} − I{`(L)=0}

]
=

K∑
k=1

bknk

where bk = 1
N

∑
i∈L ak,i

[
I{`(L)=1} − I{`(L)=0}

]
. Observe that T2 is a weighted sum

of K independent, zero-mean, subGaussian random variables. It then follows from a
Hoeffding-like inequality for a weighted sum of independent, zero-mean subGaussian
random variables [39, Theorem 3.3] that

P

(∣∣∣∣∣
K∑
k=1

bknk

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−cε2

c2s
∑K
k=1 b

2
k

)
(5.2)

for ε > 0, where c > 0 is an absolute numerical constant. Let us now evaluate the
term

∑K
k=1 b

2
k in the above expression as follows:

K∑
k=1

b2k =

K∑
k=1

(
1

N

∑
i∈L

ak,i
[
I{`(L)=1} − I{`(L)=0}

])2

=
1

N2

K∑
k=1

∑
i∈L

ak,i
[
I{`(L)=1} − I{`(L)=0}

]∑
j∈L

ak,j
[
I{`(L)=1} − I{`(L)=0}

]
=

1

N2

K∑
k=1

∑
i∈L

∑
j∈L

ak,iak,j =
1

N2

∑
i∈L

∑
j∈L

〈
A(i),A(j)

〉
(5.3)

where the above equation is due to the fact that
[
I{`(L)=1} − I{`(L)=0}

]2
= 1. By

substituting (5.3) in (5.2) and by equating the right hand side of (5.2) to δL ∈ (0, 1/2)
and solving for ε, we can show that, with probability at least 1− 2δL,

T2 ≤

√
log(1/δL)c2s

∑
i,j∈L

〈
A(i),A(j)

〉
2cN2

.(5.4)

Applying the bounds in (5.1) and (5.4) to (3.4) we can see that with probability
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at least 1− 2δL, the following holds:

∣∣∣RN (L)− R̂N (L)
∣∣∣ ≤(µ(A)p̂L‖f‖1 −

µ(A)

N

∑
i∈L
|fi|

)

+

√
log(1/δL)c2s

∑
i,j∈L

〈
A(i),A(j)

〉
2N2

.

Thus for a given S ∈ SM , the risk difference
∣∣∣RN (S)− R̂N (S)

∣∣∣ is upper bounded by

summing the bound corresponding to each leaf separately. Since
∑
L∈π(S) p̂L = 1 and∑

L∈π(S)

∑
i∈L |fi| = ‖f‖1 we have

∣∣∣RN (S)− R̂N (S)
∣∣∣ ≤µ(A)

(
N − 1

N

)
‖f‖1 +

∑
L∈π(S)

√
log(1/δL)c2s

∑
i,j∈L

〈
A(i),A(j)

〉
2N2

with high probability. If we let δL = δ2−(JLK+1) where JLK is the number of bits
required to uniquely encode the position of leaf L, then it is straightforward to follow
the proof of Lemma 2 in [53] to show that the bound above holds for every S ∈ SM ,
which leads to the result of Theorem 3.1.

5.2. Proof of Theorem 3.2 (Performance analysis). In order to analyze
the performance of our estimator, we will draw upon the proof techniques and the
associated performance analyses in previous works on classification and level set es-
timation [43, 53]. Note that some of the steps in our analysis that are adapted from
[43, 53] are repeated here for readability.

The proof of this theorem follows by relating the continuous-domain risk of a level
set S ∈ SM to its discrete counterpart and exploiting the results from Theorem 3.1.
By expanding R(S) for any S ∈ SM in terms of the discretization of f in (1.2), we
have,

R(S) =

∫
x

(γ − f(x))
[
I{x∈S} − I{x/∈S}

]
dx

=
N∑
i=1

∫
Ci

(γ − f(x))
[
I{Ci∈S} − I{Ci /∈S}

]
dx

=
N∑
i=1

(γvol (Ci)− vol (Ci) fi)
[
I{Ci∈S} − I{Ci /∈S}

]
=

N∑
i=1

(
γ

N
− fi
N

)[
I{i∈S} − I{i/∈S}

]
≡ RN (S)

where the second equality holds since Ci is contained either in S or in the complement
of S. Since ŜN ∈ SM , R(ŜN ) = RN (ŜN ). Let us consider some S′N ∈ SM that
minimizes the penalized excess risk between any S ∈ SM and the true level set S∗,
i.e.,

S′N = min
S∈SM

[R(S)−R(S∗) + 2penN (S)].
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From the definitions of ŜN in (3.3) and S′N , and the results of Theorem 3.1, the
following holds with probability at least 1− 2δ for δ ∈ [0, 1/2]:

R(ŜN )−R(S∗) = RN (ŜN )−R(S∗) ≤ min
S∈SM

[R(S)−R(S∗) + 2penN (S)].(5.5)

Let Ω denote the event that (3.7) from Theorem 3.1 holds for all proxy observations
z. Since −B ≤ f(x) ≤ B for all x ∈ [0, 1]d and −B ≤ γ ≤ B, for δ = 1/N

E
[
R(ŜN )−R(S∗)

]
= E

[
RN (ŜN )−R(S∗)

]
= E

[
RN (ŜN )−R(S∗)|Ω

]
P(Ω) + E

[
RN (ŜN )−R(S∗)|Ωc

]
P(Ωc)

≤ E
[
RN (ŜN )−R(S∗)|Ω

]
+ E

[
RN (ŜN )−R(S∗)|Ωc

] 2

N

≤ min
S∈SM

[R(S)−R(S∗) + 2penN (S)] + 4B × 2

N
(5.6)

where the first term in (5.6) is due to (5.5) and the second term is due to the bound-
edness assumption on f(x) and γ. Specifically,

RN (ŜN )−R(S∗) ≡ R(ŜN )−R(S∗)

=

∫
x

(γ − f(x))
[
I{x∈ŜN} − I{x/∈ŜN} − I{x∈S∗} + I{x/∈S∗}

]
dx

≤
∫
x

4Bdx = 4B

since γ − f(x) ≤ 2B and I{x∈S} − I{x/∈S} ≤ 1. Rewriting (5.6) we have,

E
[
R(ŜN )−R(S∗)

]
≤ min
S∈SM

[R(S)−R(S∗) + 2penN (S)] +
8

N
(5.7)

≤ min
1≤m≤M

min
S∈Sm

[R(S)−R(S∗) + 2penN (S)] +
8

N
(5.8)

≤ min
1≤m≤M

R(S∗m)−R(S∗) + 2penN (S∗m) +
8

N
(5.9)

≤ min
1≤m≤M

m−κ + 2penN (S∗m) +
8

N
(5.10)

where S∗m in (5.9) is defined in (3.9) and (5.10) is due to (3.10).

Let us now bound penN (S∗m) given in (3.8). To this end, let us rewrite

penN (S∗m) =

(
N − 1

N

)
µ(A)‖f‖1 + pen′N (S∗m)(5.11)

where

pen′N (S∗m) =
∑

L∈π(S∗m)

1

N

√
[log(2N) + JLK log 2] |cu − c`|2

∑
i,j∈L

〈
A(i),A(j)

〉
2

and bound pen′N (S∗m).
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To keep the notation simple, let |L| =
(∑

i∈L 1
)

be the number of pixels in leaf

L and ÃL be a K × |L| matrix formed by collecting the columns of A corresponding
to the indices i ∈ L. Note that |L| =

∑
i∈L 1 = Np̂L. Let

qL = [log(2N) + JLK log 2]
(
|cu − c`|2/2

)
p̂L.(5.12)

Using this notation, we can write

pen′N (S∗m) =
∑

L∈π(S∗m)

√√√√ [log(2N) + JLK log 2] |cu − c`|2
[
1
T
(|L|×1)

(
ÃT
LÃL

)
1(|L|×1)

]
2N2

=
∑

L∈π(S∗m)

√√√√√qL
N

1T(|L|×1)

(
ÃT
LÃL

)
1(|L|×1)

Np̂L

 =
∑

L∈π(S∗m)

√√√√√√qL
N


∥∥∥ÃL1(|L|×1)

∥∥∥2

2

|L|



=
∑

L∈π(S∗m)

√
qL
N

∥∥∥ÃL1(|L|×1)

∥∥∥
2√

|L|
≤

∑
L∈π(S∗m)

√
qL
N

∥∥∥ÃL

∥∥∥
2

∥∥1(|L|×1)

∥∥
2√

|L|

(5.13)

=
∑

L∈π(S∗m)

√
qL
N

∥∥∥ÃL

∥∥∥
2

√
|L|√

|L|
=

∑
L∈π(S∗m)

√
qL
N

∥∥∥ÃL

∥∥∥
2
≤ ‖A‖2

∑
L∈π(S∗m)

√
qL
N

(5.14)

where the inequality in (5.13) follows from the definition of the spectral norm of ÃL

given below:

∥∥∥ÃL

∥∥∥
2

= max
x6=0

∥∥∥ÃLx
∥∥∥

2

‖x‖2
≥

∥∥∥ÃL1(|L|×1)

∥∥∥
2∥∥1(|L|×1)

∥∥
2

.

The term
∑
L∈π(S∗m)

√
qL/N in (5.14) can now be bounded from above by using the

proof techniques in [43, 53]. Previous work [43] showed that for a binary tree with

N leaves at its finest level, JLK 4 logN . Note that p̂L =
∑
i∈L

1
N

4
=
∑
i∈L

∫
Ci
dx

4
=∫

L
dx = pL = 2−j(L) where j(L) is the depth corresponding to leaf L of the tree. By
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substituting these results in (5.12) we have

∑
L∈π(S∗m)

√
qL
N

4
∑

L∈π(S∗m)

√√√√ [log(2N) + logN log 2]
(
|cu − c`|2/2

)
2−j(L)

N

=

√√√√ [log(2N) + logN log 2]
(
|cu − c`|2/2

)
N

∑
L∈π(S∗m)

2−j(L)/2

≤

√√√√ [log(2N) + logN log 2]
(
|cu − c`|2/2

)
N

J∑
j=1

Tj
√

2−j

≤
√

logN

N
cmd/2−1,(5.15)

where J = log2N is the deepest level of the binary tree, Tj is the number of leaves at
depth j of the tree, c is a constant that is a function of the upper and lower bounds,
cu and c`, on noise, and (5.15) follows straightforwardly from the proof of Theorem 6
in [43]. By substituting (5.15) in (5.14), we have the following:

pen′N (S∗m) 4 md/2−1

√
logN

N
‖A‖2.(5.16)

From (5.10), (5.11) and (5.16),

E
[
R(ŜN )−R(S∗)

]
4 min

1≤m≤M

{
m−κ +md/2−1

√
logN

N
‖A‖2 +

(
N − 1

N

)
µ(A)‖f‖1 +

8B

N

}

4 min
1≤m≤M

{
m−κ +md/2−1

√
logN

N
‖A‖2 + µ(A)‖f‖1 +

8B

N

}

We can easily show that m �
(

N
‖A‖22 logN

) 1
2κ+d−2

minimizes the expression above.

Since 1 ≤ κ ≤ ∞, the bound on m is largest for κ = 1. Exploiting this result and the

fact that m ≤M , we have that for M <
(

N
‖A‖22 logN

) 1
d

,

E
[
R(ŜN )−R(S∗)

]
4

(
‖A‖22 logN

N

) κ
2κ+d−2

+ µ(A)‖f‖1.(5.17)

5.3. Proof of Corollary 3.3 (Performance with random projections).
The proof of this corollary is obtained by bounding the spectral norm of A and the
worst-case coherence of A with high probability. Let Ã ∈ RK×N be a matrix whose
entries are i.i.d. draws from N (0, 1/K). Each column of A is then simply obtained

by normalizing the columns of Ã, that is, A(i) = Ã(i)

‖Ã(i)‖
2

for i ∈ {1, . . . , N}. The

bound on ‖A‖2 is obtained by first showing that

‖A‖22 ≤ q
∥∥∥Ã∥∥∥2

2
(5.18)
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for some constant q and then bounding
∥∥∥Ã∥∥∥

2
using the results from random ma-

trix theory. In particular, [51] states that the spectral norm of an K × N sub-

gaussian matrix M is upper bounded by ‖M‖2 ≤ c
(√

K +
√
N
)

with probability

1− exp (−c(K +N)). This result can be straightforwardly extended to show that∥∥∥Ã∥∥∥2

2
≤ c2

(√
N/K + 1

)2

(5.19)

with probability 1−exp (−c(K +N)). We show that (5.18) holds with high probability
by taking the following approach:
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where pj =
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‖Ã(j)‖
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and p = [ p1 p2 ... pN ]
T

. Following the proofs of Lemma 1 in [27]

and Theorem 8 in [4], we can easily show that
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result in the above equation we have,
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with probability exceeding 1 − N−2. By substituting (5.19) in (5.20), and
applying the union bound, the following holds with probability exceeding
1− exp (−c(K +N))−N−2:

‖A‖2 ≤ c
√
N/K + 1√

1−
√

12 logN√
K

= c

√
K +

√
N√

K −
√

12K logN
.(5.21)

The rest of the proof follows straight from Theorem 8 of [4] which states that

µ(A) ≤
√

15 logN√
K −

√
12 logN

(5.22)

with probability exceeding 1− 11N−1 as long as 60 logN ≤ K ≤ N−1
4 logN . The bound

in (5.22) together with the bound in (5.21) and the result of Theorem 3.2 yields the
result of Corollary 3.3.

6. Relationship with plug-in methods. The success of wavelet-based meth-
ods in estimating a piecewise smooth function from noisy measurements suggests
a potential extension of such methods to the problem of level set estimation [12].
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For instance, one possible approach for level set estimation from projection measure-
ments is to first estimate the underlying signal f from proxy measurements z using
wavelet-based denoising methods and then threshold the resulting estimate at level
γ. Estimating f from y through an intermediate proxy construction step is simi-
lar to the iterative hard thresholding method in compressive sensing literature with
just one iteration [6]. While such plug-in estimation techniques using wavelet-based
methods offer practical solutions to the level set estimation problem, their estimation
performances are not yet understood.

The proposed multiscale, partition based set estimation method with proxy mea-
surements can be thought of as a combination of an iterative hard thresholding method
with just one iteration, and wavelet-based denoising ideas. Specifically, our partition-
based method is similar in spirit to the wavelet-based denoising ideas using the unnor-
malized Haar wavelet transform. Both wavelet-based methods and our method rely
on the spatial homogeneity of the underlying signal f to perform level set estimation.
The difference between the two methods stems from the way in which the wavelet coef-
ficients are thresholded in each case. While the threshold in the wavelet-based method
is chosen to minimize the mean squared error, our method thresholds the coefficients
at levels that are tailored to the level set estimation problem. Since the proposed
method shares similar ideas with wavelet-based methods, the proof techniques pre-
sented in this paper could potentially be extended to wavelet-based methods in order
to characterize their estimation performances.

Compressive sensing theory presents a variety of algorithms such as iterative hard
thresholding [6], basis pursuit [9], orthogonal matching pursuit [47], LASSO [46] and
total-variation based methods [5] to reliably estimate f from y. One can readily use
such algorithms to first estimate f and then threshold it or use the method in [44]
to estimate the level set. However, there are a couple of issues in using these plug-in
methods to perform level set estimation. First, these approaches aim to minimize
the mean squared error over the entire image. This, however, does not guarantee
minimization of errors close to the level set boundaries, which is critical to the char-
acterization of level set estimation performance. Second, the iterative nature of these
algorithms make them computationally intensive and time consuming.

7. Experimental results. Due to the lack of a theoretical performance compar-
ison between plug-in methods and our method, we present an empirical comparison of
these methods in this section by conducting experiments on a test image. Simulation
results discussed below demonstrate that the proposed partition-based, multiscale
method using proxy observations has the following advantages: (a) it is a powerful
tool to perform direct level set estimation from projection measurements, (b) it allows
us to exploit the spatial homogeneity of the underlying function to perform set esti-
mation, (c) it performs an order of magnitude better than thresholding methods that
obtain level set estimates by simply thresholding the proxy observations at level γ, and
(d) it yields results that are comparable to the results obtained using wavelet-based
thresholding approaches.

In order to test the effectiveness of our projective level set estimator, we con-
duct experiments on a test image of size 128 × 128, shown in Fig. 7.1(a). In these
experiments, we are interested in estimating γ-level set of this test image shown in
Fig. 7.1(b) from noisy, projection measurements of the form y = Af + n ∈ RK for
K < N = 128× 128, without reconstructing f from y. The entries of the projection
operator in these experiments are drawn from N (0, 1/K) and the noise is distributed
as n ∼ N (0, I). We compare the performance of our method with the performances
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(a) True signal f ∈ R128×128

such that fi ∈ [44, 239]. We
measure K = 8192 Gaussian
random projections of this im-
age.

(b) Level set S∗N = {i : fi >
125} (white pixels) such that∣∣S∗N ∣∣ ≈ 0.4285N where N =
128× 128.

Fig. 7.1. Snapshots of the true signal and its desired level set.

of the following approaches using the excess risk error metric defined in (1.3):

(a) Thresholding method, where the estimate Ŝγ is simply obtained by thresholding

the proxy observations z at level γ; that is, Ŝγ = {i : zi ≥ γ}.
(b) Risk-optimal thresholding method, where the estimate Ŝγ̂ is obtained by thresh-

olding z at a level γ̂ that minimizes the excess risk; that is, Ŝγ̂ = {i : zi ≥ γ̂}
where γ̂ = arg minγ εN

(
Ŝγ , S

∗
N

)
.

(c) Non-iterative wavelet-based plug-in method, where the estimate Ŝw is obtained by
first estimating f from z using translation invariant wavelet denoising, and then
thresholding the resulting estimate f̂ at level γ; that is, Ŝw = {i : f̂i ≥ γ}. In
these experiments we perform wavelet denoising using Daubechies-4 wavelets and
soft thresholding, where the threshold is chosen to minimize the excess risk.

(d) Total-variation (TV) based plug-in method, where the estimate ŜTV is obtained

according to ŜTV =
{
i : f̂

(TV )
i ≥ γ

}
. The estimate f̂ (TV ) of the input image f

is obtained from y by solving

f̂ (TV ) = arg min
f̃

∥∥∥y −Af̃
∥∥∥2

2
+ τ
∥∥∥f̃∥∥∥

TV

where
∥∥∥f̃∥∥∥

TV
is the total-variation norm of f̃ , and τ is a user-defined parameter

that balances the log-likelihood term and the regularization term. Algorithms
such as the two-step iterative shrinkage and thresholding (TwIST) method pro-
vide a way to efficiently solve for the above optimization problem [5]. In our
experiments, τ is chosen to minimize the excess risk.

In these simulation experiments, we compute the excess risk clairvoyantly based on
the knowledge of f . We obtain the estimate Ŝ using our projective level set estimator
according to ŜN = arg minS∈SM R̂(S) + τpen(S) with a scaling factor τ , which is

chosen to minimize ε
(
ŜN , S

∗
N

)
. In these experiments, we use M = N .

We evaluate the performance of all the competing algorithms discussed above,
with and without projected mean subtraction discussed in Sec. 4. The number of
observations used in these experiments is K = N/2 = 8192. Fig. 7.2(a) shows the
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proxy observations obtained without mean subtraction. Fig. 7.2(b) shows the level
set estimate obtained by simply thresholding the proxy observations at level γ and
Fig. 7.2(c) shows the estimate obtained by performing the risk-optimal thresholding
method. These results demonstrate that thresholding noisy, proxy observations results
in several false positives and misses. Though the wavelet-based plug-in method yields
better results in comparison, as shown in Fig. 7.2(d), the estimate is still severely
oversmoothed and noisy. The estimate obtained using our projective level set esti-
mator is shown in Fig. 7.2(e). This approach yields lower excess risk compared to
the other three approaches discussed above, preserves some of the fine details, but
still performs some oversmoothing. Fig. 7.2(f) shows the results obtained using the
TV-based plug-in method. This method yields the best results compared to the other
approaches and yields the smallest excess risk, at the expense of first estimating the
signal. Fig. 7.2(g) plots excess risk as a function of the number of measurements
K < N = 16384 for all competing methods. These plots are obtained by averaging
the results obtained over 200 different noise and projection matrix realizations.

Figs. 7.3(a) through 7.3(g) show the improvements in results obtained because
of the projected mean subtraction. The improvements stem from the fact that the
proxy measurements are less “noisy” after the projected mean subtraction. This
subtraction operation lowers the excess risk of the estimates obtained using every
method discussed above, except for the TV-based plug-in method, which performs
very well in practice irrespective of mean subtraction. TV-based reconstruction is
in general implemented using iterative algorithms where convergence is achieved if
the mean squared error between estimates obtained in successive iterations does not
change beyond a user-specified tolerance value. The TwIST algorithm used in our
simulation study uses the proxy measurements to initialize the iterative process and
stops iterating when convergence is achieved. As a result, only the number of iterations
to achieve a specified convergence will change depending on the quality of the proxy
observations and not the final estimate. This explains why the TV-based results are
insensitive to projected mean subtraction.

The TV-based method seems to outperform our projective level set estimator
since we evaluate the performance of these methods based solely on the excess risk
and not on the computational resources required to achieve that excess risk. In that
sense, this comparison is somewhat unfair. A more meaningful comparison would be
to either evaluate the excess risk obtained within some unit time, or compare the time
taken by different approaches to achieve a desired excess risk as the problem size N
changes. To make the comparison fair, we ran our projective level set estimator for
different problem sizes, used K ≈ N/3 observations to get our estimates, recorded the
excess risk obtained in each case, and ran the TV-based plug-in method to achieve
the same excess risk in each case. In other words, instead of using the conventional
convergence strategy in TV-based reconstruction algorithm, we stop iterating if the
excess risk is less than or equal to the one obtained using our method. We compare
the computational time required for both these methods as a function of problem
size. Figs. 7.4(a) and 7.4(b) show a 512× 512 image and its corresponding level set,
respectively. Note that the image used in above experiments is a cropped version of
the image in Fig. 7.4(a). We cropped this image in order to get images of different
sizes. In particular, we used images of size ` × ` where ` = 76, 96, 116, . . . , 376.
Fig. 7.4(c) shows the time-gap between these two methods to achieve similar excess
risks, as a function of the number of pixels in the input image. These plots show that
the computational time taken by TV-based plug-in method dramatically increases
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with problem size, where as the computation time required by our projective level set
estimator increases much more gracefully with problem size.

Before concluding, it is also important to comment on the performance of our ap-
proach in relation to that of faster plug-in methods, such as those based on the SVD
of A. As noted in Sec. 2.1, we do not expect such methods to perform well in the un-
derdetermined (K < N) setting for reasons outlined earlier. We have also verified this
intuition through numerical experiments (not fully reported here for space reasons).
Consider, for example, estimating the level set in Fig. 7.1(b) by thresholding either
TSVD or Tikhonov regularized solution for the case of K ≈ N/2. In this setting, the
excess-risks obtained using TSVD and Tikhonov regularization-based plug-in methods
are 14.26 and 14.31 respectively, where as the excess-risk using our proposed method
is 3.593. This rather poor performance of SVD-based plug-in methods should not be
too surprising. Such methods operate on the assumption that signals lie near a sub-
space, but a union-of-subspaces model is known to be a better model for real-world
signals [30]. In contrast to SVD-based approaches, our method performs better since
the family Sm over which we search for an estimate of the level set can be construed
as a union-of-subspaces, with each subspace in the union being formed by a set of
indices corresponding to dyadic, tree-based basis functions.

In conclusion, the experimental results indicate that estimating the underlying
signal using TV regularization-based plug-in methods yields more accurate level set
estimates compared to the ones obtained using our projective level set estimator. How-
ever, the real strengths of our method are two-fold. First, we can reliably perform
real-time level set estimation compared to plug-in methods as shown by the time-gap
versus problem size plot in Fig. 7.4(c). Second, we can use our level set estimate
to discard regions where the levels of interest are not present and design adaptive
measurement schemes to hone-in on the regions of interest. Such an adaptive mea-
surement scheme is especially helpful in very high-dimensional settings where the cost
of collecting measurements and performing reconstruction tends to be extremely high.

8. Conclusion. This work proposes a theoretically sound and computationally
efficient tree-based approach for extracting level sets of a function from projection
measurements without reconstructing the underlying function. The simulation re-
sults presented in Sec. 7 suggest that the proposed method may facilitate fast and
accurate level set estimates from tomographic projections in medical imaging, Fourier
projections in interferometry, or coded projections in compressive optical systems.
One of the key advantages of our approach is that many of the operations on the
proxy data are easily parallelizable. For instance, in problems where the domain of
the signal of interest is very large, we can compute the proxy observations, partition
the proxy data into different patches, run our estimation algorithm on each patch sep-
arately and merge the results to identify the regions that correspond to the level set.
In applications such as medical imaging, the time saved by collecting fewer projection
measurements and parallelization can be significant and crucial.

Empirically, the accuracy of the projective level set estimate is comparable to
that of a similar scheme based on wavelet thresholding or an iterative method with
TV regularization. Currently, however, there is no theoretical support for these alter-
natives. Recent work studying the performance of so-called “analysis regularization”
[49, 16] may lead to an improved understanding of theoretical performance bounds
for the TV approach, but as we show here this iterative solution requires significantly
more computational resources. Our approach is much more similar in spirit to the
wavelet-based approach, and the theoretical techniques employed in our analysis may

22



(a) Proxy observations (b) Estimate obtained
using the thresholding
method; εN = 15.21

(c) Estimate obtained
using the risk-optimal
thresholding method;
εN = 14.83

(d) Estimate obtained
using the wavelet-based
method; εN = 4.824

(e) Estimate obtained us-
ing the projective level set
estimator; εN = 3.593

(f) Estimate obtained us-
ing the TV-based plug-in
estimator; εN = 0.5596
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(g) Plot of excess risk as a function of K < N = 16384
without performing the projected mean subtraction.

Fig. 7.2. Snapshots of the simulation results obtained (without performing the projected mean
subtraction) from observations of the form in (1.1).

lead to an improved understanding of this and other fast, non-iterative approaches.
Furthermore, adaptive sampling schemes such as the one discussed in [18] suggest a
potential extension of our method. Specifically, [18] proposes collecting noisy mea-
surements of a sparse signal, estimating its support and collecting more measurements
based on the estimated support to adaptively focus the computational resources on
regions of interest. The underlying assumption in such “distilled sensing” [19] schemes
is sparsity. Since our level set estimation method offers a way to estimate the level set
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(a) Proxy observations
after projected mean sub-
traction

(b) Estimate obtained
using the thresholding
method; εN = 8.562

(c) Estimate obtained
using the risk-optimal
thresholding method;
εN = 8.231

(d) Estimate obtained
using the wavelet-based
method; εN = 2.393

(e) Estimate obtained us-
ing the projective level set
estimator; εN = 1.924

(f) Estimate obtained us-
ing the TV-based plug-in
estimator; εN = 0.5593
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(g) Plot of excess risk as a function of K < N = 16384
after performing mean subtraction.

Fig. 7.3. Snapshots of the simulation results obtained (after performing projected mean sub-
traction) from observations of the form in (1.1).

of a function without requiring sparsity, we expect it to facilitate the development of
new adaptive sampling routines that perform better than the ones proposed in earlier
works.
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