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Abstract—Modern information processing relies on the axiom
that high-dimensional data lie near low-dimensional geomet-
ric structures. This paper revisits the problem of data-driven
learning of these geometric structures and puts forth two new
nonlinear geometric models for data describing “related” ob-
jects/phenomena. The first one of these models straddles the
two extremes of the subspace model and the union-of-subspaces
model, and is termed the metric-constrained union-of-subspaces
(MC-UoS) model. The second one of these models—suited for
data drawn from a mixture of nonlinear manifolds—generalizes
the kernel subspace model, and is termed the metric-constrained
kernel union-of-subspaces (MC-KUoS) model. The main contri-
butions of this paper in this regard include the following. First,
it motivates and formalizes the problems of MC-UoS and MC-
KUoS learning. Second, it presents algorithms that efficiently
learn an MC-UoS or an MC-KUoS underlying data of interest.
Third, it extends these algorithms to the case when parts of the
data are missing. Last, but not least, it reports the outcomes of a
series of numerical experiments involving both synthetic and real
data that demonstrate the superiority of the proposed geometric
models and learning algorithms over existing approaches in the
literature. These experiments also help clarify the connections
between this work and the literature on (subspace and kernel
k-means) clustering.

Index Terms—Data-driven learning, kernel methods, kernel
k-means, missing data, principal component analysis, subspace
clustering, subspace learning, union of subspaces.

I. INTRODUCTION

WE have witnessed an explosion in data generation in the
last decade or so. Modern signal processing, machine

learning and statistics have been relying on a fundamental
maxim of information processing to cope with this data explo-
sion. This maxim states that while real-world data might lie in
a high-dimensional Hilbert space, relevant information within
them almost always lies near low-dimensional geometric struc-
tures embedded in the Hilbert space. Knowledge of these
low-dimensional geometric structures not only improves the
performance of many processing tasks, but it also helps reduce
computational and communication costs, storage requirements,
etc.
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Information processing literature includes many models for
geometry of high-dimensional data, which are then utilized for
better performance in numerous applications, such as dimen-
sionality reduction and data compression [4]–[8], denoising
[9], [10], classification [11]–[14], and motion segmentation
[15], [16]. These geometric models broadly fall into two
categories, namely, linear models [4], [12], [17] and nonlinear
models [6], [16], [18]–[20]. A further distinction can be made
within each of these two categories depending upon whether
the models are prespecified [21], [22] or learned from the data
themselves [10], [16], [19], [23]–[25]. Our focus in this paper
is on the latter case, since data-driven learning of geometric
models is known to outperform prespecified geometric models
[10], [26].

Linear models, which dictate that data lie near a low-
dimensional subspace of the Hilbert space, have been histori-
cally preferred within the class of data-driven models due to
their simplicity. These models are commonly studied under
the rubrics of principal component analysis (PCA) [4], [27],
Karhunen–Loève transform [28], factor analysis [17], etc. But
real-world data in many applications tend to be nonlinear.
In order to better capture the geometry of data in such
applications, a few nonlinear generalizations of data-driven
linear models that remain computationally feasible have been
investigated in the last two decades. One of the most popular
generalizations is the nonlinear manifold model [6], [8], [29],
[30]. The (nonlinear) manifold model can also be considered
as the kernel subspace model, which dictates that a mapping
of the data to a higher- (possibly infinite-) dimensional Hilbert
space lies near a low-dimensional subspace [31]. Data-driven
learning of geometric models in this case is commonly studied
under the moniker of kernel PCA (KPCA) [29]. Another one of
the most popular generalizations of linear models is the union-
of-subspaces (UoS)

(
resp., union-of-affine-subspaces (UoAS)

)
model, which dictates that data lie near a mixture of low-
dimensional subspaces (resp., affine subspaces) in the ambient
Hilbert space. Data-driven learning of the UoS model is
commonly carried out under the rubrics of generalized PCA
[32], dictionary learning [19], [33], and subspace clustering
[16], [34]–[37]. On the other hand, data-driven learning of the
UoAS model is often studied under the umbrella of hybrid
linear modeling [38], mixture of factor analyzers [39], etc.

In the literature, encouraging results have been reported for
both the UoS and the kernel subspace models in the context
of a number of applications [9], [14], [16], [40]. But there
remains a lot of room for improvement in both these models.
The canonical UoS model, for example, does not impose any
constraint on the collection of subspaces underlying data of
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interest. On the other hand, one can intuit that subspaces
describing “similar” data should have some “relation” on
the Grassmann manifold. The lack of any a priori constraint
during learning on the subspaces describing “similar” data
has the potential to make different methods for UoS learning
susceptible to errors due to low signal-to-noise ratio (SNR),
outliers, missing data, etc. Another limitation of the UoS
model is the individual linearity of its constituent subspaces,
which limits its usefulness for data drawn from a nonlinear
manifold [29]. On the other hand, while the kernel subspace
model can handle manifold data, a single kernel subspace
requires a large dimension to capture the richness of data
drawn from a mixture of nonlinear manifolds.

Our goal in this paper is to improve the state-of-the-art data-
driven learning of geometric data models for both complete
and missing data describing similar phenomenon. We are in
particular interested in learning models for data that are either
mildly or highly nonlinear. Here, we are informally using the
terms “mildly nonlinear” and “highly nonlinear.” Heuristically,
nonlinear data that cannot be represented through a mixture of
linear components should be deemed “highly nonlinear.” Our
key objective in this regard is overcoming the aforementioned
limitations of the UoS model and the kernel subspace model
for mildly nonlinear data and highly nonlinear data, respec-
tively.

A. Our Contributions and Relation to Other Work
One of our main contributions is introduction of a novel ge-

ometric model, termed metric-constrained union-of-subspaces
(MC-UoS) model, for mildly nonlinear data describing similar
phenomenon. Similar to the canonical UoS model, the MC-
UoS model also dictates that data lie near a union of low-
dimensional subspaces in the ambient space. But the key
distinguishing feature of the MC-UoS model is that it also
forces its constituent subspaces to be close to each other
according to a metric defined on the Grassmann manifold.
In this paper, we formulate the MC-UoS learning problem
for a particular choice of the metric and derive three novel
iterative algorithms for solving this problem. The first one of
these algorithms operates on complete data, the second one
deals with the case of unknown number and dimension of
subspaces, while the third one carries out MC-UoS learning
in the presence of missing data.

One of our other main contributions is extension of our
MC-UoS model for highly nonlinear data. This model, which
can also be considered a generalization of the kernel sub-
space model, is termed metric-constrained kernel union-of-
subspaces (MC-KUoS) model. The MC-KUoS model asserts
that mapping of data describing similar phenomenon to some
higher-dimensional Hilbert space (also known as the feature
space) lies near a mixture of subspaces in the feature space
with the additional constraint that the individual subspaces are
also close to each other in the feature space. In this regard,
we formulate the MC-KUoS learning problem using the kernel
trick [18], which avoids explicit mapping of data to the feature
space. In addition, we derive two novel iterative algorithms
that can carry out MC-KUoS learning in the presence of
complete data and missing data.

Our final contribution involves carrying out a series of
numerical experiments on both synthetic and real data to
justify our heuristics for the two models introduced in this
paper. Our main focus in these experiments is learning the
geometry of (training) data describing similar phenomenon in
the presence of additive, white Gaussian noise and missing
entries. In the case of real data, we demonstrate the superiority
of the proposed algorithms by focusing on the tasks of
denoising of (test) data and clustering of data having either
complete or missing entries. (Other applications of our models
will be investigated in future works.) Our results confirm
the superiority of our models in comparison to a number of
state-of-the-art approaches under both the UoS and the kernel
subspace models [16], [25], [29], [33], [36], [37], [41].

We conclude this discussion by pointing out that our work
is not only related to the traditional literature on geometry
learning, but it also has connections to the literature on
clustering [16], [36], [37], [41]. Specifically, the mixture
components within our two models can be treated as different
clusters within the data and the outputs of our algorithms
automatically lead us to these clusters. Alternatively, one could
approach the MC-UoS/MC-KUoS learning problem by first
clustering the data and then learning the individual subspaces
in the ambient/feature space. However, numerical experiments
confirm that our algorithms perform better than such heuristic
approaches.

B. Notation and Organization

Throughout the paper, we use bold lower-case and bold
upper-case letters to represent vectors/sets and matrices, re-
spectively. The i-th element of a vector/set v is denoted by
v(i), while ai,j denotes the (i, j)-th element of a matrix A.
The m-dimensional zero vector is denoted by 0m and the
m×m identity matrix is denoted by Im. Given a set Ω, [A]Ω,:
(resp., [v]Ω) denotes the submatrix of A (resp., subvector of v)
corresponding to the rows of A (resp., entries of v) indexed by
Ω. Given two sets Ω1 and Ω2, [A]Ω1,Ω2 denotes the submatrix
of A corresponding to the rows and columns indexed by Ω1

and Ω2, respectively. Finally, (·)T and tr(·) denote transpose
and trace operations, respectively, while the Frobenius norm
of a matrix A is denoted by ‖A‖F and the `2 norm of a vector
v is represented by ‖v‖2.

The rest of the paper is organized as follows. In Sec. II,
we formally define the metric-constrained union-of-subspaces
(MC-UoS) model and mathematically formulate the data-
driven learning problems studied in this paper. Sec. III presents
algorithms for MC-UoS learning in the presence of complete
and missing data. Sec. IV gives the details of two algorithms
for learning of an MC-UoS in the feature space, corresponding
to the cases of complete and missing data. We then present
some numerical results in Sec. V, which is followed by
concluding remarks in Sec. VI.

II. PROBLEM FORMULATION

In this section, we mathematically formulate the two prob-
lems of learning the geometry of mildly and highly nonlinear
data from training examples. Both of our problems rely on the
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notion of a metric-constrained union-of-subspaces (MC-UoS),
one in the ambient space and the other in the feature space.
We therefore first begin with a mathematical characterization
of the MC-UoS model.

Recall that the canonical UoS model asserts data in an m-
dimensional ambient space can be represented through a union
of L low-dimensional subspaces [8], [42]: ML =

⋃L
`=1 S`,

where S` is a subspace of Rm. In here, we make the simplified
assumption that all subspaces in ML have the same dimen-
sion, i.e., ∀`, dim(S`) = s � m. In this case, each subspace
S` corresponds to a point on the Grassmann manifold Gm,s,
which denotes the set of all s-dimensional subspaces of Rm.
While the canonical UoS model allows S`’s to be arbitrary
points on Gm,s, the basic premise of the MC-UoS model is that
subspaces underlying similar signals likely form a “cluster”
on the Grassmann manifold. In order to formally capture this
intuition, we make use of a distance metric on Gm,s and define
an MC-UoS according to that metric as follows.

Definition 1. (Metric-Constrained Union-of-Subspaces.) A
UoSML =

⋃L
`=1 S` is said to be constrained with respect to a

metric du : Gm,s×Gm,s → [0,∞) if max`,p:`6=p du(S`,Sp) ≤
ε for some positive constant ε.

The metric we use in this paper to measure distances
between subspaces is based on the Hausdorff distance be-
tween a vector and a subspace, which was first defined in
[43]. Specifically, if D` ∈ Rm×s and Dp ∈ Rm×s denote
orthonormal bases of subspaces S` and Sp, respectively, then

du(S`,Sp) =
√
s− tr(DT

` DpDT
p D`)

= ‖D` − PSpD`‖F , (1)

where PSp denotes the projection operator onto the subspace
Sp: PSp = DpD

T
p . It is easy to convince oneself that du(·, ·)

in (1) is invariant to the choice of orthonormal bases of the
two subspaces, while it was formally shown to be a metric
on Gm,s in [44]. Note that du(·, ·) in (1) is directly related to
the concept of principal angles between two subspaces. Given
two subspaces S`,Sp and their orthonormal bases D`,Dp,
the cosines of the principal angles cos(θj`,p), j = 1, . . . , s,
between S` and Sp are defined as the ordered singular val-
ues of DT

` Dp [37]. It therefore follows that du(S`,Sp) =√
s−

∑s
j=1 cos2(θj`,p). We conclude our discussion of the

MC-UoS model by noting that other definitions of metrics on
the Grassmann manifold exist in the literature that are based
on different manipulations of cos(θj`,p)’s [45]. In this paper,
however, we focus only on (1) due to its ease of computation.

A. Geometry Learning for Mildly Nonlinear Data

Our first geometry learning problem corresponds to the case
of high-dimensional data that lie near an MC-UoS ML in
the ambient space Rm. We are using the qualifier “mildly
nonlinear” for such data since individual components of these
data are being modeled in a linear fashion. In terms of a formal
characterization, we assume access to a collection of N noisy
training samples, Y = [y1, . . . ,yN ] ∈ Rm×N , such that every
sample yi can be expressed as yi = xi+ξi with xi belonging

to one of the S`’s in ML and ξi ∼ N (0, (σ2
tr/m)Im)

denoting additive noise. We assume without loss of generality
throughout this paper that ‖xi‖22 = 1, which results in training
SNR of ‖xi‖22/E[‖ξi‖22] = σ−2

tr . To begin, we assume both L
and s are known a priori. Later, we relax this assumption and
extend our work in Sec. III-B to the case when these two
parameters are unknown. Our goal is to learn ML using the
training data Y, which is equivalent to learning a collection
of L subspaces that not only approximate the training data,
but are also “close” to each other on the Grassmann manifold
(cf. Definition 1). Here, we pose this goal of learning an MC-
UoS ML in terms of the following optimization program:

{S`}L`=1 = arg min
{S`}⊂Gm,s

L∑
`,p=1
`6=p

d2
u(S`,Sp)

+ λ
N∑
i=1

‖yi − PSliyi‖
2
2, (2)

where li = arg min` ‖yi − PS`yi‖22 with PS`yi denoting the
(orthogonal) projection of yi onto the subspace S`. Notice
that the first term in (2) forces the learned subspaces to be
close to each other, while the second term requires them to
simultaneously provide good approximations to the training
data. The tuning parameter λ > 0 in this setup provides a
compromise between subspace closeness and approximation
error. While a discussion of finding an optimal λ is beyond
the scope of this paper, cross validation can be used to find
ranges of good values of tuning parameters in such problems
[46] (also, see Sec. V-A). It is worth pointing out here that
(2) can be reformulated for the UoAS model through a simple
extension of the metric defined in (1). In addition, note that
(2) is mathematically similar to a related problem studied in
the clustering literature [47]. In fact, it is straightforward to
show that (2) reduces to the clustering problem in [47] for
ML being a union of zero-dimensional affine subspaces.

Remark 1. The MC-UoS model and the learning problem (2)
can be further motivated as follows. Consider a set of facial
images of individuals under varying illumination conditions in
the Extended Yale B dataset [48], as in Figs. 1(a) and 1(b). It
is generally agreed that all images of an individual in this case
can be regarded as lying near a 9-dimensional subspace [49],
which can be computed in a straightforward manner using
singular value decomposition (SVD). The subspace distance
defined in (1) can be used in this case to identify similar-
looking individuals. Given noisy training images of such “sim-
ilar” individuals, traditional methods for UoS learning such as
sparse subspace clustering (SSC) [16] that rely only on the
approximation error will be prone to errors. Fig. 1 provides a
numerical validation of this claim, where it is shown that SSC
has good performance on noisy images of different-looking
individuals (cf. Fig. 1(b)), but its performance degrades in
the case of similar-looking individuals (cf. Fig. 1(a)). The
MC-UoS learning problem (2), on the other hand, should be
able to handle both cases reliably because of the first term
in (2) that penalizes subspaces that do not cluster on the
Grassmann manifold. We refer the reader to Sec. V-A for
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(a) (b)

Fig. 1. An example illustrating the limitations of existing methods for UoS
learning from noisy training data. The top row in this figure shows examples of
“clean” facial images of four individuals in the Extended Yale B dataset [48],
while the bottom row shows noisy versions of these images, corresponding
to σ2

tr = 0.1. The “ground truth” distance between the subspaces of the
individuals in (a) is 1.7953, while it is 2.3664 between the subspaces of the
individuals in (b). State-of-the-art UoS learning methods have trouble reliably
learning the underlying subspaces whenever the subspaces are close to each
other. Indeed, while the distance between the two subspaces learned by the
SSC algorithm [16] from noisy images of the individuals in (b) is 2.4103, it
is 2.4537 for the case of “similar-looking” individuals in (a).

detailed experiments that numerically validate this claim.
In this paper, we study two variants of the MC-UoS learning

problem described by (2). In the first variant, all m dimensions
of each training sample in Y are observed and the geometry
learning problem is exactly given by (2). In the second
variant, it is assumed that some of the m dimensions of each
training sample in Y are unobserved (i.e., missing), which then
requires a recharacterization of (2) for the learning problem to
be well posed. We defer that recharacterization to Sec. III-C of
the paper. In order to quantify the performance of our learning
algorithms, we will resort to generation of noisy test data as
follows. Given noiseless (synthetic or real) data sample x with
‖x‖22 = 1, noisy test sample z is given by z = x + ξ with the
additive noise ξ ∼ N (0, (σ2

te/m)Im). We will then report the
metric of average approximation error of noisy test data using
the learned subspaces for synthetic and real data. Finally, in
the case of synthetic data drawn from an MC-UoS, we will
also measure the performance of our algorithms in terms of
average normalized subspace distances between the learned
and the true subspaces. We defer a formal description of both
these metrics to Sec. V-A1, which describes in detail the setup
of our experiments.

B. Geometry Learning for Highly Nonlinear Data

Our second geometry learning problem corresponds to
the case of high-dimensional data drawn from a mixture of
nonlinear manifolds in the ambient space Rm. The basic
premise of our model in this case is that when data drawn
from a mixture of nonlinear manifolds are mapped through
a nonlinear map φ : Rm → F to a higher-dimensional
feature space F ⊂ Rm̃ with m̃ ≫ m, then the φ-mapped
“images” of these data can be modeled as lying near an MC-
UoS ML in the feature space. In order to learn this model,
we once again assume access to a collection of N training
samples, Y = [y1, . . . ,yN ] ∈ Rm×N , with the fundamental
difference here being that the mapped training data φ(Y) =
[φ(y1), . . . , φ(yN )] are now assumed to be drawn from an

MC-UoS ML =
⋃L
`=1 S` ⊂ Gm̃,s ⊂ F . Here, we also make

the simplified assumption that rank(φ(Y)) = N , which is
justified as long as m̃≫ N and no two training samples are
identical. Our goal in this setting is to learn the (feature space)
MC-UoS ML using the training data Y, which in theory can
still be achieved by solving the following variant of (2):

{S`}L`=1 = arg min
{S`}⊂Gm̃,s

L∑
`,p=1
`6=p

d2
u(S`,Sp)

+ λ
N∑
i=1

‖φ(yi)− PSliφ(yi)‖22, (3)

where li = arg min` ‖φ(yi) − PS`φ(yi)‖22 with PS`φ(yi)
denoting the (orthogonal) projection of φ(yi) onto the s-
dimensional subspace S` in Rm̃.

In practice, however, solving (3) directly is likely to be
computationally intractable due to the extremely high dimen-
sionality of the feature space. Instead, we are interested in
solving the problem of MC-UoS learning in the feature space
using the “kernel trick” [18], which involves transforming
(3) into a learning problem that only requires evaluations
of inner products in F . Such a transformation can then be
followed with the use of a Mercer kernel κ, which is a
positive semidefinite function κ : Rm×Rm → R that satisfies
κ(y,y′) = 〈φ(y), φ(y′)〉 for all y,y′ ∈ Rm, to develop
algorithms that can learn an MC-UoS in the feature space
without explicit mapping of the training data to the feature
space. We term the learning of an MC-UoS in the feature space
using the kernel trick as metric-constrained kernel union-of-
subspaces (MC-KUoS) learning. Similar to the case of MC-
UoS learning, we consider two scenarios in this paper for MC-
KUoS learning. The first one of these scenarios corresponds
to the standard setup in which all m dimensions of each
training sample in Y are observed, while the second scenario
corresponds to the case of “missing data” in which some
dimensions of each training sample in Y remain unobserved.
Finally, we will evaluate the proposed MC-KUoS learning
algorithms using (i) the metric of average approximation
error of noisy test data, and (ii) their clustering performance
on training data having either complete or missing entries.
We conclude here by pointing out that MC-KUoS learning
invariably also leads us to the problem of finding the “pre-
images” of data in the feature space induced by our chosen
kernel (e.g., Gaussian or polynomial kernel) [9], [50], which
will also be addressed in this paper.

Remark 2. It is worth noting here that (3) requires knowledge
of the nonlinear map φ. However, since we rely on the kernel
trick for our MC-KUoS learning framework, we only need
access to an appropriate kernel κ. It is assumed in this paper
that such a kernel is readily available to us. While learning
the “best” kernel from training data is an interesting extension
of our work, it is beyond the scope of this paper.

III. MC-UOS LEARNING FOR MILDLY NONLINEAR DATA

In this section, we describe our approach to the problem
of MC-UoS learning for mildly nonlinear data. We begin our
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discussion for the case when all m dimensions of each training
sample are available to us.

A. MC-UoS Learning Using Complete Data

In order to reduce the effects of noisy training data, we
begin with a pre-processing step that centers the data matrix
Y.1 This involves defining the mean of the samples in Y
as ȳ = 1

N

∑N
i=1 yi and then subtracting this mean from Y

to obtain the centered data Ỹ = [ỹ1, . . . , ỹN ], where ỹi =
yi − ȳ, i = 1, . . . , N . Next, we focus on simplification of
the optimization problem (2). To this end, we first define an
L×N indicator matrix W that identifies memberships of the
ỹi’s in different subspaces, where w`,i = 1, ` = 1, . . . , L,
i = 1, . . . , N , if and only if ỹi is “closest” to subspace S`;
otherwise, w`,i = 0. Mathematically,

W =
[
w`,i ∈ {0, 1} : ∀i = 1, . . . , N,

L∑
`=1

w`,i = 1
]
. (4)

Further, notice that ‖yi − PS`yi‖22 in (2) can be rewritten as

‖yi − PS`yi‖22 = ‖ỹi − PS` ỹi‖22 = ‖ỹi‖22 − ‖DT
` ỹi‖22, (5)

where D` ∈ Rm×s denotes an (arbitrary) orthonormal ba-
sis of S`. Therefore, defining D = [D1, . . . ,DL] to be
a collection of orthonormal bases of S`’s, we can rewrite
(2) as (D,W) = arg minD,W F1(D,W) with the objective
function F1(D,W) given by2

F1(D,W) =
L∑

`,p=1
`6=p

‖D` − PSpD`‖2F

+ λ

N∑
i=1

L∑
`=1

w`,i(‖ỹi‖22 − ‖DT
` ỹi‖22). (6)

Minimizing (6) simultaneously over D and W is challeng-
ing and is likely to be computationally infeasible. Instead, we
adopt an alternate minimization approach [51], [52], which
involves iteratively solving (6) by alternating between the
following two steps: (i) minimizing F1(D,W) over W for
a fixed D, which we term as the subspace assignment step;
and (ii) minimizing F1(D,W) over D for a fixed W, which
we term as the subspace update stage. To begin this alternate
minimization, we start with an initial D in which each block
D` ∈ Rm×s is a random orthonormal basis. Next, we fix this
D and carry out subspace assignment, which now amounts to
solving for each i = 1, . . . , N ,

li = arg min
`=1,...,L

‖ỹi − PS` ỹi‖22 = arg max
`=1,...,L

‖DT
` ỹi‖22, (7)

and then setting wli,i = 1 and w`,i = 0 ∀` 6= li. In order to
move to the subspace update step, we fix the matrix W and
focus on optimizing F1(D,W) over D. However, this step
requires more attention since minimizing over the entire D
at once will also lead to a large-scale optimization problem.

1While such pre-processing is common in many geometry learning algo-
rithms, it is not central to our framework.

2Note that the minimization here is being carried out under the assumption
of D`’s being orthonormal and W being described by (4).

Algorithm 1: Metric-Constrained Union-of-Subspaces
Learning (MiCUSaL)

Input: Training data Y ∈ Rm×N , number of subspaces
L, dimension of subspaces s, and parameter λ.
Initialize: Random orthonormal bases {D` ∈ Rm×s}L`=1.

1: ȳ← 1
N

∑N
i=1 yi, ỹi ← yi − ȳ, i = 1, . . . , N .

2: while stopping rule do
3: for i = 1 to N (Subspace Assignment) do
4: li ← arg max` ‖DT

` ỹi‖2.
5: wli,i ← 1 and ∀` 6= li, w`,i ← 0.
6: end for
7: for ` = 1 to L (Subspace Update) do
8: c` ← {i ∈ {1, . . . , N} : w`,i = 1}.
9: Ỹ` ← [ỹi : i ∈ c`].

10: A` ←
∑
p6=` DpD

T
p + λ

2 Ỹ`Ỹ
T
` .

11: Eigen decomposition of A` = U`Σ`U
T
` .

12: D` ← Columns of U` corresponding to the
s-largest diagonal elements in Σ`.

13: end for
14: end while
Output: Orthonormal bases {D` ∈ Rm×s}L`=1.

We address this problem by once again resorting to block-
coordinate descent (BCD) [51] and updating only one D` at
a time while keeping the other Dp’s (p 6= `) fixed in (6). In
this regard, suppose we are in the process of updating D` for
a fixed ` during the subspace update step. Define c` = {i ∈
{1, . . . , N} : w`,i = 1} to be the set containing the indices
of all ỹi’s that are assigned to S` (equivalently, D`) and let
Ỹ` = [ỹi : i ∈ c`] be the corresponding m×|c`| matrix. Then
it can be shown after some manipulations of (6) that updating
D` is equivalent to solving the following problem:

D` = arg min
Q∈Vm,s

∑
p6=`

‖Q− PSpQ‖2F +
λ

2
(‖Ỹ`‖2F − ‖QT Ỹ`‖2F )

= arg max
Q∈Vm,s

tr
(
QT (

∑
p6=`

DpD
T
p +

λ

2
Ỹ`Ỹ

T
` )Q

)
, (8)

where Vm,s denotes the Stiefel manifold, defined as the
collection of all m × s orthonormal matrices. Note that (8)
has an intuitive interpretation. When λ = 0, (8) reduces to the
problem of finding a subspace that is closest to the remaining
L− 1 subspaces in our collection. When λ =∞, (8) reduces
to the PCA problem, in which case the learning problem (2)
reduces to the subspace clustering problem studied in [41].
By selecting an appropriate λ ∈ (0,∞) in (8), we straddle the
two extremes of subspace closeness and data approximation.
In order to solve (8), we define an m×m symmetric matrix
A` =

∑
p6=` DpD

T
p + λ

2 Ỹ`Ỹ
T
` . It then follows from [53] that

(8) has a closed-form solution that involves eigen decomposi-
tion of A`. Specifically, D` = arg max tr(DT

` A`D`) is given
by the first s eigenvectors of A` associated with its s-largest
eigenvalues.

This completes our description of the subspace update step.
We can now combine the subspace assignment and subspace
update steps to fully describe our algorithm for MC-UoS learn-
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ing. This algorithm, which we term metric-constrained union-
of-subspaces learning (MiCUSaL), is given by Algorithm 1.
In terms of the complexity of this algorithm in each iteration,
notice that the subspace assignment step requires O(mLsN)
operations. In addition, the total number of operations needed
to compute the A`’s in each iteration is O(m2(Ls + N)).
Finally, each iteration also requires L eigen decompositions of
m ×m matrices, each one of which has O(m3) complexity.
Therefore, the computational complexity of MiCUSaL in each
iteration is given by O(m3L+m2N +m2Ls+mLsN). We
conclude this discussion by pointing out that we cannot guar-
antee convergence of MiCUSaL to a global optimal solution.
However, since the objective function F1 in (6) is bounded
below by zero and MiCUSaL ensures that F1 does not increase
after each iteration, it follows that MiCUSaL iterates do indeed
converge (possibly to one of the local optimal solutions).
This local convergence, of course, will be a function of the
initialization of MiCUSaL. In this paper, we advocate the use
of random subspaces for initialization, while we study the
impact of such random initialization in Sec. V-A.

B. Practical Considerations

The MiCUSaL algorithm described in Sec. III-A requires
knowledge of the number of subspaces L and the dimension
of subspaces s. In practice, however, one cannot assume
knowledge of these parameters a priori. Instead, one must
estimate both the number and the dimension of subspaces from
the training data themselves. In this section, we describe a
generalization of the MiCUSaL algorithm that achieves this
objective. Our algorithm, which we term adaptive MC-UoS
learning (aMiCUSaL), requires only knowledge of loose upper
bounds on L and s, which we denote by Lmax and smax,
respectively.

The aMiCUSaL algorithm initializes with a collection of
random orthonormal bases D = [D1, . . . ,DLmax ], where each
basis D` is a point on the Stiefel manifold Vm,smax . Similar
to the case of MiCUSaL, it then carries out the subspace
assignment and subspace update steps in an iterative fashion.
Unlike MiCUSaL, however, we also greedily remove redun-
dant subspaces from our collection of subspaces {S`}Lmax`=1

after each subspace assignment step. This involves removal of
D` from D if no signals in our training data get assigned to the
subspace S`. This step of greedy subspace pruning ensures that
only “active” subspaces survive before the subspace update
step.

Once the aMiCUSaL algorithm finishes iterating between
subspace assignment, subspace pruning, and subspace update,
we move onto the step of greedy subspace merging, which
involves merging of pairs of subspaces that are so close to
each other that even a single subspace of the same dimension
can be used to well approximate the data represented by the
two subspaces individually.3 In this step, we greedily merge
pairs of closest subspaces as long as their normalized subspace

3Note that the step of subspace merging is needed due to our lack
of knowledge of the true number of subspaces in the underlying model.
In particular, the assumption here is that the merging threshold εmin in
Algorithm 2 satisfies εmin � ε√

s
.

distance is below a predefined threshold εmin ∈ [0, 1). Mathe-
matically, the subspace merging step involves first finding the
pair of subspaces (S`∗ ,Sp∗) that satisfies

(`∗, p∗) = arg min
`6=p

du(S`,Sp) s.t.
du(S`∗ ,Sp∗)√

smax
≤ εmin. (9)

We then merge S`∗ and Sp∗ by setting c`∗ = c`∗ ∪ cp∗

and Ỹ`∗ = [ỹi : i ∈ c`∗ ], where c`∗ , cp∗ are as defined
in Algorithm 1. By defining an m × m symmetric matrix
A`∗ =

∑
`6=`∗,p∗ D`D

T
` + λ

2 Ỹ`∗Ỹ
T
`∗ , D`∗ is then set equal to

the first smax eigenvectors of A`∗ associated with its smax-
largest eigenvalues. Finally, we remove Dp∗ from D. This pro-
cess of finding the closest pair of subspaces and merging them
is repeated until the normalized subspace distance between
every pair of subspaces becomes greater than εmin. We assume
without loss of generality that L̂ subspaces are left after this
greedy subspace merging, where each S` (` = 1, . . . , L̂) is a
subspace in Rm of dimension smax.

After subspace merging, we move onto the step of esti-
mation of the dimension, s, of the subspaces. To this end,
we first estimate the dimension of each subspace S`, denoted
by s`, and then s is selected as the maximum of these s`’s.
There have been many efforts in the literature to estimate the
dimension of a subspace; see, e.g., [54]–[57] for an incomplete
list. In this paper, we focus on the method given in [54],
which formulates the maximum likelihood estimator (MLE)
of s`. This is because: (i) the noise level is unknown in
our problem, and (ii) the MLE in [54] has a simple form.
However, the MLE of [54] is sensitive to noise. We therefore
first apply a “smoothing” process before using that estimator.
This involves first updating W (i.e., c`’s) using the updated
D and “denoising” our data by projecting Ỹ` onto S`, given
by Ŷ` = D`D

T
` Ỹ`, and then using Ŷ` to estimate s`. For a

given column ŷ in Ŷ` and a fixed number of nearest neighbors
k0, the unbiased MLE of s` with respect to ŷ is given by [54]

ŝk0` (ŷ) =
[ 1

k0 − 2

k0−1∑
a=1

log
Γk0(ŷ)

Γa(ŷ)

]−1

, (10)

where Γa(ŷ) is the `2 distance between ŷ and its a-th nearest
neighbor in Ŷ`. An estimate of s` can now be written as the
average of all estimates with respect to every signal in Ŷ`,
i.e., ŝk0` = 1

|c`|
∑
i∈c`

ŝk0` (ŷi). In fact, as suggested in [54],
we estimate s` by averaging over a range of k0 = k1, . . . , k2,
i.e.,

ŝ` =
1

k2 − k1 + 1

k2∑
k0=k1

ŝk0` . (11)

Once we get an estimate s = max` ŝ`, we trim each or-
thonormal basis by keeping only the first s columns of each
(ordered) orthonormal basis D` in our collection, which is
denoted by D̂`.4 Given the bases {D̂` ∈ Rm×s}L̂`=1, we
finally run MiCUSaL again that is initialized using these D̂`’s
until it converges. Combining all the steps mentioned above,

4Recall that the columns of D` correspond to the eigenvectors of A`. Here,
we are assuming that the order of these eigenvectors within D` corresponds
to the nonincreasing order of the eigenvalues of A`. Therefore, D̂` comprises
the eigenvectors of A` associated with its s-largest eigenvalues.
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Algorithm 2: Adaptive MC-UoS Learning (aMiCUSaL)

Input: Training data Y ∈ Rm×N , loose upper bounds
Lmax and smax, and parameters λ, k1, k2, εmin.
Initialize: Random orthonormal bases
{D` ∈ Rm×smax}Lmax`=1 , and set L̂← Lmax.

1: ȳ← 1
N

∑N
i=1 yi, ỹi ← yi − ȳ, i = 1, . . . , N .

2: while stopping rule do
3: Fix D and update W using (7). Also, set T ← ∅ and

L1 ← 0.
4: for ` = 1 to L̂ (Subspace Pruning) do
5: c` ← {i ∈ {1, . . . , N} : w`,i = 1}.
6: If |c`| 6= 0 then

cL1+1 ← c`, ỸL1+1 ← [ỹi : i ∈ c`], L1 ← L1 + 1
and T ← T ∪ {`}.

7: end for
8: D← [DT (1)

, . . . ,DT (L1)
] and L̂← L1.

9: Update each D` (` = 1, . . . , L̂) in D using (8).
10: end while
11: (`∗, p∗) = arg min`6=p,`,p=1,...,L̂ du(S`,Sp).

12: while du(S`∗ ,Sp∗ )√
smax

≤ εmin (Subspace Merging) do
13: Merge S`∗ and Sp∗ , and update Y`∗ and D`∗ .
14: D← [D1, . . . ,D`∗ , . . . ,Dp∗−1,Dp∗+1, . . . ,DL̂] and

L̂← L̂− 1.
15: (`∗, p∗) = arg min`6=p,`,p=1,...,L̂ du(S`,Sp).
16: end while
17: Fix D, update W ∈ RL̂×N using (7), and update
{c`}L̂`=1.

18: for ` = 1 to L̂ do
19: Ỹ` ← [ỹi : i ∈ c`] and Ŷ` ← D`D

T
` Ỹ`.

20: Calculate ŝ` using (10) and (11).
21: end for
22: s← max{ŝ1, . . . , ŝL̂}.
23: D̂` ← First s columns of D`, ` = 1, . . . , L̂.
24: Initialize Algorithm 1 with {D̂`}L̂`=1 and update
{D̂`}L̂`=1 using Algorithm 1.

Output: Orthonormal bases {D̂` ∈ Rm×s}L̂`=1.

we can now formally describe adaptive MC-UoS learning
(aMiCUSaL) in Algorithm 2.

C. MC-UoS Learning Using Missing Data

In this section, we study MC-UoS learning for the case
of training data having missing entries. To be specific, for
each yi in Y, we assume to only observe its entries at
locations given by the set Ωi ⊂ {1, . . . ,m} with |Ωi| > s,
which is denoted by [yi]Ωi ∈ R|Ωi|. Since we do not have
access to the complete data, it is impossible to compute
the quantities ‖yi − PS`yi‖22 in (2) explicitly. But, it is
shown in [58] that ‖[yi]Ωi

− PS`Ωi [yi]Ωi
‖22 for uniformly

random Ωi is very close to |Ωi|
m ‖yi − PS`yi‖22 with very

high probability as long as |Ωi| is slightly greater than s.
Here, PS`Ωi is defined as PS`Ωi = [D`]Ωi,:([D`]Ωi,:)

† with
([D`]Ωi,:)

†
=
(
[D`]

T
Ωi,:

[D`]Ωi,:

)−1
[D`]

T
Ωi,:

. Motivated by
this, we replace ‖yi−PS`yi‖22 by m

|Ωi|‖[yi]Ωi
−PS`Ωi [yi]Ωi

‖22

in (2) and reformulate the MC-UoS learning problem as
(D,W) = arg minD,W F2(D,W) with the objective func-
tion F2(D,W) given by

F2(D,W) =
L∑

`,p=1
`6=p

‖D` − PSpD`‖2F

+ λ
N∑
i=1

L∑
`=1

w`,i
m

|Ωi|
∥∥[yi]Ωi

− PS`Ωi [yi]Ωi

∥∥2

2
. (12)

As in Sec. III-A, we propose to solve this problem by
making use of alternating minimization that comprises sub-
space assignment and subspace update steps. To this end, we
again initialize D such that each block D` ∈ Rm×s is a
random orthonormal basis. Next, when D is fixed, subspace
assignment corresponds to solving for each i = 1, . . . , N ,

li = arg min
`=1,...,L

‖[yi]Ωi
− PS`Ωi [yi]Ωi

‖22, (13)

and then setting wli,i = 1 and w`,i = 0 ∀` 6= li. When W is
fixed, we carry out subspace update using BCD again, in which
case minD F2(D,W) for a fixed W can be decoupled into L
distinct problems of the form D` = arg minD`∈Vm,s f2(D`),
` = 1, . . . , L, with

f2(D`) = −tr(DT
` A`D`)

+
λ

2

∑
i∈c`

m

|Ωi|
∥∥[yi]Ωi − PS`Ωi [yi]Ωi

∥∥2

2
.

Here, c` is as defined in Sec. III-A and A` =
∑
p6=` DpD

T
p .

It is also easy to verify that f2(D`) is invariant to the
choice of the orthonormal basis of S`; hence, we can
treat minD`∈Vm,s f2(D`) as an optimization problem on
the Grassmann manifold [59]. Note that we can rewrite
f2(D`) as f2(D`) =

∑|c`|
q=0 f

(q)
2 (D`), where f

(0)
2 (D`) =

−tr(DT
` A`D`) and f

(q)
2 (D`) = λm

2|Ωc`(q)
|‖[yc`(q) ]Ωc`(q)

−
PS`Ωc`(q)

[yc`(q) ]Ωc`(q)
‖22 for q = 1, . . . , |c`|. In here, c`(q)

denotes the q-th element in c`. In order to minimize f2(D`),
we employ incremental gradient descent procedure on Grass-
mann manifold [60], which performs the update with respect to
a single component of f2(D`) in each step. To be specific, we
first compute the gradient of a single cost function f (q)

2 (D`) in
f2(D`), and move along a short geodesic curve in the gradient
direction. For instance, the gradient of f (0)

2 (D`) is

∇f (0)
2 = (Im −D`D

T
` )
df

(0)
2

dD`
= −2(Im −D`D

T
` )A`D`.

Then the geodesic equation emanating from D` in the direc-
tion −∇f (0)

2 with a step length η is given by [59]

D`(η) = D`V` cos(Σ`η)VT
` + U` sin(Σ`η)VT

` , (14)

where U`Σ`V
T
` is the SVD decomposition of −∇f (0)

2 . The
update of D` with respect to f (q)

2 (D`) (q = 1, . . . , |c`|) can be
performed as in the GROUSE algorithm [61] but with a step
size λm

2|Ωc`(q)
|η. In order for f2 to converge, we also reduce the

step size after each iteration [61]. We complete this discussion
by presenting our learning algorithm for missing data in
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Algorithm 3: Robust MC-UoS learning (rMiCUSaL)

Input: Training data {[yi]Ωi}Ni=1, number of subspaces
L, dimension of subspaces s, and parameters λ and η.
Initialize: Random orthonormal bases {D` ∈ Rm×s}L`=1.

1: while stopping rule do
2: for i = 1 to N (Subspace Assignment) do
3: li ← arg min` ‖[yi]Ωi

− PS`Ωi [yi]Ωi
‖22.

4: wli,i ← 1 and ∀` 6= li, w`,i ← 0.
5: end for
6: for ` = 1 to L (Subspace Update) do
7: c` ← {i ∈ {1, . . . , N} : w`,i = 1}, t← 0.
8: while stopping rule do
9: t← t+ 1, ηt ← η

t .
10: A` ←

∑
p6=` DpD

T
p , ∆` ← 2(Im −D`D

T
` )A`D`.

11: D` ← D`V` cos(Σ`ηt)V
T
` + U` sin(Σ`ηt)V

T
` ,

where U`Σ`V
T
` is the compact SVD of ∆`.

12: for q = 1 to |c`| do
13: θ ← ([D`]Ωc`(q)

,:)
†
[yc`(q) ]Ωc`(q)

, ω ← D`θ.
14: r← 0m, [r]Ωc`(q)

← [yc`(q) ]Ωc`(q)
− [ω]Ωc`(q)

.

15: D` ← D` +
(

(cos(µ λm
|Ωc`(q)

|ηt)− 1) ω
‖ω‖2 +

sin(µ λm
|Ωc`(q)

|ηt)
r
‖r‖2

)
θT

‖θ‖2 , where µ = ‖r‖2‖ω‖2.
16: end for
17: end while
18: end for
19: end while
Output: Orthonormal bases {D` ∈ Rm×s}L`=1.

Algorithm 3, termed robust MC-UoS learning (rMiCUSaL).
By defining T = maxi |Ωi|, the subspace assignment step
of rMiCUSaL requires O(TLs2N) flops in each iteration
[61]. Computing the A`’s in each iteration requires O(m2Ls)
operations. Next, the cost of updating each D` with respect to
f

(0)
2 (D`) is O(m3), while it is O(ms + Ts2) with respect

to f
(q)
2 (D`) for q 6= 0 [61]. It therefore follows that the

computational complexity of rMiCUSaL in each iteration is
O(m3L + m2Ls + msN + TLs2N). We refer the reader to
Sec. V-A for exact running time of rMiCUSaL on training
data.

IV. MC-KUOS LEARNING FOR HIGHLY NONLINEAR DATA

In this section, we present algorithms to solve the problem
of MC-KUoS learning from Y ∈ Rm×N for highly nonlinear
data. We first generalize the MiCUSaL algorithm using the
kernel trick [18] to learn an MC-KUoS from complete data.
To deal with the case of “missing data,” we propose “kernel
function value estimators” to solve (3). Finally, we discuss
the problem of finding the “pre-images” of data in the feature
space based on the MC-KUoS model in Sec. IV-C.

A. MC-KUoS Learning Using Complete Data

To begin our discussion, we define the kernel matrix on
the training data Y to be G = φ(Y)Tφ(Y) ∈ RN×N ,
with its individual entries gi,j = κ(yi,yj) for a pre-specified

kernel κ : Rm × Rm → R. Under the assumption that
rank(φ(Y)) = N , the matrix G is positive definite. Similar
to Algorithm 1, we begin with centering the φ-mapped data in
the feature space F as a pre-processing stage.5 We denote the
mean of the φ-mapped “images” of Y by φ = 1

N

∑N
i=1 φ(yi)

and write the N centered “mapped training data” as φ̃(Y) =
[φ̃(y1), . . . , φ̃(yN )], where φ̃(yi) = φ(yi)−φ, i = 1, . . . , N .
The centered kernel matrix G̃ = φ̃(Y)T φ̃(Y) can be calcu-
lated from G by [18]

G̃ = G−HNG−GHN + HNGHN , (15)

where HN is an N ×N matrix with all elements 1
N . Then for

any y,y′ ∈ Rm, we have [50]

κ̃(y,y′) = φ̃(y)T φ̃(y′)

= κ(y,y′)− 1

N
1TNky −

1

N
1TNky′ +

1

N2
1TNG1N ,

where 1N = [1, 1, . . . , 1]T is an N -dimensional vector and
ky = [κ(y,y1), . . . , κ(y,yN )]T ∈ RN . To write the ex-
pression in (3) in terms of inner products, we again use W
to denote the membership indicator matrix as in (4), where
w`,i = 1, ` = 1, . . . , L, i = 1, . . . , N , if and only if φ̃(yi)
is assigned to subspace S`. Let D = [D1, . . . ,DL], where
D` is an (arbitrary) orthonormal basis of S`. Then for any
i = 1, . . . , N , we have the following

‖φ(yi)− PS`φ(yi)‖22 = ‖φ̃(yi)− PS` φ̃(yi)‖22
= ‖φ̃(yi)‖22 − ‖DT

` φ̃(yi)‖22. (16)

Therefore, (3) can be written as (D,W) =
arg minD,W F3(D,W) with the objective function
F3(D,W) given by

F3(D,W) =
L∑

`,p=1
`6=p

‖D` − PSpD`‖2F

+ λ
N∑
i=1

L∑
`=1

w`,i(‖φ̃(yi)‖22 − ‖DT
` φ̃(yi)‖22). (17)

Before discussing our algorithm to minimize (17) using the
kernel trick, we further simplify the terms in (17). We again
define c` = {i ∈ {1, . . . , N} : w`,i = 1} to be the set con-
taining the indices of all φ̃(yi)’s that are assigned to S`, and
let Y` = [yi : i ∈ c`] be the corresponding m × |c`| matrix.
Then the centered data that are assigned to subspace S` can
be denoted by φ̃(Y`) = [φ̃(yi) : i ∈ c`]. Since S` is spanned
by the columns of φ̃(Y`), we can write D` = φ̃(Y`)E`,
where E` ∈ RN`×s is some basis representation matrix with
N` = |c`| such that D` is an orthonormal matrix. Also, it
is easy to verify that E` has to satisfy ET

` [G̃]c`,c`E` = Is,
where [G̃]c`,c` = φ̃(Y`)

T φ̃(Y`) denotes the centered kernel
matrix for subspace S`. Now instead of using D` explicitly
for computations, it suffices to use c` and E` for MC-KUoS
learning and all the computations involving D` can be carried

5This step is only for the purpose of derivation of our algorithm. In
particular, explicit centering of data in the feature space is never required
in the following.
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Algorithm 4: Initialization for S`’s in F (GKIOP)

Input: Centered kernel matrix G̃ ∈ RN×N , number of
subspaces L, and dimension of subspaces s.
Initialize: IN ← {1, . . . , N} and {c` ← ∅}L`=1.

1: for ` = 1 to L do
2: Choose an arbitrary element in IN , include that

element in c`, and set IN ← IN \ c`.
3: for q = 2 to s do
4: i∗ ← arg maxi∈IN

∑
j∈c`

g̃i,j .
5: Set c` ← c` ∪ {i∗} and IN ← IN \ {i∗}.
6: end for
7: Eigen decomposition of [G̃]c`,c` = U`Σ`U

T
` .

8: E` ← U`Σ
− 1

2

` .
9: end for

Output: Initial {c`}L`=1 and {E` ∈ Rs×s}L`=1.

out using c`, E` and the kernel trick. Specifically, notice that
for any i = 1, . . . , N , we can write

‖φ̃(yi)‖22 − ‖DT
` φ̃(yi)‖22 = κ̃(yi,yi)− ‖ET

` φ̃(Y`)
T φ̃(yi)‖22,

where κ̃(yi,yi) = κ(yi,yi) − 2
N 1TNkyi + 1

N2 1TNG1N . To
compute φ̃(Y`)

T φ̃(yi), we define φ(Y`) = [φ(yi) : i ∈ c`]
and let ψ`(yi) = [κ(yc`(1) ,yi), . . . , κ(yc`(N`)

,yi)]
T ∈ RN`

be a vector with elements given by the inner products between
φ(yi) and columns of φ(Y`). Then ψ̃`(yi) = φ̃(Y`)

T φ̃(yi) =
ψ`(yi) − 1

N 1N`1
T
Nkyi − 1

N [G]c`,:1N + 1
N2 1N`1

T
NG1N .

Therefore, we can write ‖φ(yi) − PS`φ(yi)‖22 = κ̃(yi,yi) −
‖ET

` ψ̃`(yi)‖22. Also, we have

d2
u(S`,Sp)
= ‖D` − PSpD`‖2F = s− tr(DT

` DpD
T
p D`)

= s− tr
[
(φ̃(Y`)E`)

T φ̃(Yp)Ep(φ̃(Yp)Ep)
T φ̃(Y`)E`

]
= s− tr

[
ET
` [G̃]c`,cpEpE

T
p [G̃]cp,c`E`

]
, (18)

where [G̃]c`,cp = φ̃(Y`)
T φ̃(Yp) denotes the centered inter-

subspace kernel matrix between S` and Sp.
Now we are ready to describe our algorithm in detail.

Similar to MiCUSaL, we minimize (17) by alternating between
(i) minimizing F3(D,W) over W for a fixed D (the kernel
subspace assignment step) and (ii) minimizing F3(D,W)
over D for a fixed W (the kernel subspace update step). To
begin this alternate optimization strategy, we start by initial-
izing the orthonormal basis of each subspace. As discussed
earlier, the orthonormal basis D` of S` can be represented
as D` = φ̃(Y`)E` and we can compute E` explicitly by
using [G̃]c`,c` . Therefore the initialization of D` is equivalent
to initializing c`. Note that any s linear independent vectors
define an s-dimensional subspace. Therefore, to initialize c`,
we need to choose s samples in the training set such that
the φ-mapped “images” of these training samples are linearly
independent in the feature space. Our selection of s samples
is based on the intuition that the inner products between
samples that lie in the same subspace in the feature space
will be typically large [36]. Our initialization procedure then

involves greedily selecting a new sample yi∗ from the training
data in each step such that the sum of the inner products
between φ̃(yi∗) and the data points already in φ̃(Y`) is
the largest, and then setting Y` = Y` ∪ yi∗ . We list our
initialization method in Algorithm 4, referred to as greedy
kernel initial-orthogonalization procedure (GKIOP). Based on
the assumption that all the φ(yi)’s are linearly independent, it
is guaranteed that φ̃(Y`) can define an s-dimensional subspace
S`. Note that

⋂L
`=1 c` = ∅ and we compute E` by E` =

U`Σ
− 1

2

` , where [G̃]c`,c` = U`Σ`U
T
` . Since D` = φ̃(Y`)E`,

it is easy to convince oneself that DT
` D` = Is in this case.

We now move onto the kernel subspace assignment step.
When D (equivalently, c`’s and E`’s) is fixed, kernel subspace
assignment corresponds to first solving ∀i = 1, . . . , N ,

li = arg min
`=1,...,L

‖φ̃(yi)− PS` φ̃(yi)‖22

= arg min
`=1,...,L

κ̃(yi,yi)− ‖ET
` ψ̃`(yi)‖22, (19)

and then setting wli,i = 1 and w`,i = 0 ∀` 6= li. Next, for the
kernel subspace update stage, since W is fixed, all the c`’s
and Y`’s are fixed. By writing D` = φ̃(Y`)E`, minimization
of (17) for a fixed W can be written as a function of E`’s as
follows:

min
{E`}

f3(E1, . . . ,EL) =

L∑
`,p=1
`6=p

‖φ̃(Y`)E` − PSp(φ̃(Y`)E`)‖2F

+ λ
L∑
`=1

(
‖φ̃(Y`)‖2F − ‖ET

` φ̃(Y`)
T φ̃(Y`)‖2F

)
s.t. ET

` [G̃]c`,c`E` = Is, ` = 1, 2, . . . , L. (20)

Instead of updating all the E`’s simultaneously, which
is again a difficult optimization problem, we use BCD to
minimize f3 and update E`’s sequentially. Unlike MC-UoS
learning, however, we have to be careful here since the number
of samples in Y that belong to Y` (i.e., N`) may change
after each subspace assignment step. In particular, we first
need to initialize all the E`’s such that E` ∈ RN`×s and
ET
` [G̃]c`,c`E` = Is. To do so, we again apply eigen decom-

position of [G̃]c`,c` = U`Σ`U
T
` with the diagonal entries of

Σ` in nonincreasing order. Then we define Is = {1, . . . , s}
and E` = [U`]:,Is [Σ`]

− 1
2

Is,Is . After this bases initialization
step, we are ready to update E`’s sequentially and after some
manipulations, each BCD subproblem of (20) can be expressed
as

E` = arg min
Q:QT [G̃]c`,c`Q=Is

∑
p6=`

‖φ̃(Y`)Q− PSp(φ̃(Y`)Q)‖2F

+
λ

2
(‖φ̃(Y`)‖2F − ‖QT φ̃(Y`)

T φ̃(Y`)‖2F )

= arg max
Q:QT [G̃]c`,c`Q=Is

tr(QTA`Q), (21)

where A` =
∑
p6=` [G̃]c`,cpEpE

T
p [G̃]cp,c` + λ

2 [G̃]2c`,c` is a
symmetric matrix of dimension N` × N`. Note that (21) has
a similar intuitive interpretation as (8). When λ = 0, (21)
reduces to the problem of finding a subspace that is closest to
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Algorithm 5: Metric-Constrained Kernel Union-of-
Subspaces Learning (MC-KUSaL)

Input: Training data Y ∈ Rm×N , number and dimension
of subspaces L and s, kernel function κ and parameter λ.

1: Compute kernel matrix G: gi,j ← κ(yi,yj).
2: G̃← G−HNG−GHN + HNGHN .
3: Initialize {c`}L`=1 and {E`}L`=1 using GKIOP

(Algorithm 4).
4: while stopping rule do
5: for i = 1 to N (Kernel Subspace Assignment) do
6: li ← arg min` κ̃(yi,yi)− ‖ET

` ψ̃`(yi)‖22.
7: wli,i ← 1 and ∀` 6= li, w`,i ← 0.
8: end for
9: for ` = 1 to L (Kernel Bases Initialization) do

10: c` ← {i ∈ {1, . . . , N} : w`,i = 1} and N` ← |c`|.
11: Eigen decomposition of [G̃]c`,c` = U`Σ`U

T
` , with

the diagonal elements of Σ` in nonincreasing order.
12: E` ← [U`]:,Is [Σ`]

− 1
2

Is,Is .
13: end for
14: while stopping rule do
15: for ` = 1 to L (Kernel Subspace Update) do
16: A` ←

∑
p6=` [G̃]c`,cpEpE

T
p [G̃]cp,c` + λ

2 [G̃]2c`,c` .
17: E` ← Eigenvectors corresponding to the s-largest

eigenvalues for the generalized problem
A`b = ζ[G̃]c`,c`b such that ET

` [G̃]c`,c`E` = Is.
18: end for
19: end while
20: end while
Output: {N` ∈ N}L`=1, {c`}L`=1 and {E` ∈ RN`×s}L`=1.

the remaining L − 1 subspaces in the feature space. When
λ = ∞, (21) reduces to the kernel PCA problem [29].
Since [G̃]c`,c` is a positive definite matrix, it again follows
from [53] that the trace of ET

` A`E` is maximized when
E` = [b1, . . . ,bs] is the set of eigenvectors associated with
the s-largest eigenvalues for the generalized problem A`b =
ζ[G̃]c`,c`b, with ET

` [G̃]c`,c`E` = Is. The whole algorithm
can be detailed in Algorithm 5, which we refer to as metric-
constrained kernel union-of-subspaces learning (MC-KUSaL).
An important thing to notice here is that the complexity of
MC-KUSaL does not scale with the dimensionality of the
feature space F owing to our use of the kernel trick.

B. MC-KUoS Learning Using Missing Data

In this section, we focus on MC-KUoS learning for the
case of training data having missing entries in the input
space. Our setup is similar to the one in Sec. III-C. That
is, for i = 1, . . . , N , we observe yi only at locations Ωi ⊂
{1, . . . ,m}. In the following, the resulting observed vector
of yi is denoted by [yi]Ωi

∈ R|Ωi|. Also, we assume that
the observed indices of each signal, Ωi, are drawn uniformly
at random with replacement from {1, . . . ,m}. Note that the
results derived in here can also be translated to the case of
sampling Ωi without replacement (we refer the reader to [62,
Lemma 1] as an example). Given the missing data aspect of

this setup and the kernel trick, it is clear that we cannot apply
the method in Sec. III-C for MC-KUoS learning. However, as
described in Sec. IV-A, the solution to the MC-KUoS learning
problem using complete data only requires computations of the
inner products in F . In this regard, we propose an estimate
of the kernel function value κ(yi,yj) using incomplete data
[yi]Ωi and [yj ]Ωj . Mathematically, our goal is to find a
proxy function h(·, ·) such that h([yi]Ωi , [yj ]Ωj ) ≈ κ(yi,yj).
To derive this proxy function, we start by considering the
relationship between [yi]Ωi

, [yj ]Ωj
and yi,yj in the context

of different kernel functions.
We first consider isotropic kernels of the form κ(yi,yj) =

k(‖yi − yj‖22) for our analysis. To begin, we define z−ij =

yi − yj and Ωij = Ωi ∩ Ωj , resulting in [z−ij ]Ωij =

[yi]Ωij − [yj ]Ωij ∈ R|Ωij |. For any vector z−ij , the authors in
[58] define the coherence of a subspace spanned by a vector

z−ij to be µ(z−ij) =
m‖z−ij‖

2
∞

‖z−ij‖22
and show that ‖[z−ij ]Ωij

‖22 is close

to |Ωij |
m ‖z

−
ij‖22 with high probability. Leveraging this result, we

can give the following corollary that is essentially due to [58,
Lemma 1] by plugging in the definition of z−ij and [z−ij ]Ωij .

Corollary 1. Let δ > 0, Ωij = Ωi ∩ Ωj and α =√
2µ(yi−yj)2

|Ωij | log( 1
δ ). Then with probability at least 1− 2δ,

(1− α)‖yi − yj‖22 ≤
m

|Ωij |
‖[z−ij ]Ωij‖22 ≤ (1 + α)‖yi − yj‖22.

Using this simple relationship in Corollary 1, we can
replace the distance term ‖yi − yj‖22 in any isotropic kernel
function by m

|Ωij |‖[yi]Ωij
− [yj ]Ωij

‖22 and provide an estimate
of its true value κ(yi,yj) using entries of yi and yj that
correspond to Ωij only. For example, for the Gaussian kernel
κ(yi,yj) = exp(−‖yi−yj‖22

c ) with c > 0, we can replace

κ(yi,yj) with h([yi]Ωi , [yj ]Ωj ) = exp(−m‖[yi]Ωij−[yj ]Ωij ‖
2
2

|Ωij |c )
in our algorithms. In this case, the following result provides
bounds for estimation of the Gaussian kernel value.

Theorem 1. Let δ > 0, Ωij = Ωi ∩ Ωj and α =√
2µ(yi−yj)2

|Ωij | log( 1
δ ). Then for a Gaussian kernel κ(yi,yj),

with probability at least 1− 2δ, we have

h([yi]Ωi
, [yj ]Ωj

)
1

1−α ≤ κ(yi,yj) ≤ h([yi]Ωi
, [yj ]Ωj

)
1

1+α .

We skip the proof of this theorem since it is elementary. We
also note here that h([yi]Ωi , [yi]Ωi) = κ(yi,yi) = 1 as a
special case for Gaussian kernels.

Next, we consider dot product kernels of the form
κ(yi,yj) = k(〈yi,yj〉), where we again need to estimate
〈yi,yj〉 using entries of yi and yj corresponding to Ωij

only. In order to find an estimator of 〈yi,yj〉, we define
z∗ij = yi◦yj ∈ Rm to be the coordinate-wise product of yi and
yj . This means that 〈yi,yj〉 and 〈[yi]Ωij

, [yj ]Ωij
〉 equal the

sum of all the entries of z∗ij and [z∗ij ]Ωij
∈ R|Ωij |, respectively.

We now have the following lemma that describes deviation of
the estimated inner product between yi and yj .

Lemma 1. Let δ > 0, Ωij = Ωi ∩ Ωj and β =
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√
2m2‖yi◦yj‖2∞

|Ωij | log( 1
δ ). Then with probability at least 1− 2δ,

〈yi,yj〉 − β ≤
m

|Ωij |
〈[yi]Ωij

, [yj ]Ωij
〉 ≤ 〈yi,yj〉+ β. (22)

Proof: See Appendix A.
The above lemma establishes that 〈[yi]Ωij , [yj ]Ωij 〉 is close

to |Ωij |
m 〈yi,yj〉 with high probability. We once again use

this relationship and give an estimate of the corresponding
kernel function value. For example, for the polynomial kernel
κ(yi,yj) = (〈yi,yj〉 + c)d with d > 0 and c ≥ 0, we have
h([yi]Ωi

, [yj ]Ωj
) = ( m

|Ωij | 〈[yi]Ωij
, [yj ]Ωij

〉+ c)d. To analyze
the bounds on estimated kernel function value in this case,
notice that if (22) holds and d is odd, we will have

(〈yi,yj〉 − β + c)d ≤ (
m

|Ωij |
〈[yi]Ωij , [yj ]Ωij 〉+ c)d

≤ (〈yi,yj〉+ β + c)d.

But the above inequalities cannot be guaranteed to hold when
d is even. Using this, we trivially obtain the theorem below,
as a counterpart of Theorem 1, for polynomial kernels.

Theorem 2. Let δ > 0, Ωij = Ωi ∩ Ωj and

β =
√

2m2‖yi◦yj‖2∞
|Ωij | log( 1

δ ). Then for a polynomial kernel
κ(yi,yj) with an odd degree d, with probability at least 1−2δ,
we have

(h([yi]Ωi , [yj ]Ωj )
1
d − β)d ≤ κ(yi,yj)

and κ(yi,yj) ≤ (h([yi]Ωi
, [yj ]Ωj

)
1
d + β)d.

Based on the discussion above, we can estimate the kernel
function value κ(yi,yj) using the associated proxy function
h(·, ·) that utilizes entries of yi and yj belonging to Ωij only.
Thus, we can compute the estimated kernel matrix G ∈ RN×N
as gi,j = h([yi]Ωi

, [yj ]Ωj
) in the case of missing data. But the

positive definiteness of G is not guaranteed in this case. We
therefore first need to find a positive definite matrix Ĝ ≈ G
before we can carry on with MC-KUoS learning in this setting.
To deal with this issue, we begin with eigen decomposition
of G = UΛUT , where Λ = diag{λ(1)

G , . . . , λ
(N)
G } contains

eigenvalues of G. The resulting approximated kernel matrix Ĝ
that is “closest” to G can then be calculated by Ĝ = UΛ̂UT ,
where Λ̂ = diag{λ(1)

Ĝ
, . . . , λ

(N)

Ĝ
} and each λ(i)

Ĝ
, i = 1, . . . , N ,

is defined as

λ
(i)

Ĝ
=


λ

(i)
G , λ

(i)
G > 0

δmin, λ
(i)
G = 0

−λ(i)
G , λ

(i)
G < 0.

Here, δmin > 0 is a predefined (small) parameter. Using
the above procedure, one can obtain a positive definite ma-
trix Ĝ such that ĝi,j ≈ κ(yi,yj) and use it for MC-UoS
learning in the feature space. Effectively, MC-KUoS learning
in the presence of missing data also relies on Algorithm 5,
with the difference being that we use ĝi,j , obtained from
h([yi]Ωi

, [yj ]Ωj
), in lieu of κ(yi,yj) in the overall learning

process, which includes both kernel subspace assignment and
kernel subspace update stages. We dub this approach robust
MC-KUoS learning (rMC-KUSaL). We conclude this section
by noting that we can also robustify classical kernel PCA by

using Ĝ as a means of performing kernel PCA with missing
data, which we call rKPCA in our experiments.

C. Pre-Image Reconstruction

Thus far in this section, we have discussed MC-UoS learn-
ing in the kernel space with complete and missing data using
the kernel trick. Now suppose we are given a new noisy (test)
sample z = x + ξ ∈ Rm, where ξ is a noise term and
φ̃(x) = φ(x)−φ belongs to one of the subspaces inML (i.e.,
φ̃(x) ∈ Sτ , τ ∈ {1, . . . , L}). In most information processing
tasks, one needs to first find a representation of this sample z in
terms of the learned MC-KUoS, which is akin to “denoising”
z. The “denoised sample” in the feature space is the projection
of φ(z) onto Sτ , which is given by PSτφ(z) = DτD

T
τ φ̃(z)+φ

with φ̃(z) = φ(z) − φ. However, in order to visualize the
“denoised” sample in the ambient space, we often need to
project PSτφ(z) onto the input space in many applications
[9], [63], which is termed pre-image reconstruction. In this
section, we consider the problem of pre-image reconstruction
based on the MC-KUoS model.

Mathematically, the problem of pre-image reconstruction
can be stated as follows. We are given z ∈ Rm and we are
interested in finding ẑ ∈ Rm whose mapping to the feature
space is closest to the projection of φ(z) onto the learned MC-
UoS in F . This involves first finding the index τ such that
τ = arg min` ‖φ̃(z) − PS` φ̃(z)‖22, which can be easily done
using the kernel subspace assignment step described in (19).
Next, we need to solve ẑ = arg min%∈Rm ‖φ(%)−PSτφ(z)‖22.
To solve this problem, we leverage the ideas in [50], [64] that
only use feature-space distances to find ẑ (equivalently, to find
the pre-image of PSτφ(z)). We first study this problem when
the training samples Y are complete.

1) Pre-Image Reconstruction Using Complete Data: We
first calculate the squared “feature distance” between PSτφ(z)
and any φ(yi), i = 1 . . . , N , defined as [50]

d2
F (φ(yi), PSτφ(z))

= ‖PSτφ(z)‖22 + ‖φ(yi)‖22 − 2(PSτφ(z))Tφ(yi). (23)

Notice that ‖PSτφ(z)‖22 and (PSτφ(z))Tφ(yi) can be calcu-
lated in terms of kernel representation as follows:

‖PSτφ(z)‖22
= φ̃(z)TDτD

T
τ φ̃(z) + φ

T
φ+ 2φ̃(z)TDτD

T
τ φ

= φ̃(z)T φ̃(Yτ )EτE
T
τ φ̃(Yτ )T φ̃(z) +

1

N2
1TNG1N

+
2

N
φ̃(z)T φ̃(Yτ )EτE

T
τ φ̃(Yτ )Tφ(Y)1N

= ψ̃τ (z)TEτE
T
τ

(
ψ̃τ (z) +

2

N
[G]cτ ,:1N −

2

N2
1Nτ1

T
NG1N

)
+

1

N2
1TNG1N ,

and

(PSτφ(z))Tφ(yi)

= ψ̃τ (z)TEτE
T
τ

(
ψτ (yi)−

1

N
1Nτ1

T
Nkyi

)
+

1

N
1TNkyi .
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Therefore, (23) becomes

d2
F (φ(yi), PSτφ(z))

= ψ̃τ (z)TEτE
T
τ

(
ψ̃τ (z) +

2

N
[G]cτ ,:1N − 2ψτ (yi)

− 2

N2
1Nτ1

T
NG1N +

2

N
1Nτ1

T
Nkyi

)
+ gi,i

+
1

N2
1TNG1N −

2

N
1TNkyi

with gi,i = κ(yi,yi).
We now describe our method for pre-image reconstruc-

tion using the Gaussian kernel κ(yi,yj) = exp(−‖yi−yj‖22
c )

first. In this case, the problem of minimizing ‖φ(ẑ) −
PSτφ(z)‖22 is equivalent to maximizing the function ρ(ẑ) =
(PSτφ(z))Tφ(ẑ) [9], whose extremum can be obtained by
setting ∇ẑρ = 0, where ∇ẑρ denotes the gradient of ρ with
respect to ẑ. To do so, we express ρ(ẑ) as

ρ(ẑ)

= (DτD
T
τ φ̃(z) + φ)Tφ(ẑ)

= φ̃(z)T φ̃(Yτ )EτE
T
τ φ̃(Yτ )Tφ(ẑ) +

1

N
1TNφ(Y)Tφ(ẑ)

= ψ̃τ (z)TEτE
T
τ (ψτ (ẑ)− 1

N
1Nτ1

T
Nkẑ) +

1

N
1TNkẑ

= ζτ (z)T (ψτ (ẑ)− 1

N
1Nτ1

T
Nkẑ) +

1

N
1TNkẑ, (24)

where ζτ (z) = EτE
T
τ ψ̃τ (z) ∈ R|Nτ |. Next, we define

χ = 1
N (1 − ζτ (z)T1Nτ )1N ∈ RN and let χ̂ be an N -

dimensional vector such that [χ̂]cτ = [χ]cτ + ζτ (z) and
[χ̂]IN\cτ = [χ]IN\cτ (recall that IN = {1, . . . , N} and cτ
contains all the indices of φ̃(yi)’s that are assigned to Sτ ),
which means ρ(ẑ) = χ̂Tkẑ =

∑N
i=1 χ̂(i)κ(ẑ,yi). By setting

∇ẑρ = 0, we get

ẑ =

∑N
i=1 χ̂(i) exp(−‖ẑ− yi‖22/c)yi∑N
i=1 χ̂(i) exp(−‖ẑ− yi‖22/c)

.

By using the approximation PSτφ(z) ≈ φ(ẑ) and the relation
‖ẑ − yi‖22 = −c log( 1

2 (2 − d2
F (φ(yi), φ(ẑ)))) [50], a unique

pre-image can now be obtained by the following formula:

ẑ =

∑N
i=1 χ̂(i)

(
1
2

(
2− d2

F (PSτφ(z), φ(yi))
))

yi∑N
i=1 χ̂(i)

(
1
2

(
2− d2

F (PSτφ(z), φ(yi))
)) . (25)

Next, for the polynomial kernel κ(yi,yj) = (〈yi,yj〉+ c)d

with an odd degree d, we can follow a similar procedure and
have the following expression for an approximate solution for
pre-image reconstruction:

ẑ =
N∑
i=1

χ̂(i)

( (PSτφ(z))Tφ(yi)

‖PSτφ(z)‖22

) d−1
d

yi. (26)

2) Pre-Image Reconstruction Using Missing Data: We
next consider the problem of reconstructing the pre-image of
PSτφ(z) when the training samples have missing entries. As
can be easily seen from (25), the solution of a pre-image for
the Gaussian kernel can be written as ẑ =

∑N
i=1 eiyi∑N
i=1 ei

, where
ei = χ̂(i)

(
1
2 (2− d2

F (PSτφ(z), φ(yi)))
)
. Similarly, from (26),

we can also write the solution of ẑ to be ẑ =
∑N
i=1 eiyi for

the polynomial kernel, where ei = χ̂(i)

( (PSτ φ(z))Tφ(yi)

‖PSτ φ(z)‖22

) d−1
d

in this case. In words, the pre-image solution is a linear
combination of the training data, where the weights ei’s can be
explicitly computed using the respective kernel functions. In
this regard, as described in Sec. IV-B, for each i = 1, . . . , N ,
we can estimate κ(z,yi) using entries of z belonging to Ωi

(i.e., [z]Ωi
) and [yi]Ωi

, where the estimated kernel function
value is denoted by h(z, [yi]Ωi

).
Based on the estimated kernel function values

h(z, [yi]Ωi)’s, we can then find the solution of τ such
that τ = arg min` ‖φ̃(z) − PS` φ̃(z)‖22, and calculate the
weights ei’s (i = 1, . . . , N ). Note that unlike the complete
data case, we do need to compute the entries of ẑ separately
in this case. To be specific, for the u-th entry of ẑ,
u = 1, . . . ,m, we define ru to be the set containing the
indices of the samples yi’s whose u-th entry are observed.
Then ẑ(u) =

∑
i∈ru

eiyi(u)

(
∑N
i=1 ei)|ru|/N

for the Gaussian kernel and
ẑ(u) =

∑
i∈ru

eiyi(u) for the polynomial kernel. We conclude
this section by noting that the methods described in here
can also be applied to the case when the test sample z has
missing entries.

V. EXPERIMENTAL RESULTS

In this section, we present several experimental results
demonstrating the effectiveness of our proposed methods for
data representation. In particular, we are interested in learn-
ing an MC-UoS from complete/missing noisy training data,
followed by denoising of complete noisy test samples using
the learned geometric structures. In the case of MC-KUoS
learning, we evaluate the performance of our algorithms by
focusing on (i) denoising of complete noisy test samples, and
(ii) clustering of complete/missing training data.

A. Experiments for MC-UoS Learning
In this section, we examine the effectiveness of MC-

UoS learning using Algorithms 1–3. For the complete data
experiments, we compare MiCUSaL/aMiCUSaL with sev-
eral state-of-the-art UoS learning algorithms such as Block-
Sparse Dictionary Design (SAC+BK-SVD) [33], K-subspace
clustering (K-sub) [41], Sparse Subspace Clustering (SSC)
[16], Robust Sparse Subspace Clustering (RSSC) [37], Robust
Subspace Clustering via Thresholding (TSC) [36], as well as
with Principal Component Analysis (PCA) [4]. In the case of
the UoS learning algorithms, we use codes provided by their
respective authors. In the case of SSC, we use the noisy variant
of the optimization program in [16] and set λz = αz/µz in all
experiments, where λz and µz are as defined in [16, (13) &
(14)], while the parameter αz varies in different experiments.
In the case of RSSC, we set λ = 1/

√
s as per [37], while the

tuning parameter in TSC is set q = max(3, dN/(L × 20)e)
when L is provided. For the case of training data having
missing entries, we compare the results of rMiCUSaL with
k-GROUSE [25] and GROUSE [61].6

6As discussed in [1], we omit the results for SSC with missing data in this
paper because it fills in the missing entries with random values, resulting in
relatively poor performance for problems with missing data.
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In order to generate noisy training and test data in these
experiments, we start with sets of “clean” training and test
samples, denoted by X and Xte, respectively. We then add
white Gaussian noise to these samples to generate noisy
training and test samples Y and Z, respectively. In the
following, we use σ2

tr and σ2
te to denote variance of noise

added to training and test samples, respectively. In the missing
data experiments, for every fixed noise variance σ2

tr, we
create training (but not test) data with different percentages
of missing values, where the number of missing entries is
set to be 10%, 30% and 50% of the signal dimension.
Our reported results are based on random initializations of
MiCUSaL and aMiCUSaL algorithms. In this regard, we adopt
the following simple approach to mitigate any stability issues
that might arise due to random initializations. We perform
multiple random initializations for every fixed Y and λ, and
then retain the learned MC-UoS structure that results in the
smallest value of the objective function in (2). We also use a
similar approach for selecting the final structures returned by
K-subspace clustering and Block-Sparse Dictionary Design,
with the only difference being that (2) in this case is replaced
by the approximation error of training data.

1) Experiments on Synthetic Data: In the first set of
synthetic experiments, we consider L = 5 subspaces of the
same dimension s = 13 in an m = 180-dimensional ambient
space. The five subspaces S`’s of R180 are defined by their
orthonormal bases {T` ∈ Rm×s}5`=1 as follows. We start
with a random orthonormal basis T1 ∈ Rm×s and for every
` ≥ 2, we set T` = orth(T`−1 + tsW`) where every entry
in W` ∈ Rm×s is a uniformly distributed random number
between 0 and 1, and orth(·) denotes the orthogonalization
process. The parameter ts controls the distance between sub-
spaces, and we set ts = 0.04 in these experiments.

After generating the subspaces, we generate a set of n`
points from S` as X` = T`C`, where C` ∈ Rs×n` is a matrix
whose elements are drawn independently and identically from
N (0, 1) distribution. In here, we set n1 = n3 = n5 = 150, and
n2 = n4 = 100; hence, N = 650. We then stack all the data
into a matrix X = [X1, . . . ,X5] = {xi}Ni=1 and normalize
all the samples to unit `2 norms. Test data Xte ∈ Rm×N
are produced using the same foregoing strategy. Then we add
white Gaussian noise with different expected noise power to
both X and Xte. Specifically, we set σ2

tr to be 0.1, while σ2
te

ranges from 0.1 to 0.5. We generate X and Xte 10 times, while
Monte Carlo simulations for noisy data are repeated 20 times
for every fixed X and Xte. Therefore, the results reported in
here correspond to an average of 200 random trials.

We make use of the collection of noisy samples, Y, to
learn a union of L subspaces of dimension s and stack the
learned orthonormal bases {D`}L`=1 into D. In this set of
experiments, we use MiCUSaL and rMiCUSaL for complete
and missing data experiments, respectively. The number of
random initializations used to select the final geometric struc-
ture in these experiments is 8 for every fixed Y and λ. We
use the following metrics for performance analysis of MC-
UoS learning. Since we have knowledge of the ground truth
S`’s, represented by their ground truth orthonormal bases
T`’s, we first find the pairs of estimated and true subspaces
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Fig. 2. Comparison of MC-UoS learning performance on synthetic data.
(a) and (c) show relative errors of test signals for complete and missing data
experiments, where λ = 2 for both MiCUSaL and rMiCUSaL. The numbers
in the legend of (c) indicate the percentages of missing entries within the
training data. (b) and (d) show relative errors of test signals for MiCUSaL
and rMiCUSaL (with 10% missing entries) using different λ’s.

that are the best match, i.e., D` is matched to T̂̀ usinĝ̀ = arg maxp ‖DT
` Tp‖F . We also ensure that no two D`’s

are matched to the same T̂̀. Then we define davg to be
the average normalized subspace distances between these

pairs, i.e., davg = 1
L

∑L
`=1

√
s−tr(DT

` T ̂̀TT̂̀ D`)

s . A smaller
davg indicates better performance of MC-UoS learning. Also,
if the learned subspaces are close to the ground truth, they
are expected to have good representation performance on test
data. A good measure in this regard is the mean of relative
reconstruction errors of the test samples using learned sub-
spaces. To be specific, if the training data are complete, we first
represent every test signal z such that z ≈ Dτα

te + ȳ where
τ = arg max` ‖DT

` (z − ȳ)‖22 (recall that ȳ = 1
N

∑N
i=1 yi)

and αte = DT
τ (z − ȳ). The relative reconstruction error

with respect to its noiseless part, x, is then defined as
‖x−(Dτα

te+ȳ)‖22
‖x‖22

. On the other hand, if the training data have
missing entries then for a test signal z, the reconstruction error
with respect to x is simply calculated by ‖x−DτDT

τ z‖22
‖x‖22

, where
τ = arg max` ‖DT

` z‖22.
To compare with other UoS learning methods, we choose

λ = 2 for both MiCUSaL and rMiCUSaL. In the complete
data experiments, we perform SSC with αz = 60. We set
the subspace dimension for PCA to be the (unrealizable,
ideal) one that yields the best denoising result on training
samples. We also use the same subspace dimension (again,
unrealizable and ideal) for GROUSE in the corresponding
missing data experiments. Table I summarizes the davg’s
of different UoS learning algorithms for both complete and
missing data experiments. As can be seen, MiCUSaL produces
smaller davg’s, which in turn leads to smaller relative errors
of test data; see Fig. 2(a) for a validation of this claim. For
MC-UoS learning with missing data, rMiCUSaL also learns
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TABLE I
davg OF DIFFERENT UOS LEARNING ALGORITHMS FOR SYNTHETIC DATA

davg Algorithms

Complete MiCUSaL(λ = 2) SAC+BK-SVD K-sub SSC RSSC TSC
0.1331 0.2187 0.1612 0.1386 0.2215 0.2275

Missing rMiCUSaL-10% kGROUSE-10% rMiCUSaL-30% kGROUSE-30% rMiCUSaL-50% kGROUSE-50%
0.1661 0.3836 0.1788 0.4168 0.2047 0.4649

a better MC-UoS in that: (i) for a fixed percentage of the
number of missing observations in the training data, the davg
for rMiCUSaL is much smaller than the one for k-GROUSE
(see Table I); and (ii) rMiCUSaL outperforms k-GROUSE
and GROUSE in terms of smaller reconstruction errors of
test data. Moreover, we can infer from Fig. 2(c) that for
a fixed σte, when the number of missing entries increases,
the performance of rMiCUSaL degrades less compared to k-
GROUSE. We also test the UoS learning performance with
complete data when the subspaces are not close to each other
(e.g., ts = 0.2). In this case, all the UoS learning algorithms,
including MiCUSaL, learn the subspaces successfully. We
omit these plots because of space constraints.

TABLE II
davg OF MICUSAL AND RMICUSAL FOR DIFFERENT λ’S USING

SYNTHETIC DATA

davg λ

MiCUSaL λ = 1 λ = 2 λ = 4 λ = 8 λ = 20
0.1552 0.1331 0.1321 0.1378 0.1493

rMiCUSaL λ = 1 λ = 2 λ = 4 λ = 10 λ = 20
(10% missing) 0.2096 0.1661 0.1725 0.2065 0.2591

For both MiCUSaL and rMiCUSaL, we also analyze the
effect of the key parameter, λ, on the UoS learning perfor-
mance. We implement MiCUSaL with λ ∈ {1, 2, 4, 8, 20} in
the complete data experiments and select λ ∈ {1, 2, 4, 10, 20}
for rMiCUSaL in the missing data experiments, where the
number of missing entries in the training data is 10% of
the signal dimension. The results are shown in Fig. 2(b),
Fig. 2(d) and Table II. We can see when λ = 1, both the
davg’s and reconstruction errors of the test data are large
for MiCUSaL and rMiCUSaL. This is because the learned
subspaces are too close to each other, which results in poor
data representation capability of the learned D`’s. When λ = 2
or 4, both these algorithms achieve good performance in terms
of small davg’s and relative errors of test data. As λ increases
further, both davg and relative errors of test data also increase.
Furthermore, as λ grows, the curves of relative errors of test
data for MiCUSaL and rMiCUSaL get closer to the ones
for K-sub and k-GROUSE, respectively. This phenomenon
coincides with our discussion in Sec. III. Finally, we note that
both MiCUSaL and rMiCUSaL achieve their best performance
when λ ∈ [2, 4], and deviations of the representation errors of
test data are very small when λ falls in this range.

Next, we study the effect of random initialization of sub-
spaces on MiCUSaL performance by calculating the standard
deviation of the mean of the reconstruction errors of the test
data for the 8 random initializations. The mean of these 200
standard deviations ends up being only 0.003 for all σte’s when
λ = 2. In addition, as λ gets larger, the variation of the results

(a) (b)

Fig. 3. (a) San Francisco City Hall image. (b) Paris City Hall image.

increases only slightly (the mean of the standard deviations is
0.0034 for λ = 8). On the other hand, the mean of the standard
deviations for K-sub is 0.0039. Furthermore, the performance
gaps between MiCUSaL and all other methods are larger than
0.003. Finally, the learned MC-UoS structure that results in the
smallest value of the objective function (2) always results in
the best denoising performance. This suggests that MiCUSaL
always generates the best results and it is mostly insensitive to
the choice of initial subspaces during the random initialization.

We also examine the running times of rMiCUSaL and
k-GROUSE per iteration, which include both the subspace
assignment and subspace update stages. For each subspace
S`, we implement the optimization over D` (i.e., Steps 8 to
17 in Algorithm 3) for 100 iterations. All experiments are
carried out using Matlab R2013a on an Intel i7-2600 3.4GHz
CPU with 16 GB RAM. From the fourth row of Table III,
we observe rMiCUSaL takes slightly more time compared
to k-GROUSE because rMiCUSaL needs two more steps for
updating D` (Steps 10 and 11 in Algorithm 3). However,
the advantage of rMiCUSaL over k-GROUSE in learning
a better UoS significantly outweighs this slight increase in
computational complexity. We can also see that as the number
of missing entries increases, both algorithms become faster.
The reason for this is that when |Ωi| decreases for all i’s, less
time is needed during the subspace assignment step and for
computing θ and r in Algorithm 3.

2) Experiments on City Scene Data: To further show the
effectiveness of the proposed approaches, we test our proposed
methods on real-world city scene data. First, we study the
performance of our methods on San Francisco City Hall
image, as shown in Fig. 3(a). To generate the clean training
and test data, we split the image into left and right subimages
of equal size. Then we extract all 30 × 20 nonoverlapping
image patches from the left subimage and reshape them into
N = 722 column vectors of dimension m = 600. All these
vectors are normalized to have unit `2 norms and are then used
as signals in X. Test signals in Xte ∈ R600×722 are extracted
in the same way from the right subimage. White Gaussian
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TABLE III
RUNNING TIME COMPARISON (IN SEC) FOR RMICUSAL AND k-GROUSE

Data rMiCUSaL k-GROUSE

Synthetic, m = 180, N = 650, L = 5, s = 13
Missing entries (%) Missing entries (%)

10% 30% 50% 10% 30% 50%
8.02 7.41 6.62 7.46 6.95 6.11

San Francisco, m = 600, N = 722, L = 5, s = 12
Missing entries (%) Missing entries (%)

10% 30% 50% 10% 30% 50%
23.19 22.46 20.31 16.56 14.75 12.53
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Fig. 4. Comparison of MC-UoS learning performance on San Francisco City Hall data. (a) and (d) show relative errors of test signals for complete data
experiments. (b) and (e) show relative errors of test signals for missing data experiments. The numbers in the legend of (b) and (e) indicate the percentages
of missing entries within the training data. (c) and (f) show relative errors of test signals for rMiCUSaL (with 10% missing entries) using different λ’s.

noise is then added to X and Xte separately, forming Y and
Z, respectively. In these experiments, σ2

tr is set to be 0.02 and
0.05, while σ2

te again ranges from 0.1 to 0.5. The Monte Carlo
simulations for noisy data are repeated 50 times and the results
reported here correspond to the average of these 50 trials. Note
that each patch is treated as a single signal here, and our goal
is to learn an MC-UoS from Y such that every test patch can
be reliably denoised using the learned subspaces.

We perform aMiCUSaL on the training data Y with pa-
rameters Lmax = 8, smax = 20, λ = 4, k1 = 6, k2 = 10
and εmin = 0.08. The number of random initializations
that are used to arrive at the final MC-UoS structure using
aMiCUSaL is 10 for every fixed Y. The output L from
aMiCUSaL is 4 or 5 and s is always between 11 or 13.
We also perform MiCUSaL with the same L and s 10 times.
For fair comparison, we also use the method in this paper to
get the dimension of the subspace for PCA, in which case
the estimated s is always 10. Note that for all state-of-the-
art UoS learning algorithms, we use the same L and s as
aMiCUSaL instead of using the L generated by the algorithms
themselves. The reason for this is as follows. The returned
L by SSC (with αz = 40) is 1. Therefore SSC reduces to
PCA in this setting. The output L for RSSC is also 4 or 5,
which coincides with our algorithm. The estimation of L (with
q = 2 max(3, dN/(L×20)e)) for TSC is sensitive to the noise
and data. Specifically, the estimated L is always from 6 to 9 for

σ2
tr = 0.02 and L is always 1 when σ2

tr = 0.05, which results
in poorer performance compared to the case when L = 4 or 5
for both training noise levels. In the missing data experiments,
we set L = 5 and s = 12 for rMiCUSaL (with λ = 4)
and k-GROUSE, and s = 10 for GROUSE. Fig. 4(a) and
Fig. 4(d) describe the relative reconstruction errors of test
samples when the training data are complete. We see both
MiCUSaL and aMiCUSaL learn a better MC-UoS since they
give rise to smaller relative errors of test data. Further, the
average standard deviation of the mean of relative errors for
test data is around 0.00015 for MiCUSaL and 0.00045 for
K-sub. It can be inferred from Fig. 4(b) and Fig. 4(e) that
rMiCUSaL also yields better data representation performance
for the missing data case.

To examine the effect of λ on the denoising result in
both complete and missing data experiments, we first run
aMiCUSaL with λ ∈ {1, 2, 4, 6, 8, 10} without changing other
parameters. When λ = 1 or 2, aMiCUSaL always returns
L = 2 or 3 subspaces, but the reconstruction errors of the test
data are slightly larger than those for λ = 4. When λ ≥ 6, the
distances between the learned subspaces become larger, and
the resulting L will be at least 6 when εmin is fixed. However,
the relative errors of test data are still very close to the ones for
λ = 4. This suggests that λ = 4 is a good choice in this setting
since it leads to the smallest number of subspaces L and the
best representation performance. We also perform rMiCUSaL
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Fig. 5. Comparison of MC-UoS learning performance on Paris City Hall
data when the training data are complete.

with λ ∈ {2, 4, 6, 10, 20} while keeping L and s fixed, where
the number of missing entries in the training data is again
10% of the signal dimension. We show the relative errors of
test data in Fig. 4(c) and Fig. 4(f). Similar to the results of
the experiments with synthetic data, we again observe the fact
that when λ is small (e.g., λ = 2), the reconstruction errors of
the test data are large because the subspace closeness metric
dominates in learning the UoS. The results for λ = 4 and
6 are very similar. As λ increases further, the performance
of rMiCUSaL gets closer to that of k-GROUSE. We again
report the running time of rMiCUSaL and k-GROUSE per
iteration in the seventh row of Table III, where we perform
the optimization over each D` for 100 iterations in each
subspace update step for both rMiCUSaL and k-GROUSE.
In these experiments, rMiCUSaL appears much slower than
k-GROUSE. However, as presented in Fig. 4(b) and Fig. 4(e),
the performance of rMiCUSaL is significantly better than k-
GROUSE.

Next, we repeat these experiments for the complete data
experiments using Paris City Hall image in Fig. 3(b), forming
X,Xte ∈ R600×950. We perform aMiCUSaL using the same
parameters (λ = 4) as in the previous experiments. The
estimated L in this case is always between 5 and 6 and s
is always between 11 and 12. The estimated dimension of
the subspace in PCA is 9 or 10 when σ2

tr = 0.02 and it
is always 10 when σ2

tr = 0.05. In these experiments, we
again use the same L and s as aMiCUSaL for all state-of-
the-art UoS learning algorithms. This is because the returned
L by SSC (with αz = 20) is again 1 in this case. The
estimated L by RSSC is usually 7 or 8, and the reconstruction
errors of test data are very close to the ones reported here.
If we apply TSC using the L estimated by itself (again, with
q = 2 max(3, dN/(L × 20)e)), we will have L = 4 when
σ2
tr = 0.02, while the relative errors of test data are very

close to the results shown here. For σ2
tr = 0.05, TSC will

again result in only one subspace. The relative reconstruction
errors of test data with different training noise levels are
shown in Fig. 5, from which we make the conclusion that
our methods obtain small errors, thereby outperforming all
other algorithms. The average standard deviation of the mean
of relative errors for test data is also smaller for MiCUSaL
(around 0.00023) compared to K-sub (around 0.00037).

3) Experiments on Face Dataset: In this section, we work
with the Extended Yale B dataset [48], which contains a set of
192×168 cropped images of 38 subjects. For each individual,
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Fig. 6. Comparison of MC-UoS learning performance on Extended Yale B
dataset. The first row of (a) shows some images of subject 5, 6, 8 and the
second row presents some images of subject 22, 28, 30. (b) and (c) show
relative errors of test data in the two experiments.

there are 64 images taken under varying illumination condi-
tions. We downsample the images to 48× 42 pixels and each
image is vectorized and treated as a signal; thus, m = 2016.
It has been shown in [49] that the set of images of a given
subject taken under varying illumination conditions can be
well represented by a 9-dimensional subspace.

We first focus on a collection of images of subjects 5, 6
and 8 and normalize all the images to have unit `2 norms.
Some representative images are presented in the first row of
Fig. 6(a). Here we assume the images of these three subjects
lie close to an MC-UoS with L = 3 and s = 9. For each
set of images from one subject, we randomly select half of
them for training and the remaining 32 images belong to test
samples; therefore, X,Xte ∈ R2016×96. Then we add white
Gaussian noise to both X and Xte and obtain Y and Z. The
random selection for generating X and Xte is repeated 10
times and we conduct Monte Carlo simulations for noisy data
10 times for every fixed X and Xte. In these experiments,
the value σ2

tr is equal to 0.2 and σ2
te is from 0.2 to 0.5. For

fair comparison, the dimension of the subspace for PCA is
set to be 9. We apply MiCUSaL with parameter λ = 2 and
SSC with αz = 40. The number of random initializations in
these experiments for both MiCUSaL and K-sub is set at 8
for every fixed Y. Once again, we observe that MiCUSaL
outperforms other learning methods, since it results in smaller
relative errors (cf. Fig. 6(b)). Moreover, the average standard
deviation of MiCUSaL for the 100 realizations of Y and Z is
only 0.0013 for all σte’s, which is again smaller than that of
K-sub (the corresponding value is 0.002).

We then repeat these experiments using a set of images of
subjects 22, 28 and 30, and show some image samples in the
second row of Fig. 6(a). We set L = 3, s = 9 and λ = 2 for
MiCUSaL and αz = 40 for SSC. We again provide evidence
in Fig. 6(c) that MiCUSaL yields better data representation
performance in this setting. The average standard deviation of
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the mean of the reconstruction errors for test data is around
0.0012 for MiCUSaL and 0.0019 for K-sub in this case.

B. Experiments for MC-KUoS Learning

In this section, we evaluate the performance of the MC-
KUoS learning approaches in terms of the following two
problems: image denoising using the learned MC-KUoS and
clustering of training data points. For both these problems, we
consider the USPS dataset [65],7 which contains a collection
of m = 256-dimensional handwritten digits. The authors
in [9] have demonstrated that using nonlinear features can
improve the denoising performance of this dataset. Unlike
the experiments for MC-UoS learning, the training data we
use in this set of experiments are noiseless. For denoising
experiments, we assume every noisy test sample z = x + ξ,
where φ̃(x) = φ(x)−φ belongs to one of the S`’s in F (again
‖x‖22 = 1) and ξ has N (0, (σ2

te/m)Im) distribution. In these
experiments, σ2

te ranges from 0.2 to 0.5.
1) Experiments on Image Denoising: For denoising exper-

iments, we compare the result of MC-KUSaL with three other
methods: (i) kernel k-means clustering (kernel k-means) [18],
where for each test signal z, we first assign φ(z) to a cluster
whose centroid is closest to φ(z) in F , followed by kernel
PCA and the method in [64] to calculate the pre-image; (ii)
kernel PCA [29] with the same number of eigenvectors as
in MC-KUSaL (KPCA-Fix); and (iii) kernel PCA with the
number of eigenvectors chosen by s = arg mins ||PSφ(z) −
φ(x)||22 (KPCA-Oracle), where x and z are clean and noisy
test samples, respectively. In this manner, the number of
eigenvectors s for KPCA-Oracle will be different for different
noise levels σte’s. We use the same dimension of the subspaces
for MC-KUSaL, kernel k-means clustering and KPCA-Fix,
while the number of subspaces L for kernel k-means clustering
also equals the one for MC-KUSaL. For the case of missing
training data, we report the results of rMC-KUSaL as well
as rKPCA. For every fixed test noise level σte, we set the
dimension of the subspace s for rKPCA to be the same as the
one for KPCA-Oracle. The relative reconstruction error of a
clean test signal x ∈ Xte is calculated by ‖x−ẑ‖22

‖x‖22
, where ẑ

denotes the pre-image with respect to the noisy test sample z.
We experiment with Gaussian kernel with parameter c = 4.

We choose the digits “0” and “4” and for each digit we select
the first 200 samples in the dataset (400 images in total) for
our experiments. All these 400 samples are then vectorized
and normalized to unit `2 norms. From these samples, we
randomly choose 120 samples (without replacement) from
each class for training and the remaining 80 samples of each
class for testing, forming X ∈ R256×240 and Xte ∈ R256×160.
This random selection of test and training samples is repeated
20 times for cross-validation purposes. We perform 10 Monte
Carlo trials for noisy test data and report the mean over these
200 random trials.

In these experiments, we implement MC-KUSaL with pa-
rameters L = 2, s = 45 and λ ∈ {1, 4, 20, 100} to learn an
MC-UoS in the feature space F . Fig. 7(a) shows the mean of
relative reconstruction errors of test data for different methods

7Available at: http://www.cs.nyu.edu/∼roweis/data.html.
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Fig. 7. Comparison of MC-KUoS learning performance on USPS dataset
using Gaussian kernel κ(y,y′) = exp(− ‖y−y′‖22

4
). In (a), we perform MC-

KUSaL with λ = 4. Note that the KPCA-Oracle algorithm is the ideal case
of kernel PCA. The numbers in the legend of (c) indicate the percentages of
missing entries within the training data.

in the presence of complete training data, where we use the
result of MC-KUSaL with λ = 4 for comparison with other
methods. We observe that for almost all noise levels, our
method produces better results than other methods. The only
exception is when σ2

te = 0.2, in which case MC-KUSaL is
the second best of all methods. The caveat here is that in
practice, we cannot know beforehand the dimension of the
subspace in the feature space for kernel PCA, which yields the
best denoising result at this particular noise level. We show
the denoising performance of MC-KUSaL with different λ’s in
Fig. 7(b), and we observe that a small λ usually results in good
performance when σ2

te is relatively small, while increasing the
λ will slightly improve the denoising performance when the
SNR of test data gets small.

In the missing data experiments, we set the number of
missing entries in the training data to be 10% and 20% of the
signal dimension. We use parameters L = 2, s = 45 and λ = 4
for rMC-KUSaL. It can be inferred from Fig. 7(c) that (i) the
performance of rKPCA and rMC-KUSaL is comparable for all
noise levels; and (ii) when the number of missing elements is
fixed, rMC-KUSaL outperforms the rKPCA when the SNR of
the test data is small and vice versa.

2) Experiments on Clustering: In this section, we em-
pirically compare the clustering performance of MC-KUSaL
with (i) kernel k-means clustering (kernel k-means) [18], (ii)
standard k-means clustering (k-means) [66], and (iii) spectral
clustering [67] when the training data are complete. In the case
of spectral clustering, we make use of the similarity matrix
returned by the noisy variant of the SSC optimization program
in [16]. We also present the clustering performance of rMC-
KUSaL, with the number of missing entries in the training
data being set to 10% and 20% of the signal dimension. We
compute the clustering error for MC-KUSaL/rMC-KUSaL by
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TABLE IV
CLUSTERING ERROR (%) ON THE USPS DATASET

Digits Kernel Function Algorithms
MC-KUSaL kernel k-means k-means SSC rMC-KUSaL(10%) rMC-KUSaL(20%)

1,7 κ(y,y′) = exp(− ‖y−y′‖22
8

) 7.21 20.94 21.19 12.13 11.52 12.69
κ(y,y′) = (〈y,y′〉+ 2)3 8.23 20.54 10.60 11.85

1,6 κ(y,y′) = exp(− ‖y−y′‖22
4

) 5.00 11.04 11.29 8.71 6.27 7.88
κ(y,y′) = (〈y,y′〉+ 1)3 4.85 10.60 7.54 8.04

using the final kernel subspace assignment labels {li}Ni=1. For
all the following experiments, we select L = 2 (since we only
have 2 classes) and λ = 200.

We first experiment with digits “1” and “7” in the USPS
dataset, where in every trial we randomly choose 120 `2
normalized samples from the first 200 samples of these
two digits and use these 240 samples in these experi-
ments. This random selection is repeated 20 times. We per-
form MC-KUSaL and rMC-KUSaL using Gaussian kernel
κ(y,y′) = exp(−‖y−y′‖22

8 ) with s = 35 and polynomial
kernel κ(y,y′) = (〈y,y′〉 + 2)3 with s = 40. The parameter
αz for SSC is set to be 20. The clustering results are listed
in Table IV, where we can see the clustering error for MC-
KUSaL is roughly 40% of the ones for kernel/standard k-
means clustering and MC-KUSaL is much better than SSC
(with 32% reduction) in these experiments. In addition, the
clustering error for rMC-KUSaL is an increasing function of
the number of missing entries for both Gaussian kernel and
polynomial kernel.

As another example, we repeat the above experiments
using digits “1” and “6”, where we again apply MC-
KUSaL and rMC-KUSaL using Gaussian kernel κ(y,y′) =

exp(−‖y−y′‖22
4 ) with s = 35 and polynomial kernel

κ(y,y′) = (〈y,y′〉 + 1)3 with s = 40. In these experiments,
SSC is performed with αz = 10. From Table IV, we again ob-
serve that MC-KUSaL outperforms other clustering algorithms
with 42% reduction (compared to SSC) in the clustering error.
In the missing data experiments, the clustering performance of
rMC-KUSaL using Gaussian kernel degrades as the number of
missing entries of the data increases. When we use polynomial
kernel for rMC-KUSaL, increasing the number of entries in
the missing data does not result in much degradation of the
clustering performance.

We conclude by noting that the choice of kernels in these
experiments is agnostic to the training data. Nonetheless, data-
driven learning of kernels is an active area of research, which is
sometimes studied under the rubric of multiple kernel learning
[68]–[71]. While some of these works can be leveraged to
further improve the performance of our proposed algorithms,
a careful investigation of this is beyond the scope of this work.

VI. CONCLUSION

In this paper, we proposed a novel extension of the canon-
ical union-of-subspaces model, termed the metric-constrained
union-of-subspaces (MC-UoS) model. We first proposed sev-
eral efficient iterative approaches for learning of an MC-
UoS in the ambient space using both complete and missing
data. Moreover, these methods are extended to the case of

a higher-dimensional feature space such that one can deal
with MC-UoS learning problem in the feature space using
complete and missing data. Experiments on both synthetic
and real data showed the effectiveness of our algorithms and
their superiority over the state-of-the-art union-of-subspaces
learning algorithms. Our future work includes estimation of
the number and dimension of the subspaces from the training
data for MC-UoS learning in the feature space.

APPENDIX
PROOF OF LEMMA 1

Proof: First, we have 〈yi,yj〉 =
∑m
u=1 z∗ij(u)

and
〈[yi]Ωij

, [yj ]Ωij
〉 =

∑n
v=1 z∗ij(Ωij(v))

with n = |Ωij |. Here,

z∗ij(u)
denotes the u-th entry of a vector z∗ij and Ωij(v) denotes

the v-th element of Ωij . Let ~(Z1, . . . , Zn) =
∑n
v=1 Zv be

the sum of n random variables and Zv = z∗ij(Ωij(v))
. We

prove the bound under the assumption that these n variables
are drawn uniformly from a set {z∗ij(1)

, . . . , z∗ij(m)
} with

replacement. This means they are independent and we have
E[
∑n
v=1 Zv] = E[

∑n
v=1 z∗ij(Ωij(v))

] = n
m

∑m
u=1 z∗ij(u)

. If the
value of one variable in the sum is replaced by any other of
its possible values, the sum changes at most 2‖z∗ij‖∞, i.e.,
|
∑n
v=1 Zv −

∑
v 6=v′ Zv − Ẑv′ | = |Zv′ − Ẑv′ | ≤ 2‖z∗ij‖∞ for

any v′ ∈ {1, . . . , n}. Therefore, McDiarmid’s Inequality [72]
implies that for β > 0,

P
[
|
n∑
v=1

Zv −
n

m

m∑
u=1

z∗ij(u)
| ≥ n

m
β
]
≤ 2 exp

( −nβ2

2m2‖z∗ij‖2∞

)
,

or equivalently,

P
[ m∑
u=1

z∗ij(u)
− β ≤ m

n

n∑
v=1

Zv ≤
m∑
u=1

z∗ij(u)
+ β

]
≥ 1− 2 exp

( −nβ2

2m2‖z∗ij‖2∞

)
.

Taking the definition of β =
√

2m2‖z∗ij‖2∞
|Ωij | log( 1

δ ) yields the
result.
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