
Revisiting Maximal Response-Based Local
Identification of Overcomplete Dictionaries

Zahra Shakeri and Waheed U. Bajwa
Dept. of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854

{zahra.shakeri, waheed.bajwa}@rutgers.edu

Abstract—This paper revisits the problem of recovery of an
overcomplete dictionary in a local neighborhood from training
samples using the so-called maximal response criterion (MRC).
While it is known in the literature that MRC can be used for
asymptotic exact recovery of a dictionary in a local neighborhood,
those results do not allow for linear (in the ambient dimension)
scaling of sparsity levels in signal representations. In this paper,
a new proof technique is leveraged to establish that MRC can in
fact handle linear sparsity (modulo a logarithmic factor) of signal
representations. While the focus of this work is on asymptotic
exact recovery, the same ideas can be used in a straightforward
manner to strengthen the original MRC-based results involving
noisy observations and finite number of training samples.

I. INTRODUCTION

Dictionary learning is the problem of obtaining an overcom-
plete basis that results in sparse representations of signals.
These sparse representations can then be used in a variety
of applications, such as denoising [1], [2], classification [3],
[4], and compressed sensing [5]. While initial focus in the
literature has been on developing efficient algorithms for
dictionary learning, it is important to also understand the
performance of such algorithms theoretically.

Some recent works that focus on the theoretical aspects
of dictionary learning algorithms and the required sample
complexity for reliable recovery of the true dictionary include
[6]–[16]. Among these works, [8], [12] focus on square
dictionaries, while the rest study overcomplete dictionaries.
In [6]–[11], global identification results are obtained while in
[12]–[16] local identifiability is studied.

The focus of this paper is on a relatively-new maximization
criterion proposed in [16] for dictionary learning called the
maximal response criterion (MRC). Such a criterion not
only leads to efficient computational algorithms for dictionary
learning [17], but it is also shown in [16] that this new
criterion results in provable local recovery of an m × p
dictionary from training signals. Sample complexity results
for dictionary learning under both noiseless and noisy settings
are also provided in [16]. The common thread underlying
these results is a decay constraint on sparse representations
of the signals, which is a crucial element in the arguments
used throughout [16]. Unfortunately, even in the best setting,
the decay condition stated in [16] dictates that if the m-
dimensional training signals have S-sparse representations in
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the dictionary then one must have S = O(
√
m). Nonetheless,

it is suggested in [16] that it may be possible to break
this “square-root bottleneck” using different proof techniques
(although no formal arguments are provided). Additionally,
while the focus in [16] is on theoretical aspects of MRC, it
is shown in [17] that efficient computational algorithms based
on the MRC, collectively referred to as iterative thresholding
and K-means (ITKM) algorithms, have strong (theoretical and
experimental) convergence properties.

In this paper, we revisit the MRC in [16] for dictionary
learning and obtain an alternative decay condition on the
coefficients of the sparse representations that is less restrictive
than the one obtained in [16]. Specifically, the new decay
condition allows us to break the square-root bottleneck in
the sense that it can allow for asymptotic exact recovery
of the true dictionary even if the sparse representations of
the signals satisfy S = O( m

log p ). Similar to [16], our focus
here is on local analysis, i.e., we establish that there exists a
neighborhood around the true dictionary in which only the
true dictionary maximizes the objective function. Our new
condition also results in a larger neighborhood compared to
the one given in [16]. Our proofs rely on a new measure
of dictionary coherence studied in [18], [19] as well as the
method of bounded differences [20] and a complex variant of
Azuma’s inequality [21]. We conclude by noting that our proof
techniques can be used in a straightforward manner to also
strengthen the results reported in [16] for dictionary learning
in both noisy and finite sample settings.

Notational Convention: Bold upper-case, bold lower-case,
and lower-case letters denote matrices, vectors, and scalars,
respectively. The k-th column of a matrix X is denoted
by xk, XI is the matrix consisting of columns of X with
indices I, vi denotes the i-th element of a vector v, and ej
denotes the j-th column of the identity matrix. Furthermore,
v1 � v2 denotes the pointwise product of v1 and v2. We
write [K] for {1, . . . ,K}. For two matrices A and B of same
dimensions m× p, we define their distance to be d(A,B) =
maxi∈[p] ‖ai − bi‖2. For any matrix X ∈ Rm×p consisting
of unit-norm columns, we define its worst-case coherence
as µ = maxi,j∈[p]

i6=j
|〈xi,xj〉| and its average coherence as

ν = 1
p−1 maxi∈[p]

∣∣∑
j∈[p]
j 6=i
〈xi,xj〉

∣∣, where 〈·, ·〉 denotes the

inner product. Finally, we use the notation f(ε) = O(g(ε)) if
limε→0 f(ε)/g(ε) = c <∞ for some constant c.



II. SYSTEM MODEL

In dictionary learning, we assume that an observation y ∈
Rm is generated according to

y = Dx + n, (1)

where D ∈ Rm×p is a fixed dictionary, x ∈ Rp is the signal
coefficient vector, and n ∈ Rm is the underlying noise vector.
Given a signal matrix Y consisting of observations yk, k ∈
[N ], the goal is to find a representative dictionary, D∗, and a
coefficient matrix X∗ consisting of signal coefficient vectors
x∗k, k ∈ [N ], such that the representation error is minimized.
In other words,

(D∗,X∗) = arg min
D′∈D,X′∈X

‖Y −D′X′‖2F . (2)

Here, the dictionary class D is defined as

D , {D′ ∈ Rm×p, ‖d′j‖2 = 1,∀j ∈ [p], rank (D′) = m ≤ p},

while we assume the coefficient vectors are sparse, i.e.,

X , {X′ ∈ Rp×N , ‖x′j‖0 ≤ S, ∀j ∈ [N ]}, (3)

where S denotes the sparsity of the coefficient vectors and it
is assumed that S � m.

Similar to [16], we solve (2) for D using the MRC:

D∗ = max
D∈D

∑
k∈[N ]

max
|I|=S

‖DT
Iyk‖1. (4)

Note that (4) is maximizing the `1 norm of the S largest
responses (inner products of dictionary columns and obser-
vations), and can be interpreted as a generalization of the K-
means objective function [16]. Our focus in this work is on
the asymptotic version of (4), which can be stated as

D∗ = max
D∈D

Ey

{
max
|I|=S

‖DT
Iy‖1

}
. (5)

In [16], local identifiability results are obtained using the
MRC for dictionaries generated from randomly sparse signal
coefficients in the presence of noise. To describe that signal
coefficient model, we consider a sequence c ∈ Rp satisfying

c1 ≥ c2 ≥ · · · ≥ cp ≥ 0, ‖c‖2 = 1. (6)

We construct the signal coefficient vectors using the relation

x = q�Pc, (7)

where P ∈ Rp×p is a random permutation matrix,
P = [eπ(1), eπ(2), . . . , eπ(p)]

T for random permutation
(π1, . . . , πp), and q ∈ Rp is a sign vector with elements taking
values ±1 randomly. In this case, given c, the coefficient
vector x takes a particular value with probability 1

2pp! . Note
that while we do not require x to be sparse, an additional
constraint on the decay of the elements of c will be imposed
to prove identifiablity results for the underlying dictionary.

III. ASYMPTOTIC IDENTIFIABILITY RESULTS

In this section, we prove a variant of Proposition 6 in [16].
While this result is for the most basic setting where noise is

not present, the proof technique can be used in all theorems
in [16] to improve the results stated in there.

Theorem 1. Consider observations generated via (1) with
noise variance σ = 0. Let D ∈ D be a dictionary with
worst-case coherence µ and average coherence ν, and let x
be the signal coefficient vector generated according to (7). If
ν ≤ µ

√
log p
p and c satisfies

cS > cS+1 + 26µ
√

log p, (8)

then there is a local maximum of (5) at D with high
probability. Moreover, for any perturbation of the true dic-
tionary, D̃ = (d̃1, . . . , d̃p) with d(D, D̃) ≤ ε, we have
Ey

{
max|I|=S ‖D̃T

Iy‖21
}

< Ey

{
max|I|=S ‖DT

Iy‖21
}

with
high probability as soon as

ε ≤ cS − cS+1 − 26µ
√

log p

1 + 3

√
log

(
25p2S

√
B

(cS−cS+1−26µ
√

log p)(
∑

i∈[S] ci)

) , (9)

where
√
B is the largest singular value of D.

Outline of Proof: The main steps for the proof of the
theorem follow from the steps taken in [16]. Specifically,
we show that for a fixed permutation, the maximal response
is obtained by DIs , where Is denotes the indices of the
coefficient vector elements corresponding to {ci}i∈[S]. The
biggest difference between our proof and that in [16] is that
we introduce the decaying condition in (8), which is less
restrictive than the decaying condition in [16] for the decay
of elements of c. The rest of the proof is similar to the proof
of Proposition 6 in [16]. For ε-perturbations of the original
dictionary, i.e., d(D, D̃) ≤ ε, we show that for small pertur-
bations of the original dictionary and most sign sequences,
the maximal response is obtained by D̃Is . Then, comparing
Ey

{
max|I|=S ‖D̃T

Iy‖21
}

with Ey

{
max|I|=S ‖DT

Iy‖21
}

, it is
shown that (9) ensures that D maximizes (5) with high
probability.

The technical proof of Theorem 1 relies on the following
lemma, whose proof is provided in the appendix.

Lemma 1. Consider observations generated according to (1)
with noise variance σ = 0, where the dictionary D ∈ D has
worst-case coherence µ and average coherence ν, and let x be
generated according to (7). Then, for any i ∈ [p], any ε > 0,
and any p satisfying

√
p ≤ ε/ν, we have

P
{∣∣∣∣ ∑

j∈[p]
j 6=i

xj〈di,dj〉
∣∣∣∣ > ε

}
≤ 4 exp

(
−

(ε− ν√p)2

144µ2

)
. (10)

Proof of Theorem 1. The objective function in (5) can be
restated as

Ey

{
max
|I|=S

‖DT
Iy‖1

}
= EπEq

{
max
|I|=S

‖DT
IDx‖1

}
= EπEq

{
max
|I|=S

∑
i∈I
|〈di,Dx〉|

}
.

(11)



We now show that the maximum of (11) is obtained via I =
Is, where Is = π−1({1, 2, . . . , S}). Selecting ε = 13µ

√
log p,

as long as the condition ν ≤ µ
√

log p
p is satisfied, we have

ε − ν√p ≥ 0 and exp
(
− (ε−ν√p)2

144µ2

)
≤ p−1. Therefore, with

high probability, for any i ∈ Is, we have

|〈di,Dx〉| =
∣∣∣∣qicπ(i) +

∑
i∈[p]
j 6=i

qjcπ(j)〈di,dj〉
∣∣∣∣

(a)

≥ cS −
∣∣∣∣ ∑
i∈[p]
j 6=i

qjcπ(j)〈di,dj〉
∣∣∣∣ (b)

≥ cS − 13µ
√

log p, (12)

where (a) follows from the triangle inequality and (b) follows
from substituting ε = 13µ

√
log p in (10). Similarly, for all

i 6∈ Is, we have

|〈di,Dx〉| =
∣∣∣∣qici +

∑
i∈[p]
j 6=i

qjcπ(j)〈di,dj〉
∣∣∣∣

≤ cS+1 +

∣∣∣∣ ∑
i∈[p]
j 6=i

qjcπ(j)〈di,dj〉
∣∣∣∣

≤ cS+1 + 13µ
√

log p, (13)

with high probability. Thus, (8) ensures the maximum of the
objective function is attained at Is. The rest of the proof is the
same as the proof of Proposition 6 in [16], in which wherever
µ‖c‖1 appears, it can be replaced by 13µ

√
log p.

IV. DISCUSSION AND CONCLUSION

A natural question to ask about Theorem 1 is whether there
exist dictionaries that satisfy the ν ≤ µ

√
log p
p condition. In

this regard, note that this condition is implied by conditions
p

log p ≤ m and ν ≤ µ√
m

and according to [18], there exist
dictionaries, such as Gaussian matrices, that satisfy ν ≤ µ√

m
.

Next, to analyze our result and compare it to the analogous
result in [16], we study the basic setting where c is S-sparse
and {ci}Si=1 = 1√

S
, resulting in ‖c‖1 =

√
S. According to

the decay condition in [16], cS > cS+1 + 2µ‖c‖1, which
guarantees recovery of the true dictionary as long as S < 1

2µ .
From the Welch bound [22], this at best translates to spar-
sity levels of order O(

√
m). With the new decay condition

cS > cS+1 + 26µ
√

log p, we can recover the true dictionary
even if the sparsity levels are of order O( m

log p ). Thus, our
analysis is able to overcome the fundamental limitations of
[16], where regardless of the dictionary, there is a square-root
bottleneck for S.

We conclude by noting that although we have only studied
the noiseless asymptotic case, the decay condition for the
coefficient vector can also be used in noisy and finite sample
settings. And while we have not discussed the computational
aspects of MRC-based dictionary learning algorithms, such
analysis and discussion has been carried out in [17] that shows
that the ITKM algorithms originating from the MRC have low
complexity and strong convergence properties.

APPENDIX

Lemma 2 (The Complex Azuma Inequality [18]). Assuming
the probability space (Ω,F ,P), and let M̃1, . . . , M̃n be a
complex-valued martingale difference sequence on (Ω,F ,P)

with |M̃i| ≤ ci for i ∈ [n]. Then for any t > 0,

P
{∣∣∣∣ ∑

i∈[n]

M̃i

∣∣∣∣ ≥ t} ≤ 4 exp

(
− t2

4
∑
i∈[n] c

2
i

)
. (14)

Proof of Lemma 1. The proof follows similar steps as Lemma
3 in [18]. The measurement vector y can be stated as

y = Dx = D(q�Pc) = DΠ(qΠ � c), (15)

where Π = {π(i)}pi=1, DΠ is the column-wise permuted
version of D, and qΠ is the permuted version of q. We intro-
duce the method of bounded differences (MOBD) [20] that
uses Azuma’s inequality for bounded martingale difference
sequences (BMDS). For a fixed index i, conditioned on the
event Ai′ = {π(i) = i′} and the sign vector q, writing the
coefficient vector elements as xj = qjcπ(j), j ∈ [p], we get

P
{∣∣∣∣ ∑

j∈[p]
j 6=i′

qjcπ(j)〈dπ(i),dj〉
∣∣∣∣ > ε

∣∣Ai′ ,q}

= P
{∣∣∣∣ ∑

j∈[p]
j 6=i

qπ(j)cj〈di′ ,dπ(j)〉
∣∣∣∣ > ε

∣∣Ai′ ,q}. (16)

To obtain an upper bound for (16), we define a random
(p− 1)-tuple Π−i = {π(k)}pk=1, k 6= i and construct a Doob
Martingale (M0,M1, . . . ,Mp−1):

M0 = E
{ ∑
j∈[p]
j 6=i

qπ(j)cj〈di′ ,dπ(j)〉
∣∣Ai′ ,q}, and

M` = E
{ ∑
j∈[p]
j 6=i

qπ(j)cj〈di′ ,dπ(j)〉
∣∣{π−ik }`k=1,Ai′ , q

}
,

for ` ∈ [p − 1], where {π−ik }`k=1 denotes the first ` elements
of
∏−i. Similar to [18], we can bound |M0| by

|M0| =
∣∣∣∣E{ ∑

j∈[p]
j 6=i

qπ(j)cj〈di′ ,dπ(j)〉
∣∣Ai′ ,q}∣∣∣∣

≤
∑
j∈[p]
j 6=i

∣∣qπ(j)cjE
{
〈di′ ,dπ(j)〉

∣∣Ai′ ,q}∣∣
≤
∑
j∈[p]
j 6=i

cj

∣∣∣∣ ∑
q∈[p]
q 6=i′

〈di′ ,dq〉
p− 1

∣∣∣∣ ≤ ν‖c‖1 ≤ ν√p. (17)

In order to utilize Azuma’s Inequality, we have to construct
a BMDS from (M0, . . . ,Mp−1). Defining M̃` = M` −M`−1

for ` ∈ [p−1], it is necessary to find an upper bound on |M̃`|.
According to [23], we have |M̃`| ≤ supr,s[M`(r) −M`(s)]

where for ` ∈ [p − 1], M`(r) is defined as M`(r) ,

E
{∑

j∈[p]
j 6=i

qπ(j)cj〈di′ ,dπ(j)〉
∣∣{π−ik }`−1

k=1, π
−i
` = r,Ai′ ,q

}
.



To find an upper bound for |M`(r)−M`(s)|, we have

|M`(r)−M`(s)|

=

∣∣∣∣ ∑
j∈[p]
j 6=i

qπ(j)cj
(
E
[
〈di′ ,dπ(j)〉

∣∣{π−ik }`−1
k=1, π

−i
` = r,Ai′ ,q

]

− E
{
〈di′ ,dπ(j)〉

∣∣{π−ik }`−1
k=1, π

−i
` = s,Ai′ ,q

})∣∣∣∣
≤
∑
j∈[p]
j 6=i

cj

∣∣∣∣E{〈di′ ,dπ(j)〉
∣∣{π−ik }`−1

k=1, π
−i
` = r,Ai′ ,q

}

− E
{
〈di′ ,dπ(j)〉

∣∣{π−ik }`−1
k=1, π

−i
` = s,Ai′ ,q

} ∣∣∣∣
=
∑
j≤`+1
j 6=i

cj |d`,j |+
∑
j>`+1
j 6=i

cj |d`,j |, (18)

where dl,j , E
{
〈di′ ,dπ(j)〉

∣∣{π−ik }`−1
k=1, π

−i
` = r,Ai′ ,q

}
−

E
{
〈di′ ,dπ(j)〉

∣∣{π−ik }`−1
k=1, π

−i
` = s,Ai′ ,q

}
.

We consider various cases to upper bound (18). For the case
where ` 6∈ [p− 3], Π is deterministic. In this case, if i ≤ `,∑
j∈[`+1]
j 6=i

cj |d`,j | = c`+1|〈di′ ,dr〉 − 〈di′ ,ds〉| ≤ 2µc`+1. (19)

Similarly, if i > `,
∑
j∈[`+1]
j 6=i

cj |d`,j | ≤ 2µc`. If ` ∈ [p − 3],

for any j > `+ 1, j 6= i, π(j) has a uniform distribution over
[p] − {{π−ik }

`−1
k=1, π

−i
` = r,Ai′} and [p] − {{π−ik }

`−1
k=1, π

−i
` =

s,Ai′} , conditioned on {{π−ik }
`−1
k=1, π

−i
` = r,Ai′} and

{{π−ik }
`−1
k=1, π

−i
` = s,Ai′}, respectively and we have

|d`,j | =
1

p− `− 1
|〈di′ ,dr〉 − 〈di′ ,ds〉| ≤

2µ

p− `− 1
. (20)

If ` ∈ [p − 3], for any j ≤ ` + 1, we study three cases
for i. If i < `,

∑
j∈[`+1]
j 6=i

cj |d`,j | ≤ 2µc`+1, if i = `,∑
j∈[`+1]
j 6=i

cj |d`,j | ≤ 2µc` and if i > `+1,
∑
j∈[`+1]
j 6=i

cj |d`,j | ≤

2µ(c` + c`+1

p−`−1 ). Denoting d` ,
∑
j∈[p]
j 6=i

cj |d`,j |, we have

supr,s[M`(r)−M`(s)] ≤ 2µd`, where

d` =

c` + c`+1 +
1

p− `− 1

∑p
j=`+2 cj , ` ∈ [p− 3],

c` ` 6∈ [p− 3].

To use the complex Azuma inequality, it is necessary to
upper bound

∑
`∈[p−1] d

2
` :∑

`∈[p−1]

d2
`

=
∑

`∈[p−3]

(
c` + c`+1 +

1

p− `− 1

p∑
j=`+2

cj
)2

+

p−1∑
`=p−2

c2`

=
∑

`∈[p−3]

(
c2` + c2`+1 + 2c`c`+1 +

2(c` + c`+1)

p− `− 1

p∑
j=`+2

cj

+
( 1

p− `− 1

p∑
j=`+2

cj
)2)

+ c2p−2 + c2p−1. (21)

Since c is non-negative and non-increasing, 2c`c`+1 ≤ 2c`
and we can write

p−3∑
`=1

(
c2` + c2`+1 + 2c`c`+1

)
≤ 4‖c‖22 − c2p−2 − c2p−1. (22)

Denoting ‖c‖−n1 , ‖c‖1−
∑
i∈[n] ci, which has p−n elements,

we have ‖c‖−n1 ≤ (p− n)cn+1. Therefore,∑
`∈[p−3]

2(c` + c`+1)

p− `− 1

p∑
j=`+2

cj ≤
∑

`∈[p−3]

4c`‖c‖−(`+1)
1

p− `− 1

≤
∑

`∈[p−3]

4c`(p− `− 1)c`+2

p− `− 1
=

∑
`∈[p−3]

4c`c`+2 ≤ 4‖c‖22.

(23)

Similarly, we have

∑
`∈[p−3]

(
1

p− `− 1

p∑
j=`+2

cj

)2

=
∑

`∈[p−3]

(
‖c‖−(`+1)

1

p− `− 1

)2

≤
∑

`∈[p−3]

c2`+2 ≤ ‖c‖22. (24)

Adding the upper bounds in (22), (23), and (24) for (21)
results in

∑
`∈[p−1] d

2
` ≤ 9‖c‖22. We have established that

(M̃1, . . . , M̃p−1) is a BDMS with |M̃`| ≤ 2µd` for ` ∈ [p−1].
We therefore have

P
{∣∣∣∣ ∑

j∈[p]
j 6=i

qπ(j)cj〈di′ ,dπ(j)〉
∣∣∣∣ > ε

∣∣Ai′ ,q}
(a)

≤ P
{
|Mp−1 −M0| > ε‖c‖2 − ν

√
p‖c‖2

∣∣Ai′ ,q}
= P

{∣∣∣∣ ∑
i∈[p−1]

M̃i

∣∣∣∣ > ε‖c‖2 − ν
√
p‖c‖2

∣∣Ai′ ,q}
(b)

≤ 4 exp

(
−

(ε− ν√p)2‖c‖22
16µ2

∑p−1
`=1 d`

)

≤ 4 exp

(
−

(ε− ν√p)2

144µ2

)
, (25)

where (a) follows from (17) and (b) follows from the complex
Azuma inequality for BDMS in Lemma 2. Taking the union
bound over all events Ai′ and sign sequences, we have

P
{∣∣∣∣ ∑

j∈[p]
j 6=i

qπ(j)cj〈di′ ,dπ(j)〉
∣∣∣∣ > ε

}

≤
∑
j∈[p]

∑
i′∈[p]

P
{∣∣∣∣ ∑

j∈[p]
j 6=i

qπ(j)cj〈di′ ,dπ(j)〉
∣∣∣∣ > ε‖c‖2

∣∣Ai′ ,q}

× P(Ai′)P(qj)

≤ 4 exp

(
−

(ε− ν√p)2

144µ2

)
, (26)

where i′ can be replaced with any i ∈ [p], i 6= i′ and the
inequality holds for all i.
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