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Abstract

A hierarchical union-of-subspaces model is proposed
for performing semi-supervised human activity summariza-
tion in large streams of video data. The union of low-
dimensional subspaces model is used to learn meaning-
ful action attributes from a collection of high-dimensional
video sequences of human activities. An approach called hi-
erarchical sparse subspace clustering (HSSC) is developed
to learn this model from the data in an unsupervised man-
ner by capturing the variations or movements of each ac-
tion in different subspaces, which allow the human actions
to be represented as sequences of transitions from one sub-
space to another. These transition sequences can be used
for human action recognition. The action attributes can
also be represented at multiple resolutions using the sub-
spaces at different levels of the hierarchical structure. By
visualizing and labeling these action attributes, the hierar-
chical model can be used to semantically summarize long
video sequences of human actions at different scales. The
effectiveness of the proposed model is demonstrated through
experiments on three real-world human action datasets for
action recognition and semantic summarization of the ac-
tions using different resolutions of the action attributes.

1. Introduction

The need for semantic summarization of large streams
of video data has increased due the tremendous growth in
the amount of user-generated video data [10] as well as the
growth in number of surveillance cameras recording and
producing large amounts of video data [8]. Video sum-
marization is particularly important for applications involv-
ing bandwidth constrained environments like autonomous
systems. All these systems should be able to perceive and
recognize the actions or activities in the video sequences,
summarize them semantically and transmit only the sum-
maries for further evaluation and planning. Hence, high-
level event or activity recognition from large streams of
video data has attracted a lot of attention recently due to
many practical commercial, law enforcement, and military

applications [1,9, 18,20]. Human activity recognition ap-
proaches can be broadly divided into two types — single lay-
ered and hierarchical [1]. In single-layered approaches, se-
quential or space-time algorithms such as Hidden Markov
Models (HMM) [11] are used for action recognition, no
matter how complex the action is. On the other hand, if
a complex human activity is considered to be a hierarchical
model [9], it can be represented as a structure with different
levels that show parts of the activity at varying resolutions.
The bottom-most level of the hierarchy consists of the low-
est level description (highest resolution) of an action, i.e.,
movement of the human body (e.g., right arm moves up,
left arm moves up, torso bending, legs moving apart) and
can be called as an action attribute [13]. At the next higher
level, a sequence of these attributes forms a human action.
As we climb this hierarchical structure, the human actions
and their interactions with other human actions and objects
form activities, while a sequence of these activities forms
an event. An important advantage of the hierarchical model
is that such structures go hand in hand with semantic or
syntactic approaches. Each attribute, action, activity and
event can be given a semantic label in such a case. In band-
width constrained environments, there exist large amounts
of high-resolution video data as in the case of autonomous
systems, it is highly desirable to represent a long video se-
quence in a semantic form and transmit the semantic sum-
mary instead of the video itself [16]. Hierarchical models
provide us with the flexibility to transmit such semantic in-
formation at different resolutions based on the needs of the
end application.

In this paper, we focus on the bottom two layers of the
complex human activity hierarchical model, i.e., human ac-
tions and their representation using attributes. One possi-
ble way of obtaining this representation is to manually de-
fine the action attributes and assign training data for each
of these attributes [13]. Another way is to manually anno-
tate videos by labeling movements (action attributes) [19].
Then, any human action in a test sequence can be described
using such user-defined attributes. However, a set of user-
defined action attributes may not completely describe all
the human actions in the data. Also, manual assignment



of training data for each of the action attributes is time con-
suming, if possible, for large datasets. To overcome this
problem, some research has been done to learn data-driven
action attributes by clustering low-level features based on
their co-occurrence in training videos [5, 14, 15]. However,
video data are not usually well distributed around the cluster
means and hence, the cluster statistics may not be sufficient
to accurately represent the attributes.

Here, we propose a hierarchical union-of-subspaces
(UoS) model to learn human action attributes from the data
at different resolutions in an unsupervised manner. Inspired
by eigenfaces [23] and the fact that video data are not uni-
formly distributed in the ambient space [4], we conjecture
that the action attributes represented by subspaces can en-
code more variations within an attribute compared to the
representations obtained using cluster statistics as done in
previous methods [5,14,15]. We use the silhouette structure
of the human (after background suppression and threshold-
ing) as the feature in our approach. Each action attribute is
represented by a subspace built from the silhouette features.
Each frame of any human action (a sequence of silhouette
frames) is assigned to a subspace based on what attribute
or movement is taking place in the frame. Thus any human
action can be represented as a sequence of transitions from
one subspace to itself or to another subspace. Moreover, the
hierarchical structure provides multi-resolution attributes of
human actions. Different human actions can share one or
more higher resolution action attributes. For example, if
an action attribute represents a human standing in upright
position, it can be shared by many human actions such as
walking, bending, and waving.

One of the applications of learning the subspaces based
on hierarchical UoS model is semantic summarization of
long video sequences using labeled action attributes. Since
we use silhouette features in this work, the subspaces cor-
responding to each action attribute can be visualized using
the first few dimensions of the corresponding orthonormal
bases and each attribute can be assigned a semantic label.
Thus, semantic vocabulary is built for a dataset. A long
video sequence can be semantically interpreted and sum-
marized using the semantic labels of the subspaces to which
the frames are assigned and the transitions between the sub-
spaces. Due to the multi-resolution nature of the hierarchi-
cal structure, this semantic description of the human action
can be performed at different resolutions. If training labels
are available for human actions, another major application
of this representation is human action recognition. Clas-
sifiers can be trained for each of the actions based on the
subspace transition sequence and can be used to recognize
human actions in a test video.

We use Sparse Subspace Clustering (SSC) [4], a state-of-

the-art subspace clustering method, as the basic subspaces
learning algorithm and build our hierarchical UoS learning

algorithm on top of it. Note that in the remainder of the
paper, we use the words “subspace” and “action attribute”
interchangeably for convenience. We use bold lower case
letters and bold upper case letters to represent vectors and
matrices, respectively. Given a vector v, its i-th element
is denoted by v(i). The (4, j)-th element of a matrix A is
denoted by a(i, j).

2. Background: Sparse Subspace Clustering

We start with a brief review of the Sparse Subspace
Clustering (SSC) algorithm described in [4]. Suppose we
are given a collection of N signals in R™, denoted by
Y = [y1,.-.,¥N] € R™*N and assume these N sam-
ples are drawn from a union of L subspaces {S;}1_, of
dimension {d,}}, in R™, where every signal belongs to
one of the subspaces in {Sy}}-_ ;. Therefore, we can write
Y =Y, UYyU---UY where each Y, € R™*Ne jg
a submatrix of Y containing all the samples that belong to
subspace Sy with N, > dy, and we have Zle N, = N.
Based on the intuition that each sample y; can be expressed
as a sparse linear combination of the data points from the
same subspace to which y; belongs, one can represent y; as
follows:

a; = argmin |ja;||1 st y; =Ya;, a;(¢) =0, (1)

a;

where a; = [a;(1),a;(2),...,a;(N)]T € R is the coeffi-
cient vector and ||a;||; = Z;V:1 |a;(4)|. Considering all the
data poigts in a matrix form, SSC learns a sparse coefficient
matrix A = [a;,38y,...,ay] € RV*YN by minimizing the
following objective function:

A = argmin [Allx st Y =YA, diag(A) =0,
A

where diag(A) is the diagonal vector of matrix A and 0O
denotes the zero vector. Using the resulting coefficient ma-
trix A, the segmentation of data points into respective sub-
spaces Y1, ..., Y, can be done by applying spectral clus-
tering [17] on the similarity matrix W = |A|+|A|T, where
| - | denotes the element-wise absolute value operation. In
the case when data are corrupted by noise, SSC solves the
following convex optimization problem for A:

A =argmin |All; + A[Y — YA[2 st diag(A) = 0.
A

Here, || - |7 denotes the Frobenius norm and A > 0 is a
regularization parameter. The authors in [4] proposed an ef-
ficient solution for calculating the sparse coefficients A for
this problem using Alternating Direction Method of Multi-
pliers (ADMM) [2]. Note that there also exist some other
UoS learning approaches, such as robust subspace cluster-
ing (RSSC) [22] and robust subspace clustering via thresh-
olding (TSC) [7]. In this paper, we propose our hierarchical




UoS learning algorithm based on SSC due to its superior
performance, although our approach is extendable to other
algorithms.

3. Hierarchical Sparse Subspace Clustering

In this section, we introduce our Hierarchical Sparse
Subspace Clustering (HSSC) algorithm for learning mul-
tiple levels of UoS using a collection of high-dimensional
data. We use Y, , € R™*Not (o denote the set of signals
that are assigned to the ¢/-th subspace at the p-th level of the
hierarchical structure, where IV, ; is the number of signals
inY, ,. Let L, denote the number of subspaces at the p-th
level, then we have ZzL; Nyy=NandY = Ufﬁl Y,
for all p’s. The subspace underlying Y, ; is denoted by S, ,
and its orthonormal basis is denoted by D, , € R™*%r.¢,
where d,, ; denotes the dimension of the subspace Sp, 4.

We begin by applying SSCon Y at the firstlevel (p = 1),
which divides Y into two subspaces with clusters Y =
Y 1UY osuchthatY; ;NY; o = (. At the second level,
we again perform SSC on Y ; and Y » separately and di-
vide each of them into 2 clusters, yielding 4 clusters Y =
Uj—y Yo with Y1, = Yoor 1 U Yoo (£ = 1,2). Us-
ing the signals in Yo, (£ = 1,...,4), we estimate the four
subspaces Sy ¢’s underlying Y ¢’s by identifying their or-
thonormal bases D ’s. To be specific, we obtain eigende-
composition of the covariance matrix Cq y = YQ’ZY%: ¢ as
Cyy = U275227ZU§Z, where 35, = diag(A1,..., An,,)
is a diagonal matrix (A\; > Ay > > An,,) and
Uy, = [uy,...,un,,]. Then the dimension of the sub-
space S ¢, denoted by ds ¢, is estimated based on the en-
E?=1 Aj

j-\;zie Aj
« is a predefined threshold and is set close to 1 for better
representation. The orthonormal basis of Sy ¢ can then be
written as Do ¢ = [u1,...,uq,,]. After this step, we end
up with 4 subspaces with clusters { Y2 ,}7_, and their as-
sociated orthonormal bases {D2 ¢}7_;.

For every p > 2, we decide whether or not to further
divide each single cluster or subspace at the p-th level into
two clusters or subspaces at the (p+ 1)-th level based on the
following principle. We use a binary variable B,, , to indi-
cate whether the cluster Y, ; is further divisible at the next
level or not. If it is, we set B, , = 1, otherwise B, = 0.
We initialize By, = 1 for all £’s ({ = 1,...,4). Con-
sider the cluster Y,, ; at the p-th level and assume that M
clusters already exist at the (p + 1)-th level derived from
{Yp1,Yp0,....Y, 1} If Bpy = 0, the (M + 1)-th
cluster at the (p 4 1)-th level will be the same as Y, ;; thus,
we simply set Y, 110741 = Ypeand Bpyq 41 = 0. If
B, ¢ = 1 (in which case Y, , corresponds to the green
nodes in Fig. 1), we first split Y,, ; into two sub-clusters
Y, = Z; U Zy using SSC and find the best subspaces
Sz, (k = 1,2) that fit Zj;’s respectively using the afore-

ergy threshold, i.e., d2 y = argming, > o, where

Figure 1. An example of using HSSC to learn a hierarchical UoS
model. Each circle represents one cluster/subspace, and the first
two vectors of each D, , are plotted in each circle. The green
nodes represent the clusters that are further divided in the next
level of the hierarchy. Leaf nodes are represented as yellow, these
clusters cannot be further divided and are the final attributes ob-
tained at the bottom most level of the hierarchical model.

mentioned strategy, while their dimensions and orthonormal
bases are denoted by dz,’s and Dz, ’s, respectively. Then
for every signal y; in Z; (k = 1,2), we compute the rel-
ative reconstruction error of y; using the parent subspace
basis D,, ¢ and the child subspace basis Dz, , which are de-
lyi—Dyp,eD7 syill3 . llyi-Dz, DZ yill5
e and e = —— e,
) lly:ll3 ) llyill3
respectively. The means of the relative reconstruction errors

of all the signals in Zj, using D, ;, and Dz, are denoted

fined as e; =

by Ej and Ek, respectively. Finally, we divide Y, ¢ into
Z, U Z, if (3) the relative reconstruction errors of the sig-
nals using the child subspace are less than the reconstruction
errors of the signals using the parent subspace by a certain
threshold, i.e., (Ey— E))/Ey > (3 foreither k = 1 or 2, and
(7%) the dimensions of the two child subspaces meet a mini-
mum requirement, that is, min(dz,,dz,) > dmin. In here,
[ and d,;, are user-defined parameters and are set to avoid
redundant subspaces. When either 5 or dp;, decreases,
we will have more subspaces. Assuming the two condi-
tions are satisfied, the cluster Y, ; is then divided by setting
Yporim41 = 2y (Bpyimyr = Dand Y1 a0 = Zo
(Bp+1,m+2 = 1). The bases of the subspaces at the (p+1)-
th level are set by Dy 1,041 = Dz, and Dy a0 =
Dgz,. If the above conditions are not satisfied, we set
Yp+17M+1 = Yp}g, Bp7( = 0 and Bp+1,M+]_ = 0 to indi-
cate Y, o, i.€., Y11 ar+1, is a leaf cluster and this cluster
will not be divided any further (which corresponds to the
yellow nodes in Fig. 1). This process is repeated until we
reach a predefined maximum level in the hierarchy denoted
by P. The hierarchical SSC algorithm for any level p > 2
is described in Algorithm 1.

Fig. 1 also shows an example of applying HSSC to deter-



mine the action attributes for three actions: bend, jumping
jack and jump in the Weizmann dataset [6]. Here, the max-
imum number of levels in the model P is set to 3 because
we don’t expect to have more than 23 = 8 subspaces at the
bottom level for only three actions. The hierarchical UoS
model is initialized with the silhouette features of all the
actions from multiple subjects at the top (p = 0). Each sil-
houette frame (obtained after background suppression and
thresholding) in the video sequence is a data sample y; in
both SSC and HSSC. Inside each node, we visualize the first
two basis vectors of the subspaces obtained at each level.
We can see that at the first level (p = 1), the attributes
corresponding to two actions, jumping jack and jump are
represented by one subspace and attributes corresponding
to the bend action are represented by another subspace. At
the second level (p = 2), the action attributes correspond-
ing to jumping jack and jump are separated into two dif-
ferent subspaces. While the action attributes of the bend
action, which is a more complex action with wider range of
movement, are divided into two subspaces, representing the
more upright part of the bend action as one higher resolu-
tion attribute and the lower part of the bend action as an-
other higher resolution attribute. The lower part of the bend
action is further divided into two more attributes at the next
level (p = 3) while the other attributes are left as they were.
Thus, we can see that as p increases, the variations within
each action can be identified, extracted and represented us-
ing more number of higher resolution action attributes.

The proposed HSSC algorithm has some obvious advan-
tages over flat SSC for learning human action attributes.
First, in the case of flat SSC, one has to define the num-
ber of subspaces into which the data are to be clustered [4].
This requirement puts a constraint of prior knowledge about
the data in that we need to know the number of underly-
ing human action attributes present in the data. Such an
approach moves away from data-driven learning. On the
other hand, HSSC algorithm only requires the knowledge
of a maximum level P, and it can stop before it reaches the
P-th level if no clusters can be further divided. HSSC algo-
rithm is designed in such a way that all the variations within
each action can be identified automatically to determine the
final number of action attributes. Second, HSSC provides
us with multiple resolutions of action attributes, which are
extremely useful for semantic labeling and understanding
of human actions as explained in Section 1. The multi-
resolution attributes can be used for semantic summariza-
tion of long video sequences at different resolutions starting
from giving just an overview of the action to detailed expla-
nation of movements occurring in the video. Flat SSC can
provide us with only one set of action attributes at one sin-
gle resolution, which depends on the number of subspaces
that is the input to the algorithm. The empirical results pre-
sented in Section 4 illustrate these benefits of HSSC with

Algorithm 1: Hierarchical Sparse Subspace Clustering
(the p-th level)

Input: A set of clusters {Y,, g}fzpl, their underlying
subspace bases {Dpyg}fﬁl and {Bp/}f:"l, and
parameters «, 3 and d ;.
1: M+ 0.
2: forall/ =1to L, do
3: if B, , =1 then
4 6+0.
5. Split Y, ¢ into Z; and Z, using SSC.
6 Vk = 1,2, estimate dz, and Dz, of Sz, using Zj.
7 Vk = 1,2, compute Ej, and Ek
If(Ek — Ek)/Ek > 5, 0+ 0+ 1.
8:  If0 > 1and min(dz,,dz,) > dmin

9: Vk=1,2, Yp+1,M+k — 7y,
Dp+1}]w+k — Dzk, and Bp+1,M+k — 1.
10: M <~ M + 2.

11: Else Yp+17M+1 — vag, Dp+17]\/[+1 — Dp7g,
Bp+11M+1 < 0,and M + M + 1.

12: else

130 Ypii,m41 <= Yy Dy vi1 <= Dy,
Bp+1,M+1 < 0,and M + M + 1.

14: end if

15: end for

16: Lypq < M.

Output: A set of clusters {Yp+1}[}£:pirl, subspace
L L
bases {Dpy1,0},57" and {Bpi1,e},27"

examples.

To demonstrate the reason why HSSC outperforms flat
SSC, we consider the following example. We perform
HSSC with P = 3 to learn attributes for three actions: bend,
run and one-hand wave in Weizmann dataset [6]. It has 6
subspaces as the leaf nodes, and the first three basis vec-
tors of each leaf subspace are illustrated in Fig. 2 (a)-(f).
We then apply SSC to learn 6 attributes and all those sub-
spaces are depicted in Fig. 2 (g)-(1). It can be seen that the
attributes learned using hierarchical SSC capture the vari-
ations and full range of movement within the bend action
in a better way compared to SSC (as can be seen in (c),
(d) (f) and (j), (1)). While the first subspace of SSC (seen
in (g)) does not provide any additional information of one-
hand wave action. We also present the three action video
sequences for 9 subjects in Weizmann dataset as transition
sequences of the learned attributes in Fig. 3. The run action
is represented by a single subspace in both methods. As
expected, the bend action is represented by more number
of attributes in HSSC compared to SSC. In terms of sub-
space transitions, some frames of one-hand wave action are
represented by attribute (f) in HSSC, which corresponds to



(a) Stand with one hand out

OAA DK

(f) 30 degree bend
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(i) Run (j) 30 degree bend

(b) Stand with one hand up
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(c) 45 degree bend (d) 90 degree bend

(g) Stand with one hand out (h) Stand with one hand up

Rl G R

(k) Stand with one hand out (1) Bend

Figure 2. Visualization of subspaces (first three dimensions) learned using the frames of three actions: bend, run and one-hand wave. (a)-(f)
represent the leaf subspaces learned by HSSC. (g)-(1) represent the subspaces which are learned using SSC.
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Figure 3. Subspace assignment result of the video frames from bend, run and one-hand wave actions using subspaces learned from (a)

HSSC and (b) SSC.

the bend action attribute. However, in SSC, there are more
frames in one-hand wave action which are represented by
the attribute (j) (see Fig. 3(b)). Thus, the action recognition
performance using HSSC will be better compared to SSC.

3.1. Complexity Analysis for Flat SSC and Hierar-
chical SSC

We first investigate the computational complexity of flat
SSC. As proposed in [4], SSC mainly consists of three
steps: learning the sparse coefficients A using ADMM,
computing the normalized Laplacian matrix from A, and
K-means clustering (with L clusters) on the normalized
Laplacian matrix. For the first two steps, the complexity
is implementation dependent, but the worst case would be
O(N?3), where N is the number of samples in the train-
ing data Y. The complexity of K-means clustering on the
normalized Laplacian matrix is O(N?L). Therefore, by as-

suming L < N, the overall complexity of SSC is O(N?).

To analyze the computational complexity of hierarchi-
cal SSC, we assume that there are 2P clusters at the p-th
level (p = 0,1,...,logy L). For each cluster at the p-th
level (0 < p < logy L — 1), we run SSC on each clus-
ter to obtain two sub-clusters at the next level. We again
use NV, ¢ to denote number of signals that are assigned to
the /-th cluster at the p-th level. As discussed earlier, the
computational complexity of applying SSC on these N, ,
samples for two clusters will be O(N,; 3 ). For the sake of
exposition, we make another assumptlon that N, , = N/2P
for all £’s. In such a case, the overall complexity at the p-
th level is O((N/2P)? x 2P) = O(N?3/4P). The sum of
the complexity orders over all the levels gives us the overall
complexity of hlerarchlcal SSC as Zlog? LLo(n3ar) =
O(3N?(1— %)). The computational complexity of HSSC
is shghtly more than that of flat SSC. However, the ad-



vantages of HSSC over flat SSC in learning better action
attributes at different resolutions without any prior knowl-
edge of the number of attributes significantly outweighs this
slight increase in computational complexity.

3.2. Action Recognition Using Learned Subspaces

In this section, we describe the classification strategy
to perform action recognition using the hierarchical UoS
model learned by HSSC algorithm. We first learn the sub-
spaces, which are the action attributes, by applying HSSC
on the silhouette feature sequences of human actions in an
unsupervised manner, where each silhouette frame (each
data sample) is vectorized and normalized to unit /5 norm.
We assume HSSC ends up with Lp leaf subspaces and the
orthonormal bases of these subspaces can be represented by
{DP,E € Rmxdre }ZL:Py

Suppose there are V' actions and R subjects in the train-
ing set. We use ®,, € R™**»r to denote the video se-
quence of the r-th subject with the v-th action, where s, .
denotes the number of frames in the video. We assign every
frame in one video sequence ®,, (v € {1,...,V},r €
{1,...,R}) to the “closest leaf subspace” and we use
@, € R to denote the vector which contains the re-
sulting subspace assignment indexes. This vector repre-
sents the sequence of action attributes and the transitions
involved in the human action video. All training video sam-
ples have subspace transition vectors ¢,, ,.’s. Then for a test
video ¥ € R™** with s denoting the number of frames in
this video, we first perform subspace assignment for all the
frames in ¥ and we use 9 € R’ to denote the resulting
transition vector. Then we use a nearest neighbor classi-
fier to perform action recognition, i.e., ¥ is declared to be
in a particular action class v’ for which the average of dis-
tances between the transition vector ¢ and all the training
transition vectors ¢, ,.’s in the v'-th class is the smallest.
Note that the video sequences, and hence the subspace as-
signment vectors, are of different lengths. In order to make
the action recognition process temporal-scale invariant, we
use Dynamic Time Warping (DTW) method [21] on the
Grassmann manifold, described in Algorithm 2, where the
element-wise distances used in here are the normalized sub-
space distances between the leaf subspaces. Mathematically
speaking, for every pair of the subspaces Sp¢ and S P the
normalized subspace distance between these two subspaces
on the Grassmann manifold (in Step 3 of Algorithm 2) is de-
tr(DY ,Dp ;D] ;Dp,e)

max(dp,¢,dp 7)

fined as d,,(Spy, Spj) = \/1 - [24],

where tr(-) denotes the trace operation.
4. Performance Evaluation

In this section, we report the experimental results ob-
tained by applying the proposed HSSC approach on human
action video datasets to learn the action attributes. Our first

Algorithm 2: Dynamic Time Warping on the Grass-
mann Manifold

Input: Two subspace assignment sequences ¢ € R*!
and v € R*2, leaf subspace bases {Dp};7, of
Sp7[S.

Initialize: A matrix E € R(s1+1)x(s241) with
e(1,1) = 0 and all other entries in the first row and
column are oco.

1: forall: =1tos; do

2: forall j =1to sy do

3: C 4 du(Sp)¢(i),Sp7¢(j)).

4 e(i+1,7+1) «

c+min(e(s, j+1),e(i +1,75),e(%,5)).

5: end for

6: end for
QOutput: The distance between ¢ and 1 is
e(s1+ 1,82+ 1).

(a) Stand with one hand up

YLURR S LI

(b) Stand with two hands up

(c) Bend (d) Jump

ALSRART )b

(e) Walk/Run (f) Jumping jack/Two-hand wave

A

Figure 4. Visualization and interpretation of attributes at the 3rd
level of HSSC for Weizmann dataset.

(g) Stand

objective is to semantically interpret and label the learned
action attributes from HSSC and to investigate the utility
of the multi-resolution action attributes in semantic descrip-
tion of long action sequences. The secondary goal is to eval-
uate the effectiveness of these learned attributes in human
action recognition and to compare the quantitative results
to other UoS learning methods. In all the following experi-
ments, we use the noisy variant of the optimization program
(i.e., ADMM) of SSC and set A\, = «, /., where \, and
1 are as defined in [4, (13) & (14)] and the parameter o,



ki

(a) One-hand wave

LY )
n

(e) 60 degree bend

ALTES

(i) Walk
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(j) Stand with two hands out
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(d) 30 degree bend

(c) 45 degree bend

(h) Run

Ll 1

(1) Stand with two hands up

(2) Jump

L I

(k) Jumping jack
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Figure 5. Visualization and interpretation of attributes at the bottom (5th) level of HSSC for Weizmann dataset.
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Figure 6. Subspace transition of a long sequence using subspaces at the 5th level (top) and the 3rd level (bottom). The subspace assignment
indexes in the top/bottom figure correspond to the attributes in Fig. 5 and Fig. 4, respectively.

varies in different experiments.

4.1. Semantic Labeling and Summarization

In this section, we visualize the learned attributes from
HSSC at two different resolutions, give them semantic la-
bels and use them for semantic summarization of multi-
ple actions in a long video sequence. We apply HSSC on
the Weizmann dataset with parameters P = 5, o = 0.9,
B = 0.05, dmin = 4 and o, = 20. HSSC returns Lp = 13

leaf subspaces at the 5th level and 7 subspaces at the 3rd
level. We show the first three dimensions of the orthonor-
mal bases of those subspaces (attributes) here and give them
interpretative (semantic) labels in Fig. 5 and Fig. 4, respec-
tively. To demonstrate the semantic summarization of a
long video sequence, we create a sequence by concatenat-
ing the bend and two-hand wave sequence of one subject
and visualize the subspace transition of the frames in Fig. 6.
We can interpret the actions using the attribute assignment



within the interval defined by green lines based on the cor-
responding labels in Fig. 5 and Fig. 4. At Level 5 (Fig. 6,
top), human actions in the first half of the video sequence
can be described as 30 degree bend followed by 60 degree
bend, 90 degree bend, 60 degree bend again, and 30 degree
bend, which can be interpreted as a full range bend action
as done in Level 3 (Fig. 6, bottom). Next, at Level 5, the ac-
tions in the second half of the video sequence are Stand fol-
lowed by two alternating attributes: Stand with two hands
out and Stand with two hands up. The complete action can
be described as a two-hand wave, which is precisely what
is done at a lower resolution in Level 3. Therefore, we can
say that the attributes generated at different levels of HSSC
algorithm can be used for semantic summarization of video
sequences at different resolutions.

4.2. Action Recognition: Evaluation on Different
Datasets

In this section, we compare the performance of the pro-
posed HSSC algorithm to flat SSC [4], RSSC [22], and
TSC [7] with the number of clusters set (z) to be the same
number of subspaces generated by HSSC at the bottom-
most level (which is denoted by Algorithm-Lp) and (i7) to
be the same as the number of actions (which is denoted by
Algorithm-V'). The parameter o, for flat SSC is the same as
the one for HSSC. In the case of RSSC, we set A = 1/\/67
as per [22], where d is the mean of the subspace dimen-
sions returned by SSC-L p/SSC-V'. The tuning parameter ¢
in TSC is set ¢ = max(3, [N/(L x 20)]), where L is equal
to Lp and V for TSC-Lp and TSC-V, respectively.

We use three public datasets for this purpose: the Weiz-
mann action dataset [6], the Keck gesture dataset [12], and
the UT-Tower action dataset [3]. We evaluate all the sub-
space/attribute learning approaches based on a leave-one-
subject-out experiment. To be specific, we pick all the
videos of one subject (see Section 3.2) for testing at one
time, while using all other videos as training samples. The
Weizmann dataset consists of V' = 10 different actions:
walk, run, jump, gallop sideways, bend, one-hand wave,
two-hands wave, jump in place, jumping jack, and skip.
Each action is performed by nine subjects. The original res-
olution of the frames is 180 x 144. We align all the binary
silhouette sequences and crop them into 87 x 63 frames,
thereby the dimensionality of data is m = 5481. The hi-
erarchical SSC is performed with parameters described in
Section 4.1 and it returns Lp = 13 leaf subspaces for final
attributes. The Keck gesture dataset was collected using a
camera with 640 x 480 resolution. It consists of V' = 14 dif-
ferent actions, including turn left, turn right, attention left,
attention right, flap, stop left, stop right, stop both, atten-
tion both, start, go back, close distance, speed up, and come
near. Each of these 14 actions is performed by three people.
In each video sequence, the subject repeats the same action

three times. Therefore the total number of video sequences
in this dataset is 14 x 3 x 3 = 126. We crop all the silhouette
sequences to 380 x 280 resolution and downsample all the
video frames by a factor of 4 in each dimension for compu-
tational purposes, with the resulting sequences being of size
95 x 70 and hence m = 6650. We perform hierarchical SSC
with parameters P = 6, « = 0.98, 8 = 0.02, dpin = 3
and o, = 100, in which case it returns Lp = 18 leaf
subspaces at the bottom-most level. The UT-Tower action
dataset contains a collection of 108 low resolution videos
and there exist V' = 9 different actions in this dataset, in-
cluding pointing, standing, digging, walking, carrying, run-
ning, wavel, wave2, and jumping. Each action is performed
twice by 6 individuals, which results in a total of 12 video
sequences per action. We use the bounding boxes and fore-
ground masks provided by the authors of [3] to extract sil-
houettes. All the silhouette sequences are of size 49 x 61
(m = 2989). We perform hierarchical SSC with parame-
ters P = 6, « = 0.95, 8 = 0.04, dnin, = 4 and a, = 150,
obtaining Lp = 11 final subspaces. The recognition re-
sults of different algorithms for the three datasets are shown
in Table 1. We can see that by representing the human ac-
tions using the attributes learned by HSSC, we are able to
recognize the actions at a superior rate compared to other
techniques.

Table 1. Recognition results (%) on different datasets

Data ; Method || HSSC | SSC-Lp | SSC-V | RSSC-Lp | RSSC-V | TSC-Lp | TSC-V/

Weizmann [6] | 91.11 83.33 76.67 57.78 65.56 87.78 83.33
Keck [12] 78.57 57.94 67.46 34.13 37.30 53.17 53.97

UT-Tower [3] || 76.85 75.93 73.15 60.19 63.89 65.74 62.04

5. Conclusions

An advantage of the proposed Hierarchical Sparse Sub-
space Clustering (HSSC) is that it does not need the number
of clusters to be specified and does not require labeled train-
ing data to learn human action attributes, while avoiding
generation of trivial attributes. HSSC also provides the ac-
tion attributes at multiple resolutions, which can be later vi-
sualized, labeled and used for human action summarization
in long video sequences. Empirical results on real video
datasets show the effectiveness of our approach and its su-
periority over the state of the art for human action recogni-
tion as well as its utility in semantic interpretation of human
activities at multiple resolutions.
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