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Abstract The ubiquitin ligase CHIP catalyzes covalent
attachment of ubiquitin to unfolded proteins chaperoned by
the heat shock proteins Hsp70/Hsc70 and Hsp90. CHIP
interacts with Hsp70/Hsc70 and Hsp90 by binding of a
C-terminal IEEVD motif found in Hsp70/Hsc70 and Hsp90 to
the tetratricopeptide repeat (TPR) domain of CHIP. Although
recruitment of heat shock proteins to CHIP via interaction
with the CHIP-TPR domain is well established, alterations in
structure and dynamics of CHIP upon binding are not well
understood. In particular, the absence of a structure for CHIP-
TPR in the free form presents a significant limitation upon
studies seeking to rationally design inhibitors that may disrupt
interactions between CHIP and heat shock proteins. Here we
report the IH, 13C, and "°N backbone and side chain chemical
shift assignments for CHIP-TPR in the free form, and back-
bone chemical shift assignments for CHIP-TPR in the
IEEVD-bound form. The NMR resonance assignments will
enable further studies examining the roles of dynamics and
structure in regulating interactions between CHIP and the
heat shock proteins Hsp70/Hsc70 and Hsp90.
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Biological context

The C-terminus of Hsc70 interacting protein (CHIP) is a
ubiquitin ligase involved in protein degradation by the
ubiquitin—proteasome pathway, as well as a co-chaperone
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of the 70- and 90-kDa heat shock proteins (Hsp70/Hsc70
and Hsp90). CHIP is comprised of three domains, a tetra-
tricopeptide repeat (TPR) domain (D’Andrea and Regan
2003) at the N terminus, a C-terminal U-box domain, and a
helical linker domain located between the TPR and U-box
(Zhang et al. 2005). CHIP binds to the C-terminal IEEVD
motif of heat shock proteins through the TPR domain
(Zhang et al. 2005, 2015), while the U-box domain is
required for E3 ligase activity (Connell et al. 2001). Mul-
tiple studies have identified the CHIP-TPR domain as
necessary for binding to heat shock proteins or other pro-
teins that harbor a C-terminal IEEVD motif (D’ Andrea and
Regan 2003; Zhang M et al. 2005; Zhang H et al. 2015).

CHIP was first discovered as a co-chaperone and neg-
ative regulator of chaperone functions (Ballinger et al.
1999). Further investigation confirmed that CHIP acted as a
E3 ubiquitin ligase (Connell et al. 2001). Previous research
also found that CHIP preferentially participated in ubiq-
uitination of Hsp70-bound clients, thus affecting protein
triage decisions (Stankiewicz et al. 2010). CHIP plays an
essential role in many physiological processes including
DNA repair, processing of antigens by the immune system,
neurological disorders, cardiac diseases, muscular disor-
ders, and cancers (Paul and Ghosh 2015). Important targets
of CHIP related to cancers include, but are not limited to
ErbB2, TRAF2, PTEN, p53, and AKT (Paul and Ghosh
2015). CHIP up-regulation can inhibit tumor growth and
metastasis and its level was inversely correlated with the
malignancy of human breast and gastric tumors (Paul and
Ghosh 2015) as well as pancreatic tumors. Given its
diverse roles, CHIP is a clinically important protein with
significant potential to serve as a therapeutic target.

TPR domains are a structural motif typically consisting
of between three to sixteen repeats of a 34-amino acid
sequence that produces a helix-turn-helix structure
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(D’ Andrea and Regan 2003). The CHIP-TPR is comprised
of three TPR repeats followed by a seventh helix which
leads to the CHIP linker domain. TPR domains exist in a
diverse range of proteins and organisms, and are believed
to function as protein—protein interaction domains (D’ An-
drea and Regan 2003). Within the context of CHIP, the
TPR domain interacts with Hsp70/Hsc70 and Hsp90
through binding to a C-terminal IEEVD motif. Although
crystal structures of CHIP-TPR in complex with IEEVD
motifs are known (Zhang M et al. 2005; Zhang H et al.
2015), the structure in the free form is not known. A recent
hydrogen/deuterium exchange mass spectrometry (HDX-
MS) study found that the TPR domain of CHIP was sig-
nificantly more dynamic in the free form, whereas it was
stabilized upon binding to full-length heat shock proteins
or C-terminal IEEVD motif peptides (Graf et al. 2010). The
HDX-MS study suggests that the TPR domain exhibits a
substantial conformational changes or decreases in
dynamics after binding to IEEVD motifs. For therapeutic
targeting of CHIP aimed at disrupting interactions with
heat shock proteins the structure and dynamics of free
CHIP-TPR represent valuable information that could
inform rational drug design. NMR is uniquely suited for
examining both dynamics and structure and both backbone
and side chain chemical shift assignments of CHIP-TPR
are important first steps toward structure determination and
studies of dynamics for free-form CHIP-TPR using solu-
tion NMR. Here we report the backbone and side-chain
resonance assignments for CHIP-TPR in its free form
(Fig. 1), and backbone resonance assignments for CHIP-
TPR in complex with an Hsp70-tail IEEVD motif (Fig. 2).

Backbone resonance assignments in the free form
(Fig. 1) and the IEEVD-bound form (Fig. 2) are consistent
with the X-ray crystal structure of the CHIP-TPR/Hsp70-
IEEVD complex (Fig.3), as indicated by secondary
structure predictions from TALOS+ (Shen et al. 2009). Of
the 116 assigned backbone NH pairs, Ala60 stands out as it
exhibits a significant downfield shift, possibly due to ring
current effects from the phenyl rings of Tyr62 and Tyr63,
and the positioning of Ala60 at the N-terminus of helix 3.
While the TALOS+ secondary structure predictions do not
suggest significant differences between free and IEEVD-
bound forms of CHIP-TPR, chemical shift perturbations
(Fig. 3d, e) tell a slightly different story. Mapping chemical
shift perturbations that arise from binding of the Hsp70-
IEEVD to CHIP-TPR (Fig. 3e) onto the CHIP-TPR struc-
ture identifies residues that lie at the interaction surface and
residues that do not appear to directly contact the IEEVD.
Those residues that do not appear to directly contact the
IEEVD instead mediate contacts between CHIP-TPR
helices. This behavior is consistent with a recent HDX-MS
study of CHIP (Graf et al. 2010) which found that the
CHIP-TPR exhibits higher dynamics than the CHIP linker
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or U-box domains, and dynamics within the CHIP-TPR
decrease significantly upon binding of the Hsp70-IEEVD.
Interpreted in light of previous HDX-MS data, chemical
shift perturbations between CHIP-TPR helices suggest that
while secondary structure content remains unchanged, the
relative positions of helices likely change between the free
and IEEVD-bound states. Anecdotally, the chemical shift
perturbations and previous HDX-MS data suggest that the
absence of a CHIP-TPR crystal structure in the free form
may not be for lack of effort, but rather because confor-
mational variability or dynamics of free form CHIP-TPR
preclude the formation of diffraction quality crystals. This
dynamic behavior of CHIP-TPR suggests that solution
NMR studies, enabled by the resonance assignments
reported here, will be important for gaining structural
insights for CHIP-TPR in the absence of an IEEVD
peptide.

Methods and experiments
Protein expression and purification

The gene encoding CHIP-TPR(21-154) was cloned into the
pHisll2 expresssion vector as previously reported (Zhang
et al. 2015), enabling expression of a construct with a Hisg
tag at the N-terminus followed by a TEV protease cleavage
site. The recombinant plasmid was transformed into R2D
competent cells, which were then spread onto LB plates
containing 100 pg/mL ampicillin. After incubating at
37 °C overnight, colonies were picked to inoculate 20 mL
LB start culture with 100 pg/mL ampicillin. Cells were
grown overnight with shaking at 37 °C and used the next
morning for inoculating a 500 mL buffer-enhanced mini-
mal media culture. For "’N or '*C/'N labeled protein, cells
from the overnight culture were centrifuged, LB media was
decanted and the cell pellet was resuspended in minimal
media supplemented with 2 g/L. '""NH,CI and 2 g/L glu-
cose (*C). Inoculated cultures, typically 500 mL in vol-
ume, were grown to an ODggg between 0.6 and 0.8, then
transferred to 17 °C shaker for 1 h followed by addition of
0.4 mM IPTG. Induced cultures were grown at 17 °C
overnight, cells were harvested by centrifugation and
resuspended in lysis buffer (180 mM Tris, 450 mM NaCl,
10 % glycerol, 5 mM [-mercaptoethanol, pH7.8). Har-
vested cells were frozen in liquid nitrogen and stored at
—80 °C until purification.

Harvested cells were thawed overnight with rotation at
4 °C followed by sonication, after which lysate was pel-
leted by centrifugation at 11,500 rpm for 45 min at 4 °C.
The supernatant was filtered with a 0.4 pm syringe filter
and transferred to a new 50 mL centrifuge tube, and after
filtration supernatant was loaded onto a HisTrap column
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(GE Healthcare) for affinity chromatography purification.
The HisTrap column was washed by buffer A (20 mM
Hepes, 150 mM NaCl, 5 mM B-mercaptoethanol, pH7.0)

followed by wash by 5 % and elution by 100 % buffer B
(20 mM Hepes, 150 mM NaCl, 500 mM imidazole, 5 mM
B-mercaptoethanol, pH7.0). Eluted protein was subjected
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Fig. 3 Secondary structure predicted by CHIP-TPR resonance
assignments. Fraction helical content predicted by TALOS+ (Shen
et al. 2009) for CHIP-TPR in the free form (a) and in complex with
the Hsp70-IEEVD peptide (b). The solid black line indicates the per
residue prediction confidence, on a scale of 0-1.0, reported by
TALOS+. Above each plot cylinders representing TPR helices 1-7
are shown colored according to position within the structure of CHIP-
TPR (c) in complex with the Hsp70-IEEVD peptide (white sticks) as
observed in the crystal structure of the CHIP-TPR/Hsp70 complex

to TEV protease cleavage by dialysis against cleavage
buffer (20 mM Hepes, 50 mM NaCl, 1 mM EDTA, 5 mM
B-mercaptoethanol, pH7.5) at 4 °C overnight. Cleaved
protein was concentrated to 1 mL and loaded onto a
Superdex 75 column (GE Healthcare) for further purifica-
tion. Fractions containing CHIP-TPR were concentrated to
approximately 0.5 mM for 2D or 3D NMR data
acquisition.

Nuclear magnetic resonance (NMR) spectroscopy

To assign the chemical shifts of CHIP-TPR backbone
atoms 'H/"°N-HSQC, 'H/">N/'*C-HNCO, CBCA(CO)NH
and HNCACB experiments were carried out on a Bruker
600 MHz spectrometer equipped with a triple resonance
"H/"*C/'>N probe. For side chain chemical shift assign-
ments of CHIP-TPR, HCCH-TOCSY and CCH-COSY
experiments together with 2D '*C-HSQC were performed
on a Bruker 600 MHz spectrometer. All experiments were
performed at 293 K with CHIP-TPR concentration of
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from PDB accession ID 4 kbq (Zhang et al. 2015). Chemical shift
perturbations (8A) from 'H/'N-HSQC spectra that occur upon
binding of the Hsp70-IEEVD to CHIP-TPR (d) are shown as purple
bars. A black horizontal line indicates one standard deviation (o).
Chemical shift perturbations greater than one ¢ are mapped on to the
crystal structure (e) of the CHIP-TPR/Hsp70-IEEVD complex from
PDB accession ID 4kbq (Zhang et al. 2015). Chemical shift
perturbations are colored according to the scale shown (e) and the
Hsp70-IEEVD is shown as yellow sticks

0.5 mM in buffer containing 10 % D,O. All spectra for
backbone and side-chain chemical shifts of CHIP-TPR
were processed using NMRPipe (Delaglio et al. 1995) and
analyzed using Sparky.

Assignment and data deposition

Backbone amide assignments of CHIP-TPR are shown
overlaid onto >’N-HSQC spectra in the free form (Fig. 1) and
the IEEVD-bound form (Fig. 2). 116 backbone amides out of
134 were assigned in total. In our data, the region from N130
to S137 cannot be assigned due to very weak signals, pos-
sibly caused by high flexibility. This same region was
identified as highly flexible by an earlier HDX MS study
(Graf et al. 2010). For assigned backbone amides, nearly all
corresponding side chain chemical shifts were assigned.
Backbone and side chain chemical shift assignments of free
CHIP- TPR have been deposited into BioMagResBank
(http://www.bmrb.wisc.edu) with accession no. 26818.
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Backbone chemical shift assignments for IEEVD-bound
CHIP-TPR have been deposited into BioMagResBank
(http://www.bmrb.wisc.edu) with accession no. 26819.
Based on backbone chemical shifts for H,, C,, Cg, Co, Hn,
and Ny atoms, secondary structures were predicted for
CHIP-TPR in both free and IEEVD-bound forms out using
TALOS+ (Shen et al. 2009). The TALOS+ predictions
(Fig. 3) identify seven alpha helices, consistent with the
crystal structure of CHIP-TPR in complex with Hsp70
peptide (Fig. 3c). Although minor changes in helical content
were observed, the most significant changes occurred in
helices 3 and 7 which each contain multiple residues that
interact with the bound IEEVD motif. Chemical shift per-
turbations upon binding of Hsp70-IEEVD to the CHIP-TPR
were calculated as shown in Eq. 1.

AS = \/(AIHN)Z+(A‘51\’11/5-)2 (1)
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