

Efficient Design of Firewall Temporal Policies

Mahesh Nath Maddumala
Computer Science & Electrical Engineering

University of Missouri - Kansas City
Kansas City, MO, USA

mnmg2d@mail.umkc.edu

Vijay Kumar
 Computer Science & Electrical Engineering

University of Missouri - Kansas City
Kansas City, MO, USA

kumarv@umkc.edu

Abstract—Firewalls are the first line of defense in
cybersecurity. They prevent malicious and unwanted
network traffic entering the perimeters of organizations. The
strength of a firewall lies in its policy configuration which is
also a crucial task for any security administrator. The scope
of Firewall policies have been expanding to address ever
changing security requirements of an organization. In this
process, new security parameters have been researched and
one such parameter is temporal policy. Firewall temporal
policy is a firewall policy that allows or denies a network
packet based on specified day and time range of the policy in
addition to the packet filtering rules. Firewall vendors such
as CISCO and Palo Alto have already featured firewall
temporal policies in their security products. Inclusion of
temporal policies in firewall policies results in additional
overhead for storing and scanning Firewall policies. As
temporal policies are represented in week days and time,
they consume considerable amount of space.
In this paper, we present an innovative and efficient method
for representing temporal policies which includes compact
representation of temporal policies and detection of
anomalies using set operations. Our approach significantly
reduces the storage requirement and improves the scanning
functionality of firewall. We also present a new method of
creating policy sets based on week days.

Keywords-firewall; temporal policies; time-based policies;
firewall policies

I. INTRODUCTION
 Firewalls filter malicious and unwanted network

traffic entering the perimeters of organizations. To do so,
the filtering process uses various fields of the IP packet
such as protocol type, source IP address, source port,
destination IP address, destination port, etc. Firewall
method was introduced in late 1980s, since then it has
been the most commonly deployed packet filtering
technique as the first line of defense. Although with time
and with security needs of organizations, significant
improvement were introduced, still many important issues
remains unresolved. One of such issues is the composition
of new firewall policies and their efficient implementation.
In this paper, we deal with this issue and present an
innovative approach to handle this task.

 The objective of our ongoing research is to
advance firewall policy specification to reduce the
complexity and to give administrator more control over the

firewall management. This will significantly reduce the
manual effort to keep firewall up to date (insert new and
remove redundant policies). In this paper, we report our
work on the design issues of firewall temporal policies and
present an innovative and efficient method for representing
temporal policies. In order to increase the strength of a
firewall (accurately stopping unwanted and malicious
packets) we have used finer “policy granularity” of
temporal parameters such as day and time.

II. OUR CONTRIBUTION
 Although firewall is organization-specific, a

general framework must be defined so that organizations
can generate instances of this framework for their needs.
In our effort of building such framework, we have
incorporated innovative ideas and parameters such as time
and day based filtering (temporal parameters), policy
anomaly identification, subset and superset of policies, etc.
In this paper we mainly focus on the issue of temporal
policies and refer to other issues for maintaining the
continuity in our presentation.

 In time based filtering, packets can be denied or
allowed based on day and time parameters of the policy.
We proposed a mathematical approach to optimize the
representation of temporal policies. We establish that our
way significantly saves space and processing time. We
also proposed an optimized way of parsing rules by
segregating them into policy sets based on the current day.
The final outcome is an efficient model of representing
temporal policies and cost-effective firewall management
system.

The structure of the paper is as follows. In Section III,
we discuss the related work and in section IV, we present
our approach of firewall temporal policies and various
anomalies caused due to their misconfiguration. In Section
V, we present the design of temporal firewall policies
starting with their numeric representation followed by their
grouping based on week day. In Section VI, we present
our implementation details and Section VII presents
conclusion of our work.

III. RELATED WORK
Time-based filters are widely in use to control network

traffic. Vendors such as CISCO [10] and Palo Alto [11]
equipped their firewalls with time based policies.

2016 IEEE 40th Annual Computer Software and Applications Conference

0730-3157/16 $31.00 © 2016 IEEE

DOI 10.1109/COMPSAC.2016.104

449

Temporal policy specification is also available in IP tables
[12].

 Among available works on firewalls, most have
focused on conflict resolution of firewall policies, only a
few on temporal policies. Eronen and Zitting [9] designed
a constrained logic programming-based system to model
firewall policies which deals with conflict resolution only.
Bandara et al [3] also used logic programming to represent
and resolve policy conflicts. Similarly works reported in
[4-8], also resolve conflicts based on the fields of TCP/IP
protocol. To the best of our knowledge, only the works
reported in [1, 2] have used time-based policies in
resolving conflicts. They have used BIt-vector based
Spatial CALculus (BISCAL) and characterization vectors
to detect the conflicts. Although they used time-based
approach, the representation of week day’s list is not
optimized, rather they only focused on detection of
conflicts associated with space and time parameters of the
policy. In our work, we have introduced (a) an optimized
way of representing temporal policies by using numeric
approach and (b) used set operations over weekdays for
anomaly detection which reduces the processing time to
compare list of weekdays.

IV. OUR APPROACH
We propose a numeric-based approach to represent

firewall temporal policies. We consider periodic time
(week day and time) parameters to specify temporal
policies. We used predicate-based logic programming to
implement our work.

A. Temporal Policies
Firewall policy is an ordered list of packet filtering

rules defining which network packets are allowed or
denied based on TCP/IP layers header fields. Firewall
temporal policy is a firewall policy that allows or denies a
network packet based on specified day and time range of
the policy in addition to the packet filtering rules. Time
range of a policy is expressed as start and end time in 24
hour military time format and the day field is expressed as
a list of days which is a subset of {Mon, Tue, Wed, Thu,
Fri, Sat, Sun, Weekdays, Weekends, Anyday}. Weekdays
is defined as {Mon, Tue, Wed, Thu, Fri} and Weekends is
defined as {Sat, Sun}. Anyday is a list of all the week
days. For example, a temporal policy can be specified as,
“Block the Facebook on weekdays from 0800 to 1700.”

B. Anomalies in Temporal Policies
A temporal policy is said to “match” if the packet

arrival day and time falls within the specified day and time
range respectively. We explain a match using the example
policy “Block the Facebook on weekdays from 0800 to
1700.” If a Facebook page request arrives to the firewall of
the organization on any of the weekdays during the hours
0800 to 1700, an ordered list of policies is searched to find
a match. If there is a match, an associated action is
performed on the request, which is deny in this example.
As it is practiced, a default policy of “deny everything” is
listed at the end of policies.

A typical organization may have several hundred
firewall policies. When a packet arrives then the entire
ordered list of policies is searched for a match and
appropriate decision is taken. In cases when a network
packet matches more than one policy then only the first
match is considered and the rest of the matches are
ignored. This approach often leads to erroneous
configuration of policies and violates their consistency.

Anomalies are caused due to the misconfiguration of
policies. An anomaly exists if two conflicting outcomes
are listed in the ordered list of policies. For example if a
Facebook packets arrive between 0800 to 1700 and a
search of the policy list finds two rules one says block the
packet and the other says allow the packet then a policy
anomaly is said to occur. We identify two types of
anomalies in temporal policies: conflict and redundant.

Conflict anomaly between two temporal policies Px
and Py occurs when a packet’s arrival day 'd’ and time 't’
match the day and time range of policies Px and Py, but
their decisions are different.

Definition 1 (Conflict anomaly): Two temporal policies
Px and Py are said to conflict if d � {Px.days � Py.days}
and (Px.start_time � t � Px.end_time) and (Py.start_time �
t � Py.end_time) and (Px.action � Py.action).

This definition says that decision is contradictory for
the same policies.

Redundancy between two temporal policies Px and Py
occurs when a packet arrival day 'd’ and time 't’ matches
the day and time range of policies Px and Py whose
actions are same.

Definition 2 (Redundant anomaly): Two temporal
policies Px and Py are said to be redundant if d � {Px.days
� Py.days} and (Px.start_time � t � Px.end_time) and
(Py.start_time � t � Py.end_time) and (Px.action =
Py.action).

Table 1 illustrates some sample policies. Suppose
when a video streaming (VS) packet arrives on
Wednesday at 1300 hours, it matches polices 2 and 3.
However, as per first-match rule, action of the policy 2
(deny) is performed on the packet which is different from
the policy 3 (allow). In this case policy 2 is said to be in
conflict with policy 3. Similarly when a Facebook (F)
access is requested on Wednesday at 1100 hours, policies
1 and 2 are matched and as actions of the both policies are
same, they are redundant to each other. Note that source
and destination domains are assumed to be same for all the
policies and omitted in the sample policies of table 1
(Policy number = P# and Permission = P) as the focus is
more on temporal policies. Such occurrences are common
in manual management of firewalls.

TABLE I. SAMPLE POLICIES

P# Action Service Days Time

1 Deny VS (M, W) 0800-1200

2 Deny VS Anyday Any time

450

3 Allow VS (W, F) 1200-1500

4 Deny F Weekdays 0800-1200

5 Deny F Weekdays 1300-1700

Anomalies in temporal policies can be detected by
analyzing the relationship between any two policies with
respect to day and time fields. Anomalies between any two
policies may occur if any one of the following conditions
exists with respect to day and time: Subset (�), Superset
(�), Equal (=) and Overlap (Δ) and when their packet
filtering rules are not disjoint. Suppose policy Px precedes
policy Py and considering the relationships with respect to
the day alone, the conditions are explained below using
sample policies of Table1.

Subset: P1.days � P2.days
Superset: P2.days � P3.days
Equal: P4.days = P5.days
Overlap: P1.days Δ P3.days
As the temporal policies are represented in both week

day and time, we need to consider all the possible
combinations of relationships between every two polices
with respect to day and time in order to discover
anomalies. Here two policies Px and Py are compared only
if Px precedes Py in the policy list. Table 2 presents a
complete list of all possible combinations of relationships
between two policies and anomalies.

TABLE II. ALL POSSIBLE COMBINATIONS OF RELATIONSHIPS AND
ANOMALIES

Day Time Action Anomaly

Subset Subset Same Redundant

Subset Equal Same Redundant

Subset Superset Same No anomaly

Subset Overlap Same No anomaly

Subset Subset Different Conflict

Subset Equal Different Conflict

Subset Superset Different Conflict

Subset Overlap Different Conflict

Equal Subset Same Redundant

Equal Equal Same Redundant

Equal Superset Same Redundant

Equal Overlap Same No anomaly

Equal Subset Different Conflict

Equal Equal Different Conflict

Equal Superset Different Conflict

Equal Overlap Different Conflict

Superset Subset Same No anomaly

Superset Equal Same Redundant

Superset Superset Same Redundant

Superset Overlap Same No anomaly

Superset Subset Different Conflict

Superset Equal Different Conflict

Superset Superset Different Conflict

Superset Overlap Different Conflict

Overlap Subset Same No anomaly

Overlap Equal Same No anomaly

Overlap Superset Same No anomaly

Overlap Overlap Same No anomaly

Overlap Subset Different Conflict

Overlap Equal Different Conflict

Overlap Superset Different Conflict

Overlap Overlap Different Conflict

Table 3 presents a summary of all anomalies. Although
redundant is mentioned as an anomaly, it does not violate
policy definitions. However, it is still mentioned as
anomaly as it increases the number of policies
unnecessarily and thus reducing the performance of
processing the firewall rules. Here the main concern is the
conflict anomaly as it creates the conflict between two
policy definitions and hence violates the consistency of the
policies.

TABLE III. SUMMARY OF ANOMALIES IN TEMPORAL POLICIES

Day Time Action Anomaly
Any* Any* Different Conflict
Subset Subset/Equal Same Redundant
Equal Subset/Equal/

Superset
Same Redundant

Superset Equal/Superset Same Redundant
* “Any” means “any relation except disjoint”.

V. OPTIMIZATION
We optimized the design of temporal firewalls in two

phases. In the first phase, we introduce the numeric
representation of week days which reduces the storage
space used by specification of list of week days and also
reduces the time taken in scanning the firewall polices and
comparing the list of weekdays to detect anomalies. In
second phase, we propose the idea of grouping same day
policies into policy sets which results in reduced set of
policies. This approach reduces the time taken to match
the policies.

A. Numeric representation of temporal policies
To represent days in temporal policies, additional

storage space is required. With the list of days’
representation, it consumes significant amount of space
and also incurs additional processing time to find a
relationship between pair of polices to detect anomalies.
To achieve cost-effective representation of days, we
introduce the idea of a numeric representation. Here,
instead of specifying set of days, a unique numeric value is
assigned to every unique subset of week days. The week
days are positioned in an order from Monday to Sunday as
{Mon, Tue, Wed, Thu, Fri, Sat, Sun}. A binary “1” is
assigned to each week day present in the days field of the
policy and a binary “0” is assigned to the each week day

451

absent in the days field of the policy. The assignment of
binary values 1 and 0 to the week days follows the order
from Monday to Sunday to form a 7 bit sequence which is
used to calculate the decimal value. This decimal value is
used to represent the days field of the policy.

Consider a day field of a policy is {Wednesday,
Friday}. A binary 1 is assigned to Wednesday and Friday
and a binary zero is assigned to rest of the week days. This
generates the representation {0, 0, 1, 0, 1, 0, 0} which
forms a 7 bit binary sequence (0010100)2 equivalent of
decimal value 20. Table 4 presents some sample
conversions from week days to binary form to decimal
value.

TABLE IV. NUMERIC REPRESENTATION OF WEEKDAYS

P# Days M T W Th F S S DV*

1 {M, T, W} 1 1 1 0 0 0 0 112

2 {Sat, Sun} 0 0 0 0 0 1 1 3
3 {M, W, F} 1 0 1 0 1 0 0 84

4 {Anyday} 1 1 1 1 1 1 1 127
*DV = Decimal values

Table 5 is a decimal representation of Table 1.

TABLE V. DECIMAL REPRESENTATION OF DAYS FROM TABLE1

P# Action Service Days Time
1 Deny Video streaming 80 0800-1200
2 Deny Video streaming 127 Any time
3 Allow Video streaming 20 1200-1500
4 Deny Facebook 124 0800-1200
5 Deny Facebook 124 1300-1700

One of the important task is to check if a packet arrival
day is a member of policy’s day set. This can be done by
performing bitwise AND operation on specific day and
policy’s day set. If a packet arrival day is ‘d’ and policy’s
day set is P.days then membership function is defined as
“If (d∧ P.days) is non-zero then d is a member of P.days
else d is not a member of P.days”, where ‘∧’ is a bitwise
operation. For example, to check if Wed is a member of
policy 1’s day’s list in the Table 4, we have to perform
binary ∧ operation between value of Wed and value of
day’s list of policy 1. Here value of the Wed is 16 and
value of day’s list of policy 1 is 112. Bitwise operation ∧
of 16 and 112 yields non-zero value. So Wed is a member
of day’s list of policy 1.

The possible relationships between each pair of
policies with respect to weekdays are: subset, superset,
overlap, equal and disjoint.

B. Algorithm to find relationship between a pair of
policies with respect to days field
As set of week days are represented using decimal

value, finding relationships between pair of policies is not
straightforward. We have taken the advantage of set
operations to find the relationship between two sets of
week days.

In the algorithm, Px.days and Py.days are the decimal
values of days set of policies Px and Py respectively.
“AND” is a bitwise AND operation which is an equivalent
to set intersection operator.

Algorithm Relationship (Px.days, Py.days)
Begin
 If (Px.days == Py.days) then
 Relation = “EQUAL”
Else if (Px.days AND Py.days) == 0 then
 Relation = “DISJOINT”
 Else if (Px.days AND Py.days) == Px.days then
 Relation = “SUBSET”
 Else if (Px.days AND Py.days) == Py.days then
 Relation = “SUPERSET”
 Else
 Relation = “OVERLAP”
 End if
End

C. Correctness of the Relationship algorithm
To prove the correctness of the relationship algorithm,

we have to prove that the corresponding relationship
conditions are correct.

Equal: The condition for equal relation does not need
proof as the condition (Px.days == Py.days) is a direct
comparison of two decimal values for equivalence.

Disjoint: we need to prove that Px.days and Py.days
are disjoint if (Px.days AND Py.days) == 0. Assume that
Px.days and Py.days are not disjoint. Then, there should be
an element x in both sets Px.days and Py.days. Since x is
in both sets Px.days and Py.days, (Px.days AND Py.days)
will be not be 0 which is a contradiction to our condition.
So, Px.days and Py.days are disjoint.

Subset: we need to prove that Px.days is a subset of
Py.days if (Px.days AND Py.days) == Px.days. Assume
that Px.days is not a subset of Py.days. Then, there is an
element x in Px.days that is not in Py.days. Since x is not
in Py.days, (Px.days AND Py.days) will not include x.
Thus, (Px.days AND Py.days) � Px.days. But our
condition is (Px.days AND Py.days) == Px.days, which is
a contradiction. So Px.days is a subset of Py.days.

Superset: The proof of superset condition is similar to
the subset condition.

Overlap: If all the above conditions are false, then only
the left over possible relation is overlap.

Once the relationship is determined, Table 3 is used to
detect the possible anomaly and same to be reported.

D. Policy sets based on week day
The design of temporal policies can be optimized by

filtering out the policies corresponding to each weekday
and group them as a policy set. In this way, we can have a
separate policy sets for each weekday. As we have seven
weekdays (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday), we get seven policy sets. Every
day, corresponding policy set is chosen and applied to the
firewall. This reduces the processing time to process all
the firewall policies. With this optimization, only time has

452

to be verified. The firewall system can apply the
corresponding policy set every day at time 0000 hrs. and
the policy set is valid till the time 2359 hrs. (Time 2359
hours represent the time between 23 hours 59 minutes 00
seconds and 23 hours 59 minutes 59 seconds).

Consider the sample policies from Table 1, policy set
for Friday consists of policies P2, P3, P4 and P5, whereas
policy set for Saturday consists of only one policy P2. In
later case, when a packet arrives on Saturday, only one
policy will be scanned, though there are five policies in the
policy list.

VI. IMPLEMENTATION
We used prolog based logic programming language

ECLiPSe [13] to represent our optimized design of
temporal policies. Declarative nature of logic
programming makes it easy to specify the temporal policy
rules. As logic programs are used to describe relations, it is
a better choice to represent and analyze relations of
temporal policies.

There are three basic constructs in Prolog: facts, rules,
and queries. Facts and rules are used to create knowledge
bases. We represented temporal policies as facts. Relations
and anomalies are represented as rules and finally we used
queries to detect the anomalies.

A temporal policy is represented as a fact as follows,
pTime(policyNo,policyName,days,start_time, end_time,
action), where policyNo is policy number in an increasing
order, policyName is the name of a policy, days is the
decimal value of week days, start_time and end_time
indicate the time range to apply the policy and finally
action is a binary decision of allow or deny. For instance,
policy 1 in table 5 is represented as pTime(1,
deny_video_1, 80, 800, 1200, deny). Here policyName is
not mentioned in the table.

The day relation predicate dayRel is used to determine
the relation between two policies with respect to week
days where Px and Py are the policy names of policy x and
policy y, Nx and Ny are the policy numbers, DaysX and
DaysY are the days fields. The prolog statements for
dayRel predicate are as follows,

dayRel(equal,Px,Py):- pTime(Nx,Px,DaysX,_,_,_),

pTime(Ny,Py,DaysY,_,_,_),Nx < Ny, Px \== Py, (DaysX
=:= DaysY -> true;false).

dayRel(subset,Px,Py):- pTime(Nx,Px,DaysX,_,_,_),

pTime(Ny,Py,DaysY,_,_,_), Nx < Ny, Px \== Py, DaysX
=\= DaysY, ((DaysX /\ DaysY) =:= DaysX -> true;false).

dayRel(superset,Px,Py):- pTime(Nx,Px,DaysX,_,_,_),

pTime(Ny,Py,DaysY,_,_,_), Nx < Ny, Px \== Py, DaysX
=\= DaysY, ((DaysX /\ DaysY) =:= DaysY -> true;false).

dayRel(disjoint,Px,Py):- pTime(Nx,Px,DaysX,_,_,_),

pTime(Ny,Py,DaysY,_,_,_), Nx < Ny, Px \== Py, ((DaysX
/\ DaysY) =:= 0 -> true;false).

Time relation predicate timeRel is used to determine
the relation between two policies with respect to time
where StartX and EndX are the starting time and ending
time of the policy x and StartY and EndY are the starting
time and ending time of policy y. The prolog statements
for timeRel predicate are as follows,

timeRel(equal,Px,Py):- pTime(Nx,Px,_,StartX,EndX,_

), pTime(Ny,Py,_,StartY,EndY,_), Nx < Ny, Px \== Py, (
(StartX =:= StartY, EndX =:= EndY) -> true;false).

timeRel(subset,Px,Py):- pTime(Nx,Px,_,StartX,EndX,

), pTime(Ny,Py,,StartY,EndY,_), Nx < Ny, Px \== Py, (
((StartX >= StartY, EndX < EndY); (StartX > StartY,
EndX =< EndY)) -> true;false).

timeRel(superset,Px,Py):- pTime(Nx,Px,_,StartX,

EndX,_), pTime(Ny,Py,_,StartY,EndY,_), Nx < Ny, Px \==
Py, (((StartX =< StartY, EndX > EndY); (StartX < StartY,
EndX >= EndY)) -> true;false).

timeRel(disjoint,Px,Py):- pTime(Nx,Px,_,StartX,

EndX,_),pTime(Ny,Py,_,StartY,EndY,_), Nx < Ny, Px \==
Py, ((StartX >= EndY ; EndX =< StartY) -> true;false).

Anomaly predicate anomaly is used to find the

redundant and conflict anomalies between every two
policies. The prolog statements for anomaly predicate are
as follows,

anomaly(redundant,Px,Py):- dayRel(subset,Px,Py),

timeRel(TimeRel,Px,Py), (TimeRel = subset; TimeRel =
equal), pTime(_,Px,_,_,_,ActionX), pTime(_,Py,_,_,_,
ActionY), ActionX = ActionY.

anomaly(redundant,Px,Py):- dayRel(equal,Px,Py),

timeRel(TimeRel,Px,Py), (TimeRel = subset ; TimeRel
=equal;TimeRel=superset),pTime(_,Px,_,_,_,ActionX
),pTime(_,Py,_,_,_, ActionY), ActionX = ActionY.

anomaly(redundant,Px,Py) :- dayRel(superset,Px,Py),

timeRel(TimeRel,Px,Py), (TimeRel = equal ; TimeRel
=superset),pTime(_,Px,_,_,_,ActionX),pTime(_,Py,_,_,_,
ActionY), ActionX = ActionY.

anomaly(conflict,Px,Py):- dayRel(DayRel,Px,Py),

timeRel(TimeRel,Px,Py), DayRel \= disjoint, TimeRel
\=disjoint,pTime(_,Px,_,_,_,ActionX),pTime(_,Py,_,_,_,
ActionY), ActionX \= ActionY.

To find out the anomalies, we have to query the above

statements with, findall((X,Px,Py),anomaly(X,Px,Py),
Anomalies).

We have not included the type of service in our
implementation as it is assumed to be same or related for
all the policies. We have tested our implementation by
taking sample temporal policies. The sample policies are
chosen in such a way that all the day and time relations are
covered as specified in Table 2. Our implementation is

453

able to find all the anomalies associated with the given
sample policies.

VII. CONCLUSION AND FUTURE WORK
In our work, we proposed an optimal way of

representing temporal policies using decimal
representation of week days which reduces the space
consumed by additional overhead of list of days and time
and also reduces the processing time taken to detect the
anomalies. We also proposed segregating rules into policy
sets which reduces the number of rules to be parsed on a
daily basis. This approach significantly improves the
scanning of firewall policies. In our present work, we only
discussed polices based on time parameter. We are
working on its expansion to include location parameter in
addition to time parameter in our future work. We are also
planning to apply temporal policies in distributed firewall
setup.

ACKNOWLEDGEMENTS
This work is funded by NSF grant (ID CNS-1347958).

REFERENCES
[1] T. Subana, Y. Tateiwa, Y. Katayama, N. Takahashi,

“Simultaneous analysis of time and space for conflict detection in
time-based firewall policies,” Proc. of 10th IEEE CIT2010, in
press.

[2] T. Subana, Y. Tateiwa, Y. Katayama, N. Takahashi, “An Improved
Conflict Detection System with Periodic Cycle Treatment for
Time-based Firewall Policies,” Proc. Of 19th IEEE ICCCN 2010,
pp.1-8, Zurich, Switzerland, Aug 2010.

[3] Bandara, Arosha K., Antonis Kakas, Emil C. Lupu, and Alessandra
Russo. "Using argumentation logic for firewall policy specification
and analysis." In Large Scale Management of Distributed Systems,
pp. 185-196. Springer Berlin Heidelberg, 2006.

[4] H. Hamed, AI. Shaer, “Taxonomy of Conflicts in Network
Security Policies,” IEEE Communication Magazine, vol.44, no.3,
pp.134-141, 2006.

[5] B. Zhang, E.AI. Shaer, R. Jagadeesan, J.Riely, C. Pitcher,
“Specifications of a high-level conflict-free firewall policy
language for multi-domain networks,” SACMAT’07, pp.185-194,
Sophia Antipolis, France, June 2007.

[6] L. Yuan, J. Mai, Z. Su, H. Chen, P. Mohapatra, “FIREMAN: a
toolkit for firewall modeling and analysis,” Proc. IEEE Symp.
Security and Privacy, pp.199-213, Oakland, May 2006.

[7] V. Capretta, B. Stepien, A. Felty and S. Matwin, “Formal
correctness of conflict detection for firewalls,” Proc. of ACM
workshop on Formal Methods in Security Engineering, Virginia,
pp.22-30, USA, Nov 2007.

[8] Hongxin Hu, Gail-Joon Ahn, Ketan Kulkarni, "Detecting and
Resolving Firewall Policy Anomalies", IEEE Transactions on
Dependable and Secure Computing, vol.9, no. 3, pp. 318-331,
May/June 2012.

[9] P. Eronen and J. Zitting, “An expert system for analyzing firewall
rules,” Proc. of 6th Nordic Workshop on Secure IT Systems
(NordSec 2001), pages 100–107, November 2001.

[10] CISCO, "Creating and Applying Group Policies," [Online].
Available: https://documentation.meraki.com/MX-
Z/Group_Policies_and_Blacklisting/Creating_and_Applying_Grou
p_Policies. [Accessed: April 4, 2016].

[11] nrice, "How to Schedule Policy Actions," August, 2015. [Online].
Available: https://live.paloaltonetworks.com/t5/Management-

Articles/How-to-Schedule-Policy-Actions/ta-p/56338. [Accessed:
April 4, 2016].

[12] H.Eychenne, "iptables(8) - Linux man page," [Online]. Available:
http://linux.die.net/man/8/iptables. [Accessed: April 4, 2016].

[13] "The ECLiPSe Constraint Programming System," [Online].
Available: http://eclipseclp.org/. [Accessed: April 4, 2016].

454

