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any enterprise and government organiza-
tions use a variety of mobile gadgets to 
connect to the cloud to manage their data 
processing requirements. Although this 
platform improves availability and perfor-
mance, it also increases security risk, as 

it can allow unwanted malicious network traffic into the organization. 
Firewall filtering is often inadequate for stopping these attacks. The 
problem becomes more complex when multiple firewalls are deployed 
because coordination among them becomes extremely difficult if not 
impossible.

Current firewalls use static filtering policies. Although simple, a 
static policy has many disadvantages. First, because border routers 
enforce a static policy, they can’t react to changes in the external en-
vironment. Second, because of physical limitations and differences 
in trust relationships between an enterprise and its immediate neigh-
bors, some firewalls might require preferential treatment over others 
in admitting different kinds of traffic streams. Therefore, providing 
perimeter protection policies that react to dynamic changes and re-
spect organizational objectives such as preferential treatment while 
enforcing organizations’ overall security objectives requires dynam-
ic and flexible policies at each border gateway that are also part of 
a global policy such that they enforce common security objectives in 
mobile clouds.

A new approach to 

compose firewall 

policies to protect 

mobile and static 

cloud perimeters 

uses location to 

filter out attacks 

from unsafe 

locations. 
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The protection issue becomes more complex 

when we consider attacks from mobile sources. 

Unlike threats from stationary attackers, mobile 

attackers disappear from the attack location and 

resurface elsewhere. We introduce location-attack 

protection, in which the irewall can block messages 

from high cybercrime locations (country, state, and 

so on) completely. To enable this protection, we use 

constrained logic programming by appropriately al-

tering the lexible authorization framework (FAF)1 

and its extensions, and strand spaces and multiset 

rewriting strategies for protocol analysis.2–4 These 

two formalisms control multiple streams of data ex-

changed between two participants, which is relevant 

to our framework because it requires ine-grained 

and protocol-speciic perimeter protection policies. 

They can also easily incorporate new spatial and 

temporal parameters that are unique and crucial 

to mobile clouds. Our scheme supports consistency 

and completeness of local policies: they’re important 

because an individual gateway or irewall on the pe-

rimeter needs to know whether to allow or deny a 

stream’s progress. The scheme makes sure that the 

composition of local policies is logically correct to ob-

tain an enterprise-wide perimeter protection policy. 

In addition, our scheme makes sure that the effect 

of the propagation of change in policies to others 

is correct. If the global policy changes, then all lo-

cal polices have to accommodate that change. Con-

versely, if a local policy changes, the related global 

policy may change, which in turn may trigger chang-

es in other dependent local policies. 

A mobile unit frequently changes location, 

which can introduce inconsistency at a policy lev-

el. For example, a mobile user might be subject to 

a different set of constraints in Kansas City, Kan-

sas, than in Kansas City, Missouri, which will affect 

the data access pattern. Firewall iltering schemes 

must handle such policy changes, due to mobility 

and other necessary revisions in the policy in real 

time to eliminate false denial. This becomes tricky 

because a mobile unit becomes unreachable when 

it’s switched off or slips into doze mode:5 updates 

or changes can only be installed when the unit be-

comes active. To address this problem, we use a 

twofold optimization strategy. In the irst phase, we 

apply fold/unfold6 transformations to optimize policy 

rules. In the second phase, we partially materialize 

static parts of individual polices, excluding dynamic 

variables that share information between local and 

global policies. We then translate such optimized 

policies to rule sets used by today’s irewalls.7

Mobile Cloud 
Mobile clouds support personal and terminal mo-

bility.5 A mobile unit can mount attacks from any 

location at any time. Attack packets pass through 

several gateways before reaching the cloud. Each 

gateway has its own dynamic irewall, and the cloud 

is protected by its own irewall. Whenever a irewall 

policy change is incorporated on any of the irewalls, 

the change is propagated to all other irewalls for 

updating.

Firewalls are typically conigured using a rule 

base specifying which inbound or outbound packets 

(or sessions) are to be allowed or blocked. A Cisco 

rule set7 is as follows: pass tcp 20.9.17.8 0.0.0.0 

121.11.127.20 0.0.0.0 range 23 27, which says that 

TCP packets from IP address 20.9.17.8 to IP address 

121.11.127.20 are to be accepted if the destination 

port range is from 23 to 27. The 0.0.0.0 segments 

mean that address masking isn’t used. Generally, 

such rules are listed in some order in access lists.7 

When a irewall receives a packet, it goes through 

the list and matches the irst rule that applies to the 

packet and follows the speciied action. Firewalls 

use a closed policy that drops packets not explicitly 

permitted by any rule. This procedure leads to sev-

eral problems: 

• Because the rules are written at the lower pro-

tocol level, a misconiguration can make the 

whole intranet unreachable. 

• The rule base might have many redundant rules. 

• The semantics depend not only on the rules, but 

also on the order in which they’re listed, an un-

desirable feature.

Earlier research on this issue provided solutions 

with limited success. For example, Yair Bartal and 

his colleagues proposed Firmato, a irewall manage-

ment toolkit.8 Although it models the irewall secu-

rity policy and network topologies, it doesn’t permit 

ine-grained admission control of streams, doesn’t 

cover intranets with multiple external gateways that 

enforce different policies, and can’t be used to obtain 
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the global health of the traffic streams entering the 
Internet. Alain Mayer and his colleagues9 present 
Fang, a firewall analysis engine that has the same 
deficiencies as Firmto.8 Our scheme resolves these 
deficiencies. A cryptography-based scheme relies 
on decentralized trust management.10 Our solution 
distributes network perimeter protection without re-
linquishing centralized control and thereby circum-
vents the performance bottlenecks of a centralized 
perimeter protection policy.

Unlike wired systems, a mobile node can issue a 
request from any location, connect to many service 
providers that might have different security require-
ments, slip into doze mode, power off, or fail. Mobile 
nodes are also vulnerable to attacks. A mobile cli-
ent’s valid request from one location can be denied 
at another location. Several good schemes have been 
proposed for protecting mobile systems through 
firewalls11; however, they provide engineering solu-
tions to firewall protection and appear highly system 
dependent.

We conclude the following: we need real-time 
synchronization of firewalls and subsequent up-
dates; a multilayer verification is the way to go; and 
the system must implement geographical location-
based verification. Our logic-based framework meets 
these requirements.

Flexible Perimeter Protection Framework
Because a common framework can protect mobile 
and wired traffic, we built a unified flexible frame-
work to monitor and dynamically adjust the enter-
ing datastreams. FPPF is based on having rules built 
with predicates to express policies for accepting 

packets in an ongoing stream. We wrote the FPPF 
filter or protection rules in the Flexible Parameter 
Protection Specification Language (FPPL). We brief-
ly introduce salient features of this language here; 
details can be found elsewhere.1

Example Policies Written in FPPL
FPPL, similar to other logical languages, consists of 
constant symbols, variables, function symbols, and 
terms. It uses a set of predicates to define packet ac-
ceptance and rejection rules for local and enterprise-
wide policies.

For example, the rules in Figure 1a define a local 
policy. Rule 1 says that stream Si can be opened if it 
has been permitted to do so, where permToOpen(Si) 
holds when the latter is true. Rule 2 says that the 
next packet of Si is admitted as long as Si isn’t 
blocked, the local packet acceptance and the global 
approval policies allow it, and the corresponding lo-
cal and global statistics are updated. Rule 3 defines 
the condition for Si being blocked—namely, that 
the local variable Li (say buffer capacity allocated 
to this stream) has been used up by the stream up 
to now.

The local policy needs to know that the predi-
cate gPktAcPolicy(car(post), Si, [P1, . . ., Pn],+) (a 
part of enterprise-wide policy) is true for the next 
packet to be admitted according to the agreement it 
has with the enterprise-wide security policy. Con-
versely, it’s obligated to update the global statistics 
updtGlobalStat(car(post), Si, [P1, . . ., Pn],+) that are a 
part of the enterprise-wide security policy. Note that 
other variables appearing in these two predicates, 
namely [P1, . . ., Pn], are unknown to the local policy, 

Rule 1:	 procNxtPkt([], post, Si,+)	 ←	 permToOpen(Si)
Rule 2:	 procNxtPkt(pre*car(post), post, Si,+)	 ←	 blocked(Si) 
		  PROVISION(self):			  updtLocalStat(car(post), Si ,Li),
						     localPktAcpPolicy(car(post), pre, Si,+),
		  PROVISION(global):			  gPktAcPolicy(car(post), Si, [P1, . . ., Pn],+)
		  OBLIGATION(global):			  updtGlobalStat(car(post), Si, [P1, . . ., Pn],+)
Rule 3:	 blocked(x)		  ←	 Li = maxL i 

(a)

Rule 4:	 procNxtPkt([], post, Si,+, LOi)	 ←	 permToOpen(Si, LOi)
Rule 5:	 procNxtPkt(pre*car(post), post, Si,+)	 ←	 blocked(Si, LOi)
		  PROVISION(self):			  updtLocalStat(car(post), Si, Li),
						     localPktAcpPolicy(car(post), pre, Si,+, LOi),
		  PROVISION(global):			  gPktAcPolicy(car(post), Si, [P1, . . ., Pn],+, LOi)
		  OBLIGATION(global):			  updtGlobalStat(car(post), Si, [P1, . . ., Pn],+,LOi)
Rule 6:	 blocked(x)		  ←	 Li = maxLi

(b)

FIGURE 1. Packet acceptance and rejection rules written in Flexible Parameter Protection Specification 

Language (FPPL) for: (a) local and enterprise-wide policies, and (b) mobile policies.
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so they can’t be used in the rule as a normal predi-
cate. The enterprise-wide policies are composed 
accordingly.

Enhancing Provisions, Obligations, and 
Delegations
Provisions and obligations play a key role in the FPPF 
architecture. As the previous example demonstrates, 
local policies depend on having provisions approved 
by the global policy base, and, in turn, local policies 
are obliged to update their local statistics with the 
global policy base. This two-way exchange of data al-
lows the global policy to respond to perimeter-wide 
changes in an accurate and timely manner.

In our case, the provision granted by the glob-
al policy base to the local policy is specified in the 
predicate gPktAcPolicy(car(post), Si, [P1, . . ., Pn],+). 
Therefore, we model a provision as a predicate ex-
ported by the grantor and imported by the grantee. 
The main characteristic of the provision is that the 
grantee doesn’t know its definition, but would know 
if it’s evaluated to be true or false.

The obligation used in the example is the predi-
cate updtGlobalStat(car(post), Si, [P1, . . ., Pn],+). 
Note that this is also a predicate that’s exported to 
the local policy base, which must instantiate the 
proper instances of variables that would make the 
predicate instance true. This obligation can be ful-
filled when the function call is made.

Policy Updates in Mobile Systems
Geographical location plays an important role in 
managing mobile activities (such as an attack). We 
include geographical locations in the predicates 
used to specify local and enterprise-wide policies. 
The firewall policy in the cloud will depend on where 
Si originates (location-specific attacks). Thus, the 
predicates for the local policy will include attacker’s 
location, and the predicates for the enterprise-wide 
policy will depend on a set of locations where a mo-
bile unit is permitted to roam. 

We illustrate mobile policy composition with a 
modified rule and example (Figure 1b).

In this example, rule 4 says that Si can be opened 
if it originated at location LOi (longitude), and if it 
has been permitted to do so, where permToOpen(Si) 
holds when the latter is true. Rule 5 says that the 
next packet of Si is admitted provided that Si isn’t 
blocked, local packet acceptance and the global ap-
proval policies allow it, and the corresponding local 
and global statistics are updated. Rule 6 defines the 
condition for Si being blocked—namely, that the lo-
cal variable Li (say, buffer capacity allocated to this 
stream) has been used up by the stream up to now.

In mobile attacks, the attack location can 
change frequently. As a result, firewall policies can 
change frequently, leading to increased update traf-
fic, which might not be able to handle such frequent 
updates and might not be able to keep the local and 
global policies in sync. Our scheme addresses this 
issue by keeping the policy warehouse at all base sta-
tions. Because a base station serves a specific loca-
tion, policy relevant to that location is loaded there. 
A mobile unit will cache the policy from the base 
station of the cell it’s visiting. A base station will 
broadcast policy changes as they occur, and all mo-
bile units in that cell will capture it and visitors to 
that cell will acquire it when they register.

Unsafe Locations
In our experience, more attacks (serious or less se-
rious) come from some locations than others. The 
predicates coded in the firewalls in our system in-
clude a location parameter to identify an attack’s 
origin. If it originates from an “unsafe” location, 
it’s blocked. We define three categories of unsafe 
locations.

A hard location is one from which numerous 
serious attacks originate with high frequency. Any 
of these attacks can severely affect the cloud’s per-
formance and integrity. The firewall must stop these 
attacks. If the firewall detects that an attack (for ex-
ample, a Trojan) is mounted from a serious location, 
it immediately eliminates this attack.

A soft location is one from which relatively few-
er serious attacks originate. These types of attacks 
don’t significantly affect the cloud’s performance 
and integrity, and the cloud system can continue to 
function while the firewall handles the attack. For 
example, a music sharing virus can scare people 
without harming the computer. The firewall might 
let it enter the cloud.

Finally, a clean location is one from which no 
attacks originate. The firewall might apply mini-
mal security checks to messages coming from these 
locations.

Unsafe Location Identification in Mobile 
Communication
When an attacker moves around in a location while 
attacking the cloud, it will have the same IP address 
at different points inside the location. For example, 
if an attacker moves from point li to point lj inside a 
location L, the IP address will not change, that is, 
points li and lj will have the same IP address even 
though their geographical address (point li to point 
lj) inside L will change. Thus, to hide their identity 
and avoid being caught in such movement, attackers 
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generally use a proxy. The tracert (trace route) com-
mand, which shows the path an IP packet travelled 
to reach a destination, isn’t helpful because it can’t 
go beyond the proxy.

In a mobile network, IP address allocation is 
dynamic, so it’s easy for an attacker to spoof an IP 
address and mount an attack through a proxy. To 
reach the attacker behind the proxy, our approach 
identifies a mobile phone’s location in a cellular 
network through its cell global identity (Figure 2).

At present, cell global identity information is not 
available in IP packets coming from a mobile device. 
Our scheme (Figure 2) extends the structure of an 
IP address and includes cell global identity infor-
mation in IP packets. This helps us to identify the 
location of the mobile unit mounting the attack, di-
rectly or through a proxy, and to program the fire-
wall accordingly to block the attack. For example, 
if the cell global identity in an IP packet is mobile 
country code (MCC) = 310 (indicates USA) and mo-
bile network code (MNC) = 410 (AT&T network), 
location area code (LAC) = 3450 and cell identity 
(CI) = 118541125 represents a cell in Kansas City, 
Missouri.

As a security measure, the system maintains lo-
cation area codes of unsafe locations and discards 
incoming packets from these unsafe locations with-
out even analyzing them. To determine if a location 
is safe or unsafe, the system records the number 
of attacks from each known location. If the num-
ber of attacks from a particular location reaches a 
threshold, it marks the location as unsafe. Figure 
3 illustrates our approach for determining unsafe 
locations. It’s an ongoing process of finding unsafe 
locations based on the number of attacks originating 
from a specific location. We maintain a database of 
unsafe locations.

The serving GPRS support node (SGSN) is the 
main component of the General Packet Radio Ser-
vice network. The SGSN can make this location 
information available in IP packets coming from 
mobile stations because it has access to the location 
information (CGI) of a mobile station in its area and 
is also responsible for delivering data packets to and 
from the mobile stations in its area. The IP pack-
et header, which contains an optional field, can be 
used to store the cell global identity.

Figure 4 shows the flow of IP packets in 
the  Global System for Mobile Communication 
(GSM) and Universal Mobile Telecommunications 
System (UMTS) architectures. We’ve included rele-
vant elements of GSM in our scheme for identifying 
unsafe locations. On the receiving end, the firewall 
extracts the CGI information from the enhanced 
IP packet and searches hard unsafe location (HUL) 
and mild unsafe location (MUL) lists and decides 
whether to reject or allow the packet.

Because our approach can identify the attacker’s 
location, it compromises the attacker’s privacy. Al-
though this is not an issue in the case of an attacker, 
our scheme should be able to protect the privacy 
(which could lead to a security breach) of a typical 
user if that user’s actions look like an attack. We’re 
investigating a solution to make sure that the loca-

CI: Cell identity 
LAC: Location area code
MCC: Mobile country code (3-digit)
MNC: Mobile network code (2 or 3 digit for GSM/UMTS 
 application)

MCC MNC CILAC

Location area identification

Cell global identification (CGI) 

FIGURE 2. Cell global identitification.

Discard
packet

Allow packet

Add LAC to MUL

Discard packet

Increment MUL
counter

Remove LAC
from MUL and

add LAC to HUL

Yes No

Start

HUL: Hard unsafe location list
MUL: Mild unsafe location a final list of unsafe
 locations
T: Attack threshold from a particular location

End

No Yes

No

No

Yes

Yes

Malicious?

Check the
packet

LAC in HUL?

MUL counter
> + T?

LAC in HUL?

FIGURE 3. Determining unsafe locations.
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tion isn’t accessible to anybody or only its encrypted 
version is accessible.

Unsafe Locations Identification in Wired 
Networks
Because our scheme for identifying unsafe locations 
in a cellular platform won’t work for stationary at-
tackers, we developed a different solution for these 
attackers. We use known landmarks (that is, trusted 
computers on the Internet whose geographic coor-
dinates are known a priori) to probe an attacker’s 
machine (at an unknown location) and measure the 
response delay to compute attacker coordinates. We 
repeat this process until we identify the location as 
accurately as possible.

The packet transfer delay is directly propor-
tional to the distance. Line congestion, queuing de-
lays, and so on can affect this relationship, but by 
consolidating several observations, we can identify 
the location with reasonable accuracy. We probe 
the destination from several landmarks to get a de-
lay vector, which we then use to get an overlap area 
as the destination. When we have many landmarks, 
we can triangulate the results to determine the at-
tack’s geoposition. In our approach, we first create 
a large dataset of real-world measurements by mea-
suring latency from each landmark to every other 
landmark. We used PlanetLab (www.planet-lab.org) 
and a carefully selected geographically diverse set 
of landmarks across the globe. We used triangula-
tion to implement our algorithm, which uses three 
out of 50 landmarks as the starting point. It iterates 
with three different landmarks until we obtain con-
sistent results. Our observation concurs with the 
other work.12

Our algorithm (see the sidebar) starts with a 
set of continental landmarks (CLMs) measuring 
the delay in reaching the attacker machine (AMX). 
We considered the landmark at the University of 
California, Berkeley, as the west CLM (CLM2) 
and the landmark at Michigan Technological Uni-

versity as the north CLM (CLM3). The algorithm 
first randomly selects three landmarks, each from 
a different CLM dataset (CLM1, CLM2, CLM3, or 
CLM4). In the next step, each LM-CLMi (where 1 
≤ i ≤ 3) individually measures the delay to AMX. 
Using the AvgLDelayi (distance to delay measure-
ments based on average lowest delay between any 
two landmarks), each LM-CLMi estimates the dis-
tance to AMX.

We create AvgLDelay for each LM-CLM, which 
provides the average ratio of distance to delay 
(DDR). After estimating the distance of AMX from 
the three LM-CLMs, our algorithm ascertains the 
geolocation (AMLA, AMLO) of AMX. In step 5, the 
algorithm considers the area (Zonal_Region) sur-
rounding (AMLA, AMLO), called the initial zone. 
After identifying the initial zone, it creates the 
AvgLowestNodetoZoneDelay (dataset of distance-
to-delay measurements based on the average lowest 
delay between a particular node to the zone with 
AM as the given latitude and longitude) for each se-
lected LM-CLMi on the fly. In the next step, each 
LM-CLMi individually measures the delay to AMX. 
Using AvgLowestNodetoZoneDelayi, each LM-CLMi 
estimates the distance to AMX. After estimating the 
distance of AMX from the three LM-CLMs, the al-
gorithm ascertains the new geolocation (AMLA1, 
AMLO1) of AMX. In step 8, it finds the set of zonal 
landmarks (ZLMs) in the zonal region (initial value 
±4º) around (AMLA1, AMLO1), which we call the fi-
nal zone.

It’s important to find landmarks that are diverse 
with respect to each other as well as to (AMLA1, 
AMLO1). Once the final zone is identified, the algo-
rithm creates AvgLowestZonalDelay on the fly by 
considering the prerecorded minimum delays from 
each LM-ZLMi to LM-ZLMj (∀i, j: i ≠ j, 1 ≤ i ≤ n, 1 
≤ j ≤ n, each LM-ZLM ∈ Final_Zone where n is the 
total number of landmarks in the final zone). This 
dataset provides the final zone’s DDR. In the next 
step, each LM-ZLMi measures the delay to AMX. 

RNC

SGSN GGSN

Global identity

IP pocket

Internet

IP packet + CGI

BSC

Firewall

Receiving end

Cloud

HUL

MULIP packet + CGI =

BSC: Base station controller
GGSN: Gateway GPRS support node
RSN: Radio network controller
SGSN: Serving GPRS support node

FIGURE 4. Partial network architecture: GSM + GPRS + UMTS.
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ALGORITHM STEPS
Here, we describe the steps in our algorithm. We 
consider two cases: the general case, in which 
more than three landmarks are required to ascer-
tain the geolocation; and the best case, in which 
only three landmarks are required to ascertain the 
geolocation. 

Total number of landmarks (LMs) = N

1.	 Select any three LMs (LM-CLM1, LM-CLM2, LM-
CLM3) from the CLM sets (Figure A).

2.	 Calculate AverageLDelay at each LM-CLMi to at-
tacker machine AMX.

3.	 Estimate distance (CLM-Disti) from each LM-CLMi 
to AMX based on AvgLDelay.

4.	 Ascertain the location of AMX using trilateration as 
(AMLA, AMLO). 

We used the great circle and aviation formulas1 to 
perform our calculations. We know the length of the 
sides of triangle ABC (Figure A1), which is the distance 
between the known landmarks. Using the lengths 
(AB, BC, CD), angles, and the estimated lengths of 
AD, BD and CD, we apply the triangulation to get the 
coordinate of point D (AMLA, AMLO).

5.	 Find all LMs in ±4º (Zonal_Region) of (AMLA, 
AMLO). We refer to this as the Initial_Zone.

We refer to “find all the LMs in ±4º (Zonal_Region) 
of (AMLA, AMLO)” as Initial_Zone. Because we know the 
geolocations of all landmarks, our algorithm finds the 
landmarks in the Initial_Zone (Figure A2).

6.	 Create AvgLowestNodeToZoneDelay.
7.	 Estimate distance (CLM-Disti) again from each LM-

CLMi to AMX based on AvgLowestNodeToZoneDelay.
8.	 Ascertain AMX location using triangulation as 

(AMLA1, AMLO1).

The algorithm calculates the new geolocation of 
AMX based on current zonal DDR (Figure A3). D1 is the 
new geolocation of AM (AMLA1, AMLO1).

9.	 Find all LMs in the Zonal_Region of (AMLA1, AMLO1). 
Call this Final_Zone if Total_LMs in Zonal_Region 

< 3. Then exit with result as (AMLA1, AMLO1).
10.	 Select any three LMs (LM-ZLM1, LM-ZLM2, LM-

ZLM3) from Final_Zone based on the top values 
of Diversej = ABS (LM-ZLMj

LA – AMLA1, LM-ZLMj
LO 

– AMLO1) and ABS(LM-ZLMj
LA – LM-ZLMi

LA, LM-
ZLMj

LO – LM-ZLMi
LO).

Figure A4 shows the zonal landmarks (ZLMs) of the 
Final_Zone. These are the LMs in the Zonal_Region of 
(AMLA1, AMLO1). Because we only need three LMs in 
each iteration, our algorithm computes the diversity 
parameter for all the LMs in the zone and, based on 
this parameter, selects the three LMs with the highest 
values (Figure A5).

11.	 Create AvgLowestZonalDelay.
12.	 Calculate AverageOfLowest delay at each LM- 

ZLMi to AMX and estimate distance from 
each LM-ZLMi to AMX based on Dataset 
_AvgLowestZonalDelay.

13.	 Ascertain AMX location using triangulation as 
(AMLA2, AMLO2) (Figure A6).

After step 13, there are two locations of AMX as 
(AMLA1, AMLO1) and (AMLA2, AMLO2).

14.	 Set Zonal_Region = Zonal_Region – Closing 
_Factor.

15.	 Compare (AMLA1, AMLO1) and (AMLA2, AMLO2). 
If the result = satisfactory or Zonal_Region = 0º, 
then exit with result as (AMLA2, AMLO2).

If the result is satisfactory in the first iteration, 
the algorithm terminates. Thus, steps 9 through 15 
validate the results. This is the best case because 
only three LMs can identify the AMX location ac-
curately in just one iteration. Because the result 
is unsatisfactory, the algorithm iterates steps 9 
through 16, as follows:

16.	 Goto step 9 with (AMLA1, AMLO1) = (AMLA2, AMLO2). 

Reference

17.	 E. Williams, Aviation Formulary V1.46, http://wil-

liams.best.vwh.net/avform.htm.
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FIGURE A. Landmark selection and attacker location estimation: (1) calculate lengths of the sides of triangle ABC; (2) find the 

landmarks in the Initial_Zone; (3) calculate the new positions of the attacker machine AMX; (4) determine zonal landmarks 

(ZLMs) of the Final_Zone; (5) select the three landmarks (LMs) with the highest values; and (6) ascertain the attacker 

machine location using triangulation.
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By using AvgLowestZonalDelayi each LM-ZLMi es-
timates the distance to AMX. After estimating the 
distance of AMX from the three LM-ZLMs, the al-
gorithm ascertains the new geolocation (AMLA2, 
AMLO2) of AMX. It then compares the two geoloca-
tions (AMLA2, AMLO2) and (AMLA1, AMLO1) for er-
ror distance.

If the error distance is less than 10 miles, we 
consider the result satisfactory, and the algorithm 
terminates with (AMLA2, AMLO2) as the final geo-
location of AMX. It can also terminate when the 
zonal region reaches zero or the total number of 
landmarks in the Zonal_Region is less than 3. In 
other cases, the algorithm continues to iterate until 
it reaches the desired location accuracy.

ur current work will provide us with a plat-
form for dealing with the security of global 

cloud structure (linking all customers who rent 
cloud services). At present, banks are reluctant 
to use cloud services because they don’t know the 
whereabouts of datacenters. Our system will identify 
a datacenter’s geographical location and dynamical-
ly manage the firewall protecting it. This approach 
will largely relieve cloud service providers from the 
responsibility of securing their datacenters.
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