
Location-Based
Security Framework
for Cloud Perimeters

Chetan Jaiswal, Mahesh Nath, and Vijay Kumar,
University of Missouri, Kansas City

any enterprise and government organiza-
tions use a variety of mobile gadgets to
connect to the cloud to manage their data
processing requirements. Although this
platform improves availability and perfor-
mance, it also increases security risk, as

it can allow unwanted malicious network traffic into the organization.
Firewall filtering is often inadequate for stopping these attacks. The
problem becomes more complex when multiple firewalls are deployed
because coordination among them becomes extremely difficult if not
impossible.

Current firewalls use static filtering policies. Although simple, a
static policy has many disadvantages. First, because border routers
enforce a static policy, they can’t react to changes in the external en-
vironment. Second, because of physical limitations and differences
in trust relationships between an enterprise and its immediate neigh-
bors, some firewalls might require preferential treatment over others
in admitting different kinds of traffic streams. Therefore, providing
perimeter protection policies that react to dynamic changes and re-
spect organizational objectives such as preferential treatment while
enforcing organizations’ overall security objectives requires dynam-
ic and flexible policies at each border gateway that are also part of
a global policy such that they enforce common security objectives in
mobile clouds.

A new approach to

compose firewall

policies to protect

mobile and static

cloud perimeters

uses location to

filter out attacks

from unsafe

locations.

SE
C

U
R

E
 B

IG
 D

A
TA

 I
N

 T
H

E
 C

LO
U

D

56	 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y � 2 3 2 5 - 6 0 9 5/ 14 /$ 31 . 0 0 © 2 0 14 I EEE

SEPTEMBER 2014 IEEE CLOUD COMPUTING 57

The protection issue becomes more complex

when we consider attacks from mobile sources.

Unlike threats from stationary attackers, mobile

attackers disappear from the attack location and

resurface elsewhere. We introduce location-attack

protection, in which the irewall can block messages

from high cybercrime locations (country, state, and

so on) completely. To enable this protection, we use

constrained logic programming by appropriately al-

tering the lexible authorization framework (FAF)1

and its extensions, and strand spaces and multiset

rewriting strategies for protocol analysis.2–4 These

two formalisms control multiple streams of data ex-

changed between two participants, which is relevant

to our framework because it requires ine-grained

and protocol-speciic perimeter protection policies.

They can also easily incorporate new spatial and

temporal parameters that are unique and crucial

to mobile clouds. Our scheme supports consistency

and completeness of local policies: they’re important

because an individual gateway or irewall on the pe-

rimeter needs to know whether to allow or deny a

stream’s progress. The scheme makes sure that the

composition of local policies is logically correct to ob-

tain an enterprise-wide perimeter protection policy.

In addition, our scheme makes sure that the effect

of the propagation of change in policies to others

is correct. If the global policy changes, then all lo-

cal polices have to accommodate that change. Con-

versely, if a local policy changes, the related global

policy may change, which in turn may trigger chang-

es in other dependent local policies.

A mobile unit frequently changes location,

which can introduce inconsistency at a policy lev-

el. For example, a mobile user might be subject to

a different set of constraints in Kansas City, Kan-

sas, than in Kansas City, Missouri, which will affect

the data access pattern. Firewall iltering schemes

must handle such policy changes, due to mobility

and other necessary revisions in the policy in real

time to eliminate false denial. This becomes tricky

because a mobile unit becomes unreachable when

it’s switched off or slips into doze mode:5 updates

or changes can only be installed when the unit be-

comes active. To address this problem, we use a

twofold optimization strategy. In the irst phase, we

apply fold/unfold6 transformations to optimize policy

rules. In the second phase, we partially materialize

static parts of individual polices, excluding dynamic

variables that share information between local and

global policies. We then translate such optimized

policies to rule sets used by today’s irewalls.7

Mobile Cloud
Mobile clouds support personal and terminal mo-

bility.5 A mobile unit can mount attacks from any

location at any time. Attack packets pass through

several gateways before reaching the cloud. Each

gateway has its own dynamic irewall, and the cloud

is protected by its own irewall. Whenever a irewall

policy change is incorporated on any of the irewalls,

the change is propagated to all other irewalls for

updating.

Firewalls are typically conigured using a rule

base specifying which inbound or outbound packets

(or sessions) are to be allowed or blocked. A Cisco

rule set7 is as follows: pass tcp 20.9.17.8 0.0.0.0

121.11.127.20 0.0.0.0 range 23 27, which says that

TCP packets from IP address 20.9.17.8 to IP address

121.11.127.20 are to be accepted if the destination

port range is from 23 to 27. The 0.0.0.0 segments

mean that address masking isn’t used. Generally,

such rules are listed in some order in access lists.7

When a irewall receives a packet, it goes through

the list and matches the irst rule that applies to the

packet and follows the speciied action. Firewalls

use a closed policy that drops packets not explicitly

permitted by any rule. This procedure leads to sev-

eral problems:

• Because the rules are written at the lower pro-

tocol level, a misconiguration can make the

whole intranet unreachable.

• The rule base might have many redundant rules.

• The semantics depend not only on the rules, but

also on the order in which they’re listed, an un-

desirable feature.

Earlier research on this issue provided solutions

with limited success. For example, Yair Bartal and

his colleagues proposed Firmato, a irewall manage-

ment toolkit.8 Although it models the irewall secu-

rity policy and network topologies, it doesn’t permit

ine-grained admission control of streams, doesn’t

cover intranets with multiple external gateways that

enforce different policies, and can’t be used to obtain

58	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SE
C

U
R

E
 B

IG
 D

A
TA

 I
N

 T
H

E
 C

LO
U

D

the global health of the traffic streams entering the
Internet. Alain Mayer and his colleagues9 present
Fang, a firewall analysis engine that has the same
deficiencies as Firmto.8 Our scheme resolves these
deficiencies. A cryptography-based scheme relies
on decentralized trust management.10 Our solution
distributes network perimeter protection without re-
linquishing centralized control and thereby circum-
vents the performance bottlenecks of a centralized
perimeter protection policy.

Unlike wired systems, a mobile node can issue a
request from any location, connect to many service
providers that might have different security require-
ments, slip into doze mode, power off, or fail. Mobile
nodes are also vulnerable to attacks. A mobile cli-
ent’s valid request from one location can be denied
at another location. Several good schemes have been
proposed for protecting mobile systems through
firewalls11; however, they provide engineering solu-
tions to firewall protection and appear highly system
dependent.

We conclude the following: we need real-time
synchronization of firewalls and subsequent up-
dates; a multilayer verification is the way to go; and
the system must implement geographical location-
based verification. Our logic-based framework meets
these requirements.

Flexible Perimeter Protection Framework
Because a common framework can protect mobile
and wired traffic, we built a unified flexible frame-
work to monitor and dynamically adjust the enter-
ing datastreams. FPPF is based on having rules built
with predicates to express policies for accepting

packets in an ongoing stream. We wrote the FPPF
filter or protection rules in the Flexible Parameter
Protection Specification Language (FPPL). We brief-
ly introduce salient features of this language here;
details can be found elsewhere.1

Example Policies Written in FPPL
FPPL, similar to other logical languages, consists of
constant symbols, variables, function symbols, and
terms. It uses a set of predicates to define packet ac-
ceptance and rejection rules for local and enterprise-
wide policies.

For example, the rules in Figure 1a define a local
policy. Rule 1 says that stream Si can be opened if it
has been permitted to do so, where permToOpen(Si)
holds when the latter is true. Rule 2 says that the
next packet of Si is admitted as long as Si isn’t
blocked, the local packet acceptance and the global
approval policies allow it, and the corresponding lo-
cal and global statistics are updated. Rule 3 defines
the condition for Si being blocked—namely, that
the local variable Li (say buffer capacity allocated
to this stream) has been used up by the stream up
to now.

The local policy needs to know that the predi-
cate gPktAcPolicy(car(post), Si, [P1, . . ., Pn],+) (a
part of enterprise-wide policy) is true for the next
packet to be admitted according to the agreement it
has with the enterprise-wide security policy. Con-
versely, it’s obligated to update the global statistics
updtGlobalStat(car(post), Si, [P1, . . ., Pn],+) that are a
part of the enterprise-wide security policy. Note that
other variables appearing in these two predicates,
namely [P1, . . ., Pn], are unknown to the local policy,

Rule 1:	 procNxtPkt([], post, Si,+)	 ←	 permToOpen(Si)
Rule 2:	 procNxtPkt(pre*car(post), post, Si,+)	 ←	 blocked(Si)
		 PROVISION(self):			 updtLocalStat(car(post), Si ,Li),
						 localPktAcpPolicy(car(post), pre, Si,+),
		 PROVISION(global):			 gPktAcPolicy(car(post), Si, [P1, . . ., Pn],+)
		 OBLIGATION(global):			 updtGlobalStat(car(post), Si, [P1, . . ., Pn],+)
Rule 3:	 blocked(x)		 ←	 Li = maxL i

(a)

Rule 4:	 procNxtPkt([], post, Si,+, LOi)	 ←	 permToOpen(Si, LOi)
Rule 5:	 procNxtPkt(pre*car(post), post, Si,+)	 ←	 blocked(Si, LOi)
		 PROVISION(self):			 updtLocalStat(car(post), Si, Li),
						 localPktAcpPolicy(car(post), pre, Si,+, LOi),
		 PROVISION(global):			 gPktAcPolicy(car(post), Si, [P1, . . ., Pn],+, LOi)
		 OBLIGATION(global):			 updtGlobalStat(car(post), Si, [P1, . . ., Pn],+,LOi)
Rule 6:	 blocked(x)		 ←	 Li = maxLi

(b)

FIGURE 1. Packet acceptance and rejection rules written in Flexible Parameter Protection Specification

Language (FPPL) for: (a) local and enterprise-wide policies, and (b) mobile policies.

S EP T E M B ER 2 0 14 	 I EEE CLO U D CO M P U T I N G� 59

so they can’t be used in the rule as a normal predi-
cate. The enterprise-wide policies are composed
accordingly.

Enhancing Provisions, Obligations, and
Delegations
Provisions and obligations play a key role in the FPPF
architecture. As the previous example demonstrates,
local policies depend on having provisions approved
by the global policy base, and, in turn, local policies
are obliged to update their local statistics with the
global policy base. This two-way exchange of data al-
lows the global policy to respond to perimeter-wide
changes in an accurate and timely manner.

In our case, the provision granted by the glob-
al policy base to the local policy is specified in the
predicate gPktAcPolicy(car(post), Si, [P1, . . ., Pn],+).
Therefore, we model a provision as a predicate ex-
ported by the grantor and imported by the grantee.
The main characteristic of the provision is that the
grantee doesn’t know its definition, but would know
if it’s evaluated to be true or false.

The obligation used in the example is the predi-
cate updtGlobalStat(car(post), Si, [P1, . . ., Pn],+).
Note that this is also a predicate that’s exported to
the local policy base, which must instantiate the
proper instances of variables that would make the
predicate instance true. This obligation can be ful-
filled when the function call is made.

Policy Updates in Mobile Systems
Geographical location plays an important role in
managing mobile activities (such as an attack). We
include geographical locations in the predicates
used to specify local and enterprise-wide policies.
The firewall policy in the cloud will depend on where
Si originates (location-specific attacks). Thus, the
predicates for the local policy will include attacker’s
location, and the predicates for the enterprise-wide
policy will depend on a set of locations where a mo-
bile unit is permitted to roam.

We illustrate mobile policy composition with a
modified rule and example (Figure 1b).

In this example, rule 4 says that Si can be opened
if it originated at location LOi (longitude), and if it
has been permitted to do so, where permToOpen(Si)
holds when the latter is true. Rule 5 says that the
next packet of Si is admitted provided that Si isn’t
blocked, local packet acceptance and the global ap-
proval policies allow it, and the corresponding local
and global statistics are updated. Rule 6 defines the
condition for Si being blocked—namely, that the lo-
cal variable Li (say, buffer capacity allocated to this
stream) has been used up by the stream up to now.

In mobile attacks, the attack location can
change frequently. As a result, firewall policies can
change frequently, leading to increased update traf-
fic, which might not be able to handle such frequent
updates and might not be able to keep the local and
global policies in sync. Our scheme addresses this
issue by keeping the policy warehouse at all base sta-
tions. Because a base station serves a specific loca-
tion, policy relevant to that location is loaded there.
A mobile unit will cache the policy from the base
station of the cell it’s visiting. A base station will
broadcast policy changes as they occur, and all mo-
bile units in that cell will capture it and visitors to
that cell will acquire it when they register.

Unsafe Locations
In our experience, more attacks (serious or less se-
rious) come from some locations than others. The
predicates coded in the firewalls in our system in-
clude a location parameter to identify an attack’s
origin. If it originates from an “unsafe” location,
it’s blocked. We define three categories of unsafe
locations.

A hard location is one from which numerous
serious attacks originate with high frequency. Any
of these attacks can severely affect the cloud’s per-
formance and integrity. The firewall must stop these
attacks. If the firewall detects that an attack (for ex-
ample, a Trojan) is mounted from a serious location,
it immediately eliminates this attack.

A soft location is one from which relatively few-
er serious attacks originate. These types of attacks
don’t significantly affect the cloud’s performance
and integrity, and the cloud system can continue to
function while the firewall handles the attack. For
example, a music sharing virus can scare people
without harming the computer. The firewall might
let it enter the cloud.

Finally, a clean location is one from which no
attacks originate. The firewall might apply mini-
mal security checks to messages coming from these
locations.

Unsafe Location Identification in Mobile
Communication
When an attacker moves around in a location while
attacking the cloud, it will have the same IP address
at different points inside the location. For example,
if an attacker moves from point li to point lj inside a
location L, the IP address will not change, that is,
points li and lj will have the same IP address even
though their geographical address (point li to point
lj) inside L will change. Thus, to hide their identity
and avoid being caught in such movement, attackers

60	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SE
C

U
R

E
 B

IG
 D

A
TA

 I
N

 T
H

E
 C

LO
U

D

generally use a proxy. The tracert (trace route) com-
mand, which shows the path an IP packet travelled
to reach a destination, isn’t helpful because it can’t
go beyond the proxy.

In a mobile network, IP address allocation is
dynamic, so it’s easy for an attacker to spoof an IP
address and mount an attack through a proxy. To
reach the attacker behind the proxy, our approach
identifies a mobile phone’s location in a cellular
network through its cell global identity (Figure 2).

At present, cell global identity information is not
available in IP packets coming from a mobile device.
Our scheme (Figure 2) extends the structure of an
IP address and includes cell global identity infor-
mation in IP packets. This helps us to identify the
location of the mobile unit mounting the attack, di-
rectly or through a proxy, and to program the fire-
wall accordingly to block the attack. For example,
if the cell global identity in an IP packet is mobile
country code (MCC) = 310 (indicates USA) and mo-
bile network code (MNC) = 410 (AT&T network),
location area code (LAC) = 3450 and cell identity
(CI) = 118541125 represents a cell in Kansas City,
Missouri.

As a security measure, the system maintains lo-
cation area codes of unsafe locations and discards
incoming packets from these unsafe locations with-
out even analyzing them. To determine if a location
is safe or unsafe, the system records the number
of attacks from each known location. If the num-
ber of attacks from a particular location reaches a
threshold, it marks the location as unsafe. Figure
3 illustrates our approach for determining unsafe
locations. It’s an ongoing process of finding unsafe
locations based on the number of attacks originating
from a specific location. We maintain a database of
unsafe locations.

The serving GPRS support node (SGSN) is the
main component of the General Packet Radio Ser-
vice network. The SGSN can make this location
information available in IP packets coming from
mobile stations because it has access to the location
information (CGI) of a mobile station in its area and
is also responsible for delivering data packets to and
from the mobile stations in its area. The IP pack-
et header, which contains an optional field, can be
used to store the cell global identity.

Figure 4 shows the flow of IP packets in
the Global System for Mobile Communication
(GSM) and Universal Mobile Telecommunications
System (UMTS) architectures. We’ve included rele-
vant elements of GSM in our scheme for identifying
unsafe locations. On the receiving end, the firewall
extracts the CGI information from the enhanced
IP packet and searches hard unsafe location (HUL)
and mild unsafe location (MUL) lists and decides
whether to reject or allow the packet.

Because our approach can identify the attacker’s
location, it compromises the attacker’s privacy. Al-
though this is not an issue in the case of an attacker,
our scheme should be able to protect the privacy
(which could lead to a security breach) of a typical
user if that user’s actions look like an attack. We’re
investigating a solution to make sure that the loca-

CI: Cell identity
LAC: Location area code
MCC: Mobile country code (3-digit)
MNC: Mobile network code (2 or 3 digit for GSM/UMTS
 application)

MCC MNC CILAC

Location area identification

Cell global identification (CGI)

FIGURE 2. Cell global identitification.

Discard
packet

Allow packet

Add LAC to MUL

Discard packet

Increment MUL
counter

Remove LAC
from MUL and

add LAC to HUL

Yes No

Start

HUL: Hard unsafe location list
MUL: Mild unsafe location a final list of unsafe
 locations
T: Attack threshold from a particular location

End

No Yes

No

No

Yes

Yes

Malicious?

Check the
packet

LAC in HUL?

MUL counter
> + T?

LAC in HUL?

FIGURE 3. Determining unsafe locations.

S EP T E M B ER 2 0 14 	 I EEE CLO U D CO M P U T I N G� 61

tion isn’t accessible to anybody or only its encrypted
version is accessible.

Unsafe Locations Identification in Wired
Networks
Because our scheme for identifying unsafe locations
in a cellular platform won’t work for stationary at-
tackers, we developed a different solution for these
attackers. We use known landmarks (that is, trusted
computers on the Internet whose geographic coor-
dinates are known a priori) to probe an attacker’s
machine (at an unknown location) and measure the
response delay to compute attacker coordinates. We
repeat this process until we identify the location as
accurately as possible.

The packet transfer delay is directly propor-
tional to the distance. Line congestion, queuing de-
lays, and so on can affect this relationship, but by
consolidating several observations, we can identify
the location with reasonable accuracy. We probe
the destination from several landmarks to get a de-
lay vector, which we then use to get an overlap area
as the destination. When we have many landmarks,
we can triangulate the results to determine the at-
tack’s geoposition. In our approach, we first create
a large dataset of real-world measurements by mea-
suring latency from each landmark to every other
landmark. We used PlanetLab (www.planet-lab.org)
and a carefully selected geographically diverse set
of landmarks across the globe. We used triangula-
tion to implement our algorithm, which uses three
out of 50 landmarks as the starting point. It iterates
with three different landmarks until we obtain con-
sistent results. Our observation concurs with the
other work.12

Our algorithm (see the sidebar) starts with a
set of continental landmarks (CLMs) measuring
the delay in reaching the attacker machine (AMX).
We considered the landmark at the University of
California, Berkeley, as the west CLM (CLM2)
and the landmark at Michigan Technological Uni-

versity as the north CLM (CLM3). The algorithm
first randomly selects three landmarks, each from
a different CLM dataset (CLM1, CLM2, CLM3, or
CLM4). In the next step, each LM-CLMi (where 1
≤ i ≤ 3) individually measures the delay to AMX.
Using the AvgLDelayi (distance to delay measure-
ments based on average lowest delay between any
two landmarks), each LM-CLMi estimates the dis-
tance to AMX.

We create AvgLDelay for each LM-CLM, which
provides the average ratio of distance to delay
(DDR). After estimating the distance of AMX from
the three LM-CLMs, our algorithm ascertains the
geolocation (AMLA, AMLO) of AMX. In step 5, the
algorithm considers the area (Zonal_Region) sur-
rounding (AMLA, AMLO), called the initial zone.
After identifying the initial zone, it creates the
AvgLowestNodetoZoneDelay (dataset of distance-
to-delay measurements based on the average lowest
delay between a particular node to the zone with
AM as the given latitude and longitude) for each se-
lected LM-CLMi on the fly. In the next step, each
LM-CLMi individually measures the delay to AMX.
Using AvgLowestNodetoZoneDelayi, each LM-CLMi
estimates the distance to AMX. After estimating the
distance of AMX from the three LM-CLMs, the al-
gorithm ascertains the new geolocation (AMLA1,
AMLO1) of AMX. In step 8, it finds the set of zonal
landmarks (ZLMs) in the zonal region (initial value
±4º) around (AMLA1, AMLO1), which we call the fi-
nal zone.

It’s important to find landmarks that are diverse
with respect to each other as well as to (AMLA1,
AMLO1). Once the final zone is identified, the algo-
rithm creates AvgLowestZonalDelay on the fly by
considering the prerecorded minimum delays from
each LM-ZLMi to LM-ZLMj (∀i, j: i ≠ j, 1 ≤ i ≤ n, 1
≤ j ≤ n, each LM-ZLM ∈ Final_Zone where n is the
total number of landmarks in the final zone). This
dataset provides the final zone’s DDR. In the next
step, each LM-ZLMi measures the delay to AMX.

RNC

SGSN GGSN

Global identity

IP pocket

Internet

IP packet + CGI

BSC

Firewall

Receiving end

Cloud

HUL

MULIP packet + CGI =

BSC: Base station controller
GGSN: Gateway GPRS support node
RSN: Radio network controller
SGSN: Serving GPRS support node

FIGURE 4. Partial network architecture: GSM + GPRS + UMTS.

62	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SE
C

U
R

E
 B

IG
 D

A
TA

 I
N

 T
H

E
 C

LO
U

D

ALGORITHM STEPS
Here, we describe the steps in our algorithm. We
consider two cases: the general case, in which
more than three landmarks are required to ascer-
tain the geolocation; and the best case, in which
only three landmarks are required to ascertain the
geolocation.

Total number of landmarks (LMs) = N

1.	 Select any three LMs (LM-CLM1, LM-CLM2, LM-
CLM3) from the CLM sets (Figure A).

2.	 Calculate AverageLDelay at each LM-CLMi to at-
tacker machine AMX.

3.	 Estimate distance (CLM-Disti) from each LM-CLMi
to AMX based on AvgLDelay.

4.	 Ascertain the location of AMX using trilateration as
(AMLA, AMLO).

We used the great circle and aviation formulas1 to
perform our calculations. We know the length of the
sides of triangle ABC (Figure A1), which is the distance
between the known landmarks. Using the lengths
(AB, BC, CD), angles, and the estimated lengths of
AD, BD and CD, we apply the triangulation to get the
coordinate of point D (AMLA, AMLO).

5.	 Find all LMs in ±4º (Zonal_Region) of (AMLA,
AMLO). We refer to this as the Initial_Zone.

We refer to “find all the LMs in ±4º (Zonal_Region)
of (AMLA, AMLO)” as Initial_Zone. Because we know the
geolocations of all landmarks, our algorithm finds the
landmarks in the Initial_Zone (Figure A2).

6.	 Create AvgLowestNodeToZoneDelay.
7.	 Estimate distance (CLM-Disti) again from each LM-

CLMi to AMX based on AvgLowestNodeToZoneDelay.
8.	 Ascertain AMX location using triangulation as

(AMLA1, AMLO1).

The algorithm calculates the new geolocation of
AMX based on current zonal DDR (Figure A3). D1 is the
new geolocation of AM (AMLA1, AMLO1).

9.	 Find all LMs in the Zonal_Region of (AMLA1, AMLO1).
Call this Final_Zone if Total_LMs in Zonal_Region

< 3. Then exit with result as (AMLA1, AMLO1).
10.	 Select any three LMs (LM-ZLM1, LM-ZLM2, LM-

ZLM3) from Final_Zone based on the top values
of Diversej = ABS (LM-ZLMj

LA – AMLA1, LM-ZLMj
LO

– AMLO1) and ABS(LM-ZLMj
LA – LM-ZLMi

LA, LM-
ZLMj

LO – LM-ZLMi
LO).

Figure A4 shows the zonal landmarks (ZLMs) of the
Final_Zone. These are the LMs in the Zonal_Region of
(AMLA1, AMLO1). Because we only need three LMs in
each iteration, our algorithm computes the diversity
parameter for all the LMs in the zone and, based on
this parameter, selects the three LMs with the highest
values (Figure A5).

11.	 Create AvgLowestZonalDelay.
12.	 Calculate AverageOfLowest delay at each LM-

ZLMi to AMX and estimate distance from
each LM-ZLMi to AMX based on Dataset
_AvgLowestZonalDelay.

13.	 Ascertain AMX location using triangulation as
(AMLA2, AMLO2) (Figure A6).

After step 13, there are two locations of AMX as
(AMLA1, AMLO1) and (AMLA2, AMLO2).

14.	 Set Zonal_Region = Zonal_Region – Closing
_Factor.

15.	 Compare (AMLA1, AMLO1) and (AMLA2, AMLO2).
If the result = satisfactory or Zonal_Region = 0º,
then exit with result as (AMLA2, AMLO2).

If the result is satisfactory in the first iteration,
the algorithm terminates. Thus, steps 9 through 15
validate the results. This is the best case because
only three LMs can identify the AMX location ac-
curately in just one iteration. Because the result
is unsatisfactory, the algorithm iterates steps 9
through 16, as follows:

16.	 Goto step 9 with (AMLA1, AMLO1) = (AMLA2, AMLO2).

Reference

17.	 E. Williams, Aviation Formulary V1.46, http://wil-

liams.best.vwh.net/avform.htm.

S EP T E M B ER 2 0 14 	 I EEE CLO U D CO M P U T I N G� 63

Estimated location
of attacker, D

D

B

B

(1) (2)

(3) (4)

(5) (6)

C

A

A

C

Estimated location
of AM, D

Select ZLM

AM
LAT1

, AM
LON1

ZLM

AM
LAT1

, AM
LON1

ZLM

AM
LAT

, AM
LON

Select ZLM

AM
LAT2

, AM
LON2

D1

C

D2
B

A

FIGURE A. Landmark selection and attacker location estimation: (1) calculate lengths of the sides of triangle ABC; (2) find the

landmarks in the Initial_Zone; (3) calculate the new positions of the attacker machine AMX; (4) determine zonal landmarks

(ZLMs) of the Final_Zone; (5) select the three landmarks (LMs) with the highest values; and (6) ascertain the attacker

machine location using triangulation.

64	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SE
C

U
R

E
 B

IG
 D

A
TA

 I
N

 T
H

E
 C

LO
U

D

By using AvgLowestZonalDelayi each LM-ZLMi es-
timates the distance to AMX. After estimating the
distance of AMX from the three LM-ZLMs, the al-
gorithm ascertains the new geolocation (AMLA2,
AMLO2) of AMX. It then compares the two geoloca-
tions (AMLA2, AMLO2) and (AMLA1, AMLO1) for er-
ror distance.

If the error distance is less than 10 miles, we
consider the result satisfactory, and the algorithm
terminates with (AMLA2, AMLO2) as the final geo-
location of AMX. It can also terminate when the
zonal region reaches zero or the total number of
landmarks in the Zonal_Region is less than 3. In
other cases, the algorithm continues to iterate until
it reaches the desired location accuracy.

ur current work will provide us with a plat-
form for dealing with the security of global

cloud structure (linking all customers who rent
cloud services). At present, banks are reluctant
to use cloud services because they don’t know the
whereabouts of datacenters. Our system will identify
a datacenter’s geographical location and dynamical-
ly manage the firewall protecting it. This approach
will largely relieve cloud service providers from the
responsibility of securing their datacenters.

Acknowledgments
We thank Sushil Jajodia for his highly useful sug-
gestions, which helped us improve the algorithm for
firewall composition. US National Science Founda-
tion grant CNS-1347958 supported this research.

References
1.	S. Jajodia et al., “Flexible Support for Multiple Ac-

cess Control Policies,” ACM Trans. Database Sys-
tems (TODS), vol. 26, no. 2, 2001, pp. 214–260.

2.	 I. Cervesato et al., “Relating Strands and Mul-
tiset Rewriting for Security Protocol Analy-
sis,” Proc. 13th Computer Security Foundations
Workshop (PCSFW 00), 2000, pp. 35–51.

3.	F.J. Fabrega, J.C. Herzog, and J. Guttman,
“Strand Spaces: Why Is a Security Protocol Cor-
rect?” Proc. IEEE Symp. Security and Privacy,
1998, pp. 160–171.

4.	 J. Loeckx and K. Sieber, The Foundations of Pro-
gram Verification, John Wiley & Sons, 1987.

5.	V. Kumar, Mobile Database Systems, John Wiley
& Sons, 2006.

6.	H. Seki, “Unfold/Fold Transformation of Strati-
fied Programs,” Theoretical Computer Science,
vol. 86, no. 1, 1991, pp. 107–139.

7.	Cisco ISO Lock and Key Security, white paper,
Cisco Systems, 1996.

8.	Y. Bartal et al., “Firmato: A Novel Firewall Man-
agement Toolkit,” Proc. IEEE Symp. Security and
Privacy, 1999, pp. 17–31.

9.	A. Mayer, A. Wool, and E. Ziskind, “Fang: A
Firewall Analysis Engine,” Proc. IEEE Symp. Se-
curity and Privacy, 2000, pp. 177–187.

10.	S. Ioannidis et al., “Implementing a Distrib-
uted Firewall,” Proc. ACM Conf. Computer and
Comm. Security, 2000, pp. 190–199.

11.	E. Goren and O. Duskin, “Mobile Firewall,” in-
ternal report, Check Point Software Technolo-
gies, Hebrew Univ.

12.	M. Gondree and Z.N.J. Peterson. “Geolocation
of Data in the Cloud,” Proc. 3rd ACM Conf. Data
and Application Security and Privacy, 2013.

CHETAN JAISWAL is a PhD scholar at the Univer-
sity of Missouri, Kansas City. His research interests
include cloud computing; mobile, wireless sensor
networks, and cloud security; and cloud-based data-
base transaction systems. He is also passionate about
programming, learning new concepts, and teaching.
Contact him at chetanjaiswal@mail.umkc.edu.

MAHESH NATH is a PhD scholar at the University
of Missouri, Kansas City. His research interest include
network and information security and privacy, with
an emphasis in next-generation firewall frameworks.
Contact him at mnmg2d@mail.umkc.edu.

VIJAY KUMAR is the Curator’s Professor in the
computer science department at the University of
Missouri, Kansas City. His research interests include
information security, wireless and mobile computing,
and database systems, with particular emphasis in cy-
bersecurity and wireless data dissemination. Kumar
has a PhD in computer science from Southampton
University, England. Contact him at kumarv@umkc
.edu.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

