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Abstract— A mini quadrotor can be used in many applica-
tions, such as indoor airborne surveillance, payload delivery,
and warehouse monitoring. In these applications, vision-based
autonomous navigation is one of the most interesting research
topics because precise navigation can be implemented based on
vision analysis. However, pixel-based vision analysis approaches
require a high-powered computer, which is inappropriate to be
attached to a small indoor quadrotor. This paper proposes a
method called the Motion-vector-based Moving Objects Detec-
tion. This method detects and avoids obstacles using stereo
motion vectors instead of individual pixels, thereby substan-
tially reducing the data processing requirement. Although this
method can also be used in the avoidance of stationary obstacles
by taking into account the ego-motion of the quadrotor, this
paper primarily focuses on providing our empirical verification
on the real-time avoidance of moving objects.

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs) has
prompted much research for autonomous reconnaissance
and surveillance. To perform any of such tasks effectively,
a quadrotor is required to meet certain maneuverability
required by the task. One of popular research topics on
developing such a quadrotor is on how to make the quadro-
tor as autonomous as possible while satisfying the task’s
requirements [1]. Not only can it help minimize human
pilot’s mistakes, but the navigation can also be continuously
optimized to improve the task’s cost efficiency and the
likelihood of success [2].

Autonomous navigation requires continuous knowledge
about stationary and non-stationary obstacles (or moving
objects) in the navigation space. In order to build a fully
autonomous quadrotor, there have been many efforts on the
detection of obstacles using laser range finders, artificial
markers, and computer vision techniques [3]. A utilization
of autonomous mini quadrotors is often considered for in-
door airborne surveillance, payload delivery, and warehouse
monitoring [4]. Indoor navigation environments pose major
challenges associated with limited navigation space and
unforeseen moving obstacles. Vision analysis techniques can
provide high-accuracy obstacle representations. Although the
high computation overhead has hindered the adoption of
this approach in the auto-navigation of indoor mini quadro-
tors [5], the recent technological advances in the on-board-
scale micro-computers, such as Raspberry Pi, Intel Edison,
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and Arduino, have been significant [6], and the distribution of
advanced vision analysis techniques in open source libraries,
such as OpenCV [7], has been accelerated. In the light of
these recent developments, we focus on designing a vision-
based method for detecting and avoiding obstacles for real-
time autonomous navigation of mini quadrotors in indoor
environments with moving obstacles.

In vision-based autonomous navigation, video stream anal-
ysis techniques are often used for detecting obstacles. Video
streams are transmitted after compression to reduce over-
head. Video compression methods, such as H.264, exploit
similarities between adjacent frames and represent inter-
frame deviations using compact motion vectors [8]. Tradi-
tionally, such motion vectors have received relatively less
attention in autonomous navigation due their low spatial
resolutions and relatively high noise levels. The noise can be
reduced by means of signal smoothing filters (e.g., extended
or unscented Kalman filter methods [9], [10]). In the area
of vision-based autonomous navigation, more attention has
been given to the high spatial resolution of the pixel-based
representation rather than the temporal resolution that can
be significantly increased by the motion-vector-based com-
paction. However, we believe that in a space-tight indoor
navigation environments with dynamic moving obstacles,
high temporal resolution is a key for real-time obstacle
avoidance as long as the identification of available navigation
paths is not compromised by the reduced spatial resolution.

In this paper, we present our study on Motion-vector-
based Moving Object Detection (MMOD). The motivation
behind this MMOD study is to show that one can exploit
motion vectors to develop a robust and safe auto-navigation
on a mini quadrotor platform for indoor navigation. A stereo
camera is exploited to detect moving objects and their
distances. The computational analysis of measuring motion-
vectors and determining the distances to the detected objects
is performed on a Raspberry Pi platform. Controlling a non-
stationary airborne quadrotor in indoor environments is also
managed automatically. To the best of our knowledge, our
work is unique in terms of autonomously avoiding moving
objects in real-time by utilizing vision-based motion vectors.

The rest of this paper is organized as follows. We overview
related efforts in Section II. In Sections III and IV, we
explain our proposed method and empirical results, respec-
tively. The paper is concluded with Section V.

II. RELATED WORK

Traditionally, object detection has involved intensive im-
age processing. In vision-based object detection, a clear
separation between background and foreground is considered



as an essential step. Javed et al. [11] listed several major
challenges in vision-based object detection as detecting quick
illumination changes, understanding changes in background,
and identifying unintentionally added foreground objects.
They proposed a solution to detect objects by utilizing
different processing methods on pixel, region, and frame
levels. Such image processing method often requires high
computational power. To lighten the computational load,
often image resolutions need to be compromised to become
a small scale (under 320 by 240) and temporal resolution
have to be maintained below a real-time standard (below
20 frames per second), or use only partial regions sampled
by interesting features of objects [12]. Since there is an
additional requirement of supporting quick maneuvering for
quadrotors, supporting both image processing and maneuver-
ing in real-time is an extreme challenge.

To address the issue of supporting real-time process-
ing, Hulens et al. [13] conducted several experiments with
different small computing models to find optimal image-
processing solutions in on-board computer to a quadrotor.
More specifically, they tested different benchmark algorithms
on eight different platforms and compared their performance
results with the result from a desktop environment. As a
requirement, the computers should be able to process 640 by
480 images at the speed of 10 frames per second. However,
they found that about half of the models did not satisfy the
requirement. From the study, it is known that a powerful
computer is always required to support highly responsive
quadrotor maneuvering if image processing is applied.

For delicate indoor flight, laser based sensing equipment
can be loaded as a practical complement for image analysis.
Wang et al. [14] proposed a method of utilizing a pre-
manufactured scanning device to scan indoor environments.
Since the equipment supports scanning 270 degrees viewing
angle for 30 meters, scanned information is used to support
a reliable maneuvering solution.

Image analysis heavily relies on pixel-by-pixel data. Since
the size of the data can easily become too large, it is difficult
to support real-time processing [15]. Alternatively, motion-
vectors can be considered to support real-time processing be-
cause the data size is relatively small compared to the pixel-
by-pixel data [16]. In vision-based autonomous navigation
for UAVS, reducing the computational power is critical since
it is closely connected to selecting an appropriate computer
with a proper power supply. UAVS’ movement speed can be
decreased depending on the size of the computer and power
supply.

Rodriguez-Canosa et al. [16] recognized the usefulness of
motion vectors and provided a good criteria for separating
foreground object motions from background motions. How-
ever, the experiment was conducted in an outdoor environ-
ment using a top-down camera. The maneuvering experiment
used a pre-recorded video and focused on identifying exact
shapes of objects using high-powered computer.

Kendoul et al. [17] worked on using motion as the impor-
tant element for maneuvering the quadrotor. They conducted
an experiment in a large indoor area to propose a GPS-

independent technique. Their approach is somewhat similar
to our proposed method. However, they conducted the vision-
based computation on the separated desktop computer, and
further exploitation on motion vectors to detect and avoid
an object was not discussed. Although motion vectors is im-
portant for supporting real-time autonomous navigation for
quadrotors, most researchers did not realize the importance
of utilizing the motion vectors.

III. ON AVOIDING MOVING OBJECTS USING MOTION
VECTORS

As described above, our method (i.e. MMOD) is to avoid
moving objects in real-time. It is designed consisting of two
steps - detecting and avoiding moving objects.

A. Detecting Moving Objects

A flying quadrotor is generating a continuous movement.
Therefore, detecting moving objects is a major research
challenge because motions can be created by the movement
of the quadroter itself and any moving objects. To separate
motions caused by the quadrotor and the moving objects,
we defined the movement of the quadrotor as ego-motion
(@), and the movement of an object appeared in front of
the quadrotor is considered as object-motion (O). At each
frame, each grid of 16 by 16 pixels produces a motion vector.
This vector can be categorized into () and O generated by
ego-motions and object-motions, respectively. Each vector
consists of magnitudes and directions.

Figure 1 shows two different scenarios with having no
motion and two motions. In Figure 1(b), two object-motions
are detected. With the detected motions, and are
calculated on the magnitude and direction of motion vectors.
It is important to note that background and foreground can be
separated based on the obvious discrepancy between () and

. To identify the discrepancy, the mean and the deviations
of motion vectors are used to filter out motion vectors with
non-standard deviation of magnitudes and directions, which
can be defined as a foreground (or stationary objects).

Using only motion vectors to identify background is
too optimistic because a moving object may have multiple
different motions. For example, a human’s walking motion
may be composed of multiple different motions of legs, arms,
head, body, and so forth. This phenomena may lead to high
error rate when generating motion vectors. To minimize this
error rate, multiple nearest motions can be assumed as a
single motion. Thus, a clustering algorithm is applied to
MMOD for the combination of the nearest motions based
on METIS [18]. A deterministic-threshold is defined as a
minimum distance between motions, meaning that a cluster
is at least the distance away from another cluster. Clustering
threshold depends on the size of each quadrotor. Obviously,
we do not need to know how many motions are in Figure 1(b)
and even one of the motions in Figure 1(b) consists of how
many motions are combined. However, a quadrotor must not
fly toward the motions in order to avoid a collision.



(a) No Motion

(b) Two Motions

(c) Motion Estimation

Fig. 1. Detecting and Estimating d (a) consists of only motion vectors caused by 6 because all motions have the same magnitudes and directions.

Thus the motions are not real motions. In (a), we imply that the direction of
(red arrows) generating two object-motions in two different areas. (c) indicates the superposition of

circle indicates O.

B. Avoiding Moving Objects

The second step of MMOD is to avoid moving objects
after detecting the objects using motion vectors generated
by captured video streams. Even though there are two
moving objects are detected as Figure 1(b), the left motion
is excluded from quadrotor’s potential moving area because
the motion does not belong to the quadrotor moving area.
Figure 2 shows partitioned regions determined by computing
object-motions. Once moving objects are identified ahead of
the quadrotor, MMOD checks whether or not the moving
objects belong to the quadrotor moving area.
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Fig. 2. Three Views of a Camera: The outer solid rectangular indicates the
view of a camera, the inner solid rectangular represents the possible area
where a quadrotor can move, the inner dotted rectangular shows what the
quadrotor faces.

If a person keeps standing and moving only his/her arms,
a quadrotor may fly into his/her body. If moving objects
are temporally stopped, the corresponding motion vectors
will not be generated. As another scenario, multiple moving
objects which belong to the quadrotor moving area can
be detected. To correctly avoid multiple moving objects,
temporally stopped moving objects, and stationarily objects,
a distance between such objects and the quadrotor must be
determined to decide whether or not to change the direction
of the quadrotor.

Recall that each grid of 16 by 16 pixels at each frame
produces a motion vector, The detected motion vectors are
categorized into 6 and 0. Also a distance from the grid is

is in the opposite direction of the motion vector. (b) represents objects
and red arrows. The blue arrows of the enlarged

: : baselineX focal length
calculated using an equation — disparity xC'[19],

where a baseline is a length between two cameras, and C' is
a constant number. A disparity is defined as the difference
in position between correspondence points in two images
generated by a stereo camera. Unlike a stationary camera,
the camera attached on the quadrotor is shaken by its ego-
motion, so that it generates the same video but two different
sets of motion vectors for each left and right camera. Such
differences are utilized to derive the disparity. Even though

is eliminated as a background to detect moving objects,

is exploited to compute a distance between the quadrotor
and background.

Figure 3 illustrates three different scenarios to identify
moving objects and possible movable areas for the quadrotor.
Since multiple movable areas can be detected, determining
one area needs to be performed. Different priorities must
be assigned to each area. Bottom area will have a lower
priority because there are many objects on the floor in an
indoor environment. Left and right sides are going to have the
same priority. However, top area (i.e. ceiling region) maintain
a higher priority because less number of obstacles will be
in the air. Based on the priority information, if there are
multiple objects are detected as shown in Figure 3(b), top
area will be determined as a possible movable area. If no
area is determined, the quadrotor will wait until at least one
area is cleared.

The regulation is applied when objects are close to the
quadrotor. In this paper, the maximum distance to analyze
distances is empirically defined as 300 cm. A detailed
explanation about how the distance is determined is included
in Section IV. If the distance to the detected moving object
cannot be determined, we assume that the object is located
300 ¢cm away from the quadrotor. Thus, this regulation is
feasible only when objects are detected and their distances
are known.
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(a) A Moving Object

Fig. 3.

(b) Two Moving Objects

(c) A Large Moving Object

Avoiding Moving Objects: (a) represents that a motion to be avoided is detected. Two blue transparent rectangles indicates possible ares where a

quadrotor moves. If its distance is short, a turn right command is performed. Otherwise, it keeps going. (b) shows two motions and two possible areas to
be moved. it gains altitude and move to right. (c) gives a motion but no possible areas.

IV. EXPERIMENTAL RESULTS
A. Our Quadrotor Platform

As a quadrotor, 3D Robotics IRIS+ (i.e., IRIS+) quadrotor
shown in Figure 4(a) is used for the evaluation of MMOD.
3D Robotics IRIS+ has been known to be popular among
many developers due to its origin of being open-source from
the beginning. Raspberry Pi 2 B+ is built with 900 MHz
quad-core ARM Cortex-A7, with Broadcom VideoCore IV
GPU for H.264/MPEG-4 AVC high-profile decoding and
encoding. MMOD composed of three threads is installed to
Raspberry Pi. Each thread is in charge of capturing motion
vector, analyzing motion vectos/distance, and navigating
IRIS+, respectively. A Kalman filter [9] is applied to deduct
noise generated by analyzing motion vectors and distances.
Finally, a stereo camera equipped with 7 cm baseline is
connected to Raspberry Pi linked to IRIS+.

Raspberry = Stereo Camera

>

(a) IRIS+ with Raspberry Pi and Stereo Camera

Max Distance |
to compute
a distance

Max Distance to detect moving objects
quadrotor

Undetected area " amera
(b) A Top View of IRIS+ with Two Maximum Distances

Fig. 4. Our Quadrotor Platform to evaluate MMOD

Based on a 7 em static baseline, the maximum distance for
objects to be calculated is about 300 cm. Also the maximum
distance to detect moving objects is longer than that as
illustrated in Figure 4(b). Thus, our quadrotor can detect
moving objects and their distances at maximum 300 c¢m in
front of it. Although a moving object more than 300 cm away
is detected, its distance cannot be calculated. In the mean-
while, there is a blind spot between the quadrotor and the
minimum detectable distance, called an “undetectable area”,
which is about 120 ¢m from the cameras, implying that a
detectable area is only 180 cm. The detectable area defines
the maximum speed of the quadrotor. If 180 c¢m per second
as a speed and 30 frames per second as a temporal resolution
(i.e., frame rate) are set, MMOD performs 30 commands
while the quadrotor flies to 180 cm. The purpose of the
evaluation is to show that the frame rate is more significant
than the spatial resolution for automatous navigation.

To evaluate MMOD, we used a static baseline deter-
mining the maximum distance and the undetectable area
within the minimum distance. On this configuration, MMOD
controls IRIS+ using its programming protocol named
MAVLink [20]. The protocol can adjust IRIS+’s altitude,
pitch, roll, and yaw axis to change its directions, which
include simple left and right.

B. Evaluation Results

Before the evaluation to detect and avoid moving objects,
we need to examine how fast a frame is analyzed due
to limited navigation space. Motion vectors and distances
are calculated for each frame. Obviously a high frame rate
leads to accurate controls. In the meanwhile, an appropriate
(spatial) resolution of a frame must be investigated. A micro-
computer carried by the quadrotor has limited performance,
so that high resolution degrades its performance.

Figure 5 shows the processing time and motion occupancy
per frame among three resolutions — 720, 360, and 240 pixels
with 30 frame rate — 30 frames per second. The processing
time illustrated in Figure 5(a) represents how long Raspberry
Pi takes to process a frame for the analysis of motion vectors.
The motion occupancy shown in Figure 5(b) indicates how
many Os are detected on a frame. For example, Raspberry
pi takes 7 seconds to process a frame on 720 pixels when
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20 % motions are detected. Due to its limited performance,
the other frames are ignored. In this case, only a command
is performed per 7 seconds. The quadrotor checks moving
objects every flight distance 1,260 c¢m on assuming that
180 c¢m per second is set as a speed. Thus, 720 and 360
resolutions are not appropriate for auto-navigation.

As long as the amount of motions increases, the occupancy
motion for three resolutions increases, but the resolution does
not affect the amount of the detected motions. Regardless
of the resolution, all motions are detected. Of course, the
minimum resolution depends on the size of a quadrotor. In
the meantime, the processing time per frame increases in the
large amount of motions. For example, the processing times
of 720 pixels is approximately 8 seconds on 50% motions.
This implies that the quadrotor cannot perform any command
for its navigation during 8 seconds if a 720 pixels resolution
is selected. Thus, the low resolution (i.e., 240 pixels) is
selected to accurately navigate the quadrotor due to the high
processing time per frame.

To evaluate the effectiveness of MMOD, we consider two
cases illustrated in Figures 6 and 7. Case I is to evaluate the
identification of moving objects. Case II is for the evaluation
of distances. For fair comparative studies, we tried to run
the module of a traditional pixel-based vision analysis on
our computer platform (i.e., Raspberry Pi), but it does not
work properly due to computational overhead. Even though
only two cases shown as Figures 6 and 7 are not adequate to
generalize all scenarios using motion vectors, maximum two
persons are involved into the angle and distance in which
our quadrotor can detect, when assuming that only humans

exist indoor as moving objects.

In Figure 6, a person (or a moving object) is moving
ahead of a quadrotor. Figure 6(a) shows a camera view for
reference. Based on the view, Figure 6(b) gives the set of
motion vectors, and the superposition of the camera view
and the set is illustrated in Figure 6(d) to check whether
or not to fit into the motion vectors. Figure 6(d) shows the
set of disparities on the camera view. The distance derived
from the disparity is calculated, and then MMOD performs
a turn-left command.

Unlike Case I, Figure 7 shows two moving objects. Two
different groups of motion vectors are detected as shown in
Figure 7(b). Figure 7(c) shows the superposition of the real
moving objects and the groups. Even though two groups are
distinct, there is no area for a quadrotor to be moved forward.
However, the set of disparities is shown in Figure 7(d)
gives also two different groups mapped with different gray
colors, respectively. The bright color indicates a higher
disparity, meaning that the corresponding object is closer to
the quadrotor. As a result, the quadortor turns right.

V. CONCLUSION

In this paper, we present a new motion vector-based
moving object detection method to support fully autonomous
navigation for mini quadrotors. To show the effectiveness of
our method, we tested it in an indoor environment. From
the experiment, we identified that a quadrotor successfully
avoids moving objects by directing itself towards the op-
posite side of the object. We also found that real-time
autonomous moving objects avoidance is guaranteed since
the temporal resolution is emphasised rather than the spatial
resolution. We believe that our proposed approach is effective
for avoiding moving objects without having any major time
delay. In addition, the motion vector-based object detection
we implemented in this study is a viable strategy for real-
time autonomous navigation.

As mentioned above, our approach is evaluated in an in-
door environment because of the uncertainty of outdoor envi-
ronments. As a future direction, a robust outdoor autonomous
navigation performing a compensation action when it moves
toward an unwanted direction forced by wind and identifying
the characteristics of moving objects can be introduced.
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