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ABSTRACT
Predicting the occurrence of a particular event of interest at
future time points is the primary goal of survival analysis.
The presence of incomplete observations due to time limi-
tations or loss of data traces is known as censoring which
brings unique challenges in this domain and differentiates
survival analysis from other standard regression methods.
The popularly used survival analysis methods such as Cox
proportional hazard model and parametric survival regres-
sion suffer from some strict assumptions and hypotheses that
are not realistic in most of the real-world applications. To
overcome the weaknesses of these two types of methods, we
reformulate the survival analysis problem as a multi-task
learning problem and propose a new multi-task learning
based formulation to predict the survival time by estimating
the survival status at each time interval during the study du-
ration. We propose an indicator matrix to enable the multi-
task learning algorithm to handle censored instances and in-
corporate some of the important characteristics of survival
problems such as non-negative non-increasing list structure
into our model through max-heap projection. We employ
the l2,1-norm penalty to learn a shared representation across
related tasks and hence select important features and alle-
viate over-fitting in high-dimensional feature spaces; thus,
reducing the prediction error of each task. To efficiently
handle the two non-smooth constraints, in this paper, we
propose an optimization method which employs Alternat-
ing Direction Method of Multipliers (ADMM) algorithm to
solve the proposed multi-task learning problem. We demon-
strate the performance of the proposed method using real-
world microarray gene expression datasets and show that
our methods outperform state-of-the-art methods.

CCS Concepts
•Computing methodologies → Multi-task learning;
•Information systems→Data mining; •Mathematics
of computing → Survival analysis;
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1. INTRODUCTION
Survival analysis aims at modeling time-to-event data,

which is typically collected in longitudinal studies that start
from a particular time and last until a certain event of inter-
est has occurred [11, 21]. However, the event of interest may
not always be observed during the study period due to time
limitations or losing data traces. This phenomenon is more
commonly known as censoring and makes survival analysis
different from (and more challenging than) the standard re-
gression methods. For the cases where the event of interest
has been observed, the time to the event of interest is known
as the survival time; while for the other instances, the last
observed time is known as the censored time (we call these
instances as censored instances). The most common form of
censoring that occurs in real-world scenarios is right censor-
ing1, where the survival time of a censored instance is longer
than or equal to the censored time, but its precise value is
unknown.

In survival analysis, the Cox proportional hazards model
and parametric censored regression models are important
fundamental techniques for survival time prediction. These
two methods (and their extensions) have been extensively
studied in the fields of statistical learning and data mining.
We will now describe the primary weaknesses of these two
methods.

The Cox model and its extensions are built based on the
proportional hazards hypothesis, i.e., it assumes that the haz-
ard ratio between two instances is constant in time. This
hypothesis indicates that the survival curves of all instances
share a similar shape which is not realistic in many real-
world applications. Also, the Cox model does not predict
the survival time directly but rather models the hazard ra-
tio. To predict the survival time, a baseline hazard function
has to be estimated separately and this estimation will in-
duce more prediction errors. When tied observations (sur-
vival times of multiple instances is exactly the same) occur
during the study, Cox model has to use some approximation
methods which suffer from either inducing bias (Breslow’s
approximation and Efron’s approximation [6]) or bad scala-
bility (Discrete method [25]).

1In this paper, we refer to the right censored data as cen-
sored data.
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The parametric censored regression models suffer from
even more critical weaknesses. The prediction performance
of parametric censored regression is highly dependent on the
choice of the distribution [12]. However, in real-world ap-
plications there are too many complex interactions and sce-
narios that can affect the event of interest in various ways;
thus, in practice, choosing an appropriate theoretical distri-
bution to approximate survival data is very difficult, if not
impossible.

To overcome these weaknesses of both types of methods, in
this paper, we propose the “MTLSA” model, which stands
for “Multi-Task Learning model for Survival Analysis”. We
formulate the original survival time prediction problem into
a multi-task learning problem. The primary motivation of
using multi-task learning is because of its ability to learn
a shared representation across related tasks and reduce the
prediction error of each task. Thus, the model can provide
a more accurate estimation of whether an event occurs or
not at the beginning of each time interval which will thus
provide an accurate estimation of the survival time for each
instance. Another advantage of using multi-task learning
for survival time estimation is because it translates the re-
gression problem into a series of related binary classifica-
tion problems, and at each time interval the corresponding
classifier only focuses on modeling the local problem and
hence provides a more accurate estimation than the regres-
sion models which aim at modeling the entire problem at
once. Our model is built without any additional hypothesis
except linear hypothesis, i.e., the feature and target exhibit
a linear relationship, unlike the Cox proportional hazards
model and parametric censored regression models.

As the survival status of a censored instance is unknown
after the corresponding censored time, the target labeling
matrix is not complete; therefore, the standard multi-task
learning methods fail to handle the censored instances. To
overcome this problem, we propose to use an additional in-
dicator matrix which allows the model to simultaneously
learn from both uncensored and censored instances (details
can be found in Section 3.1) and hence the proposed model
can simultaneously take advantage of both uncensored and
censored instances. We notice that in survival analysis with
non-recurring events, the survival status of instances natu-
rally follows the non-negative non-increasing list structure,
i.e., once the event occurs it will not occur again. Since
the l2,1-norm encourages multiple predictors to share simi-
lar sparsity patterns, it will not only select important fea-
tures and alleviate over-fitting in high-dimensional feature
spaces but will also learn a shared representation across all
tasks at different time intervals. In MTLSA, we incorporate
the non-negative non-increasing constraint and the l2,1-norm
with the loss function and propose an Alternating Direc-
tion Method of Multipliers (ADMM) algorithm [3] for co-
efficient estimation. In the proposed ADMM method, the
non-negative non-increasing list constraint optimization is
transformed into an Euclidean projection problem that can
be learned efficiently.

In our empirical evaluation using various real-world gene
expression cancer survival benchmark datasets, our model
attains very competitive prediction performance and out-
performs state-of-the-art methods in survival analysis. Ad-
ditionally, we also demonstrate that our model outperforms
most of the competing methods for the task of classifying

whether or not a subject is alive at the beginning of each
time interval in the observed study period.

The rest of the paper is organized as follows. In Sec-
tion 2, related data mining approaches for survival analysis
are discussed. In section 3, our proposed approach includ-
ing the details of optimization procedure is explained. Sec-
tion 4 demonstrates our experimental results on several real-
world high-dimensional datasets while Section 5 concludes
our work.

2. RELATED WORK
The prominent prediction methods in survival analysis can

be categorized into three types: Cox-based, parametric cen-
sored regression, and linear models. In this section, we will
briefly describe the most important works under each cate-
gory and highlight the differences and relationships between
our proposed model and existing works.

The Cox proportional hazards model [5] is one of the ear-
liest and most widely used survival analysis methods which
has garnered significant interest from researchers in both
statistics and data mining communities. The Cox is a semi-
parametric model which does not make any assumption about
the distribution of the survival outcomes and is usually learned
by optimizing a partial likelihood function. To deal with
high-dimensional data, some regularization methods have
been proposed in the literature. These methods include
LASSO-COX [26] which introduces the L1 norm penalty
in the log-partial likelihood loss function, Elastic-Net Cox
(EN-COX) [23] which uses the elastic net penalty term and
the kernel elastic net penalized Cox regression [31, 30] which
modifies the elastic net penalty using a kernel matrix.

Parametric censored regression provides an important al-
ternative to the Cox-based models. Parametric censored
regression methods assume that the survival times (Case 1)
or the logarithm of the survival times (Case 2) of all in-
stances in the data follow a particular distribution [11]. The
latter case, namely Case 2, is also termed as Accelerated
failure time (AFT) models [34] because they assume that
the covariate will “accelerate” or “decelerate” the time to the
event of interest. Weibull distribution, logistic distribution,
log-normal distribution, and log-logistic distribution [11] are
the most commonly used distributions in parametric cen-
sored regression and the last two are considered to be the
AFT models. In [14], the elastic net penalty has been em-
ployed to enable the parametric censored regression models
to handle high-dimensional censored data.

Apart from the above two types of survival prediction
methods, linear regression is another important branch of
survival analysis. Strictly speaking, linear regression is a
specific parametric censored regression; we consider linear
censored regression models separately because linear regres-
sion is a fundamental method in data analysis. Because
of censoring, the least-squares estimator cannot be directly
used in survival analysis. The Tobit model [27] is the earli-
est attempt to extend the linear regression for data analysis
with censored observations. Later, Buckley-James (BJ) es-
timator [4] was proposed to solve survival prediction with
the combination of the Kaplan-Meier (K-M) estimator [10]
(which is a non-parametric model). Recently, the elastic net
penalty has been used within the BJ regression (EN-BJ) [32]
and a weighted linear model [13] for efficiently handling the
high-dimensional survival analysis problems.
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In this paper, different from all the above mentioned meth-
ods, we propose a new approach which transforms the orig-
inal survival analysis problem into a series of related binary
classification problems, and then develop a multi-task learn-
ing method which explicitly models two important struc-
tural constraints of this problem, namely the non-negative
and non-increasing list. In addition, the l2,1-norm penalty
is employed to enable the model learn a shared represen-
tation across related tasks and hence select important fea-
tures in high-dimensional feature spaces. In [15], the authors
proposed a multi-task logistic regression to predict the sur-
vival times of each instance by using a likelihood function
that combines multiple local logistic regression models and
incorporate the dependency between these models. This
procedure is very hard to learn and fails to handle high-
dimensional cases.

3. THE PROPOSED METHOD
In this section, we will first transform the original sur-

vival analysis problem into a multi-task learning problem
by decomposing the regression component into related clas-
sification tasks. Then we will propose a new objective func-
tion that can solve the transformed problem and develop an
ADMM based algorithm to optimize the objective function.
We also provide a detailed algorithmic analysis in terms of
convergence and complexity and then discuss a variant of
the algorithm by relaxing certain constraints.

3.1 Transform to multi-task learning problem
In survival analysis, for each data instance, we observe

either a survival time (Oi) or a censored time (Ci), but
not both. The dataset is right-censored if and only if Ti =
min(Oi, Ci) can be observed during the study. An instance
in survival data is usually represented by a triplet (Xi, Ti, δi),
where Xi is a 1× q feature vector; δi is the censoring indica-
tor, i.e., δi = 1 for an uncensored instance, and δi = 0 for a
censored instance; and Ti denotes the observed time and is
equal to the survival time Oi for uncensored instances and
Ci otherwise, i.e.,

Ti =

{
Oi if δi = 1
Ci if δi = 0

(1)

For censored instances, Oi is a latent value, and the goal
of survival analysis is to model the relationship between Xi
and Oi by using the triplets (Xi, Ti, δi) for censored and
uncensored instances.

In practice, time is considered as countable time intervals
rather than a real number (a number with a fraction). We
translate the original label into a k-column target matrix Y ,
where k = max(Ti),∀i = 1, 2, · · · , n, is the maximum fol-
lowup time of all the instances. Each element in the target
matrix indicates whether the event occurred (“0”) or not
(“1”), and the original survival prediction problem can thus
be transformed into a multi-task learning problem. The pri-
mary motivation of transforming the survival analysis into a
multi-task learning problem is that the dependency between
the outcomes at various timepoints are accurately captured
through a shared representation across related tasks in this
multi-task transformation which will reduce the prediction
error on each task. Note that for censored instances we
know that the event did not occur until the corresponding
observed times, but we do not know whether the event oc-
curs or not afterwards.

For now, we represent those unknown cells using“question
marks” and later we will discuss the details of converting
them into a more viable form. Figure 1 shows an example
of generating a target matrix Y from the original labels. For
the four uncensored instances (ID ∈ 1, 4, 5, 6), the cells of the
corresponding rows in the target matrix Y are labeled as “1”
until the observed time (T1 = 3, T4 = 7, T5 = 5, T6 = 6) and
as “0” for the remaining cells; for the censored instances
(ID ∈ 2, 3), the cells of the corresponding rows in the target
matrix Y are labeled as “1” until the censored time (T2 =
6, T3 = 2) and as “?” for the remaining cells.

ID Day1 Day2 Day3 Day4 Day5 Day6 Day7
1 1 1 1 0 0 0 0
2 1 1 1 1 1 1 ?
3 1 1 ? ? ? ? ?
4 1 1 1 1 1 1 1
5 1 1 1 1 1 0 0
6 1 1 1 1 1 1 0

ID Day1 Day2 Day3 Day4 Day5 Day6 Day7
1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 0
3 1 1 0 0 0 0 0
4 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1

Original(label
Y

W

ID Time Status
1 3 1
2 6 0
3 2 0
4 7 1
5 5 1
6 6 1

Figure 1: Illustration of generating Y and W from the orig-
inal label in a simple survival dataset.

In this paper, we only consider the non-recurring event
scenario which means once the event occurs then it will not
occur again. Hence, for a given row in the target matrix Y ,
once the label becomes “0” it will not change back to “1”.
Thus, we can see that each row of Y will have a non-negative
non-increasing list structure:

P = {Y ≥ 0, Yij ≥ Yil|j ≤ l,∀j = 1, · · · , k,∀l = 1, · · · , k}
(2)

where i = 1, 2, · · · , n.
An intuitive approach for solve this multi-task learning

based formulation is as follows:

minimize
XB∈P

1

2
‖ Y −XB ‖2F +R(B) (3)

where B ∈ Rq×k is the estimated coefficient matrix, ‖ · ‖F
denotes Frobenius norm, and R(B) denotes the regulariza-
tion term that prevents over-fitting and incorporates the ad-
ditional constraints imposed by this problem. Note that Y
is not a complete n×k target matrix (from the previous dis-
cussion). Now, we propose an indicator matrix W to handle
the question marks in Y . W is an n×k binary matrix; we set
Wij = 1 if the exact labeling information of Yij is known,
and Wij = 0 if Yij = “?”. In Figure 1, we also show the
corresponding W for the example survival data considered.
The optimization problem in Eq.(3) is re-defined as:

minimize
XB∈P

1

2
‖ ΠW (Y −XB) ‖2F +R(B) (4)

where

(ΠW (U))ij =

{
Uij if Wij = 1
0 if Wij = 0

3.2 Objective function
Let us now briefly discuss two unique characteristics of

the proposed model and then design suitable regulariza-
tion terms to incorporate other additional constraints. The
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proposed model in Eq.(4) has two unique properties, Non-
negative non-increasing and Temporal smoothness, which
are desired to match the nature of the non-recurring events
survival analysis.

• Non-negative and non-increasing: As discussed above, each
row of the target matrix follows the non-negative non-
increasing list structure. To preserve this characteristic,
a corresponding structure constraint is added in Eq.(4)
to ensure that the estimated output XB also follows the
non-negative non-increasing list structure.

• Temporal smoothness: Since many works in the survival
data deal with non-recurring events, i.e., for a certain row
in the target matrix Y , once the label becomes “0” it
cannot change back to “1” (or any other value), and this
label change will occur at most once. Hence, in most cases,
the adjacent labels of each instance are the same; thus, for
all the N instances, the label vectors of adjacent tasks are
similar. This is the temporal smoothness characteristic
which will be modeled in the proposed multi-task learning
formulation.

In this paper, the non-negative max-heap projection [18]
is employed to ensure that XB follows the non-negative non-
increasing list structure. This projection approximates each
element of every selected set of target values by their corre-
sponding mean values (refer to the Appendix for more de-
tails), and hence all elements in each selected set (a sublist
in our case) share a same estimated target value; therefore,
the non-negative max-heap projection also induces the tem-
poral smoothness of XB. Apart from the two characteristics
discussed above, our model should also alleviate over-fitting
and induce sparsity in the estimated coefficients.

• Sparsity: The goal here is to learn a shared representation
across all the tasks; thus, the model can select important
common hidden features and reduce the prediction error of
each task. The l2,1-norm is chosen to be an additional reg-
ularization term for our model because it encourages mul-
tiple predictors to share similar sparsity patterns. Thus,
the l2,1-norm regularized regression model is able to select
some common features across all the tasks [1]. In addi-
tion, such a sparsity inducing penalty will be able to help
our model effectively handle high-dimensional datasets.

• Overfitting: A Frobenius norm regularization on the coef-
ficient matrix B is introduced to alleviate the over-fitting
problem for high-dimensional data.

Incorporating all of the above additional constraints in
the form of regularizers into the proposed multi-task learn-
ing model, MTLSA, the following minimization problem is
formulated:

minimize
XB∈P

1

2
‖ ΠW (Y −XB) ‖2F +

λ1

2
‖ B ‖2F +λ2 ‖ B ‖2,1

(5)
where ‖ · ‖2,1 denotes the l2,1-norm, and λ1 ≥ 0 and λ2 ≥ 0
are two regularization parameters.

3.3 The proposed MTLSA algorithm
The solution of the optimization problem in Eq.(5) is not

trivial since it contains non-negative and non-increasing con-
straints along with the fact that the l2,1-norm is a non-
smooth penalty. We propose an ADMM based algorithm
to solve the optimization problem proposed in Eq.(5). By

introducing a new matrix M = XB, Eq.(5) can be rewritten
in ADMM form as

minimize
M∈P

1

2
‖ ΠW (Y −M) ‖2F +

λ1

2
‖ B ‖2F +λ2 ‖ B ‖2,1

subject to M = XB
(6)

Using the scaled dual variable µ and penalty parameter ρ >
0, the resulting augmented Largrangian of Eq.(6) is

Lρ(M,B, µ) =
1

2
‖ ΠW (Y −M) ‖2F +

λ1

2
‖ B ‖2F

+ λ2 ‖ B ‖2,1 +
ρ

2
‖M −XB + µ ‖2F (7)

Thus, the scaled form of ADMM algorithm can be written
as:

M t+1 := arg min
M∈P

(
1

2
‖ ΠW (Y −M) ‖2F

+
ρ

2
‖M −XBt + µt ‖2F

) (8)

Bt+1 := arg min
B∈Rq×k

(
λ1

2
‖ B ‖2F +λ2 ‖ B ‖2,1

+
ρ

2
‖M t+1 −XB + µt ‖2F

) (9)

µt+1 := µt +M t+1 −XBt+1 (10)

Now the main task of our model is to solve the optimiza-
tion problems proposed in Eq.(8) and Eq.(9). Next we will
present the algorithm for solving Eq.(8) and Eq.(9) in detail.

Step 1: Update M t+1 given Bt and µt (solve Eq.(8))

The updating of M t+1 is a constrained smooth convex op-
timization problem which can be expressed as a generalized
form:

min
M∈P

g(M) (11)

where g(M) = 1
2
‖ ΠW (Y −M) ‖2F + ρ

2
‖M−XBt+µt ‖2F is

a smooth function and P is the non-negative non-increasing
list structure defined in Eq.(2). Let S = µt − XBt. The
objective function can be reformulated as:

g(M)

=
1

2
‖ ΠW (Y −M) ‖2F +

ρ

2
‖M + S ‖2F

=
1

2

n∑
i=1

k∑
j=1

Wij(Yij −Mij)
2 +

ρ

2

n∑
i=1

k∑
j=1

(Mij + Sij)
2

=
1

2

n∑
i=1

k∑
j=1

[
(Wij+ρ)M2

ij+2(ρSij−YijWij)Mij+WijY
2
ij+ρS

2
ij

]
=

1

2

n∑
i=1

k∑
j=1

(Wij + ρ)

[
M2
ij +

2(ρSij − YijWij)Mij

Wij + ρ

+

(
ρSij − YijWij

Wij + ρ

)2

−
(
ρSij − YijWij

Wij + ρ

)2

+
WijY

2
ij+ρS

2
ij

Wij + ρ

]

=
1

2

n∑
i=1

k∑
j=1

(Wij + ρ)

[(
Mij −

YijWij − ρSij
Wij + ρ

)2

+Qij

]

where Qij =
WijY

2
ij+ρS2

ij

Wij+ρ
−
(
ρSij−YijWij

Wij+ρ

)2

does not de-

pend on Mij . Therefor, the optimization problem in Eq.(11)
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equals to an Euclidean projection

M t+1 = min
M∈P

1

2

n∑
i=1

k∑
j=1

(
Mij − M̃ij

)2

(12)

which projects M̃ij =
YijWij−ρSij

Wij+ρ
onto the set P and thus

ensures Mi1 ≥ Mi2 ≥ · · · ≥ Mik ≥ 0. The Euclidean pro-
jection in Eq.(12) is a special case of the non-negative max-
heap projection which can be efficiently solved [18, 17], and
some details of the non-negative max-heap projection can
be found in Appendix.

Step 2: Update Bt+1 given M t+1 and µt (solve Eq.(9))

The updating of Bt+1 in Eq.(9) can be considered as a
standard l2,1-norm regularization problem:

arg min
B∈Rq×k

(
1

2
‖ L −XB ‖2F +ρL2 ‖ B ‖2F +ρL1 ‖ B ‖2,1

)
(13)

where L is the coresponding label matrix. To solve Eq.(9),
we just need to set L = M t+1+µt, ρL1 = λ2

ρ
, and ρL2 = λ1

2ρ
.

Then Eq.(9) can be solved via alternating minimization algo-
rithm proposed in [1] or Nesterov’s method with efficient Eu-
clidean projection [16]. In this paper, we choose the method
proposed in [16] as the l2,1 solver because it only requires
O( 1√

ε
) iterations to achieve an accuracy of ε.

Combining all of the above components, the proposed
method can be summarized as shown in Algorithm 1. We
initalize the M0 to be the target matrix, and then updat-
ing M t and Bt based on the two steps we discussed above,
accordingly.

Algorithm 1: Proposed MTLSA Algorithm

Input: Feature matrix X, Target matrix Y ,
Weight matrix W , ρ, λ1, λ2

Output: B̂

1 Initialize: t = 0,M t = Y, µt = 0, Bt = 0;
2 repeat
3 Compute M t+1 by solving Eq.(12);

4 Let L = M t+1 + µt, ρL1 = λ2
ρ

, and ρL2 = λ1
2ρ

;

5 Compute Bt+1 via solving Eq.(13) by standard
l2,1 solvers;

6 Compute µt+1 = µt +M t+1 −XBt+1 ;
7 t = t+ 1;

8 until Convergence;

9 B̂ = Bt;

3.4 Algorithm analysis
In this section, we will provide the details about the con-

vergence and the time complexity of the proposed MTLSA
algorithm.

3.4.1 Convergence analysis
The problem in Eq.(6) follows the standard ADMM form:

minimize
M∈P, B∈Rq×k

f1(M) + f2(B)

subject to M = XB
(14)

where f1(M) = 1
2
‖ ΠW (Y −M) ‖2F and f2(B) = λ1

2
‖ B ‖2F

+λ2 ‖ B ‖2,1 are convex functions, P and Rq×k are closed

convex sets. Due to space constraints, we do not provide the
proof of convergence and the readers are referred to [3, 8]
which provide the details of the convergence of the standard
ADMM form given in Eq.(14). Based on the analysis in
[8], the Algorithm 1 requires O( 1

ε
) iterations to achieve an

accuracy of ε.

3.4.2 Complexity analysis
We first analyze the time complexity of Step 1. In Eq.(12)

M̃ij can be calculated with a time complexity of O(q) be-
cause Sij = µtij −XiBt(,j) where Xi (the ith row of X) and

Bt(,j) (the jth column of Bt) all have q elements. For one
instance (row), the Euclidean projection in Eq.(12) can be
efficiently calculated with a worst-case complexity of O(k)
[18], so for all n instances the Euclidean projection can be
calculated in O(nk). Therefore, the updating of M t+1 needs
in total O(nqk) calculations, where n, q, and k denote the
training sample size, feature dimensionality, and the number
of tasks, respectively.

From [16], we know that in Step 2, the standard l2,1-norm
regularized multi-task least squares problem in Eq.(13) can
be solved with a time complexity of O( 1√

ε
(nqk + qk)) =

O( 1√
ε
nqk) to achieve an accuracy of ε. Moreover, based

on the convergence rate of Algorithm 1, we can conclude
that the total time complexity of the proposed method is
O( 1

ε
√
ε
nqk) for achieving an ε-level optimal solution.

3.5 Adaptive variant of MTLSA model
We also develop a variant of the MTLSA model in order

to be able to effectively handle large number of tasks. The
MTLSA model proposed earlier strictly enforces that the
estimated output follows the non-negative non-increasing
structure which is the inherent nature of the target matrix
Y . However, when the problem has a large number of tasks,
this constraint may become too strict that may lead to model
overfitting. Thus, the new variant model, MTLSA.V2,
will not enforce the non-negative non-increasing list struc-
ture constraint, in the training phase. Mathematically, the
proposed MTLSA.V2 model is defined as:

arg min
B∈Rq×k

1

2
‖ ΠW (Y −XB) ‖2F +

λ1

2
‖ B ‖2F +λ2 ‖ B ‖2,1

(15)
This problem can be efficiently solved using the fast iterative
shrinkage thresholding algorithm (FISTA) algorithm with
l2,1 projection [16] by incorporating the ΠW (·) when calcu-
lating the objective function and its gradient. Note that in
the testing phase of both MTLSA and MTLSA.V2, the
non-negative non-increasing list structure regularization will
be used on XB̂ to enforce the estimated output of test in-
stances follow the property of non-recurring event survival
analysis.

4. EXPERIMENTAL RESULTS
In this section, we will first describe the datasets used

in our evaluation and then provide the performance results
along with the implementation details. We also demonstrate
the scalability of the proposed method.

4.1 Dataset description
For model evaluation, we used several publicly available

high-dimensional gene expression cancer survival benchmark
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datasets 2. The datasets used in our experiments are as
follows:

• The Norway/Stanford breast cancer data (NSBCD) [24]
contains gene expression measurements of 115 women with
breast cancer. These women are observed for 188 months
to monitor the death time.

• Van de Vijver’s Microarray Breast Cancer data (VDV)
[29] contains gene expression profile information which can
be used for predicting the clinical outcome of breast can-
cer. It contains 4,707 gene expression values on 78 patients
with survival information for 13 years.

• Adult myeloid leukemia (AML) data contains gene expres-
sion profiles of 116 AML patients with a maximum follow-
up time of 1,625 days. In our experiments, we transform
the observation time from daily basis to monthly basis
and hence the observation lasts for 54 months.

• Gene-expression profiles of lung adenocarcinoma (Lung)
[2] is a dataset containing observations of 86 early-stage
lung adenocarcinoma patients for a period of 110 months.

• Mantle Cell Lymphoma (MCL) 3 [22] is the data collected
from 92 MCL patients with survival information for 14
years.

• The Dutch Breast Cancer Data (DBCD) from van Houwelin-
gen et al. [28] contains information on 4,919 gene expres-
sion levels for 295 women with breast cancer. The maxi-
mum follow-up time of these patients was 18 years.

• Diffuse Large B-Cell Lymphoma (DLBCL) is a dataset
that contains Lymphochip DNA microarrays from 240
biopsy samples of DLBCL tumors for studying the sur-
vival status of the corresponding patients and the obser-
vation lasts 21 years.

Table 1 provides the details of the datasets that are used in
our experiments. In this table, the column titled “# Cen-
sored” corresponds to the number of censored instances in
each dataset. In cancer survival prediction, the event of
interest is patient death; therefore, an uncensored instance
corresponds to the death of the patient during the study,
while a censored instance corresponds to the patient being
still alive at the last observed time (censored time). Based
on the study duration of each dataset, we translate the sur-
vival prediction problem to a corresponding multi-task prob-
lem as described in Section 3.1. The number of tasks for
each data is given in the column titled “# Tasks” in the ta-
ble. For model evaluation, we used 5-fold cross validation
when the number of instances is greater than 150 and 3-fold
cross validation otherwise.

Table 1: Details of the datasets used in this paper.

Dataset # Instances # Features # Censored # Tasks
NSBCD 115 549 77 188
VDV 78 4705 44 13
AML 116 6283 49 54
Lung 86 7129 62 110
MCL 92 8810 28 14
DBCD 295 4919 216 18
DLBCL 240 7399 102 21

2http://user.it.uu.se/˜liuya610/download.html
3http://llmpp.nih.gov/MCL/

4.2 Comparison methods
We comprehensively compare our proposed methods with

several popular state-of-the-art related methods. We now
summarize the comparison methods into five categories, and
we will briefly describe the basic idea and also provide the
implementation details.

• Cox based models: The Cox proportional hazards model
[5] is the most commonly used semi-parametric model
in survival analysis. The hazard function has the form
λ(t,Xi) = λ0(t)exp(Xiβ), where the λ0(t) is the common
baseline hazard function for all instances and β is the co-
efficient vector which can be estimated by minimizing the
negative log-partial likelihood function. The Cox model
can be trained by using the coxph function in the survival
package [25]. The l1-norm penalized Cox model “LASSO-
COX” and elastic net penalized Cox model “EN-COX”
can be learned using the cocktail function in the fastcox
package [35].

• Parametric censored regression models: In para-
metric models, the joint probability of the uncensored
instances can be formulated as a product of death den-
sity functions and the joint probability of the censored
instances can be formulated as a product of survival func-
tions. Thus, a standard likelihood function can be built
by combining these two components and the correspond-
ing model parameters are estimated using the maximum-
likelihood estimation (MLE) procedure [11]. In our exper-
iments, the parametric censored regression methods are
trained using the survreg function in the survival pack-
age with Weibull, Logistic, Loglogistic, and Loggaussian
distributions.

• Linear models: Tobit model [27] is an extension of the
linear regression yj = Xjβ+εj , εj ∼ N(0, σ2), but the pa-
rameters are estimated by the maximum likelihood method
rather than using the least squares error. It can be trained
using the survreg function with Gaussian distributions.
The elastic net penalized Buckley-James regression “EN-
BJ” is implemented using the bujar package [33]. We also
compared our proposed methods with the ordinary least
squares (OLS) linear regression since the loss function in
our model has a similar form to the OLS. Note that, the
OLS is not a censored regression method and hence it is
learned using only the uncensored instances rather than
the entire set of training instances.

• Pairwise ranking based models: Boosting concordance
index (BoostCI) [19] is an approach where the concor-
dance index metric is modified into an equivalent smoothed
criterion using the sigmoid function and the resulting op-
timization problem is solved using a gradient boosting al-
gorithm. The implementation of BoostCI (using R code)
can be found in the supporting file of [19] 4.

• Multi-task learning models: We compared our pro-
posed methods with the standard multi-task learning mod-
els, multi-task Lasso (Multi-LASSO) and l2,1-norm based
multi-task feature learning method (Multi-l2,1). In MAL-
SAR package, these two models are learned via“Lest L21”
and “Lest Lasso” functions, respectively [36]. Note that,
the these two methods cannot handle censored instances,
so the model is learned using only the uncensored in-
stances rather than the entire set of training instances,

4files.figshare.com/1339232/Text S1.pdf
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Table 2: Performance comparison of the proposed methods and other existing related methods using C-index values (along
with their standard deviations).

NSBCD VDV AML Lung MCL DBCD DLBCL

COX based

COX
0.4411 0.5973 0.5515 0.5158 0.5773 0.5539 0.4553

(0.0589) (0.1097) (0.0683) (0.1333) (0.0591) (0.1233) (0.0718)

LASSO-COX
0.5910 0.6484 0.5995 0.6698 0.6824 0.6880 0.6344

(0.1086) (0.0276) (0.0307) (0.0910) (0.0701) (0.0429) (0.0421)

EN-COX
0.6046 0.6422 0.5715 0.6652 0.6734 0.7214 0.6488

(0.1000) (0.0681) (0.0596) (0.0702) (0.0733) (0.0306) (0.0394)

Parametric models

Logistic
0.3787 0.5276 0.4544 0.5714 0.4827 0.4908 0.4840

(0.0195) (0.1404) (0.0772) (0.0942) (0.0682) (0.0872) (0.0496)

Weibull
0.3045 0.3159 0.5286 0.4287 0.4735 0.4555 0.2507

(0.1528) (0.1321) (0.0546) (0.1023) (0.0747) (0.1046) (0.0627)

Log-gaussian
0.4435 0.5210 0.4048 0.4122 0.2564 0.4875 0.3167

(0.0539) (0.1653) (0.0651) (0.0754) (0.0715) (0.0553) (0.0914)

Log-logistic
0.2378 0.5267 0.4677 0.5924 0.4802 0.5257 0.4246

(0.0500) (0.1071) (0.0800) (0.0655) (0.0724) (0.0232) (0.1243)

Linear models

OLS
0.6333 0.5206 0.4555 0.5743 0.5007 0.5690 0.5024

(0.1108) (0.0163) (0.0595) (0.0658) (0.1059) (0.0744) (0.1023)

Tobit
0.3733 0.5192 0.4726 0.4689 0.4591 0.4869 0.4969

(0.0214) (0.1581) (0.0759) (0.1358) (0.0322) (0.0762) (0.0527)

BJ-EN
0.6215 0.6081 0.6500 0.6646 0.7234 0.7094 0.6285

(0.0924) (0.0646) (0.0585) (0.1324) (0.1099) (0.0391) (0.0726)

Ranking based Boost-CI
0.6263 0.6650 0.5817 0.5713 0.7049 0.7103 0.6082

(0.0831) (0.0594) (0.0501) (0.0926) (0.0956) (0.0426) (0.0296)

Multi-task based

Multi-LASSO
0.6117 0.5293 0.5088 0.4410 0.6539 0.6256 0.6104

(0.1493) (0.1083) (0.0952) (0.1655) (0.0140) (0.0749) (0.0510)

Multi-l2,1
0.6100 0.5973 0.5246 0.5248 0.6912 0.6899 0.6115

(0.1700) (0.1440) (0.0285) (0.1130) (0.0602) (0.0720) (0.0512)

MTLSA.V2
0.6858 0.6727 0.6592 0.6769 0.7079 0.7515 0.6545

(0.0834) (0.0429) (0.0554) (0.0271) (0.0963) (0.0625) (0.0600)

MTLSA
0.6820 0.7008 0.7145 0.6327 0.7274 0.7581 0.6527

(0.0446) (0.0330) (0.0493) (0.0753) (0.1257) (0.0304) (0.0713)

and the labeling matrix is generated based on the scheme
presented in Section 3.1. Our proposed methods MTLSA
and MTLSA.V2 are implemented via Matlab and the
source code can be download at the following website5.

4.3 Performance comparison
Due to the presence of censoring in the data, the standard

evaluation metrics for regression such as root of mean square
error and R2 are not suitable for measuring the performance
in survival analysis [9]. Instead, the concordance index (C-
index), or the concordance probability, is used to measure
the performance of prediction models in survival analysis
[7]. Let us consider a pair of bivariate observations (y1, ŷ1)
and (y2, ŷ2), where yi is the actual observation, and ŷi is
the predicted one. The concordance probability is defined
as:

c = Pr(ŷ1 > ŷ2|y1 ≥ y2) (16)

By definition, the C-index has the same scale as the classical
area under the ROC (AUC) in binary classification, and if yi
is binary, then the C-index is same as the AUC. In the Cox
based models, the instances with a low hazard rate should

5https://github.com/MLSurvival/MTLSA

survive longer, and the C-index will be calculated as follows:

c =
1

num

∑
i∈{1···N}δi=1

∑
yj>yi

I(Xiβ̂ > Xj β̂) (17)

where num denotes the number of comparable pairs and
I[·] is the indicator function. The C-index in other methods
which aim at directly learning the survival time should be
calculated as:

c =
1

num

∑
i∈{1···N}δi=1

∑
yj>yi

I[S(ŷj |Xj) > S(ŷi|Xi)] (18)

where S(ŷi|Xi) is the predicted target value. Multi-task
learning models cannot directly predict the survival time
but they can determine whether an instance is alive or not at
each time interval (or task); thus, based on this information,
we can predict the survival time. In Table 2, we provide the
performance results of C-index values of different algorithms
on various real-world high-dimensional micro-array cancer
survival datasets. The best results are highlighted in bold.
The results show that our proposed models outperform the
other state-of-the-art models6.

6The method described in [15] was not able run on our high-
dimensional datasets and hence we were not able to obtain
any results for that method.
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Table 3: Performance comparison of the proposed methods and other existing related methods using Weighted average of
AUC (along with their standard deviations).

NSBCD VDV AML Lung MCL DBCD DLBCL

COX based

COX
0.4611 0.6352 0.5351 0.5464 0.4695 0.5334 0.4480

(0.1893) (0.1666) (0.0814) (0.1632) (0.1701) (0.1620) (0.1079)

LASSO-COX
0.5986 0.6857 0.7277 0.7499 0.7401 0.7068 0.7104

(0.1589) (0.0456) (0.0346) (0.1780) (0.0166) (0.0292) (0.0533)

EN-COX
0.6479 0.6770 0.6819 0.7540 0.7350 0.7497 0.7260

(0.0970) (0.0978) (0.0790) (0.1398) (0.0025) (0.0189) (0.0618)

Parametric models

Logistic
0.4597 0.5917 0.4918 0.6301 0.2986 0.4840 0.5011

(0.1742) (0.1433) (0.0417) (0.0924) (0.0501) (0.1086) (0.0489)

Weibull
0.4575 0.3177 0.5227 0.4379 0.3240 0.4707 0.4320

(0.2622) (0.1369) (0.0393) (0.1018) (0.0484) (0.0809) (0.1080)

Log-gaussian
0.4992 0.5647 0.4718 0.4182 0.4457 0.4742 0.4270

(0.2378) (0.2026) (0.0206) (0.0680) (0.0161) (0.0763) (0.0977)

Log-logistic
0.3304 0.5573 0.4984 0.5822 0.2983 0.5302 0.4712

(0.1057) (0.0627) (0.0521) (0.1544) (0.0505) (0.0298) (0.0627)

Linear models

OLS
0.6599 0.5268 0.4457 0.5677 0.5594 0.5998 0.4934

(0.1042) (0.0887) (0.0339) (0.1120) (0.1191) (0.1096) (0.1952)

Tobit
0.4567 0.5680 0.5042 0.4708 0.5074 0.4668 0.5243

(0.1812) (0.1778) (0.0412) (0.1422) (0.0283) (0.1021) (0.0691)

BJ-EN
0.6376 0.6664 0.7633 0.7494 0.8567 0.7344 0.6574

(0.1262) (0.0953) (0.0393) (0.1544) (0.0306) (0.0393) (0.0388)

Ranking based Boost-CI
0.6483 0.7151 0.6664 0.6497 0.7660 0.7380 0.6626

(0.0972) (0.0788) (0.1293) (0.2193) (0.0417) (0.0493) (0.0553)

Multi-task based

Multi-LASSO
0.6495 0.5166 0.4802 0.4410 0.6079 0.6402 0.5876

(0.1226) (0.0502) (0.1090) (0.1655) (0.0696) (0.0572) (0.1047)

Multi-l2,1
0.6501 0.6463 0.5247 0.5589 0.6476 0.7125 0.6001

(0.1314) (0.1510) (0.0316) (0.1486) (0.0653) (0.0775) (0.0528)

MTLSA.V2
0.6822 0.7441 0.7401 0.8076 0.7639 0.7569 0.7405

(0.0576) (0.0437) (0.0658) (0.0559) (0.0651) (0.0645) (0.0719)

MTLSA
0.7032 0.7659 0.8098 0.7169 0.8095 0.8003 0.7385

(0.0427) (0.0286) (0.0077) (0.0964) (0.0367) (0.0425) (0.0638)
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Figure 2: Scalability results of the MTLSA model. The times denote total runtime for 100 λ values averaged over three trials.

The C-index measures the model performance in regres-
sion problems. In addition to it, we also evaluate the model
performance in classification problems which corresponds to
whether a patient can survive at each time interval or not.
Since censoring occurs, the number of patients, who have
a known survival status label (“1” or “0” in target matrix
Y ), will reduce during the observation period, (as shown in
Figure 1, all 6 instances are labeled in Day1 and Day2, and
only 5 instances are labeled in Day3). Thus, in Table 3, we

present the comparison of weighted average AUC values of
different tasks (time intervals). The weighted average AUC
is defined as

AUCavg =

∑k
i=1 AUC(i)n

(i)
c̄∑k

i=1 n
(i)
c̄

(19)

where AUC(i) is the AUC value of the ith task, and n
(i)
c̄ is

the number of instances which have a known survival status
label in the ith time interval. The results in Table 3 show
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that the proposed models obtain higher AUCavg in most
of the datasets. This demonstrates that our proposed meth-
ods have a better time-dependent prediction capability than
other related methods.

From Tables 2 and 3, we note that our proposed methods
significantly outperform the standard multi-task learning
models. This reflects that the model, which is able to han-
dle and utilize both censored and uncensored instances, can
provide significantly better results compared to the model
which will only use fully observed (uncensored) instances.
Our proposed indicator matrix W can appropriately handle
the censored instances. We can also observe that for some
datasets, especially which have a large number of tasks like
NSBCD and Lung, the MTLSA.V2 performs better than
MTLSA. This is because the non-negative non-increasing
structure is a strict constraint and may affect the flexibility
of the MTLSA model as mentioned in Section 3.5. We can
also observe the standard deviation values of the results ob-
tained from both the models are significantly lower across all
of the datasets compared to the other methods. This shows
the robustness of our method with respect to obtaining bet-
ter results across different folds.

4.4 Scalability experiments
We empirically evaluate the scalability of the proposed

MTLSA method with respect to the sample size (n), the
number of features (q) and the number of tasks (k). The
synthetic datasets are generated using the the function“sim-
ple.surv.sim” in survsim package [20] with different sample
sizes, feature dimensionality, and maximum follow-up times
(which corresponds to the tasks). All the features are gen-
erated based on a uniform distribution, and each of them
have a different randomly set interval. The coefficient vec-
tor is also randomly generated and remains within [−1, 1].
The observed time is assumed to follow a Log-logistic distri-
bution and the time to censorship follows a Weibull distri-
bution (which is a standarded practice in survival analysis).
Figure 2(a) shows the runtimes for fixed q-k combination
and varying n, Figure 2(b) shows the runtimes for fixed n-k
combination and varying q, and Figure 2(c) shows the run-
times for fixed n-q combination and varying k. These three
plots clearly demonstrate that the runtime of MTLSA is
close to being linear with respect to n, q and k.

5. CONCLUSION
In this paper, we formulated the survival analysis problem

as a multi-task learning problem and proposed a new multi-
task learning algorithm, MTLSA, which is able to han-
dle censored instances in time-to-event data. The MTLSA
algorithm explicitly models the critical properties of sin-
gle event survival analysis by imposing the non-negative
and non-increasing list structural constraint. In addition,
the l2,1-norm penalty is used to enable the model learn a
shared representation across related tasks and hence select
important features thus alleviating over-fitting in the high-
dimensional feature space. We also develop an adaptive vari-
ant, MTLSA.V2, which relaxes the structural constraints
and produces better results when the number of tasks is
large. We extensively compared the performance of the pro-
posed algorithm with state-of-the-art survival analysis meth-
ods using several publicly available high-dimensional mi-
croarray gene expression datasets using both regression and
classification based standard evaluation metrics. We also

demonstrated the linear scalability of the proposed model
with respect to the sample size, feature dimensionality, and
the number of tasks (number of time intervals).
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APPENDIX
A. PROJECTION ONTO A NON-NEGATIVE

MAX-HEAP
A non-negative max-heap is an ordered tree where the

values of the nodes are all non-negative and the value of any
parent node is no less than the value(s) of its child node(s).
It can be mathematically defined as:

P = {X ≥ 0, xi ≥ xj |∀(xi, xj) ∈ Et} (20)

where T t = (V t, Et) is a target tree with V t = {x1, x2, · · · , xp}
containing all the nodes and Et denotes all the edges. The
non-negative non-increasing list structure defined in Eq.(2)
is a special case of non-negative max-heap where the T t is
a sequential list.

In [18], a maximal root-tree based algorithm (Atda) was
proposed to solve the non-negative max-heap projection

πP (V ) = min
X∈P

1

2
‖ X − V ‖2 (21)

Before describing the algorithm itself, we first introduce
some definitions to help understand the maximal root-tree.

Definition 1. For a non-empty tree T = (V,E), its root-

tree is any non-empty tree T̃ = (Ṽ , Ẽ) that satisfies: (1)

Ṽ ⊆ V , (2) Ẽ ⊆ E, and (3) T̃ shares the same root as T .

Definition 2. For a non-empty tree T = (V,E), R(T )
is defined as the root-tree set which contains all root-trees of
T .

Definition 3. For a non-empty tree T = (V,E), we de-

fine m(T ) = max
(∑

vi∈V
vi

|V | , 0
)

, which equals to the mean

of all the nodes in T if such mean is non-negative, and 0
otherwise.

Definition 4. For a non-empty tree T = (V,E), we de-
fine its maximal root-tree as:

M(T ) = arg max
T̃=(Ṽ ,Ẽ),T̃∈R(T ),m(T̃ )=mmax(T )

|Ṽ | (22)

where mmax(T ) = maxT̃∈R(T ) m(T̃ ) is the maximal value of
all the root-trees of T , and if some root-trees share the same
maximal value then M(T ) is the one with the largest tree
size.

The key idea of Atda is that, in the ith call, we find Ti =
M(T ), the maximal root-tree of T , set its corresponding
nodes to m(Ti), then remove Ti from the tree T , and apply
Atda to the resulting trees one by one in a recursive manner.
The detailed discussion to justify the working of Atda along
with feasible solution of Eq.(21) is given in [18], and for
the non-negative non-increasing list structure Atda has a
(worst-case) linear time complexity.
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