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ABSTRACT
Integrating regularization methods with standard loss func-
tions such as the least squares, hinge loss, etc., within a
regression framework has become a popular choice for re-
searchers to learn predictive models with lower variance and
better generalization ability. Regularizers also aid in build-
ing interpretable models with high-dimensional data which
makes them very appealing. It is observed that each regular-
izer is uniquely formulated in order to capture data-specific
properties such as correlation, structured sparsity and tem-
poral smoothness. The problem of obtaining a consensus
among such diverse regularizers while learning a predictive
model is extremely important in order to determine the op-
timal regularizer for the problem. The advantage of such an
approach is that it preserves the simplicity of the final model
learned by selecting a single candidate model which is not
the case with ensemble methods as they use multiple can-
didate models for prediction. This is called the consensus
regularization problem which has not received much atten-
tion in the literature due to the inherent difficulty associated
with learning and selecting a model from an integrated reg-
ularization framework. To solve this problem, in this paper,
we propose a method to generate a committee of non-convex
regularized linear regression models, and use a consensus cri-
terion to determine the optimal model for prediction. Each
corresponding non-convex optimization problem in the com-
mittee is solved efficiently using the cyclic-coordinate de-
scent algorithm with the generalized thresholding operator.
Our Consensus RegularIzation Selection based Prediction
(CRISP) model is evaluated on electronic health records
(EHRs) obtained from a large hospital for the congestive
heart failure readmission prediction problem. We also eval-
uate our model on high-dimensional synthetic datasets to
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assess its performance. The results indicate that CRISP out-
performs several state-of-the-art methods such as additive,
interactions-based and other competing non-convex regular-
ized linear regression methods.

Keywords
Consensus prediction; regularization; regression.

1. INTRODUCTION
Consensus modeling is an important topic which deals

with assembling a committee of experts for a given prob-
lem and then obtaining a consensus among their votes to
arrive at the final prediction. This has been applied to pre-
dictive analytics problems such as classification, ensemble
modeling and active learning where a committee of mod-
els are created to cast their individual votes on a test case.
Multiple classifier fusion is an application of consensus mod-
eling where multiple classifiers are integrated within a single
framework [1]. Query by Committee is also a well studied
topic in the context of active learning where consensus mod-
eling is used to determine the instance whose label must be
queried [2, 3]. The effectiveness of consensus modeling in
such scenarios like classification and active learning relies
on the mechanism used to build the committee of models.
Consensus modeling can be extended to the field of regular-
ization in the context of regression which is described to be
the consensus regularization problem in this paper.

Consensus regularization is the problem of identifying an
optimal regularizer for a given regression problem among a
set of regularized models by obtaining a consensus among
all these models. The consensus is obtained using a pre-
defined criterion which assesses each of the candidate regu-
larizers separately and decides the best candidate regular-
izer for prediction. Solving such a problem is non-trivial
since it is not easy to integrate multiple regularizers within
a single framework. This is because the regularizers differ in
their degree of complexity and how they interpret the inher-
ent data structure which makes this problem of integration
highly cumbersome. Optimization methods such as proxi-
mal algorithms also cannot be universally applied to solve
multiple regularization problems because the cost of obtain-
ing the proximal operator associated with each regularizer
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may significantly differ [4, 5]. Finally, ensuring diversity of
regularizers within a multiple regularizer framework is not
always guaranteed. This is the reason why the problem of
unifying multiple regularizers has not received much atten-
tion in the data mining community.

To solve this problem, in this paper, we propose a two-
step algorithm. The first step generates a committee of reg-
ularization models. Each model in this committee differs
from the others, but the solution for each one of them can
be expressed using a unique generalized thresholding opera-
tor [6–8]. The advantage of our approach is that this gener-
alized thresholding operator can be computed efficiently for
each individual model. In addition, to promote robustness in
the model to capture sparsity more effectively, we use non-
convex regularizers within our approach. Non-convex regu-
larizers have certain unique advantages of unbiased feature
selection and consistent results which make them a better
choice compared to the prominent sparsity promoting con-
vex regularizers such as the Lasso. We choose a non-convex
regularizer called the minimax concave plus (MC+) penalty
for the model proposed in this paper which is explained in
Section 4.

The second stage of our approach involves using a con-
sensus criterion among all these candidate regularizers to
obtain the final model for prediction. A major advantage
of our approach is that an expert can design an arbitrary
consensus criterion and integrate it with this approach to
obtain an optimal model for prediction. This is particularly
important while building prediction models on real-world
data where an expert aims at optimizing the model perfor-
mance for domain-specific metrics.

We conduct extensive sets of experiments for this Con-
sensus RegularIzed Selection based Prediction framework
(CRISP) algorithm on electronic health records (EHRs) col-
lected from a large hospital consisting of 8,000 patient records.
We now summarize the major contributions of this paper.

• Propose aConsensusRegularIzed Selection basedPrediction
framework (CRISP) which builds a committee of non-
convex regularized linear regression candidate models and
integrates them using a consensus criterion to obtain the
optimal model for prediction.

• Develop an efficient cyclic coordinate descent based solu-
tion for the optimization problem being solved for learning
each candidate model in CRISP. We also provide proof of
convergence for the proposed algorithm.

• Evaluate CRISP using state-of-the-art additive, interaction-
based, and non-convex regularized linear regression mod-
els using metrics such as AUC, MSE and R2. We also
conduct experiments to assess the performance of CRISP
on high-dimensional synthetic datasets.

In our evaluation, CRISP obtained very competitive AUC
values for the 30-day and 365-day readmission problems
compared to state-of-the-art regression methods. This pa-
per is organized as follows: In Section 2, we provide a brief
review of the related work on additive, hierarchical and non-
convex regularized regression models. In Section 3, we pro-
vide the notations that are necessary for understanding the
proposed CRISP model along with a brief overview of regu-
larization theory. In Section 4, we present the details of the
CRISP model including the MC+ penalty, the generalized

thresholding operator and the corresponding cyclic coordi-
nate descent algorithm employed in CRISP. In Section 5,
we evaluate the performance of CRISP using various ad-
ditive, interaction-based and non-convex regularized linear
regression methods. Finally, we conclude our discussion and
provide directions for future work in Section 6.

2. RELATED WORK
In this section, we review the existing works related to the

topics of non-convex regularized linear regression, additive
and interaction-based methods. We briefly mention how the
contributions in this paper are distinctly different from these
algorithms that are available in the literature.

• Non-convex regularized linear regression models [9,10]: Con-
vex regularizers such as the �1 norm, �2 norm and the
elastic net penalty are used popularly in the sparse learn-
ing literature [11–13]. However, based on some empiri-
cal studies, it has been observed that they are not per-
fect in capturing sparsity [14, 15]. In contrast, methods
with non-convex penalties can recover sparsity more effi-
ciently and are being actively pursued by researchers re-
cently. Optimization methods such as Difference of Con-
vex Functions (DC) programming, Alternating Direction
Method of Multipliers (ADMM) and proximal algorithms
are popular choices for solving such non-convex optimiza-
tion problems efficiently.

• Additive models [16–18]: Generalized Additive Models (GAM)
capture non-linear relationship between individual features
and the response. However, the standard GAM does not
perform well since it does not model any interactions be-
tween the features. To overcome this issue, generalized
additive models plus interactions (GA2M) is proposed by
adding selected terms of interacting pairs of features to
GAM. In other words, GA2M consists of both univariate
terms and a small number of pairwise interaction terms.
The interactions can be determined by a greedy forward
selection strategy for low-dimensional data and FAST in-
teraction detection can be used for large high-dimensional
datasets.

• Interactions based models [19,20]: Additive models which
only consider the main effects of the features are ineffec-
tive in many situations when predicting an outcome of
interest. Regression models with interactions, which con-
sider the effect of different features on the response vari-
able except for the main effects, are more effective than
additive models. In these models, the additive part cor-
responds to the main effect term and the quadratic part
corresponds to the interaction term. In general, not all of
the main effects and interactions are of interest, thus it
is critical to select the variables of high significance. In
statistics, a hierarchical structure between the main effects
and interaction effects has been shown to be very effective
in constraining the search space and identifying impor-
tant individual features and interactions. Specifically, the
hierarchical constraint requires that an interaction term
is selected in the model only if its corresponding main
effects are included. Strong theoretical properties have
been established for such hierarchical models. We refer
to these algorithms which model strong and weak inter-
actions, in this paper, as hiernet-strong and hiernet-weak,
respectively.
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In contrast to these methods, our CRISP approach uses
a non-convex penalty generating multiple candidate models
in the process, and selects an optimal model using a con-
sensus criterion among these candidate models for the final
prediction.

3. PRELIMINARIES
This section introduces the preliminaries required to com-

prehend the proposed approach. First, the notations used in
our work are presented in Table 1. We then review the con-
cepts associated with regularized linear regression models
followed by introducing the thresholding operators used in
our CRISP algorithm. Eq. (1) describes the basic linear re-

Table 1: Notations used in this paper.

Name Description
n number of instances.
m number of features.

X R
n×m feature vector matrix.

Y R
n response variable.

β R
m regression coefficient vector.

λ scalar regularization parameter.
Λ a vector of regularization parameters.
γ scalar non-convexity parameter.
Γ a vector of non-convexity parameters.
L length of regularization sequence.
K length of non-convexity sequence.

η consensus matrix ∈ R
L×K entries.

P (|β|, λ, γ) a family of penalty functions.

S(β̃, λ) soft-thresholding operator.

H(β̃, λ) hard-thresholding operator.

gression model which aims at estimating the relationship be-
tween the features X = (x1, x2, ..., xn)

T and the correspond-
ing response variable Y = (y1, y2, ..., yn)

T , where xi ∈ R
m

and yi ∈ R for i = 1, . . . , n.

Y = f(X) = Xβ + ε. (1)

In high-dimensional data, m is much greater than n. This
motivates the use of a relatively small number of predictors
to accurately predict the outcome.

β̂ = arg min
β∈Rm

1

2

n∑
i=1

(yi − f(xi))
2 + λP (β) (2)

Eq. (2) provides the standard regularized linear regression
setting where λ is the penalty coefficient which controls the
degree of regularization and P (β) is a penalty function. A
number of variable selection methods with convex penalty
functions and the corresponding optimization methods have
been proposed in the literature [11–13].

The �p norm for p > 1 does not provide a sparse solution.
When p ≤ 1, the solution is sparse. Lasso [11,21] with the �1
penalty function is convex and non-smooth which produces
models with good prediction accuracy when the underlying
model is reasonably sparse. The lasso penalty is often con-
sidered as the convex surrogate for the best-subset selection
with the �0 penalty, ‖ β ‖0= ∑m

i=1 I(|βi| > 0), which penal-
izes the number of non-zero coefficients in the model, where
I represents the indicator function.

However, there are two disadvantages for the lasso method.
Empirical results show that the �1 penalty tends to generate
biased estimates for large coefficients, which may prevent its

consistent variable selection. In addition, lasso is effective at
giving sparse solutions, but when variables are correlated, it
excludes many correlated variables once a strong variable is
included and fully fitted in the model. Also, when the regu-
larity conditions are violated, the lasso can be sub-optimal
in variable selection, which means it can fail as a variable
selector. In order to include the full effect of a variable in the
model, we have to relax the penalty to allow other redundant
but possibly correlated features. Fan and Li [22] suggested
some desirable properties of the penalization function, such
as sparsity and unbiasedness of the estimated parameters.

To address these disadvantages associated with the lasso
method, some non-convex penalty functions, which bridge
the gap between �1 and �0 penalty, have also been consid-
ered. Non-convex penalties are known to be more efficient at
recovering sparsity compared to convex penalties. We con-
sider a generic dual parameter non-convex formulation from
the literature as given in Eq. (3), where P (β; γ) defines a
family of penalty functions concave in |β|.

β̂ = arg min
β∈Rm

1

2

n∑
i=1

(yi − f(xi))
2 + λP (β; γ) (3)

In this optimization problem, both λ and γ are user pro-
vided parameters and they control the degree of the regu-
larization and non-convexity, respectively. In other words,
for a fixed λ, there will be a family of penalty functions,
each of which corresponds to an optimization problem. This
means that the penalty function P (β; γ) can be updated to
be P (β;λ, γ) if we also consider λ as a parameter of the
model. In addition, due to the fact that the penalty func-
tion is separable for the parameters β = (β1, . . . , βm)T , the
optimization problem in Eq. (3) can be updated as follows
after incorporating λ within the penalty function.

β̂ = arg min
β∈Rm

1

2

n∑
i=1

(yi − f(xi))
2 +

m∑
i=1

P (|βi|;λ; γ) (4)

In Eq. (4), for a fixed λ, the value of the parameter γ
varies in the range of [1+,∞) where 1+ represents values
greater than 1. Each variation of γ corresponds to a sepa-
rate problem. A family of threshold operators called the gen-
eralized thresholding operator [6–8], with soft-thresholding
(ST) and hard-thresholding (HT) as its two extremes, will
be obtained by solving all the optimization problems using
the cyclic-coordinate descent method [23].

Also, the regularization parameter λ can vary, which gen-
erates different families of threshold operators. Each thresh-
old operator corresponds to a solution of an optimization
model with specific λ and γ values. This means a consensus
matrix η will be obtained based on the family of threshold
operators obtained by varying λ and γ. This matrix cap-
tures the information across all the different regularization
models in the committee. Subsequently, we use a consensus
criterion to select the optimal model parameters.

4. THE PROPOSED METHOD
In this section, we discuss the formulation of the minimax

concave plus (MC+) penalty [9] function used in CRISP.
We use this penalty and propose a novel consensus regu-
larized selection based prediction method which generates a
committee of regularized models and selects the best model
among them. The selection among these different models is

1021



done using a consensus-based decision rule which differenti-
ates our method compared to other ensemble techniques in
machine learning.

Majority voting is a binary decision rule and it selects the
candidate which obtains the highest number of votes. In
other words, majority voting takes all the different choices
into consideration by counting the occurrence when making
decisions. However, in our method, we conduct an explicit
search for the optimal model parameters (λ∗, γ∗) among all
the entries in the consensus matrix η which effectively cap-
tures the information across all the different models.

4.1 Consensus Regularized Selection based Pre-
diction Method

In this framework, we use the MC+ penalty which is a
fast, continuous, nearly unbiased and accurate method for
penalized variable selection in linear regression. The moti-
vation for using this penalty arises from (i) it is an unbi-
ased feature selection property which is one of the key dis-
dvantages associated with the lasso, and (ii) it can be com-
puted efficiently which makes it easier to employ it within
ensemble-based models.

P (β;λ; γ) = λ

∫ |β|

0

(1− x

γλ
)+dx (5)

= λ(|β| − β2

2λγ
)I(|β| < λγ) +

λ2γ

2
I(|β| ≥ λγ)

The MC+ penalty is defined in Eq. (5). For each value
of λ > 0, there will be a continuum of penalties and thresh-
old operators when γ varies from ∞ to 1. (·)+ represents
the positive component. The threshold operators for the
MC+ penalty will form a continuum between the soft- and
hard-thresholding functions, which generates a natural and
smooth transition across the set of solutions. In addition,
we can also vary the value of λ, which will determine a spe-
cific model along with the non-convexity parameter γ. Thus,
using the MC+ penalty we will develop a committee of pre-
diction models to be used in CRISP.

By using the MC+ penalty, we can consider different com-
binations of the regularization parameter (λ) and the non-
convexity parameter (γ), which will be helpful to avoid ob-
taining sub-optimal solutions. In other words, the MC+
penalty ensures a family of models for a fixed λ by inter-
polating between the �0 norm and �1 norm, which provides
more candidates for the approximation of the �0 norm. In
addition, it also generates a series of thresholding operators
with the soft-thresholding operator and hard-thresholding
operator as its two extremes. Thus, we can conclude that
the MC+ penalty has the necessary and meaningful proper-
ties for capturing sparsity more efficiently.

Q(1)(β) =
1

2
(β − β̃)2 + λ

∫ |β|

0

(1− x

γλ
)+dx (6)

Non-convex penalties such as the MC+ penalty can also
perform better feature selection. When we use the MC+
penalty in the objective function in Eq. (6), the univari-
ate penalized least squares objective function will be strictly
convex, which ensures the descent property with coordinate
descent method and the solution converges to a stationary
point [9, 24]. The objective function used within the MC+
penalty is separable, which enables us to optimize the uni-
variate case which is one-dimensional with the form using

the standard coordinate-decent approach. If β > 0, the
derivative of Q(1)(β) with respect to the β can be calculated

as dQ(1)(β)
dβ

= β − β̃ + λ(1− β
γλ

)+.

Sγ(β̃, λ) → S(β̃, λ) (7)

= argmin
β

{1
2
(β − β̃)2 + λ|β|}

= sgn(β̃)(|β̃| − λ)+

For a fixed λ, as γ varies, this generates a family of thresh-
old operators Sγ(·, λ) : R → R, with the soft and hard
thresholding operators as its two extremes. The soft-thresholding
operator when γ → ∞ is given as in Eq. (7).

Sγ(β̃, λ) → H(β̃, λ) (8)

= argmin
β

{1
2
(β − β̃)2 + λI(|β| > 0)}

= β̃I(|β̃| > λ)

The hard-thresholding operator when γ → 1+ is given in
Eq. (8). Since soft and hard thresholding functions are often
used in the optimization problems with �1 and �0 norms,
respectively, we assume γ�1 = ∞ and γ�0 = 1+ for the �1
and �0 norms.

Sγ(β̃, λ) = argmin
β

Q(1)(β) (9)

=

⎧⎪⎪⎨
⎪⎪⎩
0 |β̃| ≤ λ

sgn(β̃)( |β̃|−λ

1− 1
γ

) λ < |β̃| ≤ λγ

β̃ |β̃| > λγ

Each coefficient in our optimization problem can be esti-
mated by the generalized thresholding operator as given in
Eq. (9) for the univariate problem. In each iteration, all of
the m coefficients are repeatedly updated until convergence.
In this case, all the solutions when varying λ and γ will
form a two-dimensional solution surface whose coordinates
can be represented as the matrix η. The goal of our work
is to find optimal parameters (λ∗, γ∗) corresponding to the
best solution. In order to find the best solution, our method
will evaluate each solution. We now present the consensus
criterion used in CRISP.

Consensus criterion: Squared error (se) of an estima-
tor measures the square of the errors (or deviations) and
assesses the quality of an estimator. It is used for assess-
ing the performance of an estimator or a predictor. Gen-
erally, for the ith training instance (xi, yi) and a linear fit

f̂λ�,γk (xi) = xiβ̂λ�,γk , when the values of λ� and γk are fixed,
the squared error of the predictor will be of the form given
below.

ηλ�,γk = se(f̂λ�,γk ) =

n∑
i=1

(f̂λ�,γk (xi)− yi)
2 (10)

Using this formulation of the consensus criterion, we eval-
uate the performance of each model for different pairs of
(λ�, γk). We now present the CRISP algorithm which gen-

erates a family of solutions β̂λl,γk based on Eq. (4) and se-
lects the best one using this criterion based on the squared
error of deviances. We assume that the matrix X is stan-
dardized with each column having zero mean and unit �2
norm. When γ=∞, the exact solution path for Q(β) using
coordinate-descent method will be used as a warm start for
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the minimization of Q(β) with a non-convex penalty func-
tion.

The value of γ is decreasing until we have the solution path
across a grid of values for γ [24]. The details of our approach
are given in Algorithm 1. The univariate sub-problem in
Eq. (6) will be optimized using coordinate descent method
[23] which is a widely used non-derivative optimization al-
gorithm. In each iteration of the coordinate descent method
for the objective function argminβQ(β1, β2, . . . , βm), it per-
forms search along one coordinate direction at the current
point and cyclically iterates through the other directions.
In other words, in each iteration, the algorithm solves the
optimization problem as shown in Eq.(11) for each variable
βi(i = 1, 2, ...,m) of the problem.

βk+1
i = argmin

u∈R

Q(βk+1
1 , ..., βk+1

i−1 , u, β
k
i+1, ..., β

k
m) (11)

That is, in each iteration of the optimization problem,
each variable βi(i = 1, 2, . . . ,m) will be updated until con-
vergence. Coordinate descent method minimizes a multi-
variable objective function by solving a series of univariate
optimization problems in a loop.

4.2 Optimization
In this section, we discuss the optimization involved in the

CRISP algorithm and also provide a detailed algorithmic de-
scription. We begin by providing the proof of convergence.
The convergence of CRISP algorithm cannot directly follow
the convergence property of coordinate-descent for functions
with the form of the sum of a smooth loss function and a
separable non-smooth convex penalty function due to its
non-convex formulation [24]. This makes it important to
discuss the convergence properties of our algorithm. The
coordinate descent method used within CRISP updates the
variables using Eq. (11). We will now show that the CRISP
algorithm always converges to a global minimum of the ob-
jective function under certain assumptions which will be dis-
cussed below.

Consider the criterion in Eq. (4), where the data (X,Y )
lies on a compact set and no column of the features in X
is a multiple of the unit vector. Also, suppose that the
penalty function P (β;λ; γ) is symmetric around 0, which
means that it satisfies P (β;λ; γ) = P (−β;λ; γ); the first

derivative of P (β) with respect to β, P
′
(|β|), is non-negative,

uniformly bounded and the second derivative P
′′
(|β|) sat-

isfies infβP
′′
(|β|) > −1; the sequence generated {βk}k is

bounded; for all the subsequences {βnk}k of {βk}k, the suc-
cessive differences, i.e., (βnk − βnk−1) converges to 0.

Theorem 1 The univariate problem in Eq. (6) is strictly
convex and the sequence of coordinate-updates {βk}k con-
verge to a minimum solution of Eq. (4).

Proof. It should be noted that the MC+ penalty used
in our work can meet all the required properties mentioned
above. In addition, the assumption on data (X,Y ) is used to
ensure that the variables can be standardized and the non-
degeneracy assumption on X means that all the columns are
identically non-zero.

For a fixed i and (β1, · · · , βi−1, u, βi+1, · · · , βm), we de-
note Q(u) as

Q(u) = Qi
(β1,··· ,βi−1,u,βi+1,··· ,βm)

= l(β1, · · · , βi−1, u, βi+1, · · · , βm) + P (|u|)
(12)

where l(·) is the loss function. Then, based on the Taylor’s
series expansions on f and penalty function P (|u|), the sub-
gradient at u will be

∂Q(u) = Q(u+ δ)−Q(u) (13)

= �il(β1, · · · , βi−1, u, βi+1, · · · , βm) + P
′
(|u|)sgn(u)

= l(β1, · · · , βi−1, u+ δ, βi+1, · · · , βm)

− l(β1, · · · , βi−1, u, βi+1, · · · , βm)

+ P (|u+ δ|)− P (|u|)
= �il(β1, · · · , βi−1, u, βi+1, · · · , βm)δ +

1

2
δ2�2

i l

+ P
′
(|u|)(|u+ δ| − (|u|)) + 1

2
P

′′
(|u∗|)(|u+ δ| − |u|)2

where δ ∈ R and �2
i l = 1 since it is the second derivative

of the function f with respect to the ith coordinate. |u∗| is
some number between |u+δ| and |u|. Assume that u0 is the
optimal value for F (u), based on Eq. (13), we can have

Q(u0 + δ)−Q(u0) (14)

≥ 1

2
δ2�2

i l +
1

2
P

′′
(|u∗|)(|u0 + δ| − |u0|)2

≥
{

1
2
δ2�2

i l +
1
2
P

′′
(|u∗|)δ2 if P

′′
(|u∗|) ≤ 0

1
2
δ2�2

i l + 0 if P
′′
(|u∗|) ≥ 0

≥ 1

2
δ2(�2

i l +min{P ′′
(|u∗|), 0})

Since for the MC+ penalty, infβP
′′
(|β|) = − 1

γ
with γ > 1,

�2
i l + infxP

′′
(|x|) > 0. Then there exists a positive value

θ = 1
2
δ2(�2

i l +min{infxP ′′
(|x|), 0}) such that

Q(u0 + δ)−Q(u0) ≥ θδ2 (15)

Based on the analysis above, the boundedness of the se-
quence βt for t > 1 will be

Q(βt−1
i )−Q(βt−1

i+1 ) ≥ θ(βt−1
i+1 − βt

i+1)
2 (16)

= θ ‖ βt−1
i − βt−1

i+1 ‖22
where βt−1

i = (βt
1, · · · , βt

i , β
t−1
i+1 , · · · , βt−1

m ). Using this bound-
edness for each coordinate, for every t, we will have

Q(βt+1)−Q(βt) ≥ θ ‖ (βt+1 − βt) ‖22 (17)

From Eq. (17), we can see that the decreasing sequence
Q(βt) converges. The sequence βk cannot cycle without
convergence and it must have a unique limit point. This
completes the proof of convergence for βk.

We now provide a stepwise description of the CRISP algo-
rithm. Algorithm 1 outlines the CRISP algorithm for select-
ing the best estimates among a family of solutions β̂λ�,γk to
Eq. (4). A grid of increasing Λ = {λ1, λ2, · · · , λL, λL+1} and
Γ = {γ1, γ2, · · · , γK} values are used for traversing different
combinations of λ and γ, and generating different candidate
models in the ensemble. Here, the additional λL+1 values is
used for the warm start of CRISP algorithm by Lasso.

In line 2, we initialize the estimator using the solution
from Lasso for the minimization of Q(β) at a smaller value
of γ corresponding to a more non-convex penalty. In lines
4-8, each element of the coefficient vector is updated using
the coordinate-wise update as shown in Eq. (9) until the
solutions converge to the solution for Eq. (4) when λ = λ�

and γ = γk. In line 10, we evaluate each model by obtaining
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Algorithm 1: CRISP Algorithm

Input: Predictor matrix (X); response variable (Y );
regularization parameter sequence (Λ);
non-convexity parameter sequence (Γ);
length of Λ (L); length of Γ (K).

Output: Optimal model parameters (λ∗, γ∗) and
regression coefficient vector (β∗).

1 for � = L, · · · , 2, 1 do

2 Use Lasso solution β̂λ�+1,γK as warm start;

3 Initialize β̃ ← β̂λ�+1,γK ;

4 for k = K, · · · , 2, 1 do
5 repeat
6 for i = 1, 2, · · · , p do

7 β̃i ← Sγk (β̃, λ�) using Eq. (11);
8 end

9 until β̃ converges to β̂λ�,γk ;

10 Estimate ηλ�,γk using Eq. (10) for β̂λ�,γk ;

11 end

12 end

13 (λ∗, γ∗) ← argminλ�,γk∈R Q(β̃);
14 Select final model β∗ corresponding to (λ∗, γ∗);

the value of the squared error (se) and populate a L × K

consensus matrix η, in which ηλ�,γk = se(f̂λ�,γk ) for � =
1, 2, ..., L and k = 1, 2, ...,K. Here L and K represent the
number of elements in Λ and Γ, respectively. In Line 13,
according to the value of the se, the best model parameters
which has the minimum se value among the LK entries in η
will be selected as the final model parameters. Subsequently,
the model β∗ corresponding to these parameters (λ∗, γ∗) will
be used for prediction.

4.3 Complexity Analysis
CRISP uses a cyclic coordinate descent based method

to generate a committee of regularized models. The selec-
tion procedure using the squared error criterion for differ-
ent (λ�, γk) values takes linear time in general, as we have
to find the minimum entry among a set of LK entries in
the consensus matrix η. Filling up each entry of the ma-
trix η constitutes O(m) time. When (λ∗, γ∗) are selected,
these model parameters are used for the final prediction.
Hence, the overall time complexity of the CRISP algorithm
is O(nm).

5. EXPERIMENTAL RESULTS
In this section, we conduct different experiments to eval-

uate the performance of the CRISP algorithm. We evaluate
the goodness of prediction and scalability of CRISP by com-
paring it with various state-of-the-art algorithms.

5.1 Experimental Setup
We evaluate the performance of our CRISP algorithm us-

ing real-world EHRs and synthetic datasets which are sum-
marized in Table 2.

5.1.1 Electronic Health Records (EHRs)
The EHRs used in this paper were obtained from Henry

Ford Health System in Detroit, Michigan in the United States
for patients admitted with congestive heart failure (CHF)

Table 2: Description of the EHRs and synthetic datasets
used in our experiments.

EHRs # Features #Instances
HF-cohort 77 8132
EHR-0 73 4416
EHR-1 72 3409
EHR-2 72 2748
EHR-3 72 2208
EHR-4 71 1800
Syn-1 1000 500
Syn-2 5000 500
Syn-3 10000 500

condition over a period of 10 years. In Figure 1, we show
the class distribution for these EHRs. The Y-axis repre-
sents the % of readmissions (positive class) for 30-day and
365-day readmission. The X-axis represents the indices of
the EHRs. These EHRs were procured over successive read-
missions of patients. The suffix next to EHR represents the
index of readmission, for example EHR-i corresponds to the
data about all patients readmitted for the ith time. It can
be observed that the number of patients in each of the lon-
gitudinal EHRs decreases with successive readmissions. In
addition to the readmission datasets, we also use a basic
cohort dataset (HF-cohort) which represents an aggregated
dataset summarizing the readmission information for all in-
dividuals over 10 years. The feature groups that were in-
cluded for our evaluation include medications, procedures,
labs, demographics and comorbidities. We used several data
pre-processing methods such as normalization, imputation
and feature integration to create the final EHRs [25].

Figure 1: Class distribution for EHRs.

For our experiments, since we deal with the readmission
risk prediction problem at two different thresholds, i.e., 30
days and 365 days, we determine the labels for each of these
cases by calculating the difference between the readmission
date and its preceding discharge date. In the case of 30-day
readmission, if the difference is less than 30 days, we assign
a label of 1 and if the difference is greater than 30 days,
we assign 0. Following the same procedure for the 365-day
readmission problem, we created two unique sets of binary
prediction problems for each of the EHRs.

5.1.2 Synthetic Datasets
We now explain the generation of the synthetic datasets

for evaluating the CRISP model. A simulation study will
be examined in this section to evaluate the performance of
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our CRISP algorithm using synthetic datasets under various
conditions. Based on a regression model y=Xβ∗+ε, where
β∗ ∈ R

m and ε ∼ N(0, σ2I), we consider three different sce-
narios and generate the synthetic datasets. These datasets
are generated as per the guidelines given in [26] to encour-
age grouping and sparsity among the features. X ∼ N(0, C),
where C = [cij ] is the covariance matrix, and the original
feature coefficient values are given as follows.

1. In Syn-1, n = 500 and there are m = 1000 predictors.
The parameters are generated as

β∗ = [3, · · · , 3︸ ︷︷ ︸
0.1m

, 2, · · · , 2︸ ︷︷ ︸
0.1m

, 1.5, · · · , 1.5︸ ︷︷ ︸
0.1m

, 0, · · · , 0︸ ︷︷ ︸
0.7m

]T

and σ = 3, with covariance cij = 0.7|i−j|.

2. In Syn-2, n = 500 and there are m = 5000 predictors.
The parameters are generated as

β∗ = [3, · · · , 3︸ ︷︷ ︸
0.1m

, 0, · · · , 0︸ ︷︷ ︸
0.3m

, 1.5, · · · , 1.5︸ ︷︷ ︸
0.1m

, 0, · · · , 0︸ ︷︷ ︸
0.4m

, 2, · · · , 2︸ ︷︷ ︸
0.1m

]T

3. In Syn-3, n = 500 and there are m = 10000 predictors.
The parameters are generated as

β∗ = [0.85, 0.85, · · · , 0.85]T

5.2 Implementation Details
In this section, we explain our experimental setup used for

evaluating the CRISP algorithm. The CRISP algorithm was
implemented using the R programming language. All the
machine learning models used for comparison in our work
were also implemented in R. Elastic net was implemented us-
ing the glmnet [23] R package for both the linear and logistic
loss functions. Sparse Group Lasso (SGL) was implemented
using the corresponding R package available in [27]. We im-
plemented the hiernet-weak and hiernet-strong algorithms
using the R package hierNet [19]. GAM and GA2M were im-
plemented using the codes provided by the authors [16, 17].
While implementing the GA2M model, we only consider the
top 50 interactions with lowest contribution to the overall
error rate were considered. L1 and L2- SVR correspond to
the L2-regularized Support Vector Regression with the L1

and L2 loss functions, respectively. These were implemented
using the LibLinear [28] R package.

We used the SPAMS [29] package to implement the L0

and L∞ models which are used to compare mean squared
error (MSE) and coefficient of determination (R2) values
for all the three synthetic datasets. The performance re-
sults of all the models reported here are obtained using five-
fold cross-validation. The model parameters (λ, γ) are tuned
over the validation data to reduce overfitting, and the eval-
uation results are based on the test data. The R package
pROC is used to calculate AUC values for all the models,
and to calculate the MSE we used the Metrics [30] pack-
age. We now describe the procedure we used to select λ
and γ values which generate different candidate models in
our CRISP algorithm. In our experiments, while doing the
parameter tuning, we generated a sequence of values for the
regularization parameter λ and the non-convexity parame-
ter γ and selected the model corresponding to the optimal
values (λ∗, γ∗) which were then used for prediction on the
test data.

5.3 Goodness of Prediction
We compare the performance of CRISP with various com-

peting models for the 30-day readmission problem on all the
longitudinal EHRs. Table 3 summarizes the performance
comparison results using the AUC metric. The AUC values
for CRISP algorithm in Table 3 are obtained from the opti-
mal model parameters selected after applying the consensus
criterion. For all of the datasets described in Table 2, the
obtained AUC values evidently demonstrate that the pro-
posed method CRISP provides significantly better results
compared to the other methods. We also provide the p-
values for CRISP to confirm the statistical significance of
our results here. The p-value is calculated by comparing
the performance of CRISP with respect to the second best
performing model for each dataset. It should be noted that
a result with a p-value of less than 0.05 is considered to
be statistically significant and is interpreted as being small
enough to justify the superiority of our approach over the
methods used for comparison.

In Table 4, the mean squared error (MSE) along with the
standard deviation for the 30-day readmission problem on
all the datasets are provided. We observe that CRISP out-
performs other competing methods. In Table 5 and Table 6,
we also show the MSE along with standard deviations and
the R2 values for the three synthetic datasets using different
regression models. It can be observed that CRISP performs
better compared to the other regression models. This bet-
ter performance is attributed to the fact that, in addition
to using a sparse and efficient non-convex regularizer within
CRISP, the algorithm generates several candidate models
and then selects the best model using training data for pre-
diction which gives a final model with good predictive abil-
ity. In Figure 2, we show the AUC values of CRISP model
compared to other regression models using bar plots for the
365-day readmission problem. One can observe that CRISP
gives better performance compared to other regression mod-
els on all the EHRs. The reason behind the better perfor-
mance of CRISP lies in the fact that it builds an ensemble
of non-convex regularized linear regression models and ob-
tains a consensus among them to select the best set of model
parameters.

5.4 Scalability Experiments
In this section, we perform experiments to evaluate the

scalability of the MC+ penalty which is used within CRISP
along with other well-known non-convex penalties mentioned
in Table 7.

Smoothly Clipped Absolute Deviation (SCAD) [22] corre-
sponds to a quadratic spline function with knots at λ and
γλ. This penalty function leaves large values of βi not ex-
cessively penalized and makes the solution continuous. Log-
Sum Penalty (LSP), due to its formulation, has the potential
to guarantee more sparsity than the �1 norm. In Capped-�1
penalty, it treats all the βi greater than γ equally, which
makes it more robust to outliers than the �1 norm.
We use the Matlab package called Generalized Iterative

Shrinkage and Thresholding (GIST) [31] to fit the above
mentioned non-convex regularized linear regression models.
These experiments were performed on a workstation with a
quadcore CPU at 3.4GHz and 12 GB main memory.

Two high-dimensional synthetic datasets, Syn-2 and Syn-
3, described in Section 5.1.2 were used in this experiment.
Figure 3 measures the computational time for the MC+
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Table 3: Performance comparison of CRISP with different models using AUC ± std for 30-day readmission problem in
longitudinal EHRs.

Model HF-cohort EHR-0 EHR-1 EHR-2 EHR-3 EHR-4
Logit 0.5700±0.012 0.6060±0.013 0.5270±0.027 0.5490±0.013 0.6000±0.024 0.5960±0.035
GAM 0.6274±0.016 0.5944±0.015 0.5778±0.010 0.5990±0.040 0.6027±0.022 0.5728±0.019
GA2M 0.6192±0.013 0.5719±0.012 0.5546±0.032 0.5743±0.017 0.5894±0.015 0.5514±0.018
hiernet-weak 0.5980±0.011 0.5735±0.022 0.5657±0.010 0.5718±0.013 0.6163±0.038 0.5549±0.021
hiernet-strong 0.5887±0.010 0.5706±0.021 0.5628±0.026 0.5690±0.030 0.6055±0.041 0.5590±0.035
EN-linear 0.6181±0.009 0.6129±0.014 0.6185±0.026 0.6103±0.021 0.6351±0.025 0.6201±0.018
EN-logit 0.6184±0.021 0.6138±0.029 0.6192±0.018 0.6109±0.010 0.6350±0.050 0.6199±0.031
SGL 0.6233±0.010 0.6117±0.028 0.6095±0.016 0.5991±0.030 0.6222±0.050 0.5980±0.011
L1-SVR 0.5171±0.016 0.5157±0.008 0.5070±0.018 0.5189±0.014 0.5919±0.013 0.5822±0.057
L2-SVR 0.6269±0.017 0.6075±0.016 0.5892±0.013 0.6041±0.031 0.6258±0.033 0.5939±0.014
CRISP
(p-value)

0.6504±0.008
(0.0013)

0.6224±0.017
(7.85e-08)

0.6194±0.025
(0.0003)

0.6366±0.019
(5.725e-07)

0.6433±0.033
(0.0031)

0.6428±0.043
(0.0012)

Table 4: Performance comparison of CRISP with machine learning models using MSE ± std for the 30-day readmission
problem in longitudinal EHRs.

Model HF-cohort EHR-0 EHR-1 EHR-2 EHR-3 EHR-4
Logit 0.2103±0.008 0.2056±0.004 0.2333±0.006 0.2254±0.010 0.2194±0.008 0.2283±0.011
GAM 0.1811±0.005 0.2122±0.010 0.2197±0.004 0.2246±0.009 0.2308±0.011 0.2488±0.014
GA2M 0.2238±0.010 0.2736±0.023 0.3154±0.048 0.3177±0.028 0.3089±0.038 0.3302±0.019
hiernet-weak 0.1914±0.008 0.2232±0.010 0.2226±0.002 0.2293±0.004 0.2309±0.010 0.2551±0.002
hiernet-strong 0.1933±0.007 0.2256±0.007 0.2297±0.005 0.2335±0.009 0.2250±0.008 0.2559±0.019
EN-linear 0.1832±0.003 0.2059±0.001 0.2075±0.002 0.2152±0.004 0.2145±0.004 0.2263±0.001
EN-logit 0.1833±0.006 0.2061±0.008 0.2077±0.009 0.2153±0.002 0.2146±0.004 0.2265±0.004
SGL 0.1816±0.003 0.2050±0.004 0.2065±0.008 0.2149±0.007 0.2151±0.009 0.2272±0.009
L1-SVR 0.7166±0.022 0.9585±0.037 0.9756±0.027 1.0635±0.041 1.0861±0.053 1.0814±0.107
L2-SVR 0.2402±0.007 0.2985±0.016 0.3104±0.026 0.3333±0.028 0.3441±0.049 0.3980±0.016
CRISP 0.1775±0.002 0.2030±0.003 0.2050±0.003 0.2110±0.003 0.2083±0.004 0.2202±0.003

Table 5: Performance comparison of CRISP with machine
learning models using MSE ± std on synthetic datasets.

Model Syn-1 Syn-2 Syn-3
L0 0.3677±0.030 0.9598±0.156 1.0391±0.087
L∞ 0.2439±0.032 0.8806±0.140 1.0214±0.070
EN-linear 0.1892±0.032 0.7832±0.087 1.0020±0.138
SGL 0.1744±0.030 0.8392±0.097 0.9028±0.059
CRISP 0.0861±0.012 0.7698±0.179 1.0015±0.188

Table 6: Performance comparison of CRISP with machine
learning models using R2 metric on synthetic datasets.

Model Syn-1 Syn-2 Syn-3
L0 0.6269 0.1539 0.1602
L∞ 0.6197 0.2510 0.1269
EN-linear 0.8093 0.2064 0.1181
SGL 0.5046 0.1682 0.1038
CRISP 0.9124 0.2215 0.2057

Table 7: Non-Convex penalties used in our evaluation.

Name P (βi)

SCAD λ
∫ |βi|
0

min(1,
[γλ−x]+
(γ−1)λ

)dx (γ > 2)

LSP λlog(1 + |βi|/γ) (γ > 0)
Capped-�1 λmin(|βi|, γ) (γ > 0)

penalty compared to three competing non-convex regular-
izers. In this plot, the Y-axis represents the time taken in
seconds which was averaged over five runs. The X-axis rep-
resents the dimensionality of the features.

The scalability plot in Figure 3(a) for the Syn-2 dataset in-
dicates that the MC+ penalty based model runs faster com-
pared to the other three models. LSP penalty-based model
takes highest time and the other two penalties, namely,
SCAD and Capped �1 norm based models, are also slower
than the MC+ penalty. Figure 3(b) shows the scalability
plot for Syn-3 dataset, and it can be observed that even in
this case the MC+ penalty runs faster compared to the other
models. This shows that our CRISP method which uses the
MC+ penalty can perform efficiently on high-dimensional
datasets.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a method called CRISP for

solving the consensus regularization problem for regression
which has not been studied in the literature previously, due
to the inherent difficulty associated with integrating and
computing multiple regularizers efficiently within a unified
framework. This method generates a committee of non-
convex regularized linear regression models using the mini-
max concave plus (MC+) penalty, and it applies a consen-
sus criterion to select the best model for prediction. This
method is efficient because the problem of learning multiple
candidate models within the committee is solved using a gen-
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Figure 2: Performance comparison of CRISP with several state-of-the-art methods for the 365-day readmission problem in
longitudinal EHR datasets.
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Figure 3: Comparison of time taken in seconds for three different non-convex regularizers compared to MC+ with increasing
dimensionality of the features.

eralized thresholding operator employed within a fast cyclic
coordinate descent framework. Our method is also simple
to interpret as it only selects the optimal model from all
the candidate models for the final prediction. We evaluated
this model using longitudinal EHRs collected at a large hos-
pital and high-dimensional synthetic datasets using diverse
metrics such as AUC, MSE and R2. We also conducted
experiments to assess the scalability of CRISP. Our results
indicate that CRISP obtains higher AUC values compared
to various other additive, interactions and sparse regression
models. This work can be extended for building an active
learning-based regression model [32] by querying the label
for an instance after obtaining a consensus on including it

in the training data using the multiple candidate models
generated by CRISP.
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