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a b s t r a c t

In recent years, electronic health records (EHRs) have beenwidely adapted atmany healthcare

facilities in an attempt to improve the quality of patient care and increase the productivity and

efficiency of healthcare delivery. These EHRs can accurately diagnose diseases if utilized ap-

propriately. While the EHRs can potentially resolve many of the existing problems associated

with disease diagnosis, one of the main obstacles in effectively using them is the patient pri-

vacy and sensitivity of the medical information available in the EHR. Due to these concerns,

even if the EHRs are available for storage and retrieval purposes, sharing of the patient records

between different healthcare facilities has become a major concern and has hampered some

of the effective advantages of using EHRs. Due to this lack of data sharing, most of the facilities

aim at building clinical decision support systems using limited amount of patient data from

their own EHR systems to provide important diagnosis related decisions. It becomes quite in-

feasible for a newly established healthcare facility to build a robust decision making system

due to the lack of sufficient patient records. However, to make effective decisions from clinical

data, it is indispensable to have large amounts of data to train the decision models. In this re-

gard, there are conflicting objectives of preserving patient privacy and having sufficient data

for modeling and decision making. To handle such disparate goals, we develop two adaptive

distributed privacy-preserving algorithms based on a distributed ensemble strategy. The basic

idea of our approach is to build an elegant model for each participating facility to accurately

learn the data distribution, and then transfer the useful healthcare knowledge acquired on

their data from these participators in the form of their own decision models without reveal-

ing and sharing the patient-level sensitive data, thus protecting patient privacy. We demon-

strate that our approach can successfully build accurate and robust prediction models, under

privacy constraints, using the healthcare data collected from different geographical locations.

We demonstrate the performance of our method using the type-2 diabetes EHRs accumulated

frommultiple sources from all fifty states in the U.S. Our method was evaluated on diagnosing

diabetes in the presence of insufficient number of patient records from certain regions with-

out revealing the actual patient data from other regions. Using the proposed approach, we

also discovered the important biomarkers, both universal and region-specific, and validated

the selected biomarkers using the biomedical literature.
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1. Introduction

In recent years, electronic health records (EHRs) have been widely adapted at many healthcare facilities in an attempt to im-

prove the quality of patient care and increase the productivity and efficiency of healthcare delivery. Typically, EHRs are generated

and maintained within a particular healthcare facility, such as a hospital, clinic or physician’s office. These EHRs can not only aid

in various daily healthcare operations but also help in accurately diagnosing diseases, if utilized appropriately [32].

While the EHRs can resolve many of the existing problems associated with disease diagnosis, one of the main obstacles in

effectively using them is the patient privacy and sensitivity of the medical information available in the EHR. EHRs generally

contain patient information about demographics, diagnostics, medications, living habits and other health-related information.

It is needless to say that most of these information is extremely sensitive [31]. EHR systems must abide the Health Insurance

Portability and Accountability Act (HIPAA) [6] to preserve the privacy of patient information. Thus, the public EHR products must

be certified by certain institutes such as Certification Commission for Healthcare Information Technology (CCHIT), and Office of

the National Coordination for Health Information Technology (ONC) [38]. Due to these legal concerns and medical ethics [4,19],

physicians are always keen about maintaining the highest possible standards while protecting patient privacy [36].

Due to these concerns, even if the EHRs are available for storage and retrieval purposes, sharing of patient records be-

tween different healthcare facilities has become a major concern and has hampered some of the effective advantages of us-

ing EHRs. Due to this lack of data sharing, most of the facilities do not have any other option but to build their own clinical

decision support systems with limited amount of patient data available in their own EHRs for important diagnosis related de-

cisions. In addition, it becomes quite infeasible for a newly established healthcare facility, small hospital, or rural hospital to

build a robust decision making system due to lack of sufficient patient records. However, to make effective decisions from

clinical data, it is indispensable to have large amounts of data to train the decision making models. As a result, these small

and/or rural hospitals are less motivated, and in 2011, only 20.8% of them were using EHR systems [12]. In this regard, it is

clear that there is a conflicting objective of maintaining patient privacy and having sufficient data for modeling and decision

making.

The problem statement of the work that is being developed in this paper is as follows. Given healthcare data collected from

multiple facilities, how do we obtain a decision model that leverages the knowledge from all the facilities without revealing any

patient specific information from any of the individual facilities. In other words, the goal is to develop a knowledge based data

integration mechanism in a privacy-preserving context.

To deal with these challenges, we propose a privacy-preserving data mining framework based on horizontally distributed

healthcare data. The goal of our work is to build an effective decisionmaking system that can utilize the knowledge frommultiple

facilities (or geographical locations) without revealing any patient-level information [24]. In our approach, an elegant model for

each participating facility is accurately learnt for approximating the local data distribution, and the useful healthcare knowledge

acquired on such local data is then transferred in the form of their own decision models without revealing and sharing the

sensitive data, thus, protecting the patient privacy. Transferring knowledge between multiple locations is a common practice

with the goal of improving the prediction power [22]. Our approach can successfully build accurate and robust predictionmodels,

under privacy constraints, with healthcare data collected from different geographical locations. Each participator shares its own

local model with others and builds a specific integrated model based on its own specifications.

Merely trying to acquire the entire knowledge available from all the participators without carefully accounting for the dis-

tribution differences can potentially degrade the performance of the classifier [33]. While the overall data distribution for a

particular disease must be similar within different hospitals since we are dealing with the same disease, there will still be cer-

tain significant differences that arise due to the differences in the demographics of the patient population. Such distribution

differences will play a vital role in building robust integrated decision making models that are specific to the population group.

However, in the horizontal distribution privacy-preserving problem, there is no access to the original EHR data, one cannot di-

rectly measure the data distribution differences among participators but can only approximately say how large the difference

might be by analyzing the difference between the models trained by each participator.

Most of the state-of-the-art privacy-preserving data mining methods for horizontally distributed data are built based on a

star network, where an untrusted third-party is needed [11,40]. Each participator shares their statistical data distribution with a

centralized agent, and this central agent is responsible for building the integrated decision model [24]. However, this framework

suffers from two important issues: (1) participators need frequent information exchange with the central agent and hence the

communication cost is high; (2) the decision model is built on the central agent whose aim is to provide a decision support for

all participators, but it ignores the data distribution differences between the participators.

In addition, in the horizontal distributed privacy preserving data mining literature, there is no prior work on preventing

“negative impact during integration”. In our work, as each participator will build a specific integrated model based on their

own specifications, they can selectively decide which of the models from other participators can be used to build the integrated

model. We build local predictionmodels to represent data, detect the data distribution difference, and transfer knowledge. In our

work, the AdaBoost algorithm is chosen to be the local learner for each participator because it is a simple yet effective classifier

which is extensively studied in the literature.

The main contributions of our work are summarized as follows:

• Propose an adaptive distributed privacy-preserving data mining technique based on an ensemble strategy which can success-

fully acquire knowledge from multiple healthcare facilities without gaining access to the sensitive patient data.
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• Propose a new integration scheme which does not require a third-party agent, and each participator can build its own inte-

grated model based on its particular needs and can selectively prevent the “negative impact” during the integration process.

• Demonstrate the performance of the proposed distributed privacy-preserving ensemble method using type-2 diabetes pa-

tient records gathered from multiple sources from all the fifty states in the U.S. Evaluate our method on diagnosing diabetes

in the presence of insufficient number of patient records from certain regions without revealing the actual patient data from

other regions.

• Identify the important global and region-specific biomarkers for type-2 diabetes and validate the selected biomarkers using

the biomedical literature.

The rest of this paper is organized as follows: In Section 2, we provide important relevant works on privacy-preserving data

mining and also information about the type-2 diabetes disease. In Section 3, we propose our adaptive distributed privacy-

preserving ensemble method. Our experimental results along with the important biomarkers discovered using the proposed

work are presented in Section 4. Finally, Section 5 concludes our discussion with some future research directions.

2. Related work

In this section, we will provide the related literature in the field of privacy-preserving data mining and then discuss more

about the type-2 diabetes disease.

2.1. Privacy-preserving data analysis

Recently, health data privacy has become an important area of research. As a result, privacy-preserving datamining has gained

much more attention especially in the context of healthcare data analysis. The state-of-the-art methods for privacy-preserving

data mining can be categorized under three types, namely, randomization, k-anonymization, and distributed privacy-preserving

data mining [1]. In randomization approach, some techniques are used during the data collection process to induce perturbation

in the selected attributes of the original data records for concealing certain sensitive information [3]. These techniques include

swapping attribute values [14], principal component analysis (PCA) based techniques [18], adding random components which

follow a known probability distribution [2], etc. However, in some applications such as healthcare, randomization methods are

not sufficient. It has been shown that by incorporating certain publicly available data, the hidden sensitive information in the pro-

cessed records can be recovered and hence the privacy will be compromised. The k-anonymity procedure [34] was proposed as

a solution for this indirect de-identification issue. By using generalization and suppression techniques, the k-anonymity method

guarantees that any attribute value can be indistinguishably backtracked to at least k records. In [7], k-Optimize algorithm has

been developed to efficiently solve the problem of optimal k-anonymization in most cases.

The third category, which is the distributed privacy preservation, is closely related to secure distributed computation which is

a research topic in cryptography [30]. In this scenario, non-fully trusting collaborators can jointly compute useful aggregate statis-

tics over the entire dataset without sharing the original data. Thus the privacy of the individual dataset can be protected from

various other participators. Based on the partitioning mechanism, distributed privacy-preserving data analysis can be grouped

into two sub-categories: vertically partitioned distributed privacy preservation and horizontally partitioned distributed privacy

preservation [10]. In the vertically partitioned distributed privacy preservation problem, each participant has a different set of

attributes for the same group of data objects and the primary goal is to build a robust model that can leverage the entire set of

attributes without revealing the individual details of the features to other participators. More detailed work about this approach

can be found in [13]. In the horizontally partitioned distributed privacy preservation, each participator has different subset of

records with the same set of attributes. The work proposed in this paper falls into this horizontally partitioned category where

the patient data is being collected at multiple facilities and each patient record will consist of the same set of attributes. One of

the first works in this category presented a strategy that extends the popular ID3 algorithm to two-party privacy preservation

[23]. Then, there were a number of approaches proposed for horizontally partitioned distributed privacy preservation using vari-

ous machine learning algorithms such as naive Bayes classifier [21], support vector machine [40], and ensemble based classifiers

[16]. Among these methods, the ensemble-based approaches have demonstrated good performance in terms of simultaneously

preserving privacy and having good accuracy.

Gambs et al. [16] proposed MultBoost algorithm which is a boosting-based privacy-preserving data mining method. How-

ever, the main problem with these above-mentioned models is that they need a third-party (central agent) that participates in

the protocol to revise and aggregate the integrated final models. This also leads to an extra cost in model implementation. In

addition, as each participator must have frequent contact with the third-party, a significant portion of the time is spent on the

communication between the participators rather than the actual computation itself. Most importantly, those methods are not

adaptable, i.e., a new integrated model has to be learned from scratch by repeating the entire learning process every time when

a new participator is added. In this paper, we propose a distributed ensemble based horizontally partitioned privacy preserva-

tion algorithm which overcomes these limitations by making each participator compute their own local models independently

from each other. Therefore, each participator can take advantage of the aggregate statistics (or a basic prediction model) with-

out compromising their own privacy. Also the communication cost is substantially reduced because a third-party is not needed

in our model, and the participators will have to only recompute the models for the newly integrated components once a new

participator is added.



248 Y. Li et al. / Information Sciences 330 (2016) 245–259
2.2. Type-2 diabetes

Diabetes is the 7th leading cause of death in the United States [17] and the 8th leading cause of death in theworld [39]. Around

29.1million Americans (or 9.3% of the U.S. population) have diabetes [9]. In adults, type-2 diabetes (or insulin-dependent diabetes

mellitus) accounts for approximately 90–95% of all diagnosed cases of diabetes. The risk for developing type-2 diabetes is mostly

associated with older age, obesity, family history of diabetes, history of gestational diabetes, impaired glucose metabolism, phys-

ical inactivity, and race/ethnicity (African American, Alaska Native, American Indian, Asian American, Hispanic/Latino, or Pacific

Islander American have a high prevalence of diabetes) [5,9,26].

There are several medical tests that can be performed to check if a person has diabetes or not. Currently, the American

Diabetes Association (ADA) recommends four kinds of testing methods for diagnosing type-2 diabetes: (1) A1C test [27] which

measures a person’s average levels of blood glucose over a period of 3 months. (2) Fasting Plasma Glucose (FPG) test [28] which

measures the blood glucose in a person who has fasted for more than 8 h. (3) Oral Glucose Tolerance Test (OGTT) [25] measures

the blood glucose after a person fasts for at least 8 h and 2 h after the person drinks a liquid containing 75 g of glucose dissolved

in water. (4) Random Plasma Glucose (RPG) test [28] which is performed during a regular health checkup.

Though these medical diagnoses tests are relatively accurate (patients really have diabetes when these tests are positive),

they typically have poor sensitivity (will miss a lot of cases). In 2012, 8.1 million (27.8% of 29.1 million) people with diabetes

were undiagnosed [9]. In addition, in the data that we used in our study, only 1/8th of the patients suffering from diabetes were

diagnosed by those medical tests. In addition, such tests cause inconvenience to the patients. Hence, it is an important problem

to diagnose these patients at early stages through their electronic health records (EHR) using data-driven methods.

To improve the diagnosis of type-2 diabetes, a machine learning community hosted a “Practice Fusion Diabetes Classification”

challenge [20] in 2012 which aims at developing some advanced EHR based type-2 diabetes diagnostic support system. There

were a total of 9948 patients, and among them 1904 patients suffer from diabetes. These patients come from all the 50 states

and the District of Columbia in the U.S. and the Commonwealth of Puerto Rico. For each patient, the EHRs were comprehensively

collected from the following primary sources of information [22]:

• Demographic information such as year of birth, gender, weight, and geographical location of each patient.

• Diagnosis information consists of the ICD9 Codes.

• Allergy and immunization consists of a list of allergies and vaccination records.

• Laboratory information consists of lab test observations for lab panels, and the lab test results received from lab facilities.

• Medication and prescription consists of the medication history, where each medicine is identified by National Drug Code

(NDC), and prescription records.

• Patient smoking status is an ordinal status variable maintained on a yearly basis.

• Transcripts consist of visited document records including allergy, medication, and diagnosis information.

We integrated all the information from 17 different sources and constructed a consolidated repository of diabetes EHR which

contained 536 variables in total after combining all the data from multiple sources. It should be noted that, among all these

features, only the gender and location are categorical in nature; the lab test results and personal information are real-valued

attributes; certain status attributes such as smoking status, and emergency status have ordinal values. A significant majority of

the remaining features are count variables.

3. Proposed work

In this section, we will explain the proposed framework for privacy-preserving data mining. Before describing the details of

our proposed distributed ensemble based approach, we will first review the working of the standard AdaBoost algorithm [15].

The AdaBoost algorithmwill be used as our local learner for each participator along with the decision stump which will be used

as the weak learner. In our approach, we choose the AdaBoost algorithm because it is a simple, flexible and effective classifier,

and it is constructed using a weighted combination of weak classifiers. Before going to the details of the proposed methods, we

will first introduce the notations used in this paper in Table 1.

AdaBoost is a well-known high-performance ensemble learning method which iteratively generates a strong classifier from

a pool of weak hypotheses. In each iteration, a base classifier is learned, and based on the correctness of the prediction in each

iteration, the weights of the training examples are updated. Thus, in the subsequent iteration, the base classifiers will focus

on the misclassified samples in the previous iteration. The final ensemble classifier is a weighted combination of these base

classifiers, where for each base classifier, the weight depends on the corresponding error rate. In other words, a classifier with

lower error rate gets higher weight. Simple learners such as decision stumps (decision trees with only two leaf nodes) often

performwell for AdaBoost [8]. Typically, a decision stump can be expressed using three parameters: (i) the name of the attribute

to be tested ( fn), (ii) the test threshold (θ ), and (iii) the sign of the test (δ ∈ {+1,−1}). Note that a decision stump can only

handle one attribute (feature) at a time and hence the weights of weak classifiers can also be used to measure the ability to

distinguish the corresponding features conditional on the learning task. The final boosted model will be a linear combination of

these independent decision stumps, and this independence would not require each participator to have exactly the same set of

features which is another primary advantage of our proposed model. Finally, this will allow us to select the common important

features among all participators, and each participator can take advantage of the useful aggregated model statistics without

sharing the original data.
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Table 1

Notations used in this paper.

Notation Description

n(p) Sampling size of pth participator

Dp

n(p) Dataset of pth participator

X Data matrix

Y Corresponding labels ∈ {+1,−1}
fn Name of the attribute

θ Test threshold

δ Sign of the test ∈ {+1,−1}
hp(t)(·) The weak classifier trained at tth iteration in pth participator

αp(t) The weight of hp(t)(·)
Hp(·) The classifier trained in the pth participator

εp Training error rate of pth participator

ε(q)
p Testing error rate of qth model in the pth participator’s training data

S(p) The index set of selected models for pth participator

λp Instance proportion of pth participator

σ Factor of the integrated weight
3.1. Adaptive distributed privacy preserving using boosting

In this section, we will discuss the proposed boosting based adaptive model for privacy-preserving data mining with hori-

zontally partitioned data. In this case, each participant has different set of records with both common features and local unique

attributes. Let D1
n(1)

,D2
n(2)

, . . . ,DM
n(M)

denote the datasets of M participators, the dataset of pth participator contains a total of n(p)

samples, and it can be represented as

Dp

n(p) =
{(

Xp
1
, yp

1

)
,
(
Xp
2
, yp

2

)
, . . . ,

(
Xp

n(p) , y
p

n(p)

)}
,

where each example X
p
i

=
(
x
p
i1

, x
p
i2

, . . . , x
p

iK(p)

)
is a covariate vector with K(p) components and each label y

p
i

∈ {+1,−1} for the

binary decision making that is being considered here. In our model, we employ AdaBoost algorithm to build an ensemble clas-

sifier for each participator, and these ensemble classifiers can be used to represent the data distribution of each participator. By

sharing these local models with each other, all the participators can build their individual integrated model which takes advan-

tage of other participators’ knowledge without direct access to the datasets. Hence, the privacy of the individual datasets can be

preserved.

Firstly, the standard AdaBoost algorithm is applied to each participator for T boosting iterations, and set of T weak classifiers

will be learned. In the decision stump case, each weak classifier can be represented by the variable set ( fn, θ , δ), where fn denotes

the name of the selected attribute, θ is the decision threshold of the attribute fn, and δ is the sign of the decision. For any instance

Xi, the hypothesis h(Xi), which is made by decision stump, is either +1 or −1. For the pth participator, the ensemble classifier Hp

(·) is a set of T weak classifiers:

{hp(1)( · )αp(1),hp(2)( · )αp(2), . . . ,hp(T)( · )αp(T)},
where hp(t)(·) is the weak classifier at tth iteration and αp(t) is the corresponding weight of that weak classifier. For a particular

test instance Xi, the binary prediction made by the pth participator’s local model can be defined as

Hp(X) = sign
{
Hp(X)

}
= sign

{
T∑

t=0

αp(t)hp(t)(Xi)

}
, (1)

where sign{·} is the signum function. Once the local models are built, all the participators share their own models and sample

sizes with each other, and hence each participator will receive M − 1 models from other participators. Then, each participator

will build an integrated model independently based on their specific requirements. For example, some facilities might want to

maximize the sensitivity of their models instead of the area under curve (AUC) value for their clinical decision support system.

Using our ensemble based approach, they can use their own cost matrix to select the decision threshold for the integrated model

that is being built in their own facility. The P2P network based distributed framework of the proposed ensemble system is shown

in Fig. 1, and we can see that no third-party (central agent) is needed to build an integrated model in our proposed framework.

As each participator will build its local model independently, when a new participator is added, it will learn a local model

by itself and share this trained model with other participators. Then, each existing participator will decide whether it needs to

update the integrated model based on the new local model’s performance on their own data. We can see that this P2P network

based framework is more adaptable and can provide more autonomy for participators than the star network based distributed

privacy-preserving framework. Each participator integrates the final model independently, and hence the integrated model will

take care of the specific needs of their own local data. In summary, having an individualized integrated model separately at each

participator will tailor the model to their own local data. Only the integration component will have to be selectively computed

again when a new participator is added, rather than re-training the entire model from scratch.
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Fig. 1. Block diagram representing various participators, the local and the integrated models built at each participator.
Each participator receives M − 1 models and another important issue that needs to be resolved for a specific participator

is how to integrate those local models and its own model in an appropriate manner so that the integrated model performs

better than the local model. Also, there is a slight risk that by integrating various unwanted (or poor) models, the performance

of the integrated model might deteriorate. To prevent such “negative impact” during integration, when the model integration is

performed for the pth participator, first one has to decide which of the other local models can be used to build the final integrated

model.

The basic idea here is to exclude the models from the other participators whose data distribution is very different from the

data distribution of this pth participator. Since looking into the original data distribution of the other participators is infeasible

due to patient privacy, we resort to applying all the other local models on the training set of pth participator, D
p

n(p)
, and compare

the error rate of each local model with the training error rate of pth participator’s trained model. Note that the models received

from the other participators might include some decision stumps for their own unique local features. Hence, before using those

models, the pth participator should select a suitable subset of common decision stumps based on fn. For the pth participator, the

error rate of qth participator’s model is given by

ε(q)
p = 1

n(p)

[
n(p)∑
i=1

I
(
sign

{
Ĥq(Xp

i
)
}

�= yp
i

)]
, (2)

where Ĥq( · ) is the selected subset of decision stumps from Hq(·), the model trained by qth participator, I(·) is the indicator

function. The training error rate of the pth participator’s trained model is given by

εp = 1

n(p)

[
n(p)∑
i=1

I
(
sign

{
Hp(Xp

i
)
}

�= yp
i

)]
. (3)

For every local model, we compute the difference between ε(q)
p and εp. If (ε

(q)
p − εp) is less than a certain threshold τ , then

we can assume that the data distributions in pth participator and qth participator are similar, and we can use qth participator’s

trainedmodel to build the integratedmodel for pth participator. The integratedmodel only uses other local models (not the other

participators’ data) and selects the ones with similar data distribution to that of the local data; thus, it indirectly strengthens the

data distribution. By doing this, it avoids the overfitting problem in the presence of only a few samples in the local data. For our

experiments, we set τ = 0.2 which is relatively a large threshold. This is because εp (the training error rate of AdaBoost) is very

small; thus (εp + 0.2) is a reasonable threshold for ε(q)
p (the testing error rate of qth model in the pth participator’s training data)

as the qth model is not trained from the training data of pth participator.

Now that the model selection is complete, for pth participator we get an index set of selected models (S(p)) which will be used

in the model integration. It should be noted that p also belongs to S(p). We will now explain the actual integration of the selected

models. The model integration should not only take advantage of the aggregate statistics from other selected local models but

also consider the specificity of the participator. To achieve this goal, we establish the following three criteria for the proposed

ensemble based model integration in the pth participator:

1. More weight should be assigned to the participator’s own local model compared to any other local model with same

sample size. This is because of the fact that the data from other participators might follow a slightly different distribution

and hence one cannot give more importance to the other local models. The assumption here is that by adding other local

models, one can strengthen the local data distribution. This is important especially since the participator weights suffer

from insufficient data.

2. The weight of the pth participator’s own local model is positively related to n(p). This is because the more the number of

samples, the fewer the mistakes that are caused by insufficient sampling.

3. The weight of the pth participator’s own local model should have an upper bound. Otherwise, the weight of selected

participator’s model will become insignificant, and the final integrated model will be the same as pth participator’s own

model and integration becomes unnecessary.
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Considering these guidelines, the weight of each participator will be updated when building the integrated model for each

participator. To illustrate this concept, let λqσ
(p)
q denote the weight assigned to the qth participator’s model when we compute

the integrated model for pth participator, where p ∈ {1,2, . . . ,M}, q ∈ S(p), and λq = n(q)∑
s∈S(p) n

(s) is the instance proportion of qth

participator. σ (p)
q is updated as follows:

σ (p)
q =

{
λq

λ2
max

· � λ2
max

λmin
� if q = p

1 if q �= p
, (4)

where λmin = min(λq) is the minimum proportion among all the selected participators, λmax = max(λq) is the maximum pro-

portion, and � · � denotes the ceiling function.Wewill now prove that the proposedweight updatemechanism λqσ
(p)
q will satisfy

all the three criteria mentioned earlier.

Theorem 1. The weight update mechanism will assign more weight to pth participator’s own model compared to any other local

models if they have the same sample size (criterion 1).

Proof. If q �= p then σ (p)
q = 1; that is to say the weight of other participator’s local model is λq. Now let us consider the value of

λqσ
(p)
q , theweight of pth participator’s ownmodel, i.e., when q = p. We note that the λq is bounded as follows. λmin ≤ λq ≤ λmax.

We can see that the minimum possible value for σ (p)
p is obtained when λp = λmin. Now, this value σ (p)

p = λmin

λ2
max

· � λ2
max

λmin
� ≥ 1 ⇒

λpσ
(p)
p ≥ λp. Thus, if λp = λq, we have λpσ

(p)
p ≥ λqσ

(p)
q . This means that for any participator, in themodel integration procedure,

its own model will have more weight compared to any of the other selected participators once they have the same sample

size. �

Theorem 2. The weight update mechanism will ensure that the weight of pth participator’s own model is positively related to n(p)

(criterion 2).

Proof. For pth participator, since S(p) will be a constant set after model selection, λmin and λmax are also constant values. When

q = p, λpσ
(p)
p = λ2

p

λ2
max

· � λ2
max

λmin
� is theweight of pth participator’s ownmodel and contains only one variableλp = n(p)∑

s∈S(p) n
(s) ,which

is proportional to n(p) since the denominator is just a normalization factor. So, λpσ
(p)
p is positively related to n(p). �

Theorem 3. The weight update mechanismwill ensure that the weight of other participator’s local model will not become insignificant

thus making the model integration unnecessary (criterion 3).

Proof. When q = p, λpσ
(p)
p , is the weight of pth participator’s own local model. We note that the λp is bounded as follows:

λmin ≤ λp ≤ λmax.We observe that themaximumpossible value forλpσ
(p)
p = � λ2

max
λmin

� is obtainedwhenλp = λmax. This limitation

ensures that the weight of other participators’ high-performance weak learner will not become insignificant. �

Algorithm 1 outlines our proposed BOPPID (BOosting-based Privacy-Preserving Integration of Distributed data) algorithm.

First, each participator employs standard AdaBoost algorithm to train their own local model and obtain the training error (lines

2–3). Then, they share their trained models with other participators (line 4). After the model sharing process, each participator

will independently build its own integration model. In lines 7–13, each participator applies all the other local models to its own

training data and selects a subset of “good” models from other participators for the subsequent integration process. The sample

size proportion of the selected local models is calculated in line 14. Finally, the integration model is built using Eq. (4) (lines

16–23).

3.2. Complexity analysis

The computational complexity of proposed BOPPID depends on the AdaBoost algorithm in line 2. For pth participator, the

overall cost of AdaBoost in all T iterations is 	(K(p)(T + logn(p))) if the weak learner is a decision stump, and the training error

rate can be calculated in 	(n(p)). In the integration procedure for each participator, the cost of selecting a subset of the beneficial

local models is 	(Mn(p)). In the worst case scenario, where all M participators are selected, the computational cost of updating

theweights for all participators is	(M) and generating the final classifierHq∗
( · ) takes	(MT) time. Thus, the total computational

complexity of the pth participator is 	(K(p)(T + logn(p)) + MT + Mn(p)). As each participator trains its local model and does the

final integration independently from other participators, it is possible to perform these computations in parallel. In addition,

note that the model integration can only start after all the participators complete the computation of their own local models, so

the computational complexity of the proposed model depends on the participator with the largest number of samples. Hence,

the total computational cost of BOPPID is	(Kmax(T + lognmax) + MT + Mnmax), here nmax and Kmax stand for the largest sample

size and largest feature dimensions among all theM participators, respectively.

For the communication cost, let the network latency for transferring a model is f and the communication cost for sending and

receiving amodel is g and h respectively. ForM participators, each of themwill send their ownmodel toM − 1 other participators,

and receiveM − 1 models from other participators. Hence, the total communication cost for BOPPID is (M − 1)( f + g+ h).
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Algorithm 1: BOosting-based Privacy-Preserving Integration of Distributed data (BOPPID).

Input: The training sets of M participators {D1
n(1)

, . . . ,DM
n(M)

}, Number of boosting iterations (T ), and

Threshold for error rate increase (τ ).
Output: The set ofM final classifiers {H1∗

(·), . . . ,HM∗
(·)}.

1 foreach p in M participators parallel do

2 Hp(·) ← AdaBoost(D
p

n(p)
, T );

3 εp ← 1

n(p)

[∑n(p)

i=1 I
(
sign

{
Hp(Xp

i
)
}

�= y
p
i

)]
;

4 Share Hp(·) with all other participators

5 end

6 foreach p in M participators parallel do

7 Initialize the Index set of selected participators S ← {p};
8 for q ← 1 to M do

9 ε(q)
p ← 1

n(p)

[∑n(p)

i=1 I
(
sign

{
Ĥq(Xp

i
)
}

�= y
p
i

)]
;

10 if (ε(q)
p − εp) ≤ τ then

11 Add q in S(p)

12 end

13 end

14 
 =
{
λq = n(q)∑

s∈S n(s) |q ∈ S

}
;

15 Find λmax, λmin;

16 foreach q in S do

17 if p = q then

18 σ (p)
q = λq

λ2
max

· � λ2
max

λmin
�;

19 else

20 σ (p)
q = 1;

21 end

22 end

23 return Hp∗
(·) = ∑

q∈S
∑T

t=1 h
q(t)(·) · αq(t)σ (p)

q λq

24 end
Now let us consider the scenario where a new participator is added, and the number of participators grows from M to M + 1.

In our model, only the integration part has to be recomputed, and hence the computational cost for the existing M participa-

tors is 	((M + 1)T + (M + 1)nmax), and for the new participator the computation cost is 	(Kmax(T + lognnew) + MT + Mnmax).
Here nnew and Kmax correspond to the sample size and feature dimension of the new participator, respectively. Because all

of the existing M participators will send their own models to the new participator and receive a new model from the new

participator, the communication cost for the existing M participators is ( f + g+ h) and for the new participator, the com-

munication cost is M( f + g+ h). However, if a new participator is added in the existing methods such as MultBoost, a

new integrated model has to be retrained from the beginning. Therefore, the computation cost for all M + 1 participators is

	(K(p)(T + log (
∑M+1

p=1 n(p))) + MT) [16] and communication cost becomes 2T( f + g+ h). Hence, we can clearly observe that

our proposed model is more efficient when a new participator is added (which is a more practical scenario).

3.3. Adaptive variant of parallel boosting

To strengthen our work, we also propose a new variant of an existing parallel boosting algorithm and make it applicable to

the context of mining EHR data. In our previous work on parallel boosting [29], we developed a parallel variant of the boost-

ing algorithm called AdaBoost.PL. Though originally designed for improving the computational efficiency, the overall layout

of AdaBoost.PL can fit into the distributed privacy-preserving setting as it does not directly communicate the data from one

participator to the others. The AdaBoost.PL algorithm follows the MapReduce workflows, where the original dataset is equally

partitioned into M parts and mapped into M workers to learn M models which will then be reduced (integrated) into a final

model. For each worker, its weak classifiers will be sorted with increasing order of αp(t) values (line 3 in Algorithm 2 ). The basic

intuition of sorting the workers’ weak classifiers with respect to their weights is to place the classifiers with similar correctness

at the same sorted level. This is a critical component of the AdaBoost.PL since this will ensure that like-minded classifiers will

be merged during each boosting iteration. After sorting, hp∗(t)( · ) is the weak learner of pth participator at the tth iteration, and

αp∗(t) denotes the corresponding weight. In this paper, we generalize the idea of AdaBoost.PL and propose a new variant, Ad-

aBoost.PL.V2, which can handle the diversity of sample size of each participator in the privacy-preserving context. It should be
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Algorithm 2: AdaBoost.PL.V2.

Input: Training sets ofM participators {D1
n(1)

,D2
n(2)

, . . . ,DM
n(M)

}, and
Number of boosting iterations (T ).

Output: The final classifiers H(·)
1 foreach p in M participators parallel do

2 Hp(·) ← AdaBoost(D
p

n(p)
, T );

3 Hp∗
(·) ← the weak classifiers in Hp(·) sorted w.r.t. αp(t);

4 Send Hp∗
(·) to central agent;

5 end

6 Initialize 
 =
{
λp = n(p)∑M

m=1 n(m)
|p = 1,2, . . . ,M

}
;

7 for t ← 1 to T do

8 h(t)(·) ← Merge

(
h1

∗(t)(·), . . . ,hM∗(t)(·)
)
;

9 αt ← ∑M
p=1 αp∗(t)λp;

10 end

11 return H(·) = ∑T
t=1 αth(t)(·)

Fig. 2. The framework of star network based horizontal distributed privacy-preserving method.
noted that similar to AdaBoost.PL, the proposed AdaBoost.PL.V2 is also built on a star network, which is shown in Fig. 2. Most of

state-of-the-art horizontally distributed privacy-preserving methods are also built on this star network, so that we can see that

there is only one integration model that is being built for all hospitals.

Thus, compared with BOPPID, AdaBoost.PL.V2 is less adaptive and cannot preserve the data characteristics of each partic-

ipator. AdaBoost.PL.V2 discards the “map” part of the AdaBoost.PL because the datasets are distributed and stored by each

participator, and αt is the weighted average (instead of the standard average used in AdaBoost.PL) of αp∗(t) for all possible p. The

weights are based on the sample size proportion (line 9 in Algorithm 2).

The merged classifier, h(t)(·) is a ternary classifier, a variant of weak classifier, which can return ‘+1’, ‘−1’, and ‘0’ as a way of

abstaining from answering [35]. It is built by taking a simple majority vote among weak classifiers of the worker as follows:

h(t)(Xi) =
{
sign

(∑M
p=1 h

p∗(t)(Xi)
)

if
∑M

p=1 h
p∗(t)(Xi) �= 0

0 otherwise
. (5)

The ternary classifier will answer ‘0’ if equal number of positive and negative predictions are made by the workers’ weak classi-

fiers. Otherwise, it will answer the majority prediction. In line 8, the weight of the ternary classifier is obtained by the weighted

average of the corresponding classifier weights. Once all the ternary classifiers for T rounds are generated, the algorithm returns

their weighted combination as the final classifier.

4. Experimental results

In this section, we demonstrate the performance of the proposed approach using real-world EHRs of diabetes patients. We

first present the clinical feature transformation performed on the EHR data. We will then compare the performance of our

proposed model against the state-of-the-art distributed privacy preserving ensemble prediction models. In addition, we also

perform a detailed study on the biomarkers selected by the proposed algorithm on this data. It shows that our proposed model
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Fig. 3. Clinical feature transformation for a single patient.
can successfully select some important ‘universal’ and ‘region-specific’ biomarkers which can be used in the medical domain to

improve the diagnosis of type-2 diabetes.

4.1. Clinical feature pre-processing

We now explain the clinical feature transformation procedure which transforms the raw EHR data to a format that is more

suitable for data analysis. The original data contains patient records for a total of 9948 patients, and each patient can be identified

using a specific serial number. In Fig. 3, we show the feature creation procedure from EHR data by considering a sample patient.

In this example, we use several records from different categories for a particular patient (with PatientGuid “0113E5B3-66A5-

44DA-91BE-425EF133651E”).

We extracted all the features for distinct anthropometric variables present in the data. In this example, we consider height,

weight, body mass index (BMI), systolic blood pressure (SystolicBP), and diastolic blood pressure (DiastolicBP). To tackle the

problem of multiple anthropometric values for the same patient, we represent each anthropometric feature using a set of sum-

mary statistics (maximum, minimum, and median). Note that, in this example, some anthropometric features are missing. It

should be noted that certain missing values (like height in this example) are easy to fill. For example, we can confidently replace

‘NULL’ by 61 and calculate the corresponding BMI by using Weight (lb)

(Height (in.))2
× 703. However, other missing values like weight cannot

be filled-in, and hence we leave them empty. “HighLowBP” is the difference between the median of systolic blood pressure and

the median of diastolic blood pressure. Lab variables are also generated using a similar approach. In addition, we also created

a variable which counts the number of times the lab was conducted for the patient. ICD-9 code is a list code for International

Statistical Classification of Diseases, and each code presents a disease description. With the acute indicator, two binary variables

can be created to reflect whether the patient has a special disease or not, and if the disease is present, whether it is acute or not

(“L2_” represents acute and “L1_” represents not acute). In this example, the codes 278 and 724.5 represent obesity and backache,

respectively. Because this patient suffered from serious backache only once, we give the value of 1 to “L2_ BackPain” feature. For

the medication information, we created two variables for each distinct medication (according to NDC) given to the patient; one

feature represents the number of times the individual medication was given to the patient, and the other feature represents the

dose. There are several states corresponding to smoking status which can be represented using ordinal numbers, and we build

two new features, one for the current smoking state and another for the smoking history. When the patient has never smoked in

the past, the status of “0 cigarettes per day” is denoted by 0.
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Table 2

Demographic statistics of the top 14 states based on patient population.

Total no. No. of diabetes No. of non-diabetes Prevalence

State of patients patients patients rate (%)

Arizona (AZ) 295 56 239 18.98

California (CA) 1917 258 1659 13.46

Florida (FL) 804 158 646 19.65

Illinois (IL) 412 75 337 18.20

Michigan (MI) 344 61 283 17.73

Missouri (MO) 702 104 598 14.81

New Jersey (NJ) 575 119 456 20.70

Nevada (NV) 495 135 360 27.27

New York (NY) 557 167 390 29.98

Ohio (OH) 515 111 404 21.55

Pennsylvania (PA) 250 67 183 26.80

South Dakota (SD) 325 40 285 12.31

Texas (TX) 897 243 654 27.09

Virginia (VA) 484 79 405 16.32

Table 3

Performance comparison of different algorithms based on the AUC values (along

with their standard deviation).

State LOCAL_Ada Multboost AdaBoost.PL.V2 BOPPID

AZ 0.799 ± 0.103 0.831 ± 0.085 0.845 ± 0.096 0.865 ± 0.088

CA 0.895 ± 0.046 0.844 ± 0.060 0.870 ± 0.064 0.902 ± 0.049

FL 0.882 ± 0.065 0.861 ± 0.059 0.878 ± 0.056 0.899 ± 0.053

IL 0.849 ± 0.071 0.876 ± 0.076 0.885 ± 0.053 0.896 ± 0.046

MI 0.881 ± 0.065 0.926 ± 0.038 0.923 ± 0.037 0.934 ± 0.038

MO 0.914 ± 0.034 0.886 ± 0.052 0.902 ± 0.048 0.921 ± 0.040

NJ 0.802 ± 0.040 0.835 ± 0.051 0.847 ± 0.042 0.857 ± 0.048

NV 0.863 ± 0.045 0.877 ± 0.033 0.891 ± 0.029 0.901 ± 0.019

NY 0.858 ± 0.060 0.857 ± 0.038 0.873 ± 0.061 0.891 ± 0.056

OH 0.885 ± 0.041 0.879 ± 0.066 0.892 ± 0.053 0.900 ± 0.050

PA 0.816 ± 0.082 0.809 ± 0.117 0.873 ± 0.071 0.885 ± 0.071

SD 0.892 ± 0.072 0.920 ± 0.067 0.929 ± 0.056 0.937 ± 0.047

TX 0.854 ± 0.040 0.838 ± 0.038 0.845 ± 0.027 0.871 ± 0.027

VA 0.789 ± 0.056 0.827 ± 0.045 0.838 ± 0.072 0.863 ± 0.059
In summary, based on the generated features which are listed in tables with pale blue color, one can observe that following

our transformation procedure not only helps in immensely reducing the dimensionality and complexity of the raw EHR data, but

also summarizes the complex EHRs into a succinct representation which is then used for building prediction models.

4.2. Experimental setup

We will demonstrate the performance of the proposed algorithms on improving the diagnosis of the diabetes condition.

Hence, for our experiments, we selected the top 14 states based on the total patient population in each state (which will be

considered as a participator). Table 2 shows the demographic statistics of these 14 selected states.

We compare our proposed adaptive distributed privacy-preserving ensemble system with the MultBoost [16] and local Ad-

aboost (LOCAL_Ada) algorithms. LOCAL_Ada algorithm is a local model obtained by applying the standard Adaboost on each

participator independently. For all the algorithms, the number of boosting iterations is set to 100. In Table 3, we provide the per-

formance results of AUC values from different algorithms using 10-fold cross validation. The best results are being highlighted in

bold.

In Table 4, we present the comparison of F-measure values which is calculated as follows:

F_measure = 2 × Sensitivity × Precision

Sensitivity + Precision
, (6)

where Sensitivity = TP
TP+FN

, and Precision = TP
TP+FP

; therefore, a high value of F-measure indicates that both precision and sensi-

tivity are reasonably high. It should be noted that the positive individuals are diabetics and the negative individuals are non-

diabetics. Thus, here TP corresponds to the number of diabetics correctly predicted by the classifier, FN corresponds to the

number of diabetics wrongly predicted as non-diabetics, and FP is the number of nondiabetics wrongly predicted as diabetics.

We observe that for all the 14 states, our proposed algorithm can diagnose type-2 diabetes more accurately compared with

the other algorithms. This demonstrates that we have successfully transferred useful medical knowledge and clinical information

within all the participators under the privacy constraints without revealing the data itself from each participator. This also means

that those participators can take advantage of the aggregated global models without compromising the privacy of individual

patients.
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Table 4

Performance comparison of different algorithms based on the F-measure values (along

with their standard deviation).

State LOCAL_Ada Multboost AdaBoost.PL.V2 BOPPID

AZ 0.541 ± 0.141 0.592 ± 0.084 0.612 ± 0.148 0.631 ± 0.151

CA 0.592 ± 0.092 0.498 ± 0.049 0.562 ± 0.079 0.608 ± 0.090

FL 0.664 ± 0.098 0.615 ± 0.085 0.643 ± 0.083 0.679 ± 0.092

IL 0.572 ± 0.102 0.643 ± 0.136 0.630 ± 0.110 0.659 ± 0.088

MI 0.619 ± 0.110 0.708 ± 0.087 0.707 ± 0.087 0.720 ± 0.091

MO 0.654 ± 0.069 0.608 ± 0.097 0.646 ± 0.094 0.667 ± 0.103

NJ 0.534 ± 0.059 0.583 ± 0.058 0.585 ± 0.056 0.589 ± 0.063

NV 0.668 ± 0.049 0.691 ± 0.058 0.705 ± 0.058 0.715 ± 0.043

NY 0.699 ± 0.086 0.682 ± 0.054 0.709 ± 0.099 0.731 ± 0.093

OH 0.657 ± 0.074 0.639 ± 0.104 0.688 ± 0.080 0.701 ± 0.084

PA 0.637 ± 0.090 0.623 ± 0.128 0.693 ± 0.092 0.721 ± 0.112

SD 0.666 ± 0.190 0.696 ± 0.159 0.691 ± 0.140 0.732 ± 0.107

TX 0.661 ± 0.065 0.628 ± 0.050 0.639 ± 0.035 0.675 ± 0.042

VA 0.493 ± 0.088 0.512 ± 0.075 0.560 ± 0.096 0.566 ± 0.079
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Fig. 4. Comparison of weighted average AUC values of Local AdaBoost, MultBoost, and BOPPID algorithms on the diabetes dataset for 100 iterations.
Fig. 4 shows the 10-fold cross validation results of weighted average AUC values at different iterations of the algorithm. The

weighted average AUC is defined as

AUCavg =
M∑
p=1

AUC(p) n(p)∑M
m=1 n

(m)
, (7)

where AUC(p) is the AUC value of pth participator, n(p) is the number of patients in the pth participator. The figure shows that the

proposed algorithm always works better than MultBoost and Local AdaBoost, and only a few selected important features (or

iterations) can provide a good prediction model.

4.3. Biomarker discovery

Biomarkers are important indicators used to diagnose a particular disease in a clinical setting. From Fig. 4, we can see that

the weighted average AUC of our proposed model achieves 0.88 after 10 iterations and approximately 0.89 after 20 iterations.

This indicates that the top selected features in each state can well represent the corresponding data distribution. It should be

mentioned that since the weak classifier used in our algorithm is a decision stump, each iteration will correspond to the usage

of only one feature with a simple split. In Fig. 5, we show the selected biomarkers for each state after 10 iterations (in the left)

and 20 iterations (in the right). In the 10 iterations scenario, we find 39 important biomarkers, and in the 20 iterations case, this

number becomes 60. For comparison, we present these two settings under a same coordinate system, where the vertical axis

is the index of selected features and the horizontal axis corresponds to the list of states that contain this attribute in their top

feature list. Fig. 5 clearly shows the selected important features and the corresponding state.

From Fig. 5, we can conclude that there are a total of 6 universal biomarkers: “YearOfBirth”which represents the age of patient,

“HighLowBP” measures the difference between systolic blood pressure and diastolic blood pressure, “L2_HypertensionEssential”

is a biomarker that reflects whether the patient has been diagnosed with hypertension or not, “L2_MixedHyperlipidemia” is an

indicator that tells whether the patient has suffered with mixed hyperlipidemia or not, “TotDiagPerVisit” indicates the number
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Fig. 5. Selected biomarkers for each state.
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of complications the patient had, and “medication_diag_NA” indicates whether the patient was previously diagnosed with type-

2 diabetes through medical tests. These 6 selected features meet the well known common knowledge in the clinical domain.

The clinical study suggests that hypertensive persons are more predisposed to the development of diabetes than normotensive

persons. Moreover, up to 75% of cardiovascular disease (CVD) in diabetes is attributed to hypertension [37] and older people are

more likely to suffer from type-2 diabetes [26]. Medical diagnoses tests are relatively accurate, i.e., most of the patients whowere

diagnosed with diabetes by the medical tests actually have diabetes. However, the sensitivity of these tests is low, i.e., a lot of

diabetic patients remain undetected through these tests.

Our results can also reflect that overweight or obese is closely related to type-2 diabetes [26], but for different states it is

represented in different ways. For most of the states the body mass index (BMI) (related to features 6–9) is more important than

the direct body weight, while for few other states direct body weight plays an important role as well. It can be seen from our

results, that our approach can provide a more accurate set of “region-specific” biomarkers in addition to the global markers.

Such analysis on region-specific biomarkers in comparison to the overall biomarkers (which are typically known in the medical

literature) can provide new medical insights into specific regional patient data which can thus lead to new discoveries in the

clinical domain.

5. Conclusions and future work

Healthcare in the United States is currently undergoing a revolutionary transformation and EHRs are playing a vital role in im-

proving the quality of patient care. However, due to the patient privacy and the sensitivity of the patient information that is being

stored in the EHRs, there are considerable barriers to EHR proliferation. In this paper, we developed a novel distributed privacy-

preserving integration method based on an ensemble based strategy for building robust prediction models from EHR data. Using

our approach, each participator will need to reveal only limited model information built using the local data without revealing

any patient-specific information. The local models built from each participator will be effectively combined to build an integrated

model that is specific to each participator. This integrated model is built by taking advantage of aggregate knowledge from all

the participators instead of the local participator’s data alone. Compared to other existing works, our proposed framework can

prevent the “negative impact” during integration from multiple sources, which typically happens when the data distribution

differences among the participators are very large, by building a specific integration model for each participator with only a few

selected local models instead of taking all the local models. We demonstrated the performance of our proposed method using

the type-2 diabetes EHR data and have shown that constructing a global model which utilizes other local models performs better

compared to the original local models built on each participator’s data separately. In addition, we also successfully identified

some important universal/global and region-specific biomarkers.

In the future, we will try to find more accurate ways to measure the difference of data distributions among multiple partici-

pators under privacy constraints. We also plan to extend our work with the idea of k-anonymity, so that we can measure the data

distributions more accurately without compromising on patient privacy.
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