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Abstract

Storage systems are designed to never lose data. However,
modern applications increasingly use local storage to im-
prove performance by storing soft state such as cached,
prefetched or precomputed results. Required is elastic stor-
age, where cloud providers can alter the storage footprint of
applications by removing and regenerating soft state based
on resource availability and access patterns. We propose a
new abstraction called a motif that enables storage elasticity
by allowing applications to describe how soft state can be
regenerated. Carillon is a system that uses motifs to dynami-
cally change the storage space used by applications. Carillon
is implemented as a runtime and a collection of shim lay-
ers that interpose between applications and specific storage
APIs; we describe shims for a filesystem (Carillon-FS) and
a key-value store (Carillon-KV). We show that Carillon-FS
allows us to dynamically alter the storage footprint of a VM,
while Carillon-KV enables a graph database that accelerates
performance based on available storage space.

Categories and Subject Descriptors D4.2 [Operating Sys-
tems]: Storage Management

1. Introduction

The promise of cloud computing lies in elasticity: the prop-
erty that applications can ramp up or dial down resource us-
age as required, eliminating the need to accurately estimate
service load and resource cost a priori. Elasticity can usually
be achieved easily for CPU or RAM, either by spinning up
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or down more virtual machines (i.e., horizontal scaling), or
by adding cores or RAM to individual virtual machines (i.e.,
vertical scaling) [21]. However, storage is typically inelas-
tic in the dimension of space or capacity; the cloud provider
cannot easily modulate the storage footprint of an applica-
tion.

The need — and opportunity — for space elasticity in stor-
age arises from the fact that modern applications often store
data on durable media for performance rather than dura-
bility. In the 00s, system designers were faced with slow,
stagnant network speeds that stayed within 1 Gbps for over
a decade; architectural paradigms such as peer-to-peer and
client-server computing that forced applications to operate
over bandwidth-constrained WANS; and hierarchical topolo-
gies within data centers that created bandwidth bottlenecks.
In addition, CPU cycles were relatively scarce in the single-
core era. In contrast, disks were large, inexpensive, and fast
for sequential I/O at 100 MB/s or more. Such constraints
pushed designers to creatively use excess storage capacity in
order to avoid network I/O or CPU usage.

As a result, much of the data stored by applications on
secondary storage is volatile data that does not fit in RAM;
usually, it can be thrown away on a reboot (e.g., swap files),
reconstructed via computation over other data (e.g., inter-
mediate MapReduce or Dryad files [§], image thumbnails,
memoized results of computations, desktop search indices,
and inflated versions of compressed files), or fetched over
the network from other systems (e.g., browser and package
management caches). As a case in point, up to 55% of stor-
age on three of our own development VMs is consumed by
caches and ephemeral content. In addition, durability may
not be critical for a file either because new applications
(such as big data analytics) can provide useful answers de-
spite missing data [1]], or because the data may be duplicated
across multiple files [ [13].

Such behavior by applications is problematic because the
balance between network, compute and storage has shifted
in recent years: applications now execute in the cloud within
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Figure 1: Motifs exist in expanded or contracted form; depend on
other files, motifs, and external resources; and can have circular
dependencies.

data centers that provide full-bisection bandwidth; networks
are faster in general, with the emergence of 10 Gbps Ethernet
and the resurgence of RDMA; compute cycles are plentiful
and often wasted on multi-core machines; and hard disks are
increasingly supplanted by fast, small and expensive SSDs
as default secondary storage media. Cloud providers now
face the need to multiplex scarce storage resources among
multiple tenants, but their job is made difficult by applica-
tions that treat storage as a cheaper resource than network
or compute. Required are interfaces and mechanisms that al-
low cloud providers to control the storage behavior of appli-
cations, reclaiming space occupied by ephemeral or recon-
structable data as needed.

Unfortunately, existing storage systems treat durability
as a sacred covenant: all data is equally important, and no
data must be lost. The assumption is that applications will
only store data on a durable medium if they actually require
durability, and the task of the storage system is to preserve
that durability at all costs. As a result, modern storage sys-
tems exhibit an inefficient dynamic: applications opportunis-
tically use persistent storage to store data that is ephemeral,
whereas storage systems struggle heroically to ensure that
this data is not lost.

In this paper, we present the motif abstraction: a code
fragment attached by the application to a unit of data (i.e.
a file, a key-value pair, etc.) that tells the storage system if
and how that data can be reconstructed. The motif can be
expanded to generate the bytes constituting the data item,
or contracted back. For example, a motif might generate the
file by fetching data over the network from a URL, or via
computation over other files (e.g., sort a file, merge multiple
input files, generate an index from a larger file, or even
expand a compressed input file).

We implement the motif abstraction within a system
called Carillon, which consists of two components. The first
is a runtime that manages motifs, deciding when to expand
and contract them based on resource availability and ac-

cess patterns. The second is a thin shim layer that interposes
between the application and an unmodified storage system
(e.g. a filesystem or a key-value store). The API exposed
by the shim layer to the application can be identical to that
of the underlying storage system (e.g., a POSIX filesystem
API), with the addition of an interface to allow applications
to install or remove motifs. The shim layer and the runtime
interact with each other via an IPC mechanism. This two-
part design enables developers to easily add motif support
to any target storage system simply by implementing a new
shim layer.

We demonstrate the end-to-end utility of motifs via two
Carillon shims and their corresponding real-world applica-
tions. We implement a filesystem shim (Carillon-FS) that ex-
poses a POSIX API and runs over ext4. We execute Carillon-
FS as a guest filesystem within multiple virtual machines,
interacting with corresponding Carillon runtime instances
running on the host OS. With the help of file-based mo-
tifs, Carillon-FS allows the storage footprint of each VM to
change over time. The performance overhead of our proto-
type is less than 5% beyond standard FUSE overheads on the
filebench benchmark.

We also implement a key-value store shim (Carillon-KV)
that runs over — and exposes the API of — LevelDB [11].
Above Carillon-KV, we implement a graph database that
stores its state in the form of adjacency lists in the key-
value store; for each node in the graph, there is a key-value
pair where the key is the node ID and the value is a list of
neighboring node IDs. The graph database proactively cal-
culates answers to popular queries (e.g., the path between
two nodes) and stores them in Carillon-KV, while providing
a motif describing how these cached results were computed.
When evaluated on a simple shortest-paths application on
top of graph database, Carillon-KV was able to reduce la-
tencies 10x through the use of motifs.

We make the following contributions in this paper:

e We propose the motif abstraction as a way for storage
systems to achieve space elasticity, by understanding how
the data they store can be reconstructed via computation,
network accesses, and other data.

e We describe the design and implementation of a system
called Carillon that implements the motif abstraction.
Carillon can be extended with thin shims to add space
elasticity to any existing storage system.

e We describe two Carillon shims — a POSIX filesystem
and a LevelDB-based key-value store — and show that
they enable space elasticity in real-world applications
such as VM hosting and a graph database, respectively.

2. The Motif Abstraction

A motif is a code fragment capable of regenerating a data
item (such as a file or a key-value pair). It exposes a single
expand method which generates the content of that item
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Figure 2: The Carillon architecture. The yellow arrows show
interface calls and callbacks.

(i.e., the raw bytes corresponding to it). A motif’s expand
method consists of arbitrary code: it can fetch data across
the network, run computations, or access local storage. We
describe motifs in the context of a filesystem for ease of
exposition. When a file is associated with a motif, it can
exist in contracted form as the motif, or its contents can be
generated using that motif. The following are several key
properties of motifs.

Motifs are recursive. A motif’s expand method can ac-
cess other files. For example, in Figure |I|, A.txt is a con-
tracted motif which expands by performing some computa-
tion over B.txt. The file being accessed could be a conven-
tional file (like B.txt); alternatively, it could also be a motif.
For example, in Figure[I] a file C.txt is an index generated
by scanning a data file D.txt, which in turn is a local copy
of a remote file accessed via a URL. Expanding the index
file requires the data file to be expanded first; accordingly,
the motif for the index file depends on the motif for the data
file. Motifs can also execute binaries (such as zip or curl),
which in turn could exist as motifs.

Motifs are stateful. A motif consists of two components:
the code executed to generate the file contents, and a small
amount of metadata used as input for this code. For example,
the motif for D.txt in Figure [T] consists of code to actually
download the file over the network, along with the URL of
the remote source.

Motifs can define circular dependencies. Files that can
be generated from each other lead to circular motif depen-
dencies. One example of this is compression: in Figure [I]
C.txt.zip is the compressed version of a file C'.txt, which
means the bytes for C'.txt can be generated by uncompress-
ing C'txt.zip; conversely, the bytes for C'.txt.zip can be gen-
erated by compressing C.txt. Accordingly, the motifs for
C.txt and C'.txt.zip depend on each other. Another example
of a circular dependency involves two files storing the same
data sorted on different columns; each file can be generated
by sorting the other. A third example involves files storing
different data structures with the same data: for instance, a
hash map and a tree representation of a set of items.

Files can have multiple motifs. In cases where a file
can be reconstructed via more than one method, multiple
motifs can be associated with it. For instance, in Figure m
C.txt can be generated by uncompressing C'.txt.zip, or by
generating an index over D.txt; depending on the load on
the network, storage system and CPU, as well as whether
D.txt is expanded or contracted, it might be faster to use one
motif versus the other.

Motifs can be invalidated. If a motif depends on other
files in the same filesystem — either conventional files or
other motifs — it is automatically contracted when those files
change. It must be expanded again before it can be read. As
a result, motifs do not expose stale data to applications. This
does not apply to motifs that depend on external sources like
URLs on the web.

Motifs can support writes. A motif can optionally con-
tain a contract method. For read-only files, contraction re-
quires no extra code; it merely involves deleting the raw
bytes of the file and retaining the motif. However, in some
cases, an expanded file can be modified by the application,
and these changes have to be relayed upstream to the origi-
nal source of the data. For example, if a motif expansion in-
volves fetching data over the network, its contraction might
involve writing that data back to the remote location, effec-
tively making the local file a write-back cache. The con-
tract method is not allowed to change other files in the same
filesystem, to prevent the consistency snarl that can arise if
writes occur in motif dependency cycles.

3. Carillon Design

Carillon is a system that implements the motif abstraction. A
primary design goal is to add motif-based storage elasticity
to existing storage services — such as filesystems and key-
value stores — with minimal effort. To achieve this goal, Car-
illon uses a two-part design (as shown in Figure[2), consist-
ing of a runtime and a shim. The runtime is agnostic to the
target storage system, while the shim is tailored to it; each
new storage service requires a new shim that exposes its API
to applications. A single runtime/shim pair operates in con-
cert with a single storage service. If multiple storage services
are executed on the same machine, each one requires its own
Carillon runtime and shim. In addition, motifs are specific to
shims, even if they have substantially similar functionality;
this is because they need to interact with the shim to access
and write out the appropriate data units (e.g., files or key-
value pairs).

The Carillon runtime is responsible for managing motif
metadata, including the mapping between opaque data iden-
tifiers (i.e., filesystem filenames or key-value store keys) and
motifs. It accepts policies from the administrator regarding
the target size of the storage system, and tracks access and
size statistics about units of data (such as individual files).
Based on the policies and statistics, it triggers motif expan-
sion and contraction to change the footprint of the storage



//create a motif for a new data item
t_motif create_motif (t_ID oid, t_templateID mtmp,
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void notify_close (t_ID oid);
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Figure 3: API exposed by Carillon runtime to shim.

service on the fly. Further, it executes motifs within its own
address space.

The Carillon shim intercepts calls to the target storage
system and exposes the corresponding API to applications,
along with motif-specific calls which we’ll describe shortly.
It interacts with the Carillon runtime using the API shown in
Figure 3] We use the running example of a filesystem shim
(Carillon-FS) which exposes a POSIX API to applications.

3.1 The Runtime API

We now describe the interaction of the shim (using the
filesystem as an example) with the runtime. When a file
is opened, the shim calls notify-open on the runtime. The
runtime returns immediately if the file is either an expanded
motif or a conventional file; else, it expands the motif before
returning. When the file is closed, the shim calls notify-close
on the runtime.

When the motif executes, it is responsible for writing out
the generated bytes to the underlying storage system. To
do so, it interacts with the shim’s upstream API (i.e., the
POSIX API in the case of the filesystem) but uses a spe-
cial PASS_THROUGH flag to indicate that it wants to di-
rectly write to the underlying storage system. When the mo-
tif wants to access other files in the filesystem, it uses the
shim without the PASS_THROUGH flag, to ensure that re-
quired motif expansions are triggered for its dependencies.
The PASS_THROUGH flag is also used on contraction, ei-
ther by the runtime or the motif’s contract method, to delete
the bytes inside the file.

To allow the installation of motifs in the system, the Car-
illon runtime exposes three API calls (shown in Figure [3)
to the shim, which in turn exposes them to the application.
The application invokes these calls on the shim with param-
eter types specific to a storage API (e.g., with filenames);
the shim routes the calls to the runtime in a form that’s in-
dependent of storage API (e.g., passing filenames as opaque
identifiers).

First, applications can call create-motif to create a new
mapping between a data identifier and a motif. In doing so,
they provide both the code for the motif and its metadata. To
simplify motif creation, Carillon provides a library of motif
templates from which individual motif instances can be cre-
ated. An example call to create-motif might pass in a file-

name (e.g., /tmp/abc), a motif template (e.g., one which
downloads a URL), and the metadata for the motif (e.g., the
URL to download from). Consider the filesystem example;
when the create-motif call returns from the runtime to the
shim, and from the shim to the application, at that point a
new file exists in the filesystem, but in contracted motif form.

Second, applications can call attach-motif to attach a new
motif to an existing data identifier. This is similar to create-
motif, except the data unit already exists; in the context
of a filesystem shim, this attaches a motif to the filename,
but leaves the file in expanded form. This file can now be
contracted — i.e., its contents can be deleted — since a motif
exists to reconstruct it. Finally, applications can call detach-
motif to dissociate a motif from an identifier.

In addition, the runtime provides APIs (not shown in Fig-
ure [3) that allow the shim to update it with access statistics,
either eagerly or lazily, as files are read and written. The run-
time then uses these statistics to choose which files to con-
tract. Finally, the policy API exposed by the runtime is cur-
rently very simple — it accepts the target size of the Carillon
instance.

4. Implementation

We now discuss in more depth our implementation of the
various Carillon components.

4.1 Motif Implementations

In our Carillon implementation, motif templates are dynam-
ically loadable C++ modules that implement the expand
method (and an optional contract method). The modules are
pluggable and can be installed or upgraded during run-time.
Individual motifs are created by passing a motif template and
motif-specific metadata to the create-motif call described in
the previous section. If the motif reads other data units in
the same storage system (that could also be motifs), it is re-
quired to explicitly specify dependencies in the metadata at
creation time.

We now detail some of the motif templates that are im-
plemented in our system. We describe the motifs we used
for the filesystem shim.

Network-storage motif: An example of a network-storage
motif template implementation used by our system is shown
in Figure [d] The remote server is expected to contain copies
of files, as discussed earlier. Therefore, read-only files can
simply be removed during contraction. For mutable files,
however, the contract method of the network-storage motif
ensures that the remote site contains an up-to-date copy of
the data before removing its local copy. The expand method
then copies the file back from the remote server, in our
implementation using scp. Notice that any motif created
with the network-storage motif template has a dependency
on the scp binary.

Compression motif: The next motif template uses file-level
compression to save storage space at the expense of higher



int contract (struct context =xctx) {

int res = execute(
"ssh %s \"mkdir -p ’ ‘dirname \"%s%s\"‘/\"",
IP, PATH, ctx—>path);
if(res == 0)
res = execute ("scp \"%3Ss\" "%s:\"%s%s\"" ",

IP, PATH, ctx—->path);
return res;

}

int expand(struct context xctx) {
return execute (
"scp "%1$s:\"%2$s%35s\"" \"%3S$s\"",
IP, PATH, ctx->path);
}

static struct motif m = {
.name = "compress-motif",
.contract = contract,
.expand = expand,
bi
struct motif *init () { return &m; }
void cleanup() { }

motif_init (init);

Figure 4: Network-storage motif example.. A file is retrieved from
remote server during expand, and mutable files that may have
changed are uploaded before local removal by the contract routine.
The listing omits error handling and security issues for clarity.

CPU utilization. File compression is implemented as two
motifs, Compress-Motif and Decompress-Motif, that induce
a dependency cycle of length 2 between an original file and
its compressed version, since one file can be created from the
other. Given a file A, the application first creates a new com-
pressed file A.zip with a Compress-Motif with A as its argu-
ment. Next, the application attaches the Decompress-Motif
to the original file A specifying a name (here A.zip) of the
compressed file that was created and exposed on the under-
lying storage system. Consequently, the Decompress-Motif
for A can decompress the dependent file A.zip to recreate the
content of A, and the Compress-Motif for A.zip can recreate
the content of A.zip by compressing the original A file. In
our implementation, we use gzip as the compression util-
1ty.

Browser downloads motif: Recalling that workstations of-
ten use storage for caches of various kinds, the next mo-
tif template illustrates how Carillon facilitates better use of
such caches in the context of a web browser. Many major
web browsers, such as Mozilla Firefox and Google Chrome,
store copies of downloaded files in a “Downloads” folder.
These files are removed from the folder only manually, caus-
ing a tendency for the folder to fill up over time. The contents
of the Downloads folder are tracked by an internal database
of the browser. In the case of Firefox, a places.sqglite
database maintains information about what files have been
fetched and the URL from where they were initially down-
loaded.

We built Downloads-Motif, a simple motif template that
is parameterized with a URL. Expanding the motif causes
the URL to be fetched. To use the Downloads-Motif with
the Firefox Downloads folder, we wrote a script to scan the
Downloads database and create a Downloads-Motif for each
motif. Before deciding to contract a file, the Downloads-
Motif sends an HTTP HEAD request (with no cookies or
authentication tokens) to verify that the file can be retrieved
later.

4.2 The Carillon Runtime

The workhorse of Carillon is the runtime, which we imple-
mented as a daemon. The runtime stores its metadata — the
mapping from filenames to motifs — in a single file on the
base filesystem (i.e., the filesystem outside the Carillon uni-
verse, containing the runtime executable). The size of this
metadata is proportional to the number of installed motifs;
each motif is quite compact, since it consists only of an ob-
ject identifier, a motif template identifier, and metadata for
the motif. The metadata is typically a small number of iden-
tifiers that the motif depends on, either pointing to other data
units or to external objects (e.g., URLSs).

The runtime is implemented in 2563 lines of C++ code.
The runtime interacts with the shim via IPC, exposing the
API described in Section [3] for creating and managing mo-
tifs. The IPC mechanism used is Apache Thrift RPC [3]],
which allows for easy development of shims for new storage
systems. The runtime also exposes a policy API to manage-
ment tools, which can be used to set resource limits (i.e., the
total space that can be used by the Carillon instance) and to
collect statistics. These statistics can in turn feed into an au-
tomatic management tool, such as to automatically partition
storage space across VMs [16].

Within the runtime is an optimization module that de-
cides what objects to expand or contract based on external
resource pressure while trying to minimize user-experienced
latency. The details of the process are discussed below. Con-
tractions are performed in the background, whereas expan-
sions are triggered upon request from the shim as the appli-
cation accesses data units.

4.3 Security challenges

Normally, Carillon runtime and all motifs are configured
and managed by the system administrator. Multiuser systems
can be an exception, however, since individual users may
choose to use motifs and contribute to optimize resources on
a shared system [8}, 24]. All motifs are currently run under
the privileges and capabilities of the user of the process that
makes the request to Carillon.

To prevent the situation where user u compromises the se-
curity or privacy of another user u’ by registering malicious
motif code, we require that users specifically vet motif codes
contributed by regular users v who have fewer privileges or
capabilities than u’ before they use the code. Motif templates
installed by an administrator are thus always enabled.



Motifs may contain errors that could cause the system to
hang or damage files. We currently take a laissez-faire ap-
proach and assume that developers provide correct motifs.
We intend to improve our rudimentary sandbox around mo-
tifs to help mitigate stability and security concerns.

5. The Optimizer Module

At the heart of the Carillon runtime is an optimization mod-
ule that decides what resources should be consumed through
the use of motifs to save on other more valuable resources.
For example, disk space could be saved by contracting a
rarely used file on a filesystem by a motif at the penalty
of longer wait times on the next open system call. There
are several challenges in determining the impact of different
choices and making a good choice.

First, we must estimate when the file will next be needed.
Proper estimates guard against wasted efforts of contracting
files that shortly after require additional resources to be ex-
panded again. An optimal estimate would depend on knowl-
edge of future accesses, putting the problem in the same
class as cache replacement policies. Second, we must model
which and how many resources are used and saved through
contraction and then later consumed during future expan-
sion. The resources span network, storage and computation
resources and thus depend on dynamic usage patterns. Third,
a file may be contracted by one of multiple applicable motif
templates. Different motifs have different resource profiles,
so whereas one motif may save on storage space by con-
suming network resources, another motif may reduce stor-
age space in exchange for higher CPU load.

To model the problem, the input consists of an online
sequence of (object-name,time) pairs specifying objects
that are to be opened by some application. Our challenge
is to ensure that each object is in expanded (readable) form
when it is accessed, potentially waiting for the expansion
to complete, while simultaneously adhering to the specified
restrictions on resource consumption.

We can make online decisions without future knowledge
by reformulating the problem in the knapsack framework.
We assign a profit and size value to each object-motif pair
that may be contracted. The profit is calculated as a differ-
ence between resource savings and the expected latency dur-
ing future expansion. The latter term encapsulates both the
estimated time until reuse as well as assessing the latency for
that access. We calculate the size of each pair in the knap-
sack to be the current resource usage of the object. An ap-
proximation algorithm for knapsack will then contract the
objects that give the most profit without violating resource
constraints.

In a typical scenario in Carillon, thousands of objects are
being considered for contraction. Unfortunately, even calcu-
lating approximate solutions for multi-resource knapsack is
prohibitively expensive [12]. We are forced to simplify to
make progress.

A natural approach to our original problem is to consider
local storage as a cache, available for the expenditure of
other resources. This perspective lets us tap into the exten-
sive cache-replacement algorithm literature to decide what
objects to contract. However, cache replacement strategies
may potentially discard too much of the information pro-
vided by the system. To determine the impact, we will in-
vestigate the performance of both simple and more complex
strategies on realistic workloads.

6. Applications

To illustrate how Carillon enables elastic storage, we im-
plemented two applications: Carillon-FS, a file-system shim
that uses motifss to manage storage, and Carillon-KV, a key-
value store whose data can be preloaded and removed using
motifs. Further, we built a simple graph database application
on Carillon-KV to show how elasticity can accelerate prac-
tical applications. Below, we discuss key aspects of these
implementations.

6.1 Application: Carillon-FS

Carillon-FS is a Carillon-based POSIX filesystem imple-
mented using Linux FUSE [[18]]. The implementation com-
prises 685 lines of C++ code. Carillon-FS is a Carillon shim:
files in Carillon-FS are stored on an underlying filesystem,
which in our set-up was ext 4. When a file is contracted,
its bytes are removed from the underlying filesystem, while
the Carillon runtime maintains it as a motif. An empty, 0-
byte token file is left behind on the filesystem. The motif can
subsequently be expanded to repopulate the file.

Carillon-FS passes most operations directly to the under-
lying filesystem implementation in the kernel with a few im-
portant exceptions detailed below.

stat If a file is contracted, we can not rely on the underlying
filesystem to fulfill the stat request, since the size of
the token file is zero bytes. Expanding the fileon a stat
is wasteful. In this case, we issue a lookup RPC to Car-
illon. The Carillon stored metadata contains full stat
struct about the last expanded state of the file, which
we return to the caller.

open When opening a file, Carillon-FS must ensure the file
exists in a fully expanded form. To satisfy this request, we
must therefore send an expand request to Carillon. When
expand returns, we can assume the file is fully expanded
even if was previously contracted.

unlink If a file is contracted we must take special care to
clean up any state when a file is permanently unlinked.
A motif’s contract method may do arbitrary operations
with various side-effects, including storing metadata on
a remote site. We must therefore forward this call to the
motif responsible for the file.

rename The Carillon runtime must be made aware of the
new name for this particular motif. The shim currently
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implements rename by calling detach-motif and then
attach-motif on the new filename, thus retaining the
atomicity of the underlying file system. An optimized
version would affect only metadata in the daemon, thus
speeding up patterns such as the creation of temporary
files. However, we found that rename was a rare opera-
tion in our traces (< 0.01%) and thus take the detach-
attach approach in our prototype.

truncate Truncate removes an arbitrary portion of a file. In
the general case such a request can not be fulfilled except
by calling expand first.

utime This method modifies the stat struct.Ifafileis
in a contracted form, we must update the stat metadata
stored by Carillon. We do this by first calling Lookup to
provide the current stat for the file, and then notifying
the runtime of an access to the file, which updates the
relevant metadata stored by Carillon.

Example look-up in Carillon-FS. Figure [§] illustrates the
steps taken when a contracted file stored in Carillon-FS is
opened by an application. Carillon-FS first checks if the file
is present on its backing storage system, say an ext4 filesys-
tem. If the file is already expanded, the data are in place and
the call just proceeds as normal. Assuming the file is instead
in a contracted state, Carillon-FS send an RPC query to the
Carillon runtime to verify that the file has been contracted
and to prepare for expansion. Carillon consults an internal
database and locates the motif for the file to be expanded.
The metadata in the motif contains sufficient information to
expand the file. The motif’s expand function now runs and
writes the expanded file to the appropriate path on Carillon-
FS’s backing storage system. After expansion, the Carillon
RPC successfully returns. Carillon-FS now attempts to open
the file on the backing storage system, which will now suc-
ceed. It returns the file descriptor to the user program, and
the user reads or modifies the file.

6.2 Application: Carillon-KV

We also implemented a key-value shim on top of Carillon
called Carillon-KV. Carillon-KV runs over a LevelDB in-
stance, and exposes the LevelDB API to applications. It also
adds Thrift code [3] to interact with the runtime. The total
shim size is 670 lines of C++ code.
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Figure 6: Performance overhead. Benchmarks on Carillon-FS us-
ing filebench [22|]. Error bars represent one sample standard de-
viation.

Graph database: To facilitate experiments with the elas-
ticity afforded by Carillon-KV, we built a simple graph
database on top of Carillon-KV. The graph store stores a
weighted digraph in Carillon-KV using an adjacency list
representation: each vertex is associated with a map between
vertices and their weights. The API includes the basic graph
operations including enumerating all vertices in the graph,
finding outgoing edges from a given vertex, and to add an
edge between a pair of vertices of a given weight.

7. Evaluation

Our evaluation aims to answer the following three questions.
(1) What is empirically a good method for choosing files
to contract? (2) Does Carillon provide space elasticity at a
reasonable cost? (3) What is the performance overhead of
Carillon-enabled services?

7.1 Experimental Setup

We conducted our experiments on a dual-core 2.0GHz In-
tel 15 4310U processor machine with 16GiB DRAM run-
ning Arch Linux 3.18.6-1 and FUSE 2.9.3-2 [[18]]. The one
exception is that the filebench benchmark suite [22] was
run on a QEMU 0.12.1.2 virtualized machine with one Intel
E5-2695v2 2.4GHz core and 4GiB DRAM running CentOS
6.6 with 64-bit Linux 2.6.32-431 and FUSE 2.8.3 using a
7x900GB 10K RPM SAS drives configured in RAID-6. To
accommodate the network storage motif, we used another
virtualized machine on the same LAN with the same speci-
fication as the one above as an upstream server.

7.2 Traces

Our evaluation relies on two real-world traces.
DEVTRACE: The first trace is a longitudinal log of all sys-
tem calls on a developer’s Ubuntu Linux laptop. The trace
spans 7 months of daily use and contains approximately 77M
system calls.

COURSETRACE: Using Sysdig [L7], we also collected
two weeks of system call data from a live code autograding
server for a 100 person computer science university course.
The trace contains over 300M system calls, of which 39M
are open calls that can trigger expansion. We also took a
snapshot of the directory structure, filename and file sizes at
the beginning of the trace. For our experiments, we created a

ext4 m—
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copy of the filesystem directory structure and filled each file
with random bytes of the appropriate size.

To avoid triggering spurious kernel calls and polluting
the kernel caches when parsing a trace file from disk, we
automatically generated and compiled C code from each
trace that successively generates every system call related
to the filesystem in the trace (the longest code is I0MLOC).

7.3 What data should we contract?

We evaluated several cache-replacement algorithms for
choosing objects to contract, including random replacement,
LRU, LFU, FIFO, CLOCK and S4LRU. CLOCK maintains
a circular list of objects and traverse it using a hand, decre-
menting the counter of an object whenever the hand passes
the object, and resetting the counter if the object is used. Ob-
jects are contracted when the counter reaches 0 [6]. S4LRU
divides an LRU into four segments, where items are first
brought into the lowest segment. An object which is repeat-
edly accessed is promoted to a higher segment, whereas idle
objects are demoted to lower segments or evicted altogether
as in ordinary LRU [10]]. The algorithms were run with many
different parameter values and we report only on the param-
eters that yielded the best performance.

We ran simulations over all open calls in the DEVTRACE
and COURSETRACE traces. We set a target storage capacity
to be either 20% or 50% of the system’s total storage space
as a policy. We recorded the byte miss rate, gauging the
effectiveness of the algorithm with variable size objects, and
the total bytes missed. In the latter, we recorded the full size
of each requested file and sum up sizes of missed files. This
aggregate acts as a proxy for the expected latency of the
expansion of the file. For example, the duration of copying
a file to a remote server depends linearly on the file size.
The policy that minimizes total missed bytes will thus best
approximate the optimal strategy.

The algorithms all had similar performance for the two
metrics and hit rates of over 99.5% (figure omitted due to
space constraints). LRU gave the most competitive perfor-
mance — the small working set (Figure [5) means that all al-
gorithms have a low miss rate. While this is characteristic
of filesystem traces [14], the strong locality implies that re-
cency of access is a significantly more important factor to
decide on contraction than the anticipated expansion over-
head. We ran an LRU simulation on DEVELOPERTRACE
for various space constraints to create an LRU histogram
(Figure [3) to investigate the locality of the traces. The fig-
ure shows that the miss rate stays low until about 1% space
when it enters a cliff, showing that byte accesses are con-
centrated around a very small set of files. We adopted LRU
as the default algorithm in Carillon and used it in the subse-
quent experiments.

7.4 How much overhead is imposed by Carillon ?

For our experimental evaluation of Carillon services, we
begin by subjecting Carillon-FS to standard benchmarks. We

compare the performance of Carillon-FS against ext 4 and a
FUSE loopback implementation which forwards all system
calls directly to the kernel to highlight the overhead FUSE
incurs for an extra context-switch into user space.

We use filebench, a filesystem and storage benchmark
suite that can generate both micro and macro benchmarks
[22]]. The micro-benchmarks issue common filesystem spe-
cific system calls to large files. The macro workloads are
synthesized to emulate the behavior of common applications
like web and mail servers. We ran four micro benchmarks
and five macro benchmarks. The results in Figure [6] show
that the overhead of Carillon in Carillon-FS is less than
5% compared to the FUSE loopback driver.

7.5 Does Carillon-FS achieve space elasticity?

We evaluate the elastic cloud storage application by focusing
on elasticity and performance within a single VM. We replay
COURSETRACE on a volume managed by Carillon-FS as
the Coordinator process changes our resource policy over
time to adjust the space partition. To focus on the additional
overhead imposed by Carillon-FS, the storage volume is
backed by RAM. Initially, no restrictions are put on the
storage use. After approximately 1/3 of the trace has run,
we significantly reduce the space available to the system.
After 2/3 of the trace, we lift the constraints again. In the
experiments, Carillon exclusively uses a network storage
motif. We repeated the experiment with various kernel and
buffer cache settings and observed minimal differences in
performance.

Our performance metric is the time to complete open
system calls, since this reflects the principal overhead of file
expansion. We expect limited overhead during the first third
of the trace, some increases during the era of constrained
capacity, and finally low overhead in the last third.

On the first run, we constrain the system to 500 MB
during the middle phase (Figure [7a). The blue dashed line
represents the total size of the system at each point in time.
The red line represents the average time of an open call over
each 20 second period.

We ran the trace with different settings to investigate the
causes of the relatively low overhead seen in the figure.
We changed the policy and constrained the middle managed
phase of the trace to enforce 0 bytes managed space. This
change cause most open operations to trigger an expansion,
and thus increasing overhead. The behavior is confirmed in
Figure[7b] The graph further shows that the total system size
never outgrows approximately 400 MB, reaffirming the con-
ventional wisdom that real-world traces exhibit high local-
ity: a small set of files on the systems are responsible for
most activity on the system. The distribution of open laten-
cies confirm that vast majority of files do not cause signifi-
cant overhead. Hence, as long as space is available to keep
these popular files expanded, the overhead of the occasional
expansion of rarely accessed files is minor.
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Figure 7: Carillon-FS performance. Average latency of open calls and Carillon-FS filesystem size on COURSETRACE. The storage limit
policy is changed from unrestricted to restricted and then back during the trace, where the size restriction is (|7_EI) 500MB, and (|7_Bl) OMB.

7.6 Does Carillon-KV achieve space elasticity?

We argued that Carillon allows motifs to elastically use
excess space to reduce use of other resources.

We ran a basic route planning workload against Carillon-
KV, which stores a large weighted network representing
road map data, and finds the shortest driving distance be-
tween a given source and destination. We used the road map
of the State of California, (21K vertices, 43K edges), for our
experiments. Crucially, this simple service illustrates how
applications may benefit from elastic storage: retaining in-
termediate computations reduces computation cost of future
queries but at the cost of storage consumption.

The graph database uses Dijkstra’s shortest-path algo-
rithm to compute an optimal path between s and ¢. As in-
put, we run shortest path calculations between random pairs
of Californian cities with gradually greater preference for
larger populations (Section [7.6). The intermediate state cal-
culated by the algorithm — sets of predecessors and distance
estimates — can be useful to accelerate future queries, but is
commonly discarded. We use the graph database to address
this issue.

We modified the Dijkstra calculations to memoize inter-
mediate paths within the graph store, thus enabling Carillon
to manage the storage footprint. The planar nature of the
road map workload ensures that memoization works very
well in this use case. We attach a motif to each memoized
path that regenerates it by executing the shortest path query
between the source and the destination.

Figure [9] shows the results of our evaluation on over
100,000 source-destination pairs. We make three policy
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Figure 8: Look-up in an elastic filesystem: timeline of an open re-
quest to Carillon-FS. The Carillon-FS layer informs Carillon that
it is opening a file. Contracted files are expanded via the corre-
sponding motif, and the time required for expansion is recorded for
future reference. Expansions may in turn trigger other expansions.
Once the file is expanded, the original open request proceeds.

changes during the trace. We begin with an unrealistic limit
of no excess storage, causing every request to be answered
by a full call to Dijkstra’s algorithm. At 15%, we allow up
to 1GB of intermediate calculations to be stored. The im-
mediate consequence is a higher CPU load since Carillon
automatically precomputes state for the most popular cities
using information about the most recently evicted entries
from its internal LRU. This choice accentuates the dramatic
drop in computation time, all the while storage usage grad-



ually increases to store more intermediate state. At 65%,
we reduce the storage capacity limit to 10MB. Space used
for intermediate calculations is quickly released and the la-
tency increases accordingly, although remaining lower than
at the beginning since Carillon maintains the useful entries
in memory for the application. This experiment illustrates a
scenario where motifs allow Carillon to optimize for stor-
age capacity during the first and third phases, and for CPU
cycles in the second phase.

8. Related Work

Exploiting excess storage. Data caches for avoiding expen-
sive recomputation have been the staple of the memory hi-
erarchy for many decades. Most caches are of fixed size and
are fully utilized in the steady state. When a cache fills up,
eviction decisions are predominantly made based on the re-
cency and frequency of accesses, ignoring the often variable
resource costs of cache misses for different items [7]].

Excess space can also be used to provide redundancy for
stronger durability of data, thus implicitly saving the cost
of recreating files (e.g., the Elephant filesystem by Santry et
al. [15]]). A central question is which information to forget
when storage space is scarce, resembling the decision when
to transform between representations of data in Carillon.

Using context to reduce storage footprint. Hasan and
Burns claim that unintentional and unneeded data, so-called
waste data, is growing rapidly and call for digital waste data
management strategies [9]. Such strategies could be imple-
mented as motifs and automatically carried out by Carillon.

Zadok et al. detail how automatically reducing storage
consumption can decrease management overhead and device
lifetimes in a multi-user environment [24], introducing com-
pression, downsampling or removal strategies when a user’s
quota is exceeded. These policies are akin to our motifs, ex-
cept motifs allow for programmability and support for pre-
computation to alleviate loads by using more storage.

Nectar is a distributed system that manages the storage
volumes used for dataset computation within data centers
[8l]. Nectar explicitly explores the data-computation trade-
off, but unlike Carillon, it makes fundamental assumptions
that restrict the generality of input data (only streams), the
execution environment (all programs are LINQ programs)
and the generality of transformations (more restricted than
motifs). Apache Spark uses a resilient distributed dataset
abstraction, which tracks the lineage of data so that it may
be rebuilt when errors occur [25]].

The systems and database communities have made sig-
nificant progress on making complete histories of data mod-
ifications and movements — data provenance — practical on
modern machines. A motif can leverage such histories to cre-
ate alternate representations for how a given piece of state
could be derived. A Carillon-based system could then under
storage pressure, for instance, choose to discard history of
old files partially or completely.
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Figure 9: Elastic Graph Store. Computation time and space usage
of a shortest-path application on top of our Carillon-KV shim. The
application calculates shortest paths in a route network as we vary
storage resources available to cache intermediate computations.

An earlier workshop version of this paper proposes a
filesystem for space elasticity, but does not generalize it to
a framework [[16].

Other space saving techniques. Identifying and remov-
ing redundant parts of files within a system, data deduplica-
tion, has received significant attention in both academia and
industry as a method for decreasing storage costs [4, 15} [13]
20]. Deduplication can be implemented within Carillon via
motifs.

Several distributed systems balance performance with
storage overhead. SpringFS [23] changes the number of ac-
tive storage servers depending to meet elasticity and perfor-
mance targets, passively migrating data in the background.
Sierra [19] and Rabbit [2]] seek to reduce power consump-
tion of their systems by manipulating storage. These systems
maintain one or more copies of each file to achieve their
goals, whereas Carillon-FS allows between zero and one
copies to exist of a file. Further, Carillon-aware storage sys-
tems achieve storage elasticity through application-level in-
formation via programmable motifs, any one of which could
implement the replication logic used by these systems.

9. Conclusion

Modern applications routinely store soft state on durable
media to accelerate performance, which can be counter-
productive if storage is scarce or slow compared to the net-
work and CPU. The motif abstraction allows applications to
specify to the storage system how soft state can be recon-
structed via network I/O or computation. Carillon makes it
easy to build new storage systems that use motifs. Carillon-
based systems can dial down and dial up resource usage on
the fly, enabling elasticity in the new and vital dimension of
storage capacity.
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