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Abstract—Predicting event occurrence at the early stage of a longitudinal study is an important and challenging problem which has
high practical value in many real-world applications. As opposed to the standard classification and regression problems where a
domain expert can provide labels for the data in a reasonably short period of time, training data in such longitudinal studies must be
obtained only by waiting for the occurrence of a sufficient number of events. Survival analysis aims at directly predicting the time to an
event of interest using the data collected in the past for a certain duration. However, it cannot give an answer to the open question of
“how to forecast whether a subject will experience an event by end of a longitudinal study using event occurrence information of other
subjects at the early stage of the study?”. The goal of this work is to predict the event occurrence at a future time point using only the
information about a limited number of events that occurred at the initial stages of a longitudinal study. This problem exhibits two major
challenges: (1) absence of complete information about event occurrence (censoring) and (2) availability of only a partial set of events
that occurred during the initial phase of the study. We propose a novel Early Stage Prediction (ESP) framework for building event
prediction models which are trained at the early stages of longitudinal studies. First, we develop a novel approach to address the first
challenge by introducing a new method for handling censored data using Kaplan-Meier estimator. We then extend the Naive Bayes,
Tree-Augmented Naive Bayes (TAN) and Bayesian Network methods based on the proposed framework, and develop three algorithms,
namely, ESP-NB, ESP-TAN and ESP-BN, to effectively predict event occurrence using training data obtained at an early stage of the
study. More specifically, our approach effectively integrates Bayesian methods with an Accelerated Failure Time (AFT) model by
adapting the prior probability of the event occurrence for future time points. The proposed framework is evaluated using a wide range of
synthetic and real-world benchmark datasets. Our extensive set of experiments show that the proposed ESP framework is, on an
average, 20% more accurate compared to existing schemes when using only limited event information in the training data.
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1 INTRODUCTION

I T has become a common practice in many application
domains to collect data over a period of time and record

the occurrence of events of interest within a given period.
These studies are usually called longitudinal studies, in
which the subjects are followed over time for monitoring
certain risks. Developing effective prediction models to
estimate the outcome of a particular event of interest is a
critical challenge in longitudinal studies. Such studies are
ubiquitous in various real-world domains, such as health-
care, reliability, engineering, etc [1], [2], [3] and their primary
goal is to build models that can accurately determine the
probability of occurrence of a particular event of interest
at a specific time point [4]. One of the primary challenges in
these longitudinal studies is that, as opposed to the standard
supervised learning problems where a domain expert can
provide labels within a reasonable amount of time, training
data in such tasks must be obtained only by waiting for the
occurrence of a sufficient number of events. Therefore, the
ability to leverage only a limited amount of available informa-
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tion at early stages of longitudinal studies to forecast the event
occurrence at future time points is an important problem. In
addition, occurrence of the event is not necessarily observed
for all the instances in the study and hence the outcome
variable might be incomplete. This phenomenon is also
known as ‘censoring’. Building event forecasting models in
the presence of censored data is a challenging task which
has a significant practical value in longitudinal studies. The
main goal of this work is to answer the following open
question: “how to forecast whether a subject will experience an
event by the end of a longitudinal study using event occurrence
information at early stages of the study?”. This problem exhibits
two major challenges: 1) absence of complete information
about event occurrence (censoring) and 2) availability of
only a partial set of events that occurred during the initial
phase of the study.

Let us consider the following real-world applications
which motivate the early stage time-to-event prediction.

• In the healthcare domain, when there is a new treatment
option (or drug) that is available, one would like to study
the effect of such a treatment on a particular group of
patients in order to understand the efficacy of the treat-
ment. This patient group is monitored over a period of
time and an event here corresponds to the patient being
hospitalized due to treatment failure. The effectiveness of
this treatment must be estimated as early as possible when
there are only a few hospitalized patients [5].

• In education, early identification of students at the risk
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of dropping out of their school at the beginning of their
study is crucial for improving the graduation rates. The
ability to build an accurate prediction model using only
the early stage data can be practically very useful [6].

• Reliability prediction focuses on developing accurate
models that can estimate how reliable a newly released
product will be. An event here corresponds to the time
taken for a device to fail. In such applications, it is de-
sirable to be able to estimate which devices will fail and
if so, when they will fail. If such models can be learned
using information from only a few device failures, then
early warnings about future failures can be given.

• In credit score modeling applications, the goal is to ac-
curately estimate whether a customer will default or not
and if they default, when the default is going to happen?
If a model can accurately predict using only a few default
cases, then better precautions can be taken against those
who will most likely default in the future.

These practical scenarios clearly emphasize the need to
build algorithms that can effectively make event predictions
using training data that contains only a few events (i.e., at
an early stage of a longitudinal study). More precisely, the
goal here is to predict the event occurrence for a time period
beyond the observation time window (when there are only
a few events that have occurred in the dataset). Thus, this
paper aims to develop a method that can use only a limited
amount of available information at the initial phase of a
longitudinal study to forecast the event occurrence at future
time points.

For a better understanding of the complexities and con-
cerns related to this problem, let us consider an illustrative
example shown in Figure 1. In this example, a longitudinal
study is conducted on six subjects and the information
for event occurrence until time tc is recorded, where only
subjects S2 and S5 have experienced the event. The goal
of our work is to predict the event occurrence by time tf
(e.g. the end of study). In other words, during the training
phase, the event occurrences until the observation time tc
are the only ones available and the objective is to make
predictions about the event occurrences by the end of study
tf . It should be noted that except subjects S2 and S5, all
others are considered to be censored at tc (marked by ‘X’).
However, an event will occur for subjects S1 and S6 within
the time period tf .

Fig. 1: An illustration to demonstrate the problem of event
forecasting at time tf (e.g. end of study) using the informa-
tion available only until time tc.

This scenario clearly motivates the need for building
algorithms that can effectively forecast events using the
training data at time tc when only a few events have
occurred. This is an important problem in the domain of

longitudinal studies since the only way to collect reliable
data here is to wait for sufficient period of time until the
complete information about event occurrence is acquired.
In this paper, we will introduce a new method for handling
censored data using Kaplan-Meier estimator. We will then
develop a novel Early Stage Prediction (ESP) framework for
building event prediction models which are trained at early
stages of longitudinal studies. More specifically, we pro-
pose a framework based on Naive Bayes, Tree-Augmented
Naive Bayes (TAN) and Bayesian Network, and develop
three algorithms, namely, ESP-NB, ESP-TAN and ESP-BN
to effectively predict event occurrence using the training
data obtained at early stage of the study. The proposed
framework is evaluated using a wide range of synthetic
and real-world benchmark datasets. Our extensive set of
experiments show that the proposed ESP framework is able
to more accurately predict future event occurrences using
only a limited amount of training data compared to the
other alternative methods.

The recently proposed popular variants in the machine
learning field such as classification, semi-supervised learn-
ing, transfer learning, imbalance learning and multi-task
learning are not suitable for tackling this problem primarily
due to the fact that obtaining a labeled training set at the end
of the study is not feasible since the data is available only
until tc. On the other hand, existing statistical techniques,
especially in the field of survival analysis, do not have the
ability to handle the problem of predicting event occurrence
in the early stage prediction problem. The main reason is
that the training and testing data are collected for the same
time window in survival models, and the probability of
event predictions given by any survival model is valid only
for the specific observed time. The goal of this work, on the
other hand, is to build model at the early stage of the study,
and predict the event occurrence for the new subjects col-
lected in the future time point. In other words, the ”future”
in our early stage prediction problem is different from that
in the regular survival analysis methods. It should be noted
that this problem is completely different from the time-
series forecasting problem since the goal here is to predict
the outcome of (binary) event occurrence for each subject
for a time which is much beyond the observation time (as
opposed to merely predicting the next time step value which
is typically done in the standard time-series forecasting
models). Also, such longitudinal survival data normally has
missing information on events during the observation time.
This incompleteness in events makes it difficult for standard
machine learning methods to learn from such data. There
are two naive ways to handle this problem: ignoring this
censored data and treating censoring time as the actual time
of event occurrence. However, these methods may provide
a suboptimal model because of neglecting the available
information or may provide an underestimate of the true
performance of the model.

To solve the problem discussed above, we introduce an
intuitive method to handle the censoring problem in the
longitudinal survival data. We then develop a Bayesian
framework for early stage event prediction to tackle the
problem of insufficient amount of training data on event
occurrence in the initial phases (early stage) of longitudinal
studies. More specifically, we are combining the power of
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Bayesian method(s) with the concept of parametric survival
analysis to produce a solution that can be effective when
there are only few events that have occurred. Thus, the main
contributions of this paper can be summarized as follows:
• Develop a new labelling method to handle censoredness

in longitudinal studies using the Kaplan-Meier estimator.
• Propose an Early Stage Prediction (ESP) framework which

estimates the probability of event occurrence for a future
time point using various extrapolation techniques.

• Develop probabilistic algorithms based on Naive Bayes,
Tree-Augmented Naive Bayes (TAN) and Bayesian Net-
work, (we call them ESP-NB, ESP-TAN and ESP-BN,
respectively), for early-stage event prediction by adapting
the posterior probability of event occurrence.

• Evaluate the proposed algorithms using several synthetic
and real-world benchmark datasets and compare the ef-
fectiveness of the proposed methods with various classifi-
cation and survival methods.

The rest of the paper is organized as follows. In Sec-
tion 2, a brief review of the related literature is provided.
Section 3 introduces the notations and definitions that are
necessary to comprehend our proposed algorithms. We also
propose a new method to handle the censored data in this
section. The proposed Bayesian approach for early stage
event prediction on survival data is described in Section 4.
Section 5 demonstrates the experimental results and shows
the practical significance of our work using various real-
world datasets. Finally, Section 6 concludes the discussion.

2 RELATED WORK

Before we discuss the early stage prediction framework
in detail, the related work in the areas of using machine
learning techniques for survival analysis will be briefly
presented in this section.

Survival analysis is a subfield of statistics where a wide
range of techniques have been proposed to model time-
to-event data [7] in which the dependent variable is sub-
ject to censoring (e.g. failure, death, admission to hospital,
emergence of disease, etc.) [8]. The ordinary Least-Squares,
the most common method for solving regression problems,
is based on minimizing sum of squared errors. It does
not work in the presence of censoring because it is not
possible to estimate the error between the true response
and the predicted response obtained from the regression
model [9]. Although it is challenging to know the relative
rank of the event occurrences of the censored instances, the
well-known likelihood method has the ability to solve the
censored regression problem [10]. Different techniques have
been proposed based on Maximum Likelihood Estimation
(MLE) to overcome the difficulty of handling censored data
[11], [12].

Similar to survival data which captures time to events
of interest, time series methods deal with slightly different
kind of time-centered analysis [13], [14]. Time series analysis
tackles the problem of studying experimental data that have
been observed at different points of time [15]. Recently, there
are some efforts to address the problem of early classifi-
cation in time-series data [16], [17]. Although time-series
techniques have been used in many domains [18], the stan-
dard time-series methods are primarily used for discovering
patterns in time-series databases or forecasting the future

values for existing time-series [19], [20], [21]. In our problem,
the survival estimation is used to summarize the survival
times of a group of objects (e.g. patients) while the response
variable in time-series methods are outcomes depending on
time which is an independent variable. Hence, although
these two problems appear to be similar, the problem being
tackled in this paper is significantly different and cannot
be solved using time-series methods. In the presence of
censoring and when the goal is to predict an occurrence
of an event (which is usually binary in nature), time-series
methods are not applicable. The only common theme that
connects our approach to time-series methods is their ability
to forecast in the future based on the events that occurred
until a given time point.

There has been an increasing interest in adapting popu-
lar machine learning techniques to survival data [22], [23].
However, longitudinal data cannot be modeled solely by
traditional classification or regression approaches since cer-
tain observations have event status (or class label as event)
and the rest have information about the outcome variable
only until a specific time point in the study. The censored ob-
servations in survival data might look similar to unlabeled
samples in classification or unknown response in regression
problem in the sense that status or time-to-event is not
known for some of the observations. Such censored data
have to be handled with special care within any machine
learning method in order to make good predictions. Also,
for censored data in survival analysis, we have information
until a certain time point (before censoring occurs) and this
information should be included in the model in order to
obtain the most optimal result. Hence, the standard semi-
supervised techniques [24], [25] are not directly applicable
to this problem.

Several machine learning based approaches have been
proposed recently to address this censored data issue. De-
cision trees [26], [27], [28] and Artificial Neural Networks
(ANN) [29], [30], [31], [32] for censored data represent some
of the earliest works in this field. Well-known Support
Vector Machine (SVM) algorithms have been adopted to
accommodate censored data. Most of these methods treat
the problem as regression [33], [34], [35], [36], [28]. More
recently, advanced machine learning methods such active
learning and regularized learning have also been incorpo-
rated into survival models [37], [38]. Other studies aim
at modeling the problem within classification setting [39],
[40]. However, comparison of the performance of these
approaches show that these methods do not yield any sig-
nificant improvements over the standard Cox model. There
are also few other studies which aim at handling censored
data as pre-processing step by giving some weights to the
censored observations [41], [42]. In this paper, we tackle
the problem of censoring using Kaplan-Meier method [43]
to estimate the probability of event and the probability
of censoring for each censored instance. Such an intuitive
approach can be easily applied to survival data before any
further analysis is performed.

One of the popular choices for predictive models is the
Bayesian approaches including Naive Bayes and Bayesian
Network which have been used widely for classification
[44] and successfully applied in many domains [45]. How-
ever, there has been only few works in the literature using
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Bayesian methods for survival data [22], [46], [47]. Bayesian
networks can visually represent all the relationships be-
tween the variables which makes it interpretable for the
end users. This is in contrast to the simple Naive Bayes
method that makes the independence assumption between
all the features [44]. Despite the applicability of Bayesian
network in the survival analysis domain, only a limited
number of research efforts exist for tackling the censored
data challenges. The authors of [48] developed a Bayesian
neural network approach to model censored data. [49] gives
weight to censored instances in order to learn Bayesian
networks from survival data. More recently, [47] adapts a
Bayesian network for survival data using an approach called
inverse probability of censored weighting for each of the
record in the dataset to handle the censoring issue.

The proposed work is significantly different from these
previous studies since none of these works perform forecast-
ing of event occurrence for a time beyond the observation
time. Existing methods only use the training data that is
collected for the same time period as the test data. However,
in real-world problems it is beneficial to make forecast of the
events beyond the time period available in the training data.
The basic idea of our approach is to take advantage of gener-
ative component of Bayesian methods (such as Naive Bayes,
Tree-Augmented Naive Bayes (TAN) and Bayesian network)
to build a probabilistic predictive model [50] which will
allow us to adapt the prior probability of event for different
time points during forecasting. Also, it is important to note
that discriminative models such as support vector machines
or logistic regression are not suitable for the forecasting
framework due to the unavailability of the prior probability
component. On the other hand, for discriminative models
there is no need to model the distribution of the observed
variables. Thus, they cannot be a good choice when we want
to express more complex relationships between the depen-
dent variable and other attributes [51]. Figure 2 positions
our paper along with the related methodologies available in
the literature. It gives a complete characterization and some
relevant references for modeling and forecasting approaches
on time-series and event data.

Fig. 2: Characterization of modeling and forecasting ap-
proaches on time-series and event data.

3 PRELIMINARIES

This section introduces the preliminaries required to com-
prehend the proposed framework. First, the notations used
in our study and our problem formulation are described.
Next, details about the widely used Bayesian-based ap-
proaches such as Naive Bayes, Tree-Augmented Naive
Bayes (TAN) and Bayesian Network are provided. These

are the important components of the proposed method for
predicting events in survival data at early stage of longi-
tudinal studies. Finally, basic concepts of survival analysis
are explained and a new method to handle censored data is
introduced.

3.1 Problem Formulation
We begin by presenting the basic concepts and notations for
survival analysis and Bayesian methods. Table 1 describes
the notations used in this paper.

TABLE 1: Notations used in this paper

Name Description
n number of subjects
m number of features
x n×m matrix of data
T n× 1 vector of event times
C n× 1 vector of last follow-up times
O n× 1 vector of observed times
δ n× 1 binary vector for event status
tc specified time until which information is available
tf desired time at which the forecast of future events

is made
yi(t) event status for subject i at time t
F (t) cumulative event probability at time t
S(t) survival probability at time t

Let us consider a longitudinal study where the data
about n independent subjects are available. Let the feature
vector for sample i be represented by xi = 〈xi1, ..., xim〉
where xij is the jth feature for subject i. For each subject i,
we define Ti as the event time, and Ci as the last follow-up
time or censoring time (the time after which the subject is
not monitored). For all the subjects i = {1, ..., n},Oi denotes
the observed time which is defined as min(Ti, Ci). Then,
the event status is defined as δi = I{Ti ≤ Ci}. Thus, a longi-
tudinal dataset is represented asD = {xi, Ti, δi; i = 1, ..., n}
where xi ∈ Rm, Ti ∈ R+, δi ∈ {0, 1}.

It should be noted that we only have the information for
few events until the time tc. Our aim is to predict the event
status at time tf where tf > tc. Let us define yi(tc) as event
status for subject i at time tc. Suppose, among n subjects
in the study, only n(tc) will experience the event at time
tc. After our data transformation, given the training data
(xi, yi(tc)), we can build a binary classifier using yi(tc) as
the class label. If yi(tc) = 1, then the event has occurred for
subject i and if yi(tc) = 0, then the event has not occurred.
It should be noted that a new classifier will have to be built
to estimate the probability of event occurrence at tf based
on the training data that is available at tc.

3.2 Bayesian Methods
We will now describe the basic idea of three popular
Bayesian methods used in the context of prediction, namely,
Naive Bayes, Tree-Augmented Naive Bayes, and Bayesian
Network. All the three methods have certain commonalities
in terms of using the conditional and prior probabilities. The
main distinction between them is the way in which they
model the dependency between the attributes and the way
in which the conditional probability terms are computed.
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Fig. 3: An illustration of the basic structure of (a) Naive
Bayes (b) TAN and (c) Bayesian Network classifiers.

3.2.1 Naive Bayes Classifier
Naive Bayes is a well-known probabilistic model which is
widely used in many applications. Let us say that we have
a training set similar to that in Figure 1 where the event
occurrence information is available until time tc. Based on
the binary classification transformation explained above,
using the Naive Bayes algorithm the event probability for
subject i can be estimated as follows:

P
(
y(tc) = 1 | x, t ≤ tc

)
=
P
(
y(tc) = 1, t ≤ tc

)∏m
j=1 P

(
x = xj | y(tc) = 1

)
P (x, t ≤ tc)

(1)

The first component of the numerator is the prior probability
of the event occurrence at time tc. The second component
is a conditional probability distribution which can be esti-
mated as follows:

P
(
x = xj | y(tc) = 1

)
=

∑n
i=1

(
yi(tc) = 1, xij = xj

)∑n
i=1(yi(tc) = 1)

(2)

Thus, it is a natural estimate for the likelihood function
in Naive Bayes. The estimated probability that a random
variable takes a certain value is equal to the number of
times the value was observed divided by the total number
of observations. This formula is valid for discrete attributes;
However, it can be easily adapted for continuous variables
as well [52].

3.2.2 Tree-Augmented Naive Bayes Classifier
One extension of Naive Bayes is the Tree-Augmented Naive
Bayes (TAN) where the independence assumption between
the attributes is relaxed [44]. The TAN algorithm imposes
a tree structure on the Naive Bayes model by restricting
the interaction between the variables to a single level.
This method allows every attribute xj to depend upon the
class as well as one other attribute at most, xp(j), called
the parent of xj. Illustration of the basic structure of the
dependency in Naive Bayes and TAN is shown in Figure
3. Given the training set (x, y(tc)), firstly the tree for the
TAN model should be constructed based on the conditional
mutual information [44] between two attributes as shown in
Eq. (3).

I
(
xj,xk | y(tc)

)
=

∑
xj,xk,y(tc)

P
(
xj,xk, y(tc)

)
log

P
(
xj,xk | y(tc)

)
P
(
xj | y(tc)

)
P
(
xk | y(tc)

)
(3)

This function measures the information that xk provides
about xj when the value of y(tc) is known. Then, a complete
undirected graph in which the vertices correspond to the
attributes and the edge weights are assigned using Eq. (3).
A maximum weighted spanning tree is built and finally

undirected tree is transformed into a directed one by ran-
domly choosing a root variable and setting the direction of
all the edges outward from the root. After the construction
of the tree, the conditional probability of each attribute on
its parent and the class label is calculated and stored. Hence,
the probability of event at time tc can be defined as follows:

P
(
y(tc) = 1 | x, t ≤ tc

)
=
P
(
y(tc) = 1, t ≤ tc

)∏m
j=1 P

(
xj | y(tc) = 1,xp(j)

)
P (x, t ≤ tc)

(4)

The numerator consists of two components; the prior prob-
ability of the event occurrence at time tc and the conditional
probability distributions which can be estimated using max-
imum likelihood estimation (MLE) [52].

3.2.3 Bayesian Network Classifier

A Bayesian network is a graphical representation of a
probability distribution over a set of variables. It can be
considered as an extension of the TAN model where the
features can be related to each other at various levels (Figure
3). It consists of two parts [53]:

1) A directed network structure in the form of a directed
acyclic graph (DAG) which can be represented as G =
(V,E), where V denotes the set of vertices which repre-
sent variables, while E is the set of edges which show the
dependency between the variables;

2) A set of the local probability distributions, one for each
node variable, conditional upon each value combination
of its parents.

Thus, a Bayesian network can be formally defined as BN =(
G,Θ(G|D)

)
where Θ(G|D) is the Maximum likelihood

estimation of the set of parameters in the probability distri-
butions estimated based on the given data D. The Bayesian
network structure in this paper is learnt by the well-known
search-and-score based Hill-climbing algorithm [54]. The
weight-adapted minimum description length (MDL) [44]
scoring (Eq. (5)) function is used as the criterion function
to be minimized for the Hill-climbing algorithm [55].

MDL(BN |D) =
d

2
logN − LL(BN |D) (5)

where d is the number of free parameters of a multinomial
local conditional probability distribution; LL(BN |D) is the
log-likelihood of BN given D and can be estimated using
the joint probability distributions. The second component of
a Bayesian Network is a set of local conditional probabil-
ity distributions. Together with the graph structure, these
distributions are sufficient to represent the joint probability
distribution of the domain. Joint probability is defined as
the probability that a series of events will happen concur-
rently and hence it can be calculated from the product of
individual probabilities of the nodes:

P (x1, . . . ,xm) =
m∏
j=1

P (xj | Pa(xj)) (6)

where Pa(xj) is the set of parents of xj. Hence, given a
training set, the goal of the Bayesian Network is to find the
best graph structure to correctly predict the label for y given
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a vector of m attributes. It can be formulated as follows:

P
(
y(tc) = 1 | x, t ≤ tc

)
=
P
(
y(tc) = 1, t ≤ tc

)∏m
j=1 P

(
xj | y(tc) = 1, Pa(xj)

)
P (x, t ≤ tc)

(7)
In Eq. (7), the first element in numerator is the prior
probability of the class and the second element is the joint
probability of the attributes based on the graph structure.
A Bayesian Network is a generative classifier with a full
probabilistic model of all variables which enable us to
adapt the prior probability of event for different time points
(beyond the observation time) during the forecasting.

3.3 Handling Censored Data

In general, survival analysis is a statistical methodology
which contains time of a particular event of interest as the
outcome variable which needs to be estimated. In many sur-
vival applications, it is common to see that the observation
period of interest is incomplete for some subjects and such
data is considered to be censored [56].
Definition 1: Survival function. Considering the duration
to be a continuous random variable T , the survival function,
S(t), gives the probability that the time of event occurrence
is later than a certain specified time t. It is defined as

S(t) = Pr(T > t) =

∫ ∞
t

f(u) du (8)

where f(t) is a probability density function. For many real-
world applications, typically the survival function mono-
tonically decreases with respect to t.
Definition 2: Cumulative death distribution function. In
contrast to survival function, the cumulative death distribu-
tion function F (t) represents the probability that the time
to the event of interest is no later than the certain specified
time t. It is defined as:

F (t) = Pr(T ≤ t) = 1− S(t) (9)

Survival analysis involves the modeling of time-to-event
data. We will use one of the popular parametric methods in
survival analysis, accelerated failure time (AFT) [57] model,
to adapt the probability of event using different time-to-
event distributions.

Two naive approaches to handle censored data are: (1)
completely exclude them from the analysis which will result
in losing important information, (2) treat censored time
as an actual event time which will induce a bias in the
estimation of the event time. Instead of using these sub-
optimal approaches, our work handles censored data by
dividing them into two groups [41]: event and event-free.
For each censored instance, we estimate the probability of
event and probability of censoring using Kaplan-Meier esti-
mator and give a new class label based on these probability
values. This approach assumes that the censoring time is
independent of the event time and all the attributes X . This
assumption is valid in many applications since many of the
subjects are censored towards the end of the study. S(t) is
the probability that the event of interest has not occurred
within the duration t. Using Kaplan-Meier estimator [43],

the survival distribution is given by

Ŝ(t) =
∏

i:t(i)<t

(
1− di

ni

)
(10)

where di represents the number of events at time t(i) (time
after ascending reordering), and ni indicates the number
of subjects who still remain in the study at time t(i). Thus,
using Eq. (9), the probability of event can be estimated as

F̂e(t) = 1− Ŝ(t) (11)

On the other hand, the probability that censoring has not oc-
curred within duration t can be defined as G(t) = P (C > t)
where C is the censoring time, by setting “event” indicator
δ∗i = 1− δi [58]. Thus, Kaplan-Meier estimator for G(t) is

Ĝ(t) =
∏

i:t(i)<t

(
1− d∗i

ni

)
(12)

where d∗i is the number of subjects who were censored at
time t(i), and ni is the number of subjects at risk of censoring
at time t(i). Let F̂c(t) be the probability of censoring, then it
can be estimated as

F̂c(t) = 1− Ĝ(t) (13)

We define a new label for censored data using Eqs. (11)
and (13). For each instance, if F̂e(t) > F̂c(t), then it is
labeled as event; otherwise, it will be labeled as event-free
which indicates that even if there is complete follow-up
information for that subject, there is extremely a low chance
of experiencing an event by the end of study (maybe even
after that). Unlike other methods that handle censored data,
this approach can simply solve the uncertainty with such
censored data by labelling them as event or event-free based
on the consistent Kaplan-Meier estimator. Even after the
labeling is done, the problem of forecasting, explained in
the next section, is a challenging task.
4 EARLY STAGE EVENT PREDICTION (ESP)
FRAMEWORK

In this section, we introduce our proposed Bayesian ap-
proach for handling early stage event prediction. As dis-
cussed in previous section, predicting event occurrence at
an early stage in longitudinal studies is a challenging prob-
lem. It is in contrast with the standard classification and
regression problems where the labels for the data can be
provided in a reasonably short period of time. Thus, for
this longitudinal studies training data must be obtained
only by waiting for the occurrence of a sufficient number of
events. While survival analysis techniques are appropriate
in handling such longitudinal data, they do not have the
ability to handle the problem of predicting event occurrence
for a time later than the observation time because the
probability of event provided by a survival model is valid
only for the specific observed time [5]. Therefore, the main
objective of this section is to propose a framework to predict
if the event will occur in the future for each subject based on
information about only a few event occurrences at the initial
stages of a longitudinal study.

In this section, we describe the proposed Early Stage
Prediction (ESP) framework. First, we describe our pro-
posed prior probability extrapolation method on different
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distributions and then we will introduce ESP-NB, ESP-TAN
and ESP-BN algorithms which utilize this extrapolation
method while computing the posterior probability of event
occurrence.

4.1 Prior Probability Extrapolation

In order to predict the event occurrence in longitudinal
data, we develop a technique that can estimate the ratio
of event occurrence beyond the original observation time
window (in other words, compute the extrapolation for prior
probability of event occurrence). To achieve this goal, we ex-
trapolate the prior probability of event occurrence using the
accelerated failure time model (AFT). We consider two well-
known distributions, Weibull and Log-logistic, which are
widely studied in the literature for modeling time-to-event
data [59]. The parameters of these distributions are learned
from the information available until tc. We will integrate
such extrapolated values later with the proposed learning
algorithms in order to make future predictions.
Weibull: When Ti follows a Weibull distribution, the cumu-
lative probability distribution F (t) with shape parameter a
and scale parameter b can be estimated using

F̂ (t) = 1− e−(t/b)
a

(14)

Log-logistic: When Ti follows a log-logistic distribution
with shape parameter a and scale parameter b, the prior
probability distribution F (t) can be estimated as

F̂ (t) =
1

1 + (t/b)−a
(15)

Having the cumulative probability distribution of event,
F (t), where the shape parameter a and scale parameter b
estimated at tc, it can be easily extrapolated for any time t
much beyond tc.

4.2 The ESP Algorithm

We will now describe the ESP Algorithm which consists of
two phases. In the first phase, the conditional probability
distribution is estimated using training data which is ob-
tained until time tc (see Sections 3.2.1, 3.2.2 and 3.2.3). Since
we are already extrapolating (in some sense approximating)
in the prior probability component, it is not desirable to do
a similar approximation again on the likelihood component.
In addition, it is not feasible to extrapolate the likelihood
component due to the various complexities involved in com-
puting that component. We assume that the joint probability
estimation from the Bayesian methods does not change over
time since we have data only until tc there is no plausible
way to estimate the likelihood from the data beyond tc.
This is a reasonable assumption in survival data when the
covariates do not depend on the time as the relation between
the features at time tc do not significantly change until the
end of the study [60], and is very effective in practice in
the presence of limited data. On the other hand as time
passes, the prior probability for event occurrence needs to
be updated since we do not have enough data to get the
exact value for joint probability at the given future time tf .
In the second phase, we extrapolate the prior probability of
event occurrence for time tf which is beyond the observed
time using different extrapolation techniques.

4.2.1 ESP Naive Bayes (ESP-NB)
For Naive Bayes method using Eq. (1) and extrapolation
method explained in previous section, the ESP-NB can be
written as follows:

P
(
y(tf ) = 1 | x, t ≤ tf

)
=
F (tf )

∏m
j=1 P

(
xj | y(tc) = 1

)
P (x, t ≤ tf )

(16)

4.2.2 ESP Tree-Augmented Naive Bayes (ESP-TAN)
Probability of event occurrence based on TAN method for
time tf using Eq. (4) can be estimated as follows:

P
(
y(tf ) = 1 | x, t ≤ tf

)
=
F (tf )

∏m
j=1 P

(
xj | y(tc) = 1,xp(j)

)
P (x, t ≤ tf )

(17)

Algorithm 1 Early Stage Prediction (ESP) Framework
Require: Training data Dn(tc) =

(
x, y(tc), T

)
, tf

Output: Probability of event at time tf
Phase 1: Conditional probability estimation at tc
1: for j = 1, ...,m
2: P

(
xj | y(tc) = 1

)
3: end
Phase 2: Predict probability of event occurrence at tf
4: fit AFT model to Dn(tc)
5: P

(
y(tf ) = 1, t ≤ tf

)
= F (t)

6: for i = 1, ..., n
7: estimate P

(
yi(tf ) = 1 | xi, t ≤ tf

)
8: end
9: return P

(
y(tf ) = 1 | x, t ≤ tf

)
Algorithm 1 outlines the proposed ESP framework. In

the first phase (lines 1-3), for each attribute j, the algorithm
estimates the conditional probability using the data avail-
able at time tc. In the second phase, a probabilistic model
is built to predict the event occurrence at tf . In lines 4
and 5, the prior probability for event occurrence at time
tf is estimated using different extrapolation techniques.
Then, in lines 6-9, for each subject i, we adapt the posterior
probability of event occurrence at time tf .

4.2.3 ESP Bayesian Network (ESP-BN)
For Bayesian Network, first we need to build a network
using the information until tc. We will train a Bayesian
network classifier using Hill-climbing structure learning
method. Once we learn the structure of the Bayesian net-
work, the subsequent step is to forecast the probability of
event occurrence at the end of the study tf . For this purpose
we can use different extrapolation techniques as described
earlier. Thus, the posterior probability estimation for event
occurrence at time tf can be defined as,

P
(
y(tf ) = 1 | x, t ≤ tf

)
=
F (tf )

∏m
j=1 P

(
xj | y(tc) = 1, Pa(xj)

)
P (x, t ≤ tf )

(18)

Algorithm 2 outlines the proposed ESP-BN model. Lines
1-10 describe the first stage where a Bayesian network
structure is learnt using Hill-climbing method for training
data until tc. After the initial set up to build a network (lines
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Algorithm 2 ESP-BN Algorithm
Require: Training data Dn(tc), End of study time t.
Output: Probability of event at time tf
Phase 1: learn Bayesian Network structure at tc
1: EG ← ∅, estimate P

(
G|Dn(tc)

)
2: scorefinal ←∞ , score = MDL

(
BN,Dn(tc)

)
(Eq. (5))

3: while scorefinal > score
4: scorefinal ← score
5: for every add/remove/reverse EG on G
6: estimate P

(
Gnew|Dn(tc)

)
7: scorenew = MDL

(
BNnew, Dn(tc)

)
8: select network structure with minimum scorenew
9: if score > scorenew
10: score← scorenew , G← Gnew
Phase 2: Forecasting event occurrence at tf
11: fit AFT model to Dn(tc)
12: P

(
y(tf ) = 1, t ≤ tf

)
= F (t)

13: for all i in Dn(t)
14: estimate P (yi(t)|xi)
15: Weibull using Eqs. (7), (14) and (18)
16: Log-logistic using Eqs. (7), (15) and (18)
17: endfor
18: return P

(
y(tf ) = 1 | x, t ≤ tf

)
1-2), the Hill-climbing algorithm will find a network with
the minimum MDL based on the score function given in
Eq. (5). In the second phase, a probabilistic model is built
to forecast event occurrence at t. In line 11, the AFT model
is built on Dn(tc) using various distributions. Then, in lines
13-17, we adapt the posterior probability of event occurrence
at time t. This phase has the time complexity of O(n).
The time complexity of the ESP algorithm follows the time
complexity of the learning method that is chosen. It should
be noted that the complexity of the extrapolation component
is a constant and does not depend on either m or n. Hence,
for ESP-NB it is O(mn), for ESP-TAN it is O(m2n), where n
is total number of subjects and m is the number of features
in the data and for ESP-BN it is O(mkn), where k is the
maximum number of parents (in our study we test different
values of k to get the best performance within the range
of 2 - 5) [61]. This means that ESP improves the prediction
performance without increasing the complexity compared
to its base models.

5 EXPERIMENTAL RESULTS

In this section, we will show the results of our proposed
ESP method on a wide range of datasets and provide com-
parisons with various baseline prediction methods. First, we
explain the synthetic as well as real-world datasets that are
used in our experiments. We also discuss the metrics that
are used to quantitatively evaluate the performance of the
proposed method. Finally, we will provide our experimental
results and the practical implications of the ESP framework
in survival studies will also be discussed.

5.1 Dataset Description

We evaluated the performance of the models using both syn-
thetic and real-world benchmark survival datasets which
are summarized in Table 2.

(i) Synthetic Datasets: We generated synthetic dataset in
which the feature vectors x are created using a normal
distribution N(0, 1). Covariate coefficient vector, shown as
β, is generated based on a uniform distribution Unif(0, 1).
Given the observed covariates xi for observation i, the
failure time, T can be generated by the procedure described
in [62] as follows:

Ti = −
(
log(Unif(0, 1))

λexp(β′xi)

)ν
(19)

In our experiments, we set λ = 0.01, ν = 2 and generate
two sets of synthetic data, namely, Syn1 with 5 features
and 100 instances and Syn2 with 20 features and 1000
instances, where the time to event of interest follows a
Weibull distribution.
(ii) Real-world Survival Datasets: Several real-world sur-
vival benchmark datasets are used in our experiments.
Primary biliary cirrhosis (PBC), breast and colon cancer
which are widely used in evaluating longitudinal studies
and are available in the survival data repository1. We also
used Framingham heart study dataset which is also publicly
available [63].

In addition, we also used two in-house proprietary
datasets. The first one is the electronic health record (EHR)
data from heart failure patients collected at the Henry Ford
Health System in Detroit, Michigan. This data contains pa-
tient’s clinical information such as procedures, medications,
lab results and demographics and the goal here is to predict
the number of days for the next readmission after the patient
is discharged from the hospital [37]. The second dataset
was obtained from Kickstarter2, a popular crowdfunding
platform. Each project was tracked for a specific period
of time. If the project reaches the desired funding goal
before its goal date, then it is considered to be a success
(or the event has occurred). On the other hand, the project
is considered to be censored if it fails to reach its goal
amount within the goal date [64]. All the datasets (except
the EHR) used in our work are made publicly available at
https://github.com/MLSurvival/ESP.

5.2 Performance Evaluation
The performance of the proposed models is measured using
the following metrics:
• Accuracy is expressed as the percentage of instances in the

test set that are classified correctly.
• F-measure is defined as the harmonic mean of precision

and recall. A high value of F -measure indicates that both
precision and recall are reasonably high.

F −measure =
2× Precision×Recall
Precision+Recall

• AUC is the area under the receiver operating characteristic
(ROC) curve which is generated by plotting the true
positive rate (TPR) against the false positive rate (FPR)
by varying the threshold value.

For our implementation, the joint probability for Naive
Bayes and TAN is learned using e1071 package [65] avail-
able in the R programming language. Bayesian network
structure for the proposed ESP-BN method is learned using

1. http://cran.rproject.org/web/packages/survival/
2. www.kickstarter.com
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TABLE 2: Statistics of the datasets used in our experiments. T50 and T100 correspond to the time taken (in days) for the
occurrence of 50% and 100% of the events, respectively. C50% and C100% give the percentage of censored instances at T50
and T100, respectively.

Dataset #Features #Instances #Events C50% C100% T50 T100

Syn1 5 100 50 20% 50% 1014 3808
Syn2 20 1000 602 29% 40% 943 7723

Breast 8 673 298 25% 56% 646 2659
Colon 13 888 445 4% 50% 394 3329
PBC 17 276 110 27% 60% 1191 4456

Framingham 16 5209 1990 0% 62% 1991 5029
EHR 77 4417 3479 0% 21% 50 4172

Kickstarter 54 4175 1961 17% 53% 21 60

TABLE 3: Comparison of Accuracy values for Cox, LR, RF, NB, TAN and BN along with the proposed ESP-NB, ESP-TAN
and ESP-BN methods (and their standard deviation values).

Dataset Cox LR RF NB TAN BN ESP-NB ESP-TAN ESP-BN

Syn1 0.658 0.649 0.675 0.642 0.681 0.673 0.779 0.792 0.787
(0.022) (0.024) (0.019 (0.018) (0.021) (0.022) (0.023) (0.02) (0.019)

Syn2 0.657 0.609 0.669 0.665 0.673 0.677 0.777 0.785 0.789
(0.021) (0.026) (0.025) (0.027) (0.029) (0.024) (0.023) (0.025) (0.021)

Breast 0.632 0.557 0.622 0.613 0.657 0.628 0.738 0.805 0.754
(0.017) (0.013) (0.016) (0.023) (0.014) (0.021) (0.027) (0.022) (0.019)

Colon 0.49 0.487 0.562 0.526 0.531 0.552 0.615 0.619 0.622
(0.133) (0.167) (0.18) (0.159) (0.174) (0.15) (0.155) (0.148) (0.12)

PBC 0.657 0.578 0.658 0.599 0.638 0.633 0.719 0.731 0.748
(0.111) (0.123) (0.132) (0.125) (0.115) (0.119) (0.116) (0.118) (0.11)

Framingham 0.745 0.77 0.732 0.761 0.782 0.804 0.827 0.853 0.892
(0.085) (0.093) (0.085) (0.099) (0.107) (0.087) (0.093) (0.089) (0.096)

EHR 0.651 0.586 0.619 0.642 0.659 0.691 0.771 0.785 0.815
(0.121) (0.132) (0.173) (0.156) (0.182) (0.191) (0.126) (0.156) (0.112)

Kickstarter 0.656 0.698 0.709 0.691 0.736 0.746 0.739 0.745 0.785
(0.049) (0.039) (0.052) (0.068) (0.051) (0.046) (0.043) (0.048) (0.052)

TABLE 4: Comparison of F-measure values for Cox, LR, RF, NB, TAN and BN along with the proposed ESP-NB, ESP-TAN
and ESP-BN methods (and their standard deviation values).

Dataset Cox LR RF NB TAN BN ESP-NB ESP-TAN ESP-BN

Syn1 0.651 0.645 0.667 0.762 0.778 0.773 0.776 0.789 0.785
(0.021) (0.025) (0.022) (0.021) (0.023) (0.021) (0.022) (0.019) (0.017)

Syn2 0.647 0.599 0.659 0.655 0.663 0.671 0.774 0.779 0.783
(0.023) (0.025) (0.027) (0.029) (0.024) (0.023) (0.023) (0.02) (0.026)

Breast 0.648 0.573 0.642 0.623 0.672 0.638 0.749 0.796 0.761
(0.035) (0.063) (0.033) (0.053) (0.034) (0.031) (0.036) (0.032) (0.042)

Colon 0.512 0.487 0.578 0.543 0.549 0.562 0.621 0.627 0.630
(0.161) (0.170) (0.194) (0.169) (0.184) (0.190) (0.145) (0.148) (0.180)

PBC 0.61 0.529 0.613 0.541 0.562 0.575 0.712 0.719 0.725
(0.141) (0.130) (0.120) (0.121) (0.150) (0.140) (0.110) (0.099) (0.098)

Framingham 0.755 0.735 0.792 0.787 0.798 0.845 0.873 0.905 0.925
(0.078) (0.093) (0.085) (0.075) (0.073) (0.083) (0.073) (0.059) (0.066)

EHR 0.672 0.584 0.617 0.684 0.708 0.715 0.781 0.798 0.826
(0.110) (0.166) (0.188) (0.156) (0.198) (0.210) (0.126) (0.160) (0.160)

Kickstarter 0.689 0.711 0.737 0.721 0.726 0.743 0.753 0.765 0.797
(0.084) (0.048) (0.067) (0.058) (0.061) (0.054) (0.037) (0.048) (0.042)
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TABLE 5: Comparison of AUC values for Cox, LR, RF, NB, TAN and BN along with the proposed ESP-NB, ESP-TAN and
ESP-BN methods (and their standard deviation values).

Dataset Cox LR RF NB TAN BN ESP-NB ESP-TAN ESP-BN

Syn1 0.717 0.725 0.712 0.715 0.722 0.718 0.865 0.869 0.867
(0.004) (0.005) (0.006) (0.007) (0.002) (0.005) (0.004) (0.001) (0.002)

Syn2 0.71 0.729 0.714 0.713 0.718 0.721 0.823 0.825 0.833
(0.004) (0.004) (0.002) (0.007) (0.005) (0.006) (0.002) (0.003) (0.001)

Breast 0.619 0.658 0.647 0.629 0.662 0.635 0.669 0.678 0.673
(0.01) (0.007) (0.004) (0.009) (0.004) (0.002) (0.001) (0.007) (0.001)

Colon 0.61 0.618 0.621 0.627 0.629 0.633 0.639 0.642 0.659
(0.024) (0.011) (0.014) (0.011) (0.014) (0.01) (0.013) (0.009) (0.009)

PBC 0.698 0.665 0.720 0.687 0.693 0.731 0.767 0.772 0.786
(0.009) (0.005) (0.003) (0.003) (0.01) (0.004) (0.001) (0.003) (0.003)

Framingham 0.863 0.935 0.929 0.945 0.953 0.959 0.971 0.973 0.979
(0.007) (0.002) (0.005) (0.002) (0.005) (0.004) (0.007) (0.004) (0.001)

EHR 0.612 0.637 0.650 0.633 0.638 0.651 0.654 0.649 0.667
(0.023) (0.017) (0.025) (0.019) (0.025) (0.026) (0.018) (0.011) (0.012)

Kickstarter 0.823 0.842 0.845 0.815 0.819 0.844 0.822 0.827 0.847
(0.019) (0.019) (0.027) (0.022) (0.025) (0.023) (0.024) (0.019) (0.021)

a hill-climbing algorithm that is available in the open-
source Weka software [66], while the proposed model is
implemented using the R programming language. The coxph
and survreg functions in the survival package are employed
to train the Cox and AFT models, respectively. The Bres-
low’s method was used to handle tied observations and
the censored handling method is also implemented in R
using the survival package. The source code of the proposed
algorithms in R programming environment is available at
https://github.com/MLSurvival/ESP.

5.3 Results and Discussion

Tables 3, 4, and 5 summarize the performance comparison
results for Accuracy, F-measure, and AUC, respectively.
We compared the proposed ESP-NB, ESP-TAN and ESP-
BN algorithms using the best performed distributions from
extrapolation techniques with Cox, Logistic Regression (LR),
Random Forest (RF), Naive Bayes (NB), Tree-Augmented
Naive Bayes (TAN) and Bayesian Network (BN) classifi-
cation methods. All the models are trained using the data
collected at the time point where only 50% of events have
occurred (T50) and the event forecasting is done using the
data at the end of study (T100). We used stratified 10-fold
cross-validation and average values (along with the stan-
dard deviations) of the results on all 10-folds are reported.
For the ESP based methods, we extrapolated using both
Weibull and log-logistic distributions and best results are
being reported. It should be noted that in most of the cases
Weibull distribution provided better results.

For all of the datasets, our results evidently show that the
proposed ESP-based method is, on an average, 20% more
accurate compared to existing methods using only a limited
amount of training data. These results confirm the fact that
by incorporating the time-to-event extrapolation method
within the ESP framework, forecasting can be done more ac-
curately compared to the standard methods. It is important
to note that the choice of the best algorithm will depend on
the nature of the dataset. For instance, ESP-NB builds on in-

dependence assumption between attributes which does not
hold in many survival applications. Thus, the introduced
ESP-TAN and ESP-BN relaxed this assumption and thus
yielding better performance in almost all of the datasets.
Upon further analysis of our results, we can observe that, in
most of the cases, ESP-BN has higher accuracy compared to
its other Bayesian counterparts. This is due to the fact that
Bayesian network can model more complex data especially
in the presence of feature dependencies [67].

In Figures 4, 5 and 6, we present the prediction perfor-
mance of different methods by varying the percentage of
event occurrence information that is available to train the
model in the real-world datasets. For example, 20% on the
x-axis corresponds to the training data obtained when only
20% of the events have occurred and the prediction of the
event occurrences was made on the data at the end of the
study period. From these plots, we can see that the perfor-
mance of the ESP algorithm improves when there is more
information on the event occurrence in the training data.
For all the cases, our proposed ESP-based methods provide
more accurate predictions compared to other techniques and
the improvements are consistent across all the benchmark
datasets. It should be noted that the improvements of the
proposed methods are more significant over the baseline
methods when there is only a limited amount (20% or 40%)
of training data.

When 100% of the training data is available, the perfor-
mance of the proposed ESP methods will converge to that
of the original baseline methods since the prior probabilities
in both scenarios will be the same and fitting a distribution
(and extrapolating it) will not have any impact when eval-
uated at the end of the study since there is effectively no
extrapolation that is done. We should also mention that in
our experiments the percentage of censoring in each dataset
is different. Therefore, it is hard to measure how the amount
of censored data affects the results. However, since the
amount of censored and event data are closely related, one
can measure the effect of censored data using the number of



1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2608347, IEEE Transactions on Knowledge and Data Engineering

11

(a) Breast (b) Colon (c) PBC

(d) Framingham (e) EHR (f) Kickstarter

Fig. 4: Accuracy values of different methods obtained by varying the percentage of event occurrence information for
various datasets.

(a) Breast (b) Colon (c) PBC

(d) Framingham (e) EHR (f) Kickstarter

Fig. 5: F-measure values of different methods obtained by varying the percentage of event occurrence information for
various datasets.

events which is shown in Figures 4-6. In general, we observe
that the less censored data we have, the higher the accuracy
we could achieve. In order to measure the improvements
made by handing censored data, we compared the results
in Tables 3-5 with those provided in [5]. The results support
our claim that the proposed Bayesian models can provide

an accurate forecasting for event occurrence beyond the ob-
servation time. From our experiments, we can conclude that
our model obtains useful practical results at the initial phase
of a longitudinal study and can provide good predictions
about the event occurrence at the end of the study using
only a limited information. The proposed prediction model
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(a) Breast (b) Colon (c) PBC

(d) Framingham (e) EHR (f) Kickstarter

Fig. 6: AUC values of different methods obtained by varying the percentage of event occurrence information for various
datasets.

: >

(a) Scalability w.r.t. the number of in-
stances

: >

(b) Scalability w.r.t. the number of features

Fig. 7: Assessing the scalability of ESP-NB, ESP-TAN and ESP-BN with different number of instances and features.

is an extremely useful tool for domains where one has to
wait for a significant period of time to collect sufficient
amount of training data.

5.4 Scalability Experiments

As mentioned earlier (Section 4.2), the time complexity
of the extrapolation component of the model is constant
(O(n)) and does not depend on the number of features
or instances. Therefore, time complexity of the ESP-based
algorithms follows that of the corresponding base learning
method that is chosen. In other words, the ESP-NB, ESP-
TAN and ESP-BN have the same time complexity as NB,
TAN and BN, respectively. This means that ESP framework
improves the prediction performance without increasing the
time complexity. In this section, we study the scalability of
our proposed ESP-based algorithms when the number of
instances or features in the dataset are varied by random
selection. We randomly sampled different number of fea-
tures or instances from the original dataset and estimated

the average running time of each of the proposed ESP based
algorithms (average of 100 runs).

In Figure 7, we provide the scalability plots for ESP-NB,
ESP-TAN and ESP-BN. To obtain these plots we sampled
different set of instances and features in an increasing order
and obtained the time required to build our proposed ESP-
based algorithms. The x-axis represents the selected number
of instances (in Figure 7(a)) and features (in Figure 7(b)) and
the y-axis represents the time taken in milliseconds. These
plots indicate that ESP-NB is relatively faster even when the
number of instances and features is large. This is because the
complexity of ESP-NB is linear with respect to instances and
features. As number of instances increase, the time taken for
ESP-TAN and ESP-BN is also increased. However, ESP-TAN
has quadratic and ESP-BN has trinomial runtime complexity
(if k, the number of parents for each features, is 3), but it
tends to build more effective models. Hence, there is a trade-
off between complexity and performance. It is clear that, in
the presence of high-dimensional data, ESP-NB will be the
optimal choice. However, if there are many dependencies
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between features or data has a high dimension, ESP-TAN
is a better choice. ESP-BN would be recommended to use
only when the data consists of lots of complex dependencies
and at the same time has only a reasonable dimensionality.
For high-dimensional data, it is recommended to use unsu-
pervised dimensionality reduction methods before applying
our proposed early stage prediction algorithms.
6 CONCLUSION

In many real-world application domains, it is important
to forecast the occurrence of future events by only using
the data collected at early stages of longitudinal studies. In
this paper, we developed new early stage event prediction
framework through fitting a statistical distribution to time-
to-event data with fewer available events at the early stages.
One of the common characteristic of longitudinal data is the
presence of censored instances where the outcome is not
known after a certain time period during the study. Instead
of excluding such censored data, we developed a new
mechanism to handle this data by estimating the probability
of event and the probability of being censored using the
Kaplan-Meier estimator. One of the main objectives of this
paper is to demonstrate that more accurate predictions can
be made when the prior probability at end of study time is
estimated using the current (limited) information of event
occurrence. This is extremely important in longitudinal
survival studies since accumulating enough training data
about the event occurrence is a time-consuming process.
The proposed ESP-based model adapts prior probability of
event occurrence by fitting time-to-event information using
Weibull and Log-logistic distributions. Using this approach,
we developed three new Bayesian algorithms to effectively
predict the event occurrence for future time points using
the training data obtained at early stage of the study. Our
extensive experiments using both synthetic and real datasets
demonstrate that the proposed ESP-based algorithms are
more effective in forecasting events at future time points
compared to the widely used Cox model and other popular
classification methods.
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