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Abstract

Most current methods for modeling rehospitalization events in heart failure patients make
use of only clinical and medications data that is available in the electronic health records.
However, information about patient-reported functional limitations, behavioral variables and
socio-economic background of patients may also play an important role in predicting the
risk of readmission in heart failure patients. We developed methods for predicting the risk of
rehospitalization in heart failure patients using models that integrate clinical characteristics
with patient-reported functional limitations, behavioral and socio-economic characteristics.
Our goal was to estimate the predictive accuracy of the joint model and compare it with
models that make use of clinical data alone or behavioral and socio-economic characteris-
tics alone, using real patient data. We collected data about the occurrence of hospital read-
missions from a cohort of 789 heart failure patients for whom a range of clinical and
behavioral characteristics data is also available. We applied the Cox model, four different
variants of the Cox proportional hazards framework as well as an alternative non-parametric
approach and determined the predictive accuracy for different categories of variables. The
concordance index obtained from the joint prediction model including all types of variables
was significantly higher than the accuracy obtained from using only clinical factors or using
only behavioral, socioeconomic background and functional limitations in patients as predic-
tors. Collecting information on behavior, patient-reported estimates of physical limitations
and frailty and socio-economic data has significant value in the predicting the risk of read-
missions with regards to heart failure events and can lead to substantially more accurate
events prediction models.
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Introduction

Rehospitalizations account for more than 30% of the 2 trillion annual cost of healthcare in the
United States. Experts estimate that as many as 20% of all hospital admissions occur within 30
days of a previous discharge. Such rehospitalizations are not only expensive but are also poten-
tially harmful, and most importantly, they are often preventable. Providing special care for a
targeted group of patients who are at a high risk of rehospitalization can significantly improve
the chances of avoiding rehospitalizations. However, such techniques have not been successful
in practice due to a lack of understanding of the causes and risks of rehospitalization. Identify-
ing patients at risk of rehospitalization can guide efficient resource utilization and is a cost-ef-
fective measure that can save millions of healthcare dollars each year. An important step
towards preventing or better managing hospital readmissions is the identification of important
prognostic factors to assess the risk of such events for individual patients through the construc-
tion of predictive models. This can enable us to identify important physiological targets or
characteristic patient profiles that can allow for more focused medical or social interventions,
reduce costs and improve the quality of healthcare provided by institutions. The objective of
this work is to identify the patients with high risk of rehospitalization at the time of discharge
using advanced regression methodology.

We collected data from a heart failure patient cohort for this study. Heart failure (HF) is a
common and deadly disease [1] that affects over 5 million people within the US alone. Over 1
million patients are hospitalized with the primary diagnosis of heart failure annually and this
condition contributes to over 200,000 deaths and expenditures exceeding 17 billion. HF is the
most common cause of hospitalization in people over 65 and results in approximately 6.5 mil-
lion hospital days annually. HF is also the largest contributor of unplanned readmissions and
rehospitalizations and poses an enormous financial and social burden on the nation. Although
some advances have been made in reducing mortality rates with respect to HF, rates of rehospi-
talization are on the rise and are estimated to be greater than 50% within six months of dis-
charge. A significant portion of such readmissions are potentially preventable with timely,
effective and adequate patient self-management. There have been many attempts to reduce
avoidable readmissions in the HF population but none have yet proven broadly effective due to
the difficulty in identifying the patients at highest risk in a timely way in order to focus inter-
ventions on this subgroup. One of the major problems in building robust and actionable mod-
els for predicting the risk of readmissions is the lack of complete information regarding what
factors trigger the readmission. Electronic Health Records (EHR) presents a plethora of oppor-
tunities to decipher specific patient characteristics and make inferences about readmission for
future patients. [2-3] However, this clinical data poses new challenges to the existing research
and hence requires new models and methods to analyze and process it.

A large number of clinical variables have been established as important predictors of heart
failure events. These include factors like blood pressure, smoking, medication intake, orthopnea,
echocardiographic measures, cardiac biomarkers like natriuretic peptides, indicators of neuro-
hormonal activation such as higher levels of circulating catecholamines and reninangiotensin
system metabolites or lower levels of serum sodium as well as HF associated diagnoses like renal
impairment, atrial fibrillation, ischemic heart disease, hypertension, diabetes and pulmonary dis-
eases. Beyond these clinical factors, other factors related to patient behavior, socio-economic
background and patient-reported estimates of functional limitations, disability and quality of life
can also play a significant role in determining the probability of readmissions after heart failure.

Using Electronic Health Records (EHR) obtained from a large health system, namely the
Henry Ford Health System (HFHS), we will first build regression models for readmission in pa-
tients hospitalized with a diagnosis of primary heart failure. Using a database of around 789
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patients, we develop and study several regularized variants of the Cox proportional hazards re-
gression models and random survival forests. Due to the difficulty in obtaining behavioral and
socio-economic data, most of the hospitals and clinical studies do not consider such information.
This is the reason why our study includes fewer patients though we have over 8,000 patients with
only the clinical information. We demonstrate the predictive ability of the models using evalua-
tion measures such as the c-index which is widely used in clinical applications. We also show that
the variables selected by these regularized methods are clinically relevant based on the published
medical literature about this problem. Finally, we show that adding behavioral data significantly
improves the predictive performance according to the current clinical standards (c-index ~ 0.7)
and is able to retrieve important biomarkers for predicting the future risk of rehospitalization.

Objective

Providing special care for a targeted group of patients who are at a high risk of rehospitalization
can significantly improve the chances of avoiding these events. However, such techniques have
not been successful in practice due to a lack of understanding of the causes and risks of rehospi-
talization. Identifying patients at risk of rehospitalization can guide efficient resource utilization
and is a cost-effective measure that can save millions of healthcare dollars each year. Despite
the significance of this problem, not many researchers have thoroughly investigated it due to
the inherent complexities involved in analyzing and estimating the predictive power of such
complex data collected during the hospitalization of a patient. Effectively making predictions
for this purpose will require a comprehensive set of predictors related to clinical covariates,
medication use, behavior, socio-economic background and patient-reported estimates of quali-
ty of life. Using a variety of models under the Cox proportional hazards framework and through
cross-validation we test the predictive value of clinical and medication use variables towards the
risk of HF events. We perform similar analysis using a collection of variables related to patient
behavior, their reported levels of disability, functional limitation/frailty and socio-economic sta-
tus and check whether these kinds of variables can be significantly predictive of heart failure re-
lated readmissions. Lastly, we construct a joint model that makes use of information from all
these different classes of variables and test its predictive value using real patient data.

Materials and Methods
Ethics approval

The Henry Ford Health System Institutional Review Board approved this study. Patient rec-
ords and information was anonymized and de-identified prior to use in this analysis.

Data Source

We will now describe all the data sources and factors that are being considered for our study.
The data for this project will be comprehensively collected from the following sources of infor-
mation that are collected at the Henry Ford Health System (HFHS) in south eastern Michigan.
HFHS has the distinct advantage of serving a very diverse patient population, as well as ad-
vanced and readily available electronic data resources. Using administrative data resources, we
identified all patients with a primary hospital discharge diagnosis of heart failure (9™ Edition/
Revision International Classification of Diseases [ICD-9] codes used). Patients were selected
based on the occurrence of clinical heart failure according to the Framingham criteria and who
were members of the HAP (Health Alliance Plan) medical insurance with pharmaceutical ben-
efits. Table 1 summarizes some sample characteristics of our study cohort. For our analysis, we
chose a subset of 789 patients for which both clinical, medication use and behavioral variables
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Table 1. Sample characteristics of the HFHS heart failure study cohort.

Characteristics Patients with readmission events

No. of samples 429

Average age 73.49 + 12.63
No. of females (%) 176 (41.02%)
Height 168.04 + 17.62
Weight 92.34 + 41.06
Non-smokers (%) 173 (40.3%)
Smokers (%) 256 (59.7%)
Blood Pressure Systolic 131.65 + 27.64
Blood Pressure Diastolic 72.49 £12.76
Heart failure type Class 0 286 (66.7%)
Heart failure type Class 1 143 (33.3%)
New York Heart Failure Association (NYHA) class: 0, 1, 2, 3, 4 53, 124, 138, 89, 25

doi:10.1371/journal.pone.0129553.t001

Patients without readmission events

360

71.35 +11.03
139 (38.61%)
168.78 +13.29
93.23 + 51.93
151 (41.9%)
209 (58.1%)
131.98 + 23.17
72.96 + 12.31
253 (70.3%)
107 (29.7%)

6, 240, 76, 31,7

data was available and for whom there was at least one readmission to the hospital after the ini-
tial visit date and the time (days) to the occurrence of such an event had been recorded. The en-
tire set of variables that can potentially be important for readmission can be described under 2

broad groups. [4-5]

1. Clinical Variables, Medications and Procedures. The variables in this category include
age, gender and ethnicity as well as other disease conditions associated with heart failure such
as diabetes, hypertension, atrial fibrillation, myocardial infarction, and chronic lung disease.

According to a recent survey article [5], these conditions were included in a total of 24 out
of 26 different readmission risk prediction models. Medication variables involve drugs such as
Beta blockers, ACE (angiotensin-converting-enzyme) inhibitors and ARB (angiotensin recep-
tor blockers). The procedures that are important include cardiac catheterization, hemodialysis

and mechanical ventilation.

2. Demographic, socio-economic, behavioral and quality of life variables. These vari-
ables include factors like education, household income, marital status, smoking status, alcohol
consumption and patient reported estimates of frailty, general health and quality of life.

Cox proportional hazards framework

In this section, we describe various survival models that can effectively handle both clinical and

behavioral features to predict the risk of rehospitalization from a wide range of electronic medi-
cal records stored in multiple sources in a hospital setting. This will be one of the first studies
to demonstrate the inherent predictive associations of clinical and behavioral variables for the
heart failure readmissions problem. In our analysis, we will consider the Cox proportional haz-
ards model and different variants of it to obtain the predictive power of the different groups of

variables considered.

Cox proportional hazards is widely used in survival analysis. [6] Survival data consists of
two important variables which are the observed time and censoring status. For the Cox regres-
sion, the notations are defined as follows. The i* sample will constitute the following triplet (xi,
yi, 6i) where yi is the observed time for i = 1, 2. . . n subjects. It is calculated as the minimum of
the time to failure and censored times. x; denotes the vector for feature representation for that
sample. We will now provide the partial log likelihood for the Cox model.

1B) = 150,076 — 8og(Zuy (1 B))]
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where S is a vector of regression coefficients. di is the censored status which is equal to 1 if y; is
the time to failure and §; = 0 if y; is the censored time. Ri is the set of patient indices at risk for
time y;. It consists of all those patients with index j for whom y; > y;. Because of its inherent na-
ture of considering survival times and censoring, this Cox regression model has been used
heavily by biostatistics researchers.

The primary reason for using regularized methods [7-10] is to effectively identify the most
critical features that are contributing to the readmission risk and building a robust model that
avoids the over-fitting problem. [11] To avoid the problem of over-fitting and avoiding the var-
iables from taking extreme values, certain sparsity inducing norms are widely used to penalize
the original partial log-likelihood function using L1 norm regularization term on the beta coef-
ficients. There are three popular variations in the sparsity inducing norms, namely, lasso, ridge
and elastic net. These variations add Lp norm penalty to the original objective function.

Cox Lasso. Lasso [12] isa L1 norm penalty which can select a few features while estimating
the regression coefficient. In [13], the Lasso penalty was used along with the log-partial likelihood.

. . 9 | & P
ﬁlusso = min _N Zéj)(jﬁ - 5j10g ZeXiﬁ + AZ |:Bp|
=1 icR; p=1

Ridge regression. This is a L2 norm regularization which tends to select all the correlated
variables, and shrink their values towards each other. [14-16] The regression parameters of
Cox-Ridge can be estimated by:

A 2 N P

= mi iB 2

ﬁridge = min _N Zl(ijlﬁ - (3]10g Zex + §ZIﬁp
j= Py

i€R;

Elastic Net. The elastic net approach uses a convex combination of the L1 and squared L2
norm (ridge) penalty to obtain both sparsity and handle correlated feature spaces. [17] The log-
partial likelihood function for the Cox-Elastic Net method [18] is given below:

N P p
ﬁelasticner = mingy — N 5])(]:8 - bjlog € i + 4o |18p| + 5(1 - O() :B;
j=1 p=1 p=1

i€R;

where 0 < o < 1.

For all these regularized versions, the parameter A > 0 is used to adjust the influence of the
penalty term. The optimal A value is chosen via cross-validation.

Random Survival Forests. Random forest is an ensemble method designed specifically for
tree structured prediction models. [19] In random survival forests, an extension of this meth-
odology for right-censored survival data, the Nelson-Aalen estimator [20-21] is utilized to pre-
dict the cumulative hazard function (CHF). This estimator is defined as:

d

A(t) = Z—j

r.
thf J

where d; is the number of deaths at time #; and r; is the number of individuals at risk at ¢;. The
main steps of this method are as follows: (1) Draw B bootstrap samples from the original data-
set. (2) Grow a survival tree for each bootstrap sample, and ensure that in each terminal node
the number of events occurred is no less than d (certain threshold value given by user). (3)
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Compute the CHF for each tree. For a test sample, the estimated ensemble CHF can then be
calculated by taking the average of the corresponding CHF of the leaf node of each tree. [22]
CoxBoost. This was proposed in [23-24] to estimate parameter vector (f) in the Cox pro-
portional hazards model. In each boosting step, the CoxBoost adaptively selects a flexible sub-
set of covariates to update the corresponding parameters. In the k™ boosting step, the Newton-
Raphson step will be separately used for g, predetermined candidate sets of covariates and the
corresponding elements of 8 will be updated based on the candidate set which maximizes the
improvement of the overall fit of the log-partial likelihood. Let us denote the chosen set using

@, the updated estimated coefficient §* of k™ boosting step can be calculated as:
Bk=1) | oK)

A(k)_{ﬁj +Y;7 ifjed®
B ifj € @

j=1,...,P

where ij is the element of the Newton-Raphson updating in k™ boosting step. In addition,
the chosen set @ will not be considered as candidate set in the next boosting step. Thus, in the
(k + 1)* boosting step, B will be updated based on the remaining (g -1) predetermined candi-
dates sets of covariates.

Concordance Index

C-index, or the concordance probability [24-25], is one of the most commonly used evaluation
method in survival analysis. Consider a pair of bivariate observations (y,, y,) and (y,, 7,),
where y; is the actual observation, and y, is the predicted value. The concordance probability is
defined as:

c=Pr(y, > p,ly, > )

The Cox-based models and random survival forests predict the hazard ratio rather than the
event time directly. Hence, a patient with a lower hazard ratio will survive longer. The c-index
can be calculated by:

_ Zi<j1(yi <yj)l(f7i > ﬁj>5i +I(yj <yi)1(f7j > ﬁi)éi
Zi<j1(yi <yj>5i+1(yj <yi)5j

where i,j = 1,2,. . .,n,I() is the indicator function, and 7] is the predicted values. Here  is the
number of samples considered for the study.

Results

We used the Harrell’s concordance-index (c-index) [24] as our metric for clinical validation.
The c-index is a measure of separation of 2 survival distributions that is widely used to measure
prediction performance. We applied 4 different variants of the Cox model namely: Cox-Lasso,
Cox-Ridge regression, Cox-Elastic net regression and Cox-Boost to predict HF events. In addi-
tion to the Cox model, we also used a non-parametric method of random survival forests to
predict the occurrence of heart failure events. 10 fold cross-validation was used for all ap-
proaches to calculate concordance index. We applied these various approaches to 3 sets of vari-
ables available in our cohort: 1.) 123 Clinical and medication use variables 2.) 60 Behavioral,
socio-economic and quality of life variables 3.) Groups 1 and 2 combined (183 variables).
Table 2 summarizes the results obtained for these analyses. We can clearly see that the joint
model involving all 183 variables available in our cohort significantly outperforms models that
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Table 2. Model performance based on concordance index.

Model

Cox

Cox Lasso

Cox Ridge

Cox Elastic Net
CoxBoost

Random Survival Forests

doi:10.1371/journal.pone.0129553.1002

Clinical Behavioral Clinical + Behavioral P value
p=123 p=60 p=183

0.6143 0.6376 0.6590 <0.00001
0.6246 0.6478 0.6768 <0.00001
0.6389 0.6377 0.6752 <0.00001
0.6318 0.6523 0.6813 <0.00001
0.6319 0.6575 0.6901 <0.00001
0.6660 0.6471 0.6922 <0.00001

include only a subset of these variables belonging to either Groups 1 or 2 as described previously.
In most cases, we can see that Group 2 is doing slightly better than Group 1, but the combined
set is providing much better results indicating that clinical/medication use and behavioral/quali-
ty of life variables contain complementary information about the patient’s condition.

Top ranked factors for predicting the risk of reoccurrence of heart failure
events

The joint model includes variables from 2 broad groups namely 1) Clinical, physiological and
medication use variables and medical procedures and 2) Socioeconomic, demographic, behav-
ioral and patient reported measures of disability, frailty and quality of life variables. From
Table 2, we can clearly see that the joint model that includes both these classes of variables sig-
nificantly outperforms model that only include a subset of categories. To identify the most im-
portant variables contributing to the joint predictive model, we determined the top 23 variables

based on the absolute value of effect size estimates as determined by the CoxBoost method.
The most important variables from Groups 1 and 2, their effect sizes and the fraction of pa-
tients experiencing readmissions for different values of the important variables are shown in
Tables 3 and 4 respectively.

Table 3. Effect size estimates, fraction of patients with events (F) and number of Samples (N) for most important clinical variables (n = 789).

Variable Class 1 Class 2 Beta Class 1 Class 1 Class 2 Class 2
F N F N
Cardiomegaly False True 0.040 0.43 207 0.58 582
Site enrolled Hospital Clinic 0.384 0.50 729 0.99 60
Congestive Heart Failure None Exacerbation 0.089 0.51 749 1.00 40
Heart attack last 30 days False True 0.046 0.53 778 1.00 11
Implanted cardioverter defibrillator False True 0.051 0.50 648 0.60 141
Smokes False True 0.010 0.53 324 0.55 465
ACE inhibitor False True 0.214 0.52 760 1.00 29
Drug ARB False True -0.044 0.54 787 1.00 2
Drug Aldo Ant False True -0.053 0.54 784 1.00 5
Beta Blocker False True 0.094 0.51 743 1.00 46
Loop diuretic False True 0.013 0.53 756 1.00 33
Nitrates False True -0.119 0.53 780 1.00 9
Hydralazine False True -0.013 0.53 780 1.00 9
doi:10.1371/journal.pone.0129553.1003
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Table 4. Effect size estimates, fraction of patients with events (F) and Number of Samples (N) for most important behavioral variables (n = 789).

Variable

Limited by fatigue

Limitation in walking

Changes in heart failure
symptoms

Swelling causing
botheration

Bother by fatigue
Sleep sitting
General health
Limitation moderate

activities

Alcohol per day

Categories

1:All time, 2:Several a day, 3: > = once a day, 4:> = 3 times a week,

Beta 1 2 3 4 5 6 7
F F F F F F F
N

N N N N N N
-0.068 0.68 0.76 0.65 0.64 0.64 0.54 0.33

5:1-2 times a week, 6:<once a week, 7:never 70 93 93 76 94 87 276

1:Extreme, 2:Quite a bit, 3:Moderately, 4:Slightly, 5:Not at all, 6:

Other/None

1:Worse, 2: slightly worse, 3:no change, 4:slightly better, 5:Better, 6:

None

1:Extreme, 2:Quite a bit, 3:Moderately, 4:Slightly, 5:Not at all,6:Other/

None

1:Extreme, 2:Quite a bit, 3:Moderately,4:Slightly, 5:Not at all, 6:Other/

None

-0.059 0.82 0.80 0.74 054 0.38 0.74
50 85 92 160 375 27
-0.114 096 0.70 056 0.72 0.66 0.31
28 86 316 78 45 236
-0.064 0.76 093 0.78 0.66 0.59 0.42
21 33 56 91 130 450
-0.044 0.80 0.78 0.60 0.59 0.56 0.31
60 84 112 203 82 248

1:every night, 2:> = 3 a week, 3:1-2 times a week, 4:<once a week, 0.023 0.63 060 0.55 0.76 0.51

5:never

87 30 35 26 601

1:Excellent, 2:Very Good, 3: Good, 4:Fair, 5:Poor 0.125 021 035 048 066 0.76

1: Limited a lot, 2: Limited a little, 3: Not limited at all

1:0 drinks, 2:1-2 drinks, 3: 3—4 drinks, 4:> = 5 drinks

doi:10.1371/journal.pone.0129553.t004

42 129 256 266 96
-0.011 0.71 0.55 0.36
223 337 229
-0.032 0.60 0.46 0.45 0.50
428 303 44 14

Discussion

We have utilized 6 different kinds of algorithms for predicting hospital readmissions related to
heart failure events using a comprehensive set of variables including clinical, medication use,
behavioral, socio-economic and measures of quality of life based on patient-reported measures
of functional limitations and frailty. In particular, we used the standard Cox model as well as
four different methods based on the Cox proportional hazards framework and regularization
to predict the reoccurrence of heart failure events in our cohort. In addition, we have also uti-
lized the nonparametric approach of random survival forests for comparison. All of the meth-
ods indicated that combining different categories of variables leads to more accurate prediction
models than making use of clinical variables alone or behavioral and socio-economic variables
alone. We observed a significant increase in c-index of around 0.03-0.04 when combining all
the variables as compared to models that only use variables of a particular category.

We used three different sets of variables when constructing prediction models based on the
six different methods mentioned above: i) Clinical and medication use variables ii) Behavioral,
socio-economic factors and patient quality of life estimates iii) Variables from i) and ii) used
jointly. For all three sets of variables we measured the c-index for 6 different algorithms. We
found that in all scenarios the c-index obtained based on variable set iii) was substantially
higher than the c-index obtained based on prediction models constructed from sets i) and ii).
In summary, all of the methods used in this study indicated that predictive models that com-
bine different categories of variables are more accurate than those that make use of clinical,
physiological and medication use variables only or behavioral and socio-economic factors
alone (increase in c-index of around 0.03-0.04). Formal statistical tests assuming normality in-
dicated that these differences are highly statistically significant.
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Clinical impact of these findings

Despite dramatic medical and therapeutic advances to improve patient outcomes in the last 20
years, unplanned readmission rates continue to remain high for patients with heart failure.

Such events are complex and multi-factorial and can be influenced by a wide variety of fac-
tors including physiological, clinical and socio-economic factors, medication nonadherence,
dietary indiscretions and lack of low sodium foods, drug and alcohol abuse and patient-re-
ported levels of disability, wellness and quality of life. [26-27] Robust, actionable and data-
based plans to reduce readmission rates are underdeveloped because not many trials have fo-
cused on post-discharge outcomes as well as due to disparate conclusions arising from different
studies regarding the efficacy of disease management strategies. Therefore, it is important to
construct models based on the best evidence in each health care system to reduce readmission
rates of HF patients. [28]

The HF patient cohort at the Henry Ford Health System provides a valuable data source to
assess the performance of different predictive models for HF-related readmissions and to better
understand the important risk factors underlying these events. Models like the one presented
in this study can be used to identify physiological targets (e.g. congestion, high blood-pressure,
cardiac abnormalities such as coronary artery disease, atrial fibrillation and noncardiac comor-
bidities such as chronic obstructive pulmonary disease (COPD) and renal dysfunction) and
characteristic profiles of patients at high risk of early readmissions, leading to targeted inter-
ventions and proactive care management programs. These can help improve their quality of
care and functional status while reducing costs associated with HF-related rehospitalizations.
[29-31] Interventions can take the form of comprehensive post-discharge planning, delayed
discharge from hospital, early follow-up, greater follow-ups in the form of phone calls and
home visits, telemonitoring and home weight monitoring [32-33], patient education and rec-
ommending caretakers and family members to become more watchful with regards to the
health status of such patients. On the other hand, intensive monitoring steps may be avoided
for patients with low risk for reoccurrence of heart failure events.

Conclusions

Behavioral and socio-economic factors as well as knowledge of patient-reported quality of life
and disability measures can substantially improve the accuracy of predicting unplanned read-
missions in HF patients when used jointly with clinical and medication use variables available
from electronic health records. The joint model that includes all such factors outperformed
models that include only one a subset of these variables for both the Cox proportional hazards
framework as well as for a non-parametric approach (random survival forests). Collecting in-
formation on behavior, patient-reported estimates of physical limitations and frailty and socio-
economic data for HF patients has significant value in predicting the risk of HF-related read-
missions and may lead to more effective and targeted interventions.
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