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Abstract Transfer learning methods have been successfully applied in solving a wide
range of real-world problems. However, there is almost no attempt of effectively
using these methods in healthcare applications. In the healthcare domain, it becomes
extremely critical to solve the “when to transfer” issue of transfer learning. In highly
divergent source and target domains, transfer learning can lead to negative transfer.
Most of the existing works in transfer learning are primarily focused on selecting
useful information from the source to improve the performance of the target task,
but whether the transfer learning can help and when the transfer learning should be
applied in the target task are still some of the impending challenges. In this paper,
we address this issue of “when to transfer” by proposing a sparse feature selection
model based on the constrained elastic net penalty. As a case study of the proposed
model, we demonstrate the performance using the diabetes electronic health records
(EHRs) which contain patient records from all fifty states in the United States. Our
approach can choose relevant features to transfer knowledge from the source to the
target tasks. The proposed model can measure the differences between multivariate
data distributions conditional on the predicted model, and based on this measurement
we can avoid unsuccessful transfer. We successfully transfer the knowledge across
different states to improve the diagnosis of diabetes in a certain state with insufficient
records to build an individualized predictive model with the aid of information from
other states.
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1 Introduction

Due to the rapid growth in the amount of healthcare data, the concept of information
exchange is gaining a lot of attention recently. The basic idea here is to share the
knowledge acquired about a particular disease from one healthcare facility and apply
it at another facility. While the naive solution to this problem is to merely integrate the
data into a consolidated manner and build predictive models on such integrated data,
such approaches often show poor performance since the target task (where the predic-
tion needs to be done) will be overwhelmed by many instances from the data acquired
at other locations. The key in such problems is to identify the “useful” knowledge that
can potentially improve the performance at the target facility and transfer knowledge
into the model to be learned on the target data.

To motivate our work, let us consider the following scenario. Firstly, let us assume
that there are many different hospitals and each hospital contains records of patients
suffering from a particular disease. Now, if we want to predict the disease status of
a patient at a specific hospital X, one can potentially build a predictive model on
this data collected at hospital X (using the medical records) and estimate the disease
status. However, if the hospital contains only a few records, it may not be sufficient
to build robust model that can yield accurate predictions for the future data. One way
to overcome this problem is to use the data collected from several other hospitals and
build an integrated prediction model. In this case, the prediction model might perform
well on the integrated data, but might not yield good results on the data collected from
X because the data might have a slightly different data distribution (of population or
medical resources). Hence, in order to build a robust prediction model for hospital X,
we need to transfer knowledge acquired from similar hospitals (with different data
distributions) and incorporate that knowledge into the prediction model being built on
data from hospital X.

The main objective of this paper is to transfer knowledge acquired from health
records at different locations to improve the disease prediction ability of models built
for a particular location. It should be noted that due to the lack of hospital-wide data
from many different hospitals, we show the performance of our models on state-wide
health records and transfer knowledge from all other states to the states with fewer
diabetes patients in order to improve the accuracy of prediction.

In the field of machine learning, transfer learning deals with transferring knowledge
from source to target domain when sufficient instances are not available to build a
robust model for a given target task. One of the primary challenges associated with
transfer learning is that it does not guarantee an improvement in performance of the
target task, since an improper source domain can induce negative effects on learning the
model and potentially degrade the performance of the classifier. This is also known as
“negative transfer”. In Rosenstein et al. (2005), the authors empirically demonstrated
that negative transfer may happen if the distribution divergence between the target and
source domains is too large. In order to avoid negative transfer, we will provide a more
systematic framework that allows us to decide “when to transfer” based on suitable
transfer-ability measures, and then select common features which can be transferred
across domains.
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In this paper, we address the problem of “when to transfer” for improving the
clinical diagnosis of a specific geographical location or a local hospitalwhere sufficient
patient records are not available. To solve this problem, we aim to find common
(hidden) features which can be used to transfer knowledge across the source and
target domains. These latent features are then selected in a unique way by using sparse
regularization.

This latent feature subset selection for effective transfer is done using the transfer
learning based on constrained elastic net (TR-CEN) framework which is built based
on the constrained elastic net (CEN) penalty. The CEN penalty modifies the standard
elastic net penalty by enforcing the prediction models on the source domain and
target domain to be similar to each other. This promotes learning a sparse model on
the common relevant features shared by the source domain and target domain. The
CEN penalty also uses the notion of supervised distribution difference (SDD). The
SDD estimates the divergence between the source and target distributions using the
divergence between equivalent regression models built on the source and target. To the
best of our knowledge, transfer learning on sparse features using novel regularizers
has not been investigated in the literature so far. We build this model in the context of
healthcare applications because in such noisy data, it becomes extremely important to
build models that are robust and can intelligently decide upon the “when to transfer”
issue. Our experimental results over the medical records of diabetes patients suggest
that TR-CEN outperforms other competing methods such as multi-task-LASSO.

The main contributions of our work are summarized as follows:

– Propose a novel transfer learning framework which can deal with the “when to
transfer” issue in the transfer learning and successfully apply it inmininghealthcare
data.

– Develop a measure of the distance between the source and target using the diver-
gence between their corresponding prediction models.

– Develop a constrained version of elastic net algorithm that can capture the differ-
ences in data distributions and discover the common (hidden) features which can
be used to transfer the knowledge from the source task to target task.

– Demonstrate the performance of the proposed transfer learning method using dia-
betes healthcare records, and compare with the existing state-of-the-art methods
on the problem of disease diagnosis in the healthcare domain.

This paper is organized as follows: Sect. 2 provides some relevant background
regarding various transfer learning and multi-task learning methods, and highlights
the main contribution of our work. Our novel transfer learning framework TR-CEN
is explained in detail in Sect. 3 and several additional details of the proposed CEN
algorithm are described in Sect. 4. In Sect. 5, the diabetes health records are used
to demonstrate the performance of TR-CEN method. It also gives the details of the
clinical feature transformation for summarizing multiple attribute healthcare record
values. The empirical results demonstrate that the TR-CEN method can efficiently
prevent negative transfer and outperform several baseline and other state-of-the-art
methods available for knowledge transfer. Finally, Sect. 6 concludes our discussion
and gives some future research directions for the proposed work.
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2 Related work

Transfer learning methods have been successfully applied to many real-world appli-
cations such as web-document classification, sentiment classification (Blitzer et al.
2007), WiFi localization (Pan et al. 2008), and sign language recognition (Farhadi et
al. 2007); however, transfer learning approaches do not adequately address the ques-
tion of “when to transfer”. In this section, we introduce some of the relevant topics
and highlight the primary contributions of our work.

In transfer learning, the primary goal is to adapt a model built on source domain DS

(or distribution) for prediction on the target domain DT. Accordingly, scenarios for
transfer between the source and target domains can be categorized into three different
types, namely, inductive, transductive and unsupervised transfer learning (Pan and
Yang 2010). In the inductive transfer learning, labeled data are available in the target
domain; in addition, based on whether there exists labeled data in the source domain,
these approaches can be grouped into two sub-categories: the first type is similar to
multi-task learning (Caruana 1997), where the labeled source data are available, and
the second type is Self-taught learning (Raina et al. 2007), where the labeled source
data are unavailable. In the transductive transfer learning (Arnold et al. 2007), source
domain labels are available while target domain labels are unavailable; finally, in
the unsupervised transfer learning, there are no labeled data available in both source
domain and target domain (Dai et al. 2008).

The three main research issues in transfer learning are: “what to transfer”, “how to
transfer”, and “when to transfer” (Pan and Yang 2010). “What to transfer” deals with
the problem of what knowledge can be transferred from the source to the target domain
in order to improve the performance of the prediction model for the target task. Based
on “what to transfer” the existing transfer learning approaches can be grouped into
four cases: instance-based, feature-based, parameter-based, and relational knowledge-
based. Thefirst category is instance-based, where the assumption is that certain parts of
the source data canbeused to learn the target task;TrAdaboost (Dai et al. 2007) is oneof
the most popular instance based transfer learning algorithm. In feature-based transfer
learning, multiple methods are used to learn a good feature representation (Rückert
and Kramer 2008; Pan et al. 2008) or select subset of joint features (Evgeniou and
Pontil 2007) for the target domain. The parameter-based transfer learning approach
assumes that there is parameter sharing between the source and target task (Evgeniou
and Pontil 2004; Pan and Yang 2010). Finally, relational knowledge-based transfer
learning (Mihalkova and Mooney 2008) assumes that some relation among the data
in the source and target domains is similar (Pan and Yang 2010). “How to transfer”
has a strong relationship with “what to transfer”; based on what type of knowledge is
used for transfer, the corresponding techniques are involved in the transfer learning
approaches.

In this paper, we perform knowledge transfer in healthcare applications by ana-
lyzing the EHRs collected at different geographic locations, and we have the labeled
data in both target domain and source domain; thus, more specifically, the model we
propose in this paper belongs to the first type of inductive transfer learning approach.
Our procedure selects a subset of joint features to transfer the knowledge from the
source to the target domain. This is different from the inductive transfer learning and
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multi-task learning. In multi-task learning (Caruana 1997), different tasks are learned
simultaneously and perfectly, while transfer learning only aims to improve the per-
formance of the target task by taking advantage of the knowledge acquired from the
source data. Thus, in multi-task learning, different tasks are equally weighted, but
in transfer learning one is more interested in the target domain and target task; fur-
thermore, it is very convenient to change the multi-task learning algorithm to transfer
learning algorithm just by enhancing the importance (weight) of the target task (Pan
2010). In multi-task feature learning (Evgeniou and Pontil 2007), the representation
of the features for all the tasks are learned simultaneously, and the sum of the loss
functions of each individual tasks is penalized by the (r, p)-norm of the regression
parameter matrix. In contrast, in our framework, we propose a constrained version of
elastic net penalty where the regression parameters of the target and source tasks are
learned separately, and the regression models of these two tasks are tuned to be as
similar as possible; thus, we can select as many joint features as possible, which can
be used to transfer the knowledge from the source to the target domain.

In this work, using the parameters of the constrained model, we propose a model-
based approach to compute the distance between the target data distribution and source
data distribution conditional on the learning task. The experimental results indicate
that there exists a relationship between this supervised distribution distance (SDD)
and the performance of target task; thus, we can use this distance as a measurement
to decide whether it is appropriate to transfer knowledge from the source domain to
the target domain.

3 Proposed framework

In this section, we explain the overall framework of the TR-CEN method. This frame-
work uses the constrained elastic net in a transfer learning setting in order to effectively
evaluate which features to consider for knowledge transfer from the source domain to
the target domain. We now introduce the notations used in this paper in Table 1.

3.1 Why constrained elastic net?

The transfer learning framework we propose in this paper uses a sparse regularizer to
learn a relevant subset of features to transfer knowledge from the source to the target
domain.Weconstrain this regularizer to promote similarity of the regression coefficient
vectors on the source and target domains. Lasso is effective at giving sparse solutions
(Tibshirani 1996) but when variables are correlated, Lasso does not include all of them
in it’s solution. Many other correlated variables are neglected by Lasso. This makes
the elastic net an efficient choice as it promotes sparsity and it can handle correlation
due to the L2 ridge term. Further details on the formulation of the constrained elastic
net are provided in Sect. 4.

3.2 Transfer learning using constrained elastic net

TR-CEN is a sparse transfer feature learning method which aims to learn a low-
dimensional subset of features that can be used to transfer knowledge from source
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Table 1 Notations used in this
paper

Notation Description

DT Target dataset

DS Source dataset

C Index set of selected features

DC Features selected for transfer

n Number of instances

p Number of features

X Data matrix, X ∈ R
n×p

Y Corresponding labels= {0, 1}n
β Coefficient vector, β ∈ R

p

Ω Coefficient vector for combined dataset

ε Threshold for knowledge transfer

τ Threshold for accuracy loss

L ( ) Objective function

L( ) Loss function

P( ) Penalty term

to target domain, and simultaneously reduce the prediction error of target task. TR-
CEN employs the constrained elastic net regularizer while selecting features. This
regularizer modifies the L2 penalty in the elastic net by replacing it with a modified
vector which penalizes the difference between the current model (β) on the source
(target) and the base model(Ω) learned on the combined dataset (DS ∪ DT ).

TR-CEN starts by learning an elastic net model for the unified dataset (DS ∪ DT ),
and the coefficient vector obtained from this unified dataset is denoted by Ω . After Ω

is learned, we apply the constrained elastic net method on DS and DT to learn β(DS)

and β(DT ) respectively. Tr-CEN measures the data distribution distance between the
source dataset and target dataset using the absolute value of the difference of the
regression coefficient vectors learned on the source and target datasets. This is also
known as the supervised Distribution Difference (SDD). It measures the change in the
classification criteria in terms of measuring the deviation in classification boundary
while classifying as accurately as possible. The SDD between the source and target
data can be calculated as:

SDD(DS, DT ) = ‖β(DS) − β(DT )‖1 (1)

SDD(DS, DT ) is a quantitative measurement of the divergence between the source
and target domains, and using this difference we will decide whether it is appropriate
to transfer knowledge across domains.

If the SDD(DS, DT ) is greater than ε, it means that the distance between the target
data distribution and source data distribution is too large, and we can not transfer
knowledge from the source domain to the target domain. Thus, choosing a proper ε

is critical in the proposed TR-CEN framework. We optimize the parameter ε through
an exhaustive grid-based search in a cross-validated setting. Since the optimal choice
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of the ε value varies by the problem domain, we empirically chose the ε to be ‖Ω‖1
10

that is the 10 percent of the L1 norm of the base model in our implementation of the
TR-CEN framework. This reduces the heuristic parameter setting for the proposed
work. |β(DS) − β(DT )| is a column vector where each element is the absolute value
of the difference. |β(DS)| and |β(DT )| represents a non-negative vector, where each
element is the corresponding absolute value of the coefficient in the source and target,
respectively.Using |β(DS)|, |β(DT )|, and |β(DS)−β(DT )|wecan select the common
(hidden) features which meet the following two criteria:

– Conditional on the learning task, the selected features which have large absolute
value of coefficients both in β(DS) and β(DT ) are important.

– The supervised distribution difference of the selected features between DS and
DT is relatively small.

Thus, using the selected features, the knowledge can be transferred from the source
domain to the target domain in order to improve the prediction performance on the
target task. The flowchart of the proposed framework is shown in Fig. 1.

3.3 TR-CEN algorithm

Algorithm 1 outlines the TR-CEN method for generating a transfer learning model
based on the constrained elastic net. In lines 1–2, we build the elastic net model Ω

Fig. 1 Flowchart for the
TR-CEN method
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Algorithm 1 TR-CEN
Require: Source data (DS ), Target data (DT ), Threshold for knowledge transfer (ε)
1: Learn EN model Ω from DS ∪ DT
2: Learn CEN models β(DS) from DS , β(DT ) from DT
3: di f ← SDD(DS , DT )

4: if di f > ε then
5: return do not transfer
6: else
7: Set the lower boundary of the feature significance and the upper boundary of the feature difference.
8: Select features from DS and DT to create a constrained features dataset DC .
9: Learn EN model β(DC ) from DC .
10: Construct a linear combination of the predicted ensemble outputs from β(DC ), Ω and β(DT ).
11: Learn the weights in the ensemble using exhaustive search to optimize for the best AUC.
12: end if

Disease 
diagnosisFeature space

Selected 
features

β Ω β

Fig. 2 Ensemble creation in TR-CEN

for the unified dataset (DS ∪ DT ) and CEN models β(DS) and β(DT ) separately
from DS and DT . Based on the SDD between DS and DT we decide whether it is
appropriate to transfer knowledge across domains (lines 3–6). In lines 7–8, we set
the lower boundary of the feature significance and the upper boundary of the feature
difference, and the subset of features which are shared across the domains can be
selected based on this constraint. The final output of this algorithm is a model which is
a linear combination of three different models (lines 10–11). Two of these models are
elastic net models on the combined dataset and the selected common feature space;
the other one is CEN model on the target dataset. The relationship of the components
of the combined model is clearly illustrated in Fig. 2. As shown in this figure, we learn
the models represented by Ω , β(DT ), and β(DC ) from different parts of the entire
dataset (shown using the red boxes).
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4 Constrained elastic net

4.1 Preliminaries

In most of the real-world healthcare applications, the number of features (p) is almost
equivalent to or even larger than the number of objects (n); it is unnecessary or even
incorrect to fit the predictionmodelwith all the features because of the overfitting issue.
The primary motivation of using sparsity inducing norms is that in high dimensions,
it is appropriate to proceed with the assumption that most of the attributes are not
considered to be important, and hence only the vital features can be used for building
thepredictivemodels (Hastie et al. 2001;YeandLiu2012). In general, the classification
and regression models can be built using an optimization-based problem formulation,
given as follows:

argmin
β

L(β) + P(β) (2)

where β is the parameter that will be learned from the training dataset, L(β) is the
empirical loss function, and P(β) is the penalty term. Consider the LP -norm penalty;
the smaller the P that is chosen, the sparser the solution, but when 0 ≤ P < 1, the
penalty is not convex, and the solution is difficult to obtain. In addition, the penalized
methods have also been used to do feature selection in the n > p scenario.

Among all the standard LP -norm penalties, the Lasso (Tibshirani 1996) and elastic
net (Zou andHastie 2005) are the twomost popular penaltieswhich can induce sparsity
in the regression coefficients. Lasso or the L1-norm penalty can be formulated as:

P(β)Lasso = λ

p∑

k=1

|βk | (3)

where λ is the regularization parameter to control the influence of the penalty. Elastic
net is the combination of the L1-norm and squared L2-norm penaltieswhich can obtain
both sparsity and handle correlated feature spaces simultaneously. It is mathematically
defined as follows:

P(β)elastic net = λ

(
α

p∑

k=1

|βk | + 1

2
(1 − α)

p∑

k=1

β2
k

)
(4)

where the λ ≥ 0 is the Lagrange scalar, and 0 ≤ α ≤ 1 is used to adjust the weights
of the L1 and L2 norm penalties.

4.2 Constrained elastic net (CEN)

We now develop the constrained elastic net, which can be used to select the common
features to minimize data distribution divergence between source domain and target
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domain. In this section, we will also introduce an efficient method to estimate the
coefficient parameters of the regression problem. We define the CEN penalty as:

P(β)CEN = λ1‖β‖1 + λ2‖Ω − β‖22 (5)

where Ω is the coefficient value learned by applying the standard elastic net on the
combination of the source data and target data (DS ∪ DT ). Using the residual sum
of squares (RSS) as the loss function, the penalized loss function will be shown as
follows:

L (λ1, λ2, β) = ‖Y − Xβ‖22 + λ1‖β‖1 + λ2‖Ω − β‖22 (6)

and the regression coefficient β̂ can be estimated byminimizing the following objective
function

β̂ = argmin
β

{L (λ1, λ2, β)} (7)

Obviously, the only difference between the proposed penalty and the standard elas-
tic net is introducing the base model Ω; by doing so, we ensure that in a certain
range the estimated parameter (model) β will be as similar as possible to the original
unconstrained model Ω .

In the case of obtaining an orthogonal solution XT X =I, it is straightforward to
show that with parameters λ1, λ2 the solution of CEN is

β̂i (CEN) = S(β̂i (OLS), λ1/2)

1 + λ2
+ λ2 · Ω

1 + λ2
(8)

where β̂i (OLS) = XT Y (OLS stands for Ordinary Least Squares). S(Z , γ ) is the
soft-thresholding function which can be calculated based on sign(Z) · (|Z | − γ )+,
where sign{·} is the signum function, and (|Z |−γ )+ refers to the positive part, which
equals to |Z | − γ if (|Z | − γ ) > 0 and 0 otherwise.

It should be noted that, in this work, Eq. (8) is the only one which makes the
orthogonality assumption. The reason being that it will provide the mathematical
formulation of the simplest possible solution for the naive constrained elastic net.
Making this assumption aids in comparing thedifferencebetween thenaive constrained
elastic net solution and the naive elastic net solution.

When we build the constrained model for DS (or DT ), Ω is being introduced in
the objective function; thus, compared with the standard elastic net for DS (or DT ),
we learn a relatively more generalized model, but specific to DS (or DT ) the learned
parameter might do worse than the standard model. Here, we choose AUC rather than
any other evaluation metrics because AUC can provide a comprehensive measure for
the model performance, and it is independent of the cut-off theshold that needs to be
chosen for other metrics such as accuracy. For implementation, we use the standard
glmnet package (Friedman et al. 2010) to estimate the standard elastic net model. The
CEN solves the optimization problem which is given as follows:
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argmin
β

1

2n

n∑

i=1

(yi − Xiβ)2 + λ

[
α

p∑

k=1

|βk | + 1

2
(1 − α)

p∑

k=1

(Ωk − βk)
2

]
(9)

We utilize the coordinate descent for solving the optimization problem presented
in Eq. (9). Coordinate descent (Donoho and Johnstone 1994) is based on the idea
that the minimization of a multi-variable function can be achieved by minimizing
it along one direction at a time. Authors in Tseng (2001) analyzed the convergence
of the coordinate descent, and proved that we can use coordinate descent to find a
minimum of the functional form f (x) = ∑n

i=1 hi (xi ) + g(x) if g(x) is convex and
differentiable and each hi (xi ) is convex. In Friedman et al. (2010), coordinate descent
has been successfully used to estimate the elastic net coefficient vector. Let us suppose,
except βk , all other β̃l (l = 1, 2, 3, . . . , p and l �= k) have already been estimated, and
we would like to partially optimize with respect to βk . Denote the objective function
of the optimization problem by L (β); if β̃k > 0, the partial derivative of L (β) with
respect to the variable βk can be calculated as:

∂L (β)

∂βk
= −1

n

n∑

i=1

xik(yi − Xi β̃) + λ(1 − α)βk − λ(1 − α)Ω + λα (10)

For both the β̃ < 0 and β̃ = 0 cases, a similar expression can be calculated. For
simplicity,we can standardize the input data X , and the coordinate-wisewill be updated
as the following form:

β̃k ←
S

(
1
n

∑n
i=1 xik

(
yi − ỹ(k)

i

)
, λα

)

1 + λ(1 − α)
+ λ(1 − α) · Ωk

1 + λ(1 − α)
(11)

where ỹ(k)
i = ∑

l �=k xil β̃l is the fitted value excluding the contribution from xik . This
is simply the univariate regression coefficient of the partial residual sum of squares
yi − ỹ(k)

i on the kth variable. In each iteration, all of the p coefficient variables are
repeatedly updated until convergence.

Algorithm 2 outlines our approach for generating the CEN model. First we use the
glmnet package to learn a standard elastic model, and evaluate its performance using
the AUC metric, which is denoted by aucEN (lines 1-2). In line 3, we initialize the
estimator of the parameter β̂ to that of the parameter from Ω and by doing so, we
can ensure that the estimator would be close to the base model Ω . In lines 5–7, each
element of the coefficient vector is updated using the coordinate-wise update as shown
in Eq. (11). After all the p coefficients are updated, we evaluate the current model
performance using AUC (aucCEN ); if the current model β̂ meets the requirement of
the threshold for the AUC loss, we stop the learning process and output this CEN
model βCEN (lines 8–12).

5 Experimental results

In this section, we demonstrate the performance of the proposed transfer learning
approach using real-world electronic health records of diabetes patients. We first
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Algorithm 2 Constrained elastic net
Require: Feature space(X ), Label space (Y ), Threshold for AUC loss (τ = 0.02), Elastic net model on

combined dataset (Ω)
1: Learn a standard elastic net model βEN based on X and Y
2: aucEN ←AUC(Y , XβEN )
3: Initialize β̂ ← Ω

4: repeat
5: for k = 1 to p do

6: β̃k ← S( 1n
∑n

i=1 xik (yi−ỹ(k)
i ), λα)

1+λ(1−α)
+ λ(1−α)·Ωk

1+λ(1−α)
7: end for
8: β̂ ← β̃

9: aucCEN ←AUC(Y , X β̂)
10: until aucEN−aucCEN ≤ τ

11: βCEN ← β̂

12: Output: parameter of CEN βCEN

present the clinical feature transformation performed on the EHR data. We will then
compare the performance of our proposed model against the standard elastic net and
multi-task learning algorithms (Zhou et al. 2012). In addition, we also show that there
is a strong relationship between the SDD measure and the performance improvement
on the target task.

5.1 Experimental setup

The type 2 diabetes dataset we used in our experiment was collected by the Prac-
tice Fusion (Practice Fusion Diabetes Classification 2012). There are a total of 9,948
patients in the training set, and among them 1,904 patients were diagnosed with dia-
betes. These patients are from all the 50 states, the District of Columbia in the U.S. and
the Commonwealth of Puerto Rico; for each patient, the EHRs are comprehensively
collected from 17 different resources and can be categorized into the following sources
of information:

– Demographic information such as year of birth, gender, weight, and location of
each patient.

– Diagnosis information consists of the ICD9Codes collected for each patient during
the Practice Fusion’s program.

– Allergy and immunization consists of a list of allergies and vaccination records for
each patient after they joined the Practice Fusion’s program.

– Laboratory information consists of lab test observations for lab panels, and the lab
test results received from lab facilities.

– Medication and Prescription consists of the medication history and prescription
records for each patient after he joined the Practice Fusion’s program.

– Patient smoking status is a binary status variable maintained for each patient on a
yearly basis.

– Transcript consists of visit document records for a patient including the allergy,
medication, and diagnosis information provided by the patients when they joined
the Practice Fusion’s program.
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PtID

884

884

884

884

884

Lab
Name

TSH

TSH

TSH

TSH

TSH

Lab
Value

1.37

1.98

2.4

1.99

1.18

Height

64.5

64.5

64.5

64.5

64.5

SBP

106

122

108

124

90

ICD9

477.9

300

625.4

307.81

724.5

Medication

LS

LS

BDS

LS

BDS

Smoking
Status

Few

Few

Few

Few

Few

Visiting
Year

2010

2009

2012

2011

2012

PtID

884

TSH
max

2.4

TSH
min

1.18

TSH
avg

1.78

TSH
count

5

SBP
max

124

SBP
min

90

SBP
avg

110

height

64.5

anxiety

2

rhinitis

1

syndrome

1

backache

1

LS

3

BDS

2

Smoking
status

1

Feature Representation

Fig. 3 Feature representation for a single patient

We integrated these 17 different files and generated 536 features for each patient.
Among these features, only the gender and location are categorical attributes; lab
test results and personal information are real-valued attributes; some attributes such
as smoking status, and emergency status are ordinal. A significant majority of the
remaining features are count variables.

5.2 Clinical feature representation

We now explain the clinical feature transformation which exploits the semantics of
EHRs. The original data contains EHRs for 9,948 patients. In Fig. 3, we explain the
feature creation procedure by considering a simple example. In this example, we use
a set of 5 records for a particular patient (with patientID 884). We extracted all the
features for all the distinct lab variables present in the data. In this example, only
the TSH lab variable is considered. To tackle the problem of multiple lab values for
the same patient, we represent each lab using a set of summary statistics (maximum,
minimum, and average).We compute values for these statistics over the 5 records (2.4,
1.18 and 1.78). In addition to these statistics for each distinct lab, we also create a
variable which counts the number of times the lab was conducted for the patient (rep-
resented using the variable Tcount). Several anthropometric features such as systolic
blood pressure (SBP) are generated by using a similar method as done in lab feature
representation. Height is an example variable being considered in the demographics
information. ICD-9 codes, is a list code for International Statistical Classification of
Diseases, and each code presents a disease description.With the ICD-9 codes, a binary
variable can be created to reflect if the patient has a special disease or not. The code
of 300 and 307.81 can be combined since they can be considered to be anxiety. The
code of 477.9, 625.4, 724.5 can represent the disease rhinitis, syndrome and backache
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Table 2 Demographic statistics
of the top 14 states based on
patient population

State Total Diabetic Nondiabetic Prevalence rate

CA 1,917 258 1,659 0.1346

TX 897 243 654 0.2709

FL 804 158 646 0.1965

MO 702 104 598 0.1481

NJ 575 119 456 0.2070

NY 557 167 390 0.2998

OH 515 111 404 0.2155

NV 495 135 360 0.2727

VA 484 79 405 0.1632

IL 412 75 337 0.1820

MI 344 61 283 0.1773

SD 325 40 285 0.1231

AZ 295 56 239 0.1898

PA 250 67 183 0.2680

separately. For the procedures, we create variables for each distinct medications given
to the patient. This feature represents the number of times the individual procedures
were conducted for the patient. In Fig. 3, two new variables for each of the medication,
namely, Levothyroxine Sodium (LS) and Bactrim DS oral tablet (BDS) are created.
There are several stages of smoking status which can be represented using ordinal
numbers as shown in Fig. 3. The status of “few (1–3) cigarettes per day” (Few) is
denoted by 1. In summary, it can be seen that following this procedure immensely
helps not only reduce the dimensionality and the complexity of the problem, but also
summarize the complex EHRs into a succinct representation which is then used for
disease diagnosis.

5.3 Goodness of fit

In this experiment, our aim is to improve the diabetes diagnosis for a particular state.
Hence, in the transfer learning setting, this specific state would be our target domain
and the data from remaining states is considered to be the source domain. Table 2 shows
the demographic statistics of the top 14 states based on the total patient population.
In our experiment, for these 14 states, each of them will be considered as the target
domain and the rest of the population will be considered as the source domain.

We compared our proposed transfer learning model, Tr-CEN, with the standard
elastic net, multi-task Lasso (Multi-LASSO) and multi-task feature learning method
(Multi-L2,1) proposed in Liu et al. (2009). We would first provide a brief description
of theMulti-LASSO andMulti-L2,1 optimization formulation.Multi-LASSO (Zhou et
al. 2012) is a multitask extension of the elastic net1, and with least squares loss it can
be formulated as:

1 Although in Zhou et al. (2012) it has been named as multi-task Lasso, both L1-norm and L2-norm
penalties are used in the optimization formulation.
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Table 3 Comparison of AUC
values of Local-EN, All-EN,
Multi-LASSO, Multi-L2,1, and
Tr-CEN

State Local-EN All-EN Multi-LASSO Multi-L2,1 Tr-CEN

CA 0.7675 0.8679 0.8617 0.868 0.8908

TX 0.7096 0.8442 0.8296 0.8343 0.8586

FL 0.6551 0.8504 0.8694 0.8749 0.894

MO 0.6499 0.8797 0.8824 0.8921 0.9183

NJ 0.7096 0.7826 0.7595 0.7854 0.8177

NY 0.7672 0.8177 0.825 0.8329 0.8512

OH 0.8137 0.8688 0.8464 0.8565 0.9184

NV 0.7967 0.8324 0.8466 0.8553 0.876

VA 0.6734 0.8078 0.7667 0.7806 0.8488

IL 0.8482 0.8575 0.8606 0.8675 0.9128

MI 0.8265 0.8993 0.888 0.9048 0.9545

SD 0.7652 0.9132 0.749 0.8122 0.9744

AZ 0.6702 0.8057 0.7722 0.7889 0.8862

PA 0.6424 0.7811 0.7185 0.7589 0.8122

argmin
B

t∑

i=1

‖Yi − XB‖22 + λ1‖B‖1 + λ2‖B‖22 (12)

where B is a p × t coefficient matrix for t tasks. With the least squares loss, the
Multi-L2,1 has the following form (Evgeniou and Pontil 2007):

argmin
B

t∑

i=1

‖Yi − XB‖22 + λ‖B‖2,1 (13)

where the L2,1-norm of B is defined as ‖B‖2,1 = ∑p
k=1 ‖Bk‖2.

Each of the algorithms is validated using 10-fold cross validation. In our experi-
ments, the standard elastic net is applied both on the target dataset (the specified state)
and the entire dataset. For simplicity, they are referred to as Local-EN and All-EN,
respectively. It should be noted that, inAll-EN, although themodel is built on the entire
dataset, the performance is measured only on the target dataset; in other words, the
All-EN reflects the performance of the base modelΩ in each specific state. In Table 3,
we provide the AUC values to assess the goodness of fit. In Table 4, we present the
sensitivity (True Positive Rate) values. In addition, in Table 5, we present the com-
parison of F_measure values of Local-EN, All-EN,Multi-LASSO, Multi − L2,1, and
Tr-CEN. The F_measure can be calculated as follows:

F_measure = 2 × Precision × Sensitivity

Sensitivity + Precision
(14)

where Sensitivity = T P
T P+FN , and Precision = T P

T P+FP ; therefore, a high value of
F_measure indicates that both precision and sensitivity are reasonably high.
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Table 4 Comparison of
sensitivity values of Local-EN,
All-EN, Multi-LASSO,
Multi-L2,1, and Tr-CEN

State Local-EN All-EN Multi-LASSO Multi-L2,1 Tr-CEN

CA 0.686 0.7636 0.7636 0.7907 0.8538

TX 0.6914 0.8313 0.7737 0.7613 0.8378

FL 0.6962 0.7595 0.8165 0.7975 0.8396

MO 0.625 0.8462 0.8173 0.8077 0.8674

NJ 0.6975 0.7647 0.7647 0.7731 0.8333

NY 0.6707 0.7605 0.7605 0.7844 0.7981

OH 0.7297 0.8198 0.7748 0.8468 0.8681

NV 0.6963 0.8 0.8 0.8222 0.7903

VA 0.6076 0.7595 0.6329 0.6709 0.8092

IL 0.8 0.8 0.7867 0.8133 0.8191

MI 0.8 0.8197 0.7869 0.8525 0.9128

SD 0.7 0.85 0.6 0.65 1

AZ 0.625 0.75 0.7143 0.7143 0.875

PA 0.6567 0.6866 0.625 0.7612 0.7403

Table 5 Comparison of
F_measure values of Local-EN,
All-EN, Multi-LASSO,
Multi-L2,1, and Tr-CEN

State Local-EN All-EN Multi-LASSO Multi-L2,1 Tr-CEN

CA 0.4009 0.49 0.4817 0.4798 0.5624

TX 0.5239 0.6413 0.646 0.6238 0.6924

FL 0.4313 0.5854 0.5917 0.6327 0.6891

MO 0.4013 0.5483 0.5414 0.5524 0.6722

NJ 0.4641 0.517 0.4946 0.5014 0.6383

NY 0.6074 0.6632 0.648 0.6313 0.7024

OH 0.5744 0.589 0.5695 0.5938 0.7242

NV 0.5943 0.6429 0.6526 0.6667 0.6986

VA 0.3852 0.4878 0.4386 0.4545 0.626

IL 0.5588 0.5286 0.554 0.5488 0.6974

MI 0.5535 0.5952 0.5926 0.6012 0.7974

SD 0.4528 0.5271 0.5106 0.4425 0.8591

AZ 0.4457 0.549 0.5132 0.5298 0.7144

PA 0.4868 0.6093 0.5325 0.5548 0.6353

We observe that for all the 14 states our proposed algorithm provides a better fit
compared to the other algorithms. This demonstrates the effectiveness of our approach
in real-world clinical setting.

5.4 Relationship between SDD and model performance

Compared with other existing transfer learning methods, another advantage of our
proposed Tr-CEN is that, even before doing the actual knowledge transfer we can
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Table 6 Relationship between the SDD and performance improvement compared to the base models

State AUC of All-EN AUC of Tr-CEN AUC improvement SDD(DS , DT )

TX 0.8442 0.8586 0.0144 63.2673

FL 0.8504 0.894 0.0436 29.4815

MO 0.8797 0.9183 0.0386 39.6149

NJ 0.7826 0.8177 0.0351 40.9582

NY 0.8177 0.8512 0.0335 38.8797

OH 0.8688 0.9184 0.0496 14.2148

NV 0.8324 0.876 0.0436 26.4018

VA 0.8078 0.8488 0.041 24.0069

IL 0.8575 0.9128 0.0553 17.0574
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Fig. 4 Illustration of the relationship between the SDD and performance improvement

predict the improvement of performance in the target task based on the SDD measure
between the source data and target data. In Table 3, we can see that, amongst the
two base models Local-EN and All-EN, All-EN performs better. In Table 6, we select
top 10 states (excluding CA) to present the AUC improvement between the Tr-CEN
and All-EN, and the SDD(DS, DT ) for each state. We excluded CA because the
patient population in California is relatively too large compared with the remaining
9 states. The results in this table show that there is a strong negative correlation
between the quantity of AUC improvement and the SDD distance. We also illustrate
this relationship in Fig. 4. Note that, for convenience, we take the negative of the AUC
improvement value as one of the Y-axis. Thus, in Fig. 4, we can see the height of the
red bar (SDD distance) and the blue bar (Opposite value of AUC improvement) are
positively correlated to each other.
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6 Conclusions and future work

Healthcare in the United State is currently undergoing a revolutionary transformation.
One of the important components of this transformation is the healthcare information
exchange wherein the primary objective is to share knowledge in an appropriate and
adequate manner. Such sharing of knowledge between different institutions should
potentially provide better predictive models which can then help in accurate diagnosis
of diseases even in the presence of limited data from the local institution. Transfer
learning, which is a subfield within machine learning, has not been studied in the
context of healthcare applications. In this transfer learning paradigm, an important
aspect of “when to transfer” has not been thoroughly investigated. This aspect becomes
critical in healthcare applications due to the presence of abundant noisy information
datasets which can potentially be used as sources to transfer knowledge. In this paper,
we develop a novel transfer learning framework based on constrained sparse predictive
model which can select a low-dimensional subset of common features to transfer
knowledge from source domain to target domain and simultaneously measure the data
distribution difference between source and target dataset. This CEN model is built
by enforcing additional constraints on the standard elastic net. We demonstrate the
performance of the proposed algorithms using real-world diabetes EHRs data. We
showed that the distance between the source dataset and target dataset obtained from
the proposed models can be used to predict the improvement of performance in the
target task.

In the future, we will extend the proposed constrainedmodification on other predic-
tivemodels.Weplan to developmore accuratemethods tomeasure the “transferability”
between source domain and target domain to prevent negative transfer. We also plan
to study the issue that if an entire domain leads to a negative transfer, whether we can
potentially select a partial component of the source domain to improve the prediction
performance on the target task. Most importantly, we will also apply this model on
other healthcare problems.
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