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Holographic characterization of colloidal
fractal aggregates

Chen Wang,a Fook Chiong Cheong,b David B. Ruffner,b Xiao Zhong,c

Michael D. Wardc and David G. Grier*a

In-line holographic microscopy images of micrometer-scale fractal aggregates can be interpreted with an

effective-sphere model to obtain each aggregate’s size and the population-averaged fractal dimension.

We demonstrate this technique experimentally using model fractal clusters of polystyrene nanoparticles

and fractal protein aggregates composed of bovine serum albumin and bovine pancreas insulin.

1 Introduction

Holograms of micrometer-scale colloidal spheres obtained with

in-line holographic video microscopy can be analyzed with the

Lorenz–Mie theory of light scattering to obtain each sphere’s

radius and refractive index, typically with part-per-thousand

precision.1,2 Characterizing a single sphere requires a few

milliseconds on a standard computer,3 which is fast enough

that several thousand spheres can be characterized in under

ten minutes. Analyzing holograms of aspherical particles and

colloidal clusters is substantially more challenging,4 particularly

if no information is available a priori about the particles’ geo-

metry. We previously have demonstrated that the Lorenz–Mie

analysis developed for homogeneous spheres also yields useful

characterization data for porous spheres,5,6 dimpled spheres,7

and protein aggregates.8 The last of these applications treats each

irregularly-shaped protein aggregate as an effective sphere

composed of the aggregate itself and the fluid medium filling

its pores. Here, we develop an effective-sphere formalism for

Lorenz–Mie microscopy of fractal aggregates and demonstrate

its efficacy through measurements on model systems.

Detecting and characterizing micrometer-scale aggregates is

useful both for fundamental research and also for solving real-

world problems. Protein aggregation, for example, is a critical

concern for the biopharmaceutical industry because it limits the

efficacy of protein-based drugs and can induce harmful immuno-

genic responses in patients.9 Information on the concentration,

size distribution and morphology of protein aggregates provides

guidance for formulating stable products and for avoiding

adverse clinical outcomes. Conventional light-scattering techni-

ques do not work well for particles in the relevant size range,10

and cannot distinguish aggregates of interest from other conta-

minants commonly found in commercial formulations. Similar

detection and characterization challenges arise in the precision

slurries used by the semiconductor manufacturing for chemical–

mechanical planarization.11 As a particle-resolved measurement

technique, holographic characterization naturally differentiates

micrometer-scale particles by size and composition.3 The effective-

sphere model extends these capabilities to include assessment of

particle morphology without sacrificing speed or ease of use.

2 Lorenz–Mie characterization

Lorenz–Mie characterization, depicted schematically in Fig. 1(a),

is based on in-line holographic video microscopy,12 in which

the sample is illuminated with a collimated laser beam. Light

scattered by a particle interferes with the remainder of the

illumination in the focal plane of a microscope. The intensity

I(r) of the magnified interference pattern is recorded with a

conventional video camera for analysis. A typical example is

shown in Fig. 1(b). Each holographic snapshot is corrected for

the camera’s dark count, Id, and is normalized by the back-

ground intensity in the field of view, I0(r), to obtain1,2,13

bðrÞ ¼
IðrÞ � Id

I0ðrÞ � Id
: (1)

The normalized hologram then is fit to the prediction1

b(r) = |x̂ + e�ikzpfs(k(r � rp)|ap,np)|
2, (2)

where k is the wavenumber of light in the medium, rp is

the position of the particle’s center relative to the center of

the microscope’s focal plane, and fs(kr|ap,np) is the Lorenz–Mie

function that describes scattering of the incident wave by a

sphere of radius ap and refractive index np.
14,15 The form of eqn (2)
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is appropriate for a beam propagating along ẑ that is linearly

polarized along x̂. Fitting eqn (2), pixel by pixel, to the normalized

hologram of a sphere yields the sphere’s three-dimensional posi-

tion, its radius and its refractive index.1 Fig. 1(c) presents the

result of fitting to the experimental hologram from Fig. 1(b).

The custom-built holographic microscope used for this study

illuminates the sample with the collimated beam from a solid

state laser (Coherent Cube) operating at a vacuum wavelength of

l = 447 nm. The sample flows through the observation volume in

microfluidic channel created by bonding the edges of a number

1.5 glass microscope cover slip to the face of a standard glass

microscope slide. This sample cell is mounted on a translation

stage (Prior, Proscan II) in the focal plane of an oil-immersion

objective lens (Nikon, Plan Apo, 100�, numerical aperture 1.45).

Light collected by the objective lens is relayed by an achromatic

tube lens to a video camera (NEC, TI-324AII), which records its

intensity 30 times per second with an effective magnification of

135 nm per pixel. Each video frame is a 640 pixel � 480 pixel

measurement of I(r) with a resolution of 8 bits per pixel. Features

associated with dispersed particles are identified in digitized

holographic images16 and are analyzed with eqn (1) and (2) using

methods that have been described in detail elsewhere.2,3 The

example in Fig. 1(b) is a 201 pixel � 201 pixel region of interest

cropped from the normalized hologram, b(r), obtained from I(r)

according to eqn (1).

All principal results were reproduced using a second instru-

ment based on a 40� air objective (Nikon Plan Fluor, numerical

aperture 0.75) operating at a vacuum wavelength of 532 nm

(Thorlabs, CPS532 4.5 mW) with an effective magnification of

120 nm per pixel on an Allied Vision Mako U-130B camera. This

camera yields 1280 pixel � 1024 pixel images with 8 bits per

pixel. Samples flow through this instrument in prefabricated

microfluidic channels with 100 mmpath length (Ibidi, mSlide VI,

uncoated). Flow is driven by a syringe pump (New Era Systems,

NE 100). This reduces the possibility that instrumental artifacts

might have influenced the scaling relationships reported here.

A colloidal sample is characterized by placing a 100 mL

aliquot in the reservoir at one end of the microfluidic channel

and drawing it through with a small pressure gradient. The

resulting Poiseuille flow has a peak speed along its axis of

v = 150 mm s�1, which is small enough to avoid artifacts due to

motion blurring17,18 and allows each particle to be recorded

several times during its transit. Given a concentration on the

order of 107 particles per mL, a few thousand particles will pass

through the observation volume in 5 min.

A single snapshot of an individual colloidal particle can

be analyzed in several milliseconds using standard computer

hardware.3,17 Characterization data therefore can be acquired in

real time as particles flow down the microfluidic channel.17 The

images in Fig. 2(a) show eight stages of the transit of a typical

polystyrene aggregate at 1/15 s intervals. The resulting time series

of position and characterization data can be linked into a trajectory

using maximum likelihood methods.17,19 The scatter plot in

Fig. 2(b) shows the estimated values for the radius and refractive

index obtained at each stage of the aggregate’s trajectory, recorded

at 1/30 s intervals. These results can be combined into a trajectory-

averaged estimate for the associated particle’s characteristics.

When this measurement technique is applied to spherical

particles, the standard deviation of the trajectory-averaged char-

acteristics is comparable to the single-measurement precision.2,17

Results for the irregularly-shaped aggregate in Fig. 2 vary more

substantially. The standard deviation of the radius, Dap = 0.04 mm

is a factor of 10 larger than the single-measurement precision.

The standard deviation of the refractive index, by contrast, is com-

parable to the single particle precision, Dnp = 0.002. It is possible

that the variation in apparent size occurs because the aggregate

Fig. 1 (a) Lorenz–Mie characterization. A colloidal sample flowing down

a microfluidic channel is illuminated by a collimated laser beam. Light

scattered by a colloidal particle in the stream is collected by an objective

lens and projected by a tube lens onto the sensor of a video camera, where

it interferes with the unscattered portion of the beam to create a holo-

gram. (b) The experimentally recorded hologram for a typical colloidal

polystyrene aggregate. (c) Fit of the hologram in (b) to the Lorenz–Mie

prediction from eqn (2).

Fig. 2 Tracking and characterizing a colloidal polystyrene aggregate.

(a) Eight holographic snapshots at 1/15 s intervals of an aggregate moving

from the bottom of themicroscope’s field of view to the top at v= 120 mm s�1.

The scale bar represents 20 mm in the imaging plane. (b) Fit values for the

radius, ap, and refractive index, np, obtained from the sequence of sixteen

holograms recorded at 1/30 s intervals during the aggregate’s 0.5 s transit.

Error bars represent uncertainties in the fit values. Results from the images

in (a) are plotted as circles and are interleaved with intervening results that

are plotted as squares. Symbols are colored by time, as indicated by circles

superimposed on the images.
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is irregularly shaped, tumbles as it travels, and so presents

different-sized projections to the instrument. We develop this

interpretation in the next section.

3 Effective sphere model

Rather than attempting to generalize eqn (2) to account for the

detailed structure of random colloidal aggregates, we instead

analyze their holograms with eqn (2) itself and interpret the

results with effective medium theory.20,21 The radius, ap*, and

refractive index, np*, obtained from such a fit then characterize

an effective sphere enclosing both the fractal aggregate and also

the intercalated fluid medium. The goal of the present work is

to establish a relationship between the measured properties of

the effective sphere and the underlying properties of the actual

aggregate. This relationship then enables Lorenz–Mie microscopy

to probe the morphology of fractal aggregates without incurring

the computational burden of detailed modeling.

For simplicity, we assume that a fractal aggregate of fractal

dimension D is composed of identical spherical monomers, each

of radius a0 and refractive index n0. The aggregate is immersed

in a medium of refractive index nm that fills the pores. Provided

that both the monomers and the pores are substantially smaller

than the wavelength of light, this composite structure may be

modeled as a continuous medium whose refractive index, np, is

given by the Maxwell Garnett relation,20

L(np) = fpL(n0), (3a)

where fp is the volume fraction of monomers in the sphere and

LðnÞ ¼
n2 � nm

2

n2 þ 2nm2
(3b)

is the Lorentz–Lorenz factor.

The number of monomers within radius r of a fractal

aggregate’s center is

NðrÞ ¼
r

a0

� �D

; (4)

and the associated volume fraction is

fðrÞ ¼
a0

3

r3
NðrÞ ¼

r

a0

� �D�3

: (5)

For a particle of radius ap, the overall volume fraction is

fp � f ap

� �

¼
ap

a0

� �D�3

: (6)

From this and the Maxwell Garnett relation, we obtain an expres-

sion for the cluster’s effective refractive index,

np ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2L n0ð Þfp

1� L n0ð Þfp

s

: (7)

This result also may be expressed as a scaling relationship between

the radius of a fractal aggregate and its effective refractive index,

lnL np

� �

� lnL n0ð Þ ¼ ðD� 3Þ ln
ap

a0

� �

: (8)

In a population of aggregates grown under comparable condi-

tions, eqn (8) can be used to estimate the population-averaged

fractal dimension, D.

Eqn (7) treats a cluster as a homogeneous medium. In fact,

the density of monomers decreases with scale, and therefore

with radius within the cluster. As discussed in the Appendix,

the associated radial gradient in the refractive index has little

influence on practical measurements of clusters’ effective char-

acteristics. We, therefore, ignore the clusters’ spatial inhomo-

geneity in the discussion that follows.

4 Experimental studies of model
fractal aggregates
4.1 Fractal aggregates of polystyrene nanospheres

The data in Fig. 3 were obtained for 2727 colloidal fractal aggregates

grown under conditions conducive to diffusion-limited cluster

aggregation (DLCA).22–24 The primary particles are monodisperse

Fig. 3 Characterization data for a population of polystyrene fractal aggre-

gates. (a) Scatter plot of the effective radius, ap*, and refractive index, np*,

of 2727 aggregates, including the example from Fig. 1(a). Each plot symbol

reflects the properties of one aggregate, and is colored by the relative

probability density of measurements, P(ap*,np*). The solid (blue) curve is

the prediction of eqn (8) using the fractal dimension D = 1.75 for diffusion-

limited cluster aggregation, and no other adjustable parameters. (b) The

same data replotted for comparison with the scaling prediction from eqn (8).

According to the effective-sphere model, the rescaled data are expected to

fall along the solid (blue) line. Inset: Scanning electron microscope image of

a typical aggregate. Scale bar indicates 1 mm.
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polystyrene spheres with a mean radius of a0 = 80 nm (Thermo

Scientific, catalog number 5016A, 10% w/w).

Aggregation was initiated by dispersing these particles in

0.5 M NaCl solution at a concentration of 5 � 10�5 by weight.

After one hour, the dispersion was diluted by a factor of 20 with

deionized water to stop further aggregation. The resulting sample

was then analyzed immediately, before the aggregates might have

time to restructure.24,25

Each data point in Fig. 3(a) represents the characteristics of

a single colloidal particle obtained from a trajectory such as the

example in Fig. 2. The plot symbols’ size is comparable to

the numerical uncertainty in the fit parameters. Each point is

colored according to the relative probability density, P(ap*,np*),

of measurements according to the color bar inset into Fig. 3(a).

The effective sphere model works well for aggregates with

radii smaller than 2 mm. Despite their irregular shapes, these

objects are small enough that their holograms display the radial

symmetry typical of spheres. This can be seen in Fig. 3(b). The

reduced w2 statistics for fits such as Fig. 3(c) typically fall within

ten percent of unity, suggesting that the fit parameters reliably

reflect the aggregates properties.

Larger aggregates are reliably detected and counted by the

feature identification algorithm,16 but are poorly characterized

by the effective-sphere model.8 Their holograms are more

substantially asymmetric, and the reduced w2 statistic for these

fits typically exceeds 10. It is not surprising, therefore, that the

estimated characteristics for aggregates with ap 4 2.5 mm do not

follow the trend expected for fractal aggregates, their refractive

indexes falling below the scaling prediction.

The solid curve in Fig. 3(a) shows the prediction from eqn (8)

for np(ap), with no adjustable parameters. In addition to the

monomers’ radius, the effective-sphere model is parametrized

by the monomers’ refractive index and the clusters’ fractal

dimension. The former, n0 = 1.59 � 0.01, was obtained from

holographic characterization studies of emulsion-polymerized

polystyrene spheres.1,5,17,26 The latter, D = 1.75 � 0.03, was

obtained from independent light-scattering studies on aggregates

grown under comparable conditions,23–25,27,28 and is consistent

with expectations for DLCA.27,29

Fig. 3(b) shows the same data replotted to emphasize the

scaling prediction from eqn (8). Agreement with the effective

sphere model is quite good for particles with apparent radii

smaller than ap* = 2 mm. Because fractals’ pore size increases with

scale, larger aggregates presumably do not satisfy the require-

ments of effective medium theory and so are not so well described

by the effective-sphere model.

The scanning electron microscope image inset into Fig. 3(b)

shows a typical vacuum-dried aggregate. This image resolves the

individual spheres, whose arrangement is consistent with the

irregular branched structure inferred from holographic charac-

terization of similar samples. Although details of the structure

undoubtedly were altered during drying, the presence of voids at

multiple scales within the cluster is consistent with a fractal

dimension smaller than 2.

The model’s success for smaller clusters supports the

contention that eqn (8) can be useful for measuring the

population-averaged fractal dimension of micrometer-scale fractal

clusters. We next apply this approach to characterize aggregates of

two model proteins whose cluster morphologies have been inde-

pendently established. This application not only serves to verify

the effective-sphere model for fractal clusters, but also illustrates

the utility of Lorenz–Mie microscopy for measuring the size

distribution and morphology of protein aggregates, a subject of

considerable interest in biology30 and of substantial practical

importance in pharmaceutical manufacturing.31

4.2 Protein aggregates

Like the colloidal nanoparticles considered in the previous section,

proteins in solution also have a tendency to aggregate.30 Some

of the resulting macromolecular structures perform important

biological functions. Others cause diseases. Protein aggregation

is a principal failure mechanism for biopharmaceutical formu-

lations not only because clustered proteins are less effective as

therapeutic agents, but also because they can elicit dangerous

immune responses.31 We previously have demonstrated that

inline holographic video microscopy can detect protein aggre-

gates in solution, and can distinguish them from such common

contaminants as silicone oil droplets.8 Here, we apply the

effective-sphere model to study the aggregates’ morphology by

estimating their fractal dimension.

4.2.1 Bovine insulin. The data in Fig. 4(a) were obtained for

aggregates of bovine pancreas insulin (Mw: 5733.49 Da, Sigma-

Aldrich, CAS number: 11070-73-8) that were prepared according

to previously published methods.32,33 Insulin was dissolved at

a concentration of 5 mg mL�1 in 10 mM Tris buffer (Life

Technologies, CAS number 77-86-1). The pH of the buffer was

adjusted to 7.4 with 37% hydrochloric acid (Sigma Aldrich, CAS

number: 7647-01-0). The solution then was centrifuged at 250 rpm

for 1 h to induce aggregation, at which time the sample still

appeared transparent to visual inspection.

Running 100 mL of this sample through the holographic

characterization instrument reveals a concentration of 3.9� 0.1�

107 aggregates per mL, including the examples whose pro-

perties are plotted in Fig. 4(a). Because the effective monomer

radius is not known a priori, radii in Fig. 4 are scaled by an

arbitrary factor, a0 = 1 mm. This choice does not affect the

estimate for D.

The main distribution of single-particle characteristics follows

the scaling prediction quite well, and has a slope consistent with

a fractal dimension of D = 1.5. This is denoted in Fig. 4(a) by a

solid (red) line superimposed on the data.

Dashed lines in this plot show equivalent results for fractal

dimensions D = 1.4 and D = 1.6. The proposal that bovine

insulin forms branched fractal aggregates is consistent with

independent measurements of such aggregates’ morphology

using atomic-force microscopy.34

In addition to the main distribution of points, Fig. 4(a)

features an outlying cluster of large-size aggregates comparable

to those in Fig. 3. It also includes a cluster of small particles with

low refractive indexes. These latter features appear to correspond

to globular aggregates that are distinct from the fractal clusters

of interest here.
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4.2.2 Bovine serum albumin. Solutions of bovine serum

albumin (BSA) (Mw: 66 500 Da, Sigma Aldrich, CAS number:

9048-46-8) were aggregated by complexation with poly(allylamine

hydrochloride) (PAH) (Mw: 17500 gmol�1, CAS number: 71550-12-4,

average degree of polymerization: 1207).35,36 BSA and PAH were

dissolved in 10 mM Tris–HCl buffer (pH 7.4) (Life Technologies,

CAS number: 77-86-1) to achieve concentrations of 1.22 mg mL�1

and 0.03 mg mL�1, respectively. The reagents were mixed by

vortexing to ensure dissolution, and aggregates formed after

the sample was allowed to equilibrate for one hour.

Holographic characterization data for a sample of BSA–PAH

complexes, shown in Fig. 4(b), reveal 9.8 � 0.5 � 106 aggregates

per mL in the range of radii running from 300 nm to 2.5 mm,

and a peak radius of 0.5 mm. Although our implementation of

holographic characterization is capable of detecting aggregates

with radii up to 10 mm, no aggregates were observed with radii

exceeding 2.5 mm. The results for BSA aggregates with radii

smaller than 2 mm agree well with the scaling prediction from

eqn (8), this time with an apparent fractal dimension of D = 1.1,

as indicated by the solid (red) line superimposed on the data

in Fig. 4(b). The nearly linear structure suggested by this low

fractal dimension is consistent with atomic force microscopy

images of BSA aggregates.37

5 Conclusions

The experimental results presented in Section 4 demonstrate that

Lorenz–Mie microscopy can provide useful insights into the

properties of micrometer-scale fractal aggregates. Holograms of

micrometer-scale colloidal fractal aggregates can be interpreted

with the effective-sphere model presented in Section 3 to estimate

an aggregate’s size and effective refractive index. These particle-

resolved data, in turn, can be pooled to estimate the population-

averaged fractal dimension. The effective-sphere model therefore

extends the particle-characterization capabilities of Lorenz–Mie

microscopy to irregularly branched objects.

The success of the effective-sphere model in characterizing

ramified protein aggregates lends additional support to the

earlier proposal8 that Lorenz–Mie characterization meaningfully

assesses such aggregates’ sizes. It therefore establishes Lorenz–

Mie microscopy as a method for sizing protein aggregates,

characterizing their morphology, and differentiating them from

other types of colloidal particles.

This work also provides a baseline against whichmore detailed

approaches to holographic characterization of fractal structures

may be compared. Future extensions based on machine-learning

techniques3 or direct modeling of the spatial distribution of

dielectric material4 thus can be tested directly using the methods

described here.

Appendix: Effective-sphere model for
gradient-index spheres

The effective-sphere model treats an aggregate as if the mono-

mers were distributed uniformly within it. In fact, the marginal

volume fraction decreases with distance r from the center of the

aggregate as

fsðrÞ ¼

4

3
pa0

3

4pr2
dN

dr
¼

D

3

r

a0

� �D�3

: (9)

This corresponds to a radial variation of the effective refractive

index described by

nðrÞ ¼ nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2L n0ð ÞfsðrÞ

1� L n0ð ÞfsðrÞ

s

: (10)

Unless the entire aggregate is smaller than the wavelength

of light, this radial structure might be expected to influence

results obtained by applying effective medium theory to holo-

grams of fractal aggregates.

To assess this influence, we use the effective-sphere model

to analyze synthetic holograms of gradient-index particles with

refractive-index profiles described by eqn (10). These holo-

grams are computed by replacing fs(kr|ap,np) in eqn (2) with

the corresponding generalized Lorenz–Mie result for a strati-

fied sphere38–40 whose layers have refractive indexes given by

eqn (10). The number of layers is chosen to converge the

computed intensities to within 1% at each pixel. This typically

occurs with layer thicknesses comparable to p/(5k). A similar

Fig. 4 Lorenz–Mie characterization of protein aggregates, plotted to

emphasize the scaling prediction of eqn (8). Radii are measured relative to

the arbitrary scale, a0 = 1 mm. Each point represents the properties of a single

colloidal particle and is colored according to the local density of measure-

ments. Superimposed (red) lines corresponds to the best-fit fractal dimen-

sion for each sample, with dashed lines indicating a range of�0.1. (a) Bovine

pancreas insulin. The data are consistent withD = 1.5� 0.1. (b) Bovine serum

albumin. The distribution is consistent with D = 1.1 � 0.1.
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approach has proved successful for Luneburg spheres and other

particles with continuous radial refractive index profiles.41 The

hologram is then fit to the Lorenz–Mie model from eqn (2) for

the effective sphere’s radius, ap*, and refractive index, np*. These

parameters then can be compared with the true radius of the

stratified sphere, ap, and the sphere-averaged refractive index,

np, obtained from eqn (8).

Fig. 5 shows the performance of the effective-sphere model

for particles with D = 1.75, a0 = 80 nm and n0 = 1.585 in a

medium with nm = 1.340. These parameters are chosen to

model fractal polystyrene aggregates dispersed in water.23,24,28

The effective sphere’s radius, Fig. 5(a), and refractive index,

Fig. 5(b), both track the true values, albeit with systematic offsets.

They quite closely satisfy the anticipated scaling form predicted by

eqn (8) with a slope consistent with the input fractal dimension,

as can be seen in Fig. 5(c).

Comparable results are obtained with different values of

the fractal dimension. The gradient-index structure of fractal

aggregates therefore does not substantially diminish the ability

of the effective-sphere model to estimate such particles’ fractal

dimension. Although the gradient-index model does not address

the influence of real aggregates’ branched structure, it lends

additional confidence to the proposal that Lorenz–Mie charac-

terization usefully assesses the properties of such objects.
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