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Abstract

Ubiquitination is a post-translational modification that signals multiple processes, including
protein degradation, trafficking, and DNA repair. Polyubiquitin accumulates globally during the
oxidative stress response, which has been mainly attributed to increased ubiquitin conjugation and
perturbations in protein degradation. Here we show that the unconventional K63-linked
polyubiquitin accumulates in the yeast Saccharomyces cerevisiae subjected to peroxides in a
highly sensitive and regulated manner. We demonstrated that hydrogen peroxide inhibits the
deubiquitinating enzyme Ubp2 leading to accumulation of K63 conjugates assembled by the
Rad6-Brel ubiquitin conjugase and ligase, respectively. Using linkage-specific isolation methods
and SILAC-based quantitative proteomics, we identified >100 new K63 polyubiquitinated targets,
which were significantly enriched in ribosomal proteins. Finally, we demonstrated that impairment
of K63 ubiquitination during oxidative stress impacts polysome stability and protein expression,
rendering cells more sensitive to stress, revealing a new redox-regulatory role for this

modification.

INTRODUCTION

Oxidative stress is a frequent challenge to cellular homeostasis, and can be triggered by a
variety of endogenous and environmental factors'-2, The molecular damage generated by
oxidants impairs cellular viability while promoting carcinogenesis, and is an underlying
cause of many human diseases, particularly those of the nervous system3-. To avoid the
harmful consequences of oxidative stress, eukaryotic cells have evolved numerous
counteracting mechanisms including the regulation of translation, protein degradation, and
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expression of protective antioxidant genes®. Protein ubiquitination is an important feature of
the oxidative stress response, known to direct unneeded, damaged, and potentially toxic
proteins to the proteasome for degradation’.

Ubiquitination is a post-translational modification catalyzed by an enzymatic cascade that
comprises a ubiquitin activating enzyme (E1), a ubiquitin conjugating enzyme (E2), and a
ubiquitin ligase (E3)8. The selectivity of the reaction depends on the E2-E3 pair, which is
able to recognize, interact, and conjugate ubiquitin to specific protein substrates. In addition,
deubiquitinating enzymes (DUBs) are responsible for controlling the levels of protein
ubiquitination by reversing the modification®10, The yeast genome encodes one E1, eleven
E2s, 60-100 E3s, and 20 DUBs'!. Since each E2-E3 pair and the corresponding DUBs
regulate a specific set of targets in a specific biological process, their identification is
essential to understanding the regulatory role of ubiquitination.

Conjugation of polyubiquitin chain to a target protein has initially been characterized as a
signal for protein degradation!2, which still appears to be a dominant role. However,
polyubiquitination can trigger multiple functions, depending on which lysine residue (K) in
the ubiquitin sequence is used to extend the polyubiquitin chain!3-15. K48 polyubiquitin is
the most abundant linkage type in the yeast S. cerevisiae (~29 %) and the major signal for
protein degradation. K11 and K63 linkages are also abundant (~28 % and ~16 %,
respectively)!®: While K11 also serves as a signal for protein degradation, e.g. during the
regulation of cell cycle and the endoplasmic reticulum associated protein degradation!6:17,
K63 ubiquitin fulfills other roles such as endocytosis by the endosomal and vacuolar sorting

20 and activation of the nuclear factor-xB and T-cell

complexes!8:1°, DNA damage response
receptor pathways in mammalian cells2!-22, In contrast to the well-studied K48 linkage type,
much less is known about the regulation and roles of K63 ubiquitination; only a handful of

targets have been characterized in yeast!!.

Cellular exposure to oxidants induces global ubiquitination?3-24, which is thought to trigger
degradation of oxidized proteins by the proteasome. This view has been challenged as
evidence for ubiquitin-independent degradation of oxidized proteins arose23-29; therefore,
the role of increased ubiquitination under stress remains elusive. Moreover, little is known
about the targets of the different ubiquitin linkage types, the specific ubiquitinating-
deubiquitinating enzymes catalyzing the reactions, and the dynamics of the ubiquitin

linkages during the stress response.

To understand the role of protein ubiquitination under oxidative stress, we combined a new
linkage-specific ubiquitin isolation tool, quantitative proteomics, and targeted genetic
approaches. We observed a rapid and strong pulse of K63 ubiquitin in yeast treated with
hydrogen peroxide (H,O,), impacting translation and the overall stress response. We also
identified the enzymatic sensors that specifically trigger K63 ubiquitination in response to
peroxides — representing a new aspect of a fundamental signaling pathway. Our findings
represent the first large-scale analysis for a linkage specific ubiquitination under a very
common stress suggesting that a concerted and highly regulated ubiquitination response is
crucial to determine the cellular fate.

Nat Struct Mol Biol. Author manuscript; available in PMC 2015 August O1.
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RESULTS

K63 ubiquitin rapidly accumulates during oxidative stress

We set out to characterize the role of polyubiquitination during the oxidative stress response,
and monitored the dynamics of the three most abundant ubiquitin linkages (K11, K48 and
K63) in a wild-type yeast strain expressing a single ubiquitin gene (WT - SUB280). While
both K48 and K63 ubiquitin responded strongly and rapidly to H,O, treatment (Fig. 1a and
Supplementary Fig. 1a, b), K11 response was very weak and seemed limited to few targets
(Supplementary Fig. 1c). K48 levels sustained over four hours in the recovery medium, but
K63 polyubiquitination rose and declined rapidly, falling below detection levels
immediately during the recovery phase in fresh medium (Fig. 1a) or after 90 min of
prolonged incubation with HyO, (Fig. 1b). This strong pulse of K63 ubiquitination during
the oxidative stress response has not been reported before.

We verified the results by targeted mass spectrometry, which we used to quantify the
relative abundances of K48 and K63 polyubiquitin linkages via signature peptides obtained
from tryptic digest?’-28, The mass spectrometry data confirmed that both K48 and K63
linkages increase in response to stress, but K63 ubiquitination increases more strongly and
decreases more rapidly than K48 ubiquitination (Fig. 1c¢ and Supplementary Fig. 1d—g). Less
abundant ubiquitin linkages (K6, K27, K29 and K33) may also be important for cell
response to stress, however, the remainder of this study focuses on delineation of the roles
and regulation of this so-far unknown K63-ubiquitination linked signaling pathway.

Next, we investigated the specificity of the K63 ubiquitination response to oxidative stress
by testing other environmental stresses. While K48 ubiquitination responded to a wide array
of toxic treatments, such as 1.5 mM diamide, heat shock at 37 °C, and salt stress (1 M
NaCl), most likely to remove damaged and unnecessary proteins, K63 ubiquitination reacted
exclusively to HyO, and other peroxides (Fig. 1d, e). Both organic and inorganic peroxides
triggered the accumulation of K63 ubiquitin conjugates, while cells treated with paraquat, an
anion radical superoxide generator, were unaffected (Fig. le).

We found that the K63 response occurred quickly and across a wide range of H,O,
concentrations (Supplementary Fig. 1h, i). We chose an HyO, concentration of 0.6 mM for
further experiments since it induced accumulation of K63 ubiquitin without compromising
cellular viability (Supplementary Fig. 1j, k). We also showed that the K63 ubiquitin
response to peroxides may be conserved in mammalian cells: K63 conjugates accumulated
after H,O, treatment in mouse neuronal HT22 cells (Supplementary Fig. 11). The exact
mechanism of the mammalian K63 response remains to be investigated.

K63 ubiquitination is regulated by Rad6, Bre1, and Ubp2

Accumulation of ubiquitinated targets depends on the interplay between conjugation
mediated by ubiquitinating enzymes and the reverse reaction catalyzed either by
deubiquitinating enzymes or by proteasomal or autophagic degradation of the targets.
Degradation of polyubiquitinated targets can either replenish the pool of free ubiquitin by
the action of associated DUBs, or under some circumstances, also digest the ubiquitin
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molecules. Both, the inhibition of deubiquitinating enzymes or inhibition of the proteasome
can lead to accumulation of polyubiquitinated conjugates2’.

We conducted a number of targeted tests to identify the specific E2-E3 ubiquitin enzyme
pair responsible for conjugation of K63 ubiquitin chains. To do so, we screened a collection
of deletion mutants in non-essential E2 enzymes for defects in HyO,-induced K63
conjugation. Only one mutant, rad6A, substantially and highly specifically decreased K63
polyubiquitination in response to HyO, (Fig. 2a). Rad6 is a multi-functional protein known
to interact with three different E3s to perform different functions (Supplementary Fig. 2a).
These functions include regulation of the cell cycle checkpoint and transcription (Rad6-
Bre1)30-32) degradation of proteins (Rad6-Ubrl )33.34 and DNA repair (Rad6-Radl 8)20,
When we tested these three known interaction partners, only the brelA strain was defective
in promoting K63 ubiquitination under stress, which implied Brel to be the E3 partner for
Rad6-dependent K63 polyubiquitination in our experiments (Fig. 2b).

Next, we showed that Rad6-Brel mediated K63 ubiquitination in response to H>O» is
completely independent from the enzymes’ previously known functions and targets,
suggesting a new redox signaling pathway. First, deletion of the Rad6-Brel cofactors, which
are essential for activation of the histone H2B monoubiquitination signaling cascade30-33-38,
did not hamper the cellular ability to accumulate K63 conjugates (Supplementary Fig. 2b).
In addition, the H2B K123R mutated strain, which is incapable of monoubiquitinating
histone H2B, still accumulated K63 ubiquitin in response to oxidative stress (Supplementary
Fig. 2c). Second, we showed that the accumulation of K63 polyubiquitin under oxidative
stress is also independent of Rad6's known role in post-replicative DNA repair through
monoubiquitination of PCNAZ0, As H,0, treatment could induce DNA damage and
therefore indirectly trigger the PCNA-linked pathway, we tested for K63 ubiquitination in
response to a DNA-damaging reagent. When cells were treated with methyl
methanesulfonate (MMS), which methylates DNA, stalls the replication fork, and causes
DNA double strand breaks3?, K63 conjugates did not accumulate (Supplementary Fig. 2d).

Finally, we demonstrated that K63 ubiquitin response to stress does not depend on the cells
arresting in the G2—-M phase. Previous work showed that K63 ubiquitination of a single
ribosomal protein Rpl28 depends on the phase of the cell division cycle and is most
prominent during the G,—M phase*?. When treating an asynchronous culture of WT,,; yeast
cells for 45 min with HyO,, cells did not arrest in G,—M (Supplementary Fig. 2e).

Next, we tested if accumulation of K63 ubiquitinated proteins was linked to increased
transcription or translation. Given that the induction of K63 ubiquitin is very rapid (within <
5 min of HyO, treatment - Supplementary Fig. 1h), regulation at the transcription or
translation level was very unlikely. Indeed, inhibition of these processes by actinomycin-D
or cycloheximide, respectively, did not change the K63 ubiquitin response to H,O»
(Supplementary Fig. 2f, g).

We also showed that accumulation of K63 conjugates is independent of protein degradation.
It has been shown that K63 ubiquitination targets proteins for degradation*!:#2, however,
inhibition of the proteasome by MG-132 led to accumulation of K48 conjugates but did not
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alter the balance of K63 ubiquitin (Supplementary Fig. 2h). Moreover, neither inhibition of
autophagy by 3-methyl adenine (3-MA) nor by deletion of ATG7 gene, essential for the
autophagy pathway, increased the accumulation of K63 targets under stress (Supplementary
Fig. 2i, j).

In sum, we showed that the increase of K63-linked polyubiquitin in response to peroxides
was independent of transcription, translation, DNA damage, protein degradation, or other
known roles and targets of the Rad6-Brel enzyme pair. Therefore, we investigated the role
of DUBs in the rapid accumulation of K63 ubiquitin in response to HyO,, specifically
through inhibition of their activity during stress. First, we showed that cellular incubation
with PR-619, a broad spectrum DUB inhibitor, led to accumulation of both K63 and K48
conjugates (Supplementary Fig. 3a). Further, we measured the global in vitro activity of
DUBs after cellular treatment with H,O; using the fluorescent substrate Ub-AMC. DUBs
activity towards Ub-AMC was promptly inhibited by H,O, treatment and reversed by in
vitro incubation with the reducing agent dithiothreitol (DTT) (Fig. 3a) — providing first lines
of evidence for the role of DUB inhibition in the K63 ubiquitination pathway.

Next, we narrowed the group of potential deubiquitinating enzymes to the class of cysteine
DUBs. In yeast, DUBs are grouped into two classes depending on their active site. The UBP
(USP in humans), the OTU and the UCH families are marked by the dependence on a
reactive cysteine in the enzyme's catalytic center; while Rpnl1, the single JAMM-MPN+
member in yeast, is a metalloprotease coordinating zinc ions in its catalytic site” 1. We
showed that in vitro reversal of endogenous K63 conjugates strongly and specifically
depends on reactive cysteines. K63 ubiquitin was readily reversed by DTT and completely
inhibited by iodoacetamide (IAM), a thiol reducing agent and a thiol alkylator, respectively
(Supplementary Fig. 3b). In contrast, treatment with EDTA, a metal chelator, had no effect
on K63 removal. To identify the specific DUB responsible for regulating K63 ubiquitination
during oxidative stress, we screened a collection of null mutants in cysteine DUBs for a
phenotype of K63 accumulation. The ubp2A strain showed a high level of K63 ubiquitin in
the absence of oxidative stress (Fig. 3b and Supplementary Fig. 3c) and even after two hours
of prolonged exposure to HyO,, confirming that Ubp2 is controlling K63 homeostasis
during the oxidative stress response (Fig.3c and Supplementary Fig. 3d).

Further, we characterized Ubp2's activity towards removal of K63 polyubiquitin and its
sensitivity to H,O, using the purified enzyme and several in vitro approaches. We showed
that Ubp2 activity against fluorogenic Ub-AMC or K63 tetra-polyubiquitin chains was
reversibly inhibited by H,O, (Fig. 3d, e and Supplementary Fig. 3e). Moreover, Ubp2 was
able to remove K63 polyubiquitin from endogenous substrates, which was largely prevented
by the presence of H,O, (Fig. 3f). While other DUBs may also remove K63 polyubiquitin
chains, albeit more slowly, our results suggest that Ubp2 plays a major role in the
accumulation of K63 targets in a mechanism involving acute inhibition of its activity by
H202.

Ribosomes are a main target of K63 ubiquitination

To further characterize the cellular role of K63 polyubiquitin during the oxidative stress
response, we identified the K63-ubiquitinated targets by quantitative proteomics. To-date,
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no proteomics method was available to analyze targets of a specific ubiquitin linkage type.
We developed a new approach in which we used the K63-TUBE isolation system
(LifeSensors) to enrich for K63 linkages (Supplementary Fig. 4a), and subjected the proteins
to LC-MS/MS analysis. To eliminate contaminants, validate true K63 conjugates, and
reduce experimental biases, we performed a stable isotope labeling (SILAC)-based mass
spectrometry experiment which paired the WT with the ubiquitin K63R strain (SUB413)
after H,O, treatment (Fig. 4a - see Methods and Supplementary Notes for details). The
K63R strain expresses a ubiquitin mutant with lysine 63 substituted by arginine, which
specifically prevents K63-chain formation (Fig. 1a). In this setup, we identified 115
potential K63 targets in two replicate experiments (Supplementary Table 1), as defined by
an at least 50 % increase in abundance relative to the K63R negative control at a 5 % FDR
(Supplementary Fig. 4b). In addition, in Supplementary Table 2 we described a core dataset
of even higher confidence, reporting 52 K63-ubiquitinated targets identified by two
independent search engines (MaxQuant and Proteome Discoverer).

We found that a significant fraction of the K63 targets in the main dataset is involved in
translation (GO enrichment at FDR < 0.00002 %), and contains mostly ribosomal proteins
and translation elongation factors (Fig. 4b and Supplementary Table 1). The concentration
of K63 conjugates spanned over several orders of magnitude indicating that the enrichment
in ribosomal proteins is not due to a bias towards high-abundance proteins (Supplementary
Fig. 4c¢), as is often found in mass spectrometry experiments. When mapped to the 3D
structure of the ribosome complex, many proteins were located near the aminoacyl-peptidyl
binding sites or the exit tunnel (Fig. 4c and Supplementary Fig. 4d).

Next, we showed that ribosomal K63 ubiquitination under oxidative stress appears to help
stabilizing the complete 80S complex and the formation of polysomes. When we monitored
polysome levels by sucrose sedimentation profiling at physiological ionic strength (3 mM
MgCl,), the K63R mutant displayed strongly increased peaks of the unassembled 40S and
60S subunits (Fig. 5). HyO5 is known to reduce the levels of polysomes*3, however the
K63R mutant subjected to HyO, almost completely lacked polysomes, compared to the
wild-type strain with largely intact polysomes (Fig. 5a,b). This phenotype was partially
rescued at high-ionic strength which inhibits ribonucleases and stabilizes polysomes (30 mM
MgCl,, Supplementary Fig. 5a). Using this setup, we further validated ribosomal K63
ubiquitination in two different background strains (Figure Sc-e). The majority of K63 labels
was distributed across both the monosomal and polysomal fractions in a WT yeast strain
exposed to HyO, (Fig. 5¢), and, expectedly, no meaningful K63 ubiquitin labeling was
detected in the K63R strain treated with HyO, (Fig. 5d). However, the K63R mutant strain
still displayed K48 ubiquitin in the polysomal fraction (Supplementary Fig. 5c). Importantly,
rad6A and brelA strains did not show detectable levels of K63 ubiquitination in polysomes
after H,O, treatment (Fig. Se), corroborating the role of Rad6-Brel in mediating K63
polyubiquitination of ribosomal proteins in response to oxidative stress.

Further, we found that K63 ubiquitination may be a new factor promoting translation during
oxidative stress through polysome stabilization, and that K63 levels are affected by
perturbation of translation regulatory mechanisms. For example, GCN2 encodes the kinase
that inhibits translation in response to oxidative stress by phosphorylating the alpha subunit

Nat Struct Mol Biol. Author manuscript; available in PMC 2015 August O1.



1duiosnuey Joyiny 1duosnuepy Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Silva et al.

Page 7

of the eukaryotic translation initiation factor 2(¢f- 2324) We found that the Agcn2 strain
presents a high level of basal K63 ubiquitination, which is further enhanced in the presence
of H,O (Fig. 6a). Moreover, cellular treatment with 5 ug/ml puromycin, a translation
inhibitor which prematurely terminates protein synthesis by releasing ribosomes, increased
the amount of K63 ubiquitin under stress (Fig. 6b). In comparison, the addition of 0.2 ug/ml
rapamycin, which prevents translation initiation, and 200 pg/ml cycloheximide, which locks
the ribosomes onto the mRNA and halts elongation, did not lead to increased K63 ubiquitin
under stress (Fig. 6b). Our results also showed that K63 ubiquitin accumulates in cells
grown to stationary phase even in the absence of exogenous H,O; a physiological model of
oxidative stress where translation is also inhibited (Fig. 6¢). Interestingly, the levels of K63
ubiquitin under HyO, treatment were much higher in cells grown to stationary phase than in

cells grown to log phase.

Next, we investigated whether K63 polyubiquitination is important for cellular resistance to
oxidative stress. In cells deficient of K63 ubiquitination, high levels of H,O, (4 mM)
increased the amount of oxidized, and therefore, damaged proteins compared to the wild-
type (Fig. 7a). This condition also triggered high levels of K48 ubiquitinated proteins which
presumably were en route to proteasomal degradation. At 0.6 mM H,O,, which is the
concentration used throughout our study, the K63R and WT strains accumulated similar
amounts of oxidized proteins (Supplementary Fig. 6a). These results suggest that, consistent
with impaired translation as indicated by dissociated polysomes and higher levels of
oxidative damage, K63R cells are more sensitive to stress than wild-type cells (Fig. 7b).

Similarly, we found that K63 modification impacts the presence and abundance of stress-
protective and translation regulatory proteins. Since K63R strain was more sensitive to
H,0; than the WT, we investigated by mass spectrometry how the lack of K63 ubiquitin
changes protein abundances. Proteomics analysis of the whole cell lysate showed that 133
proteins were down-regulated in the K63R mutant strain when compared to WT upon stress
(Fig. 7c, Supplementary Fig. 6b, and Supplementary Table 3), including many stress-related
proteins. Proteins involved in ncRNA processing and ribosome biogenesis were significantly
enriched amongst the down-regulated genes (FDR < 5 %), consistent with a possible role of
K63 ubiquitin in translation regulation.

DISCUSSION

We described a new role for K63-linked polyubiquitination during the cellular response to
oxidative stress induced by peroxides. Peroxides such as HyO, are commonly produced by
cellular metabolism or by exogenous sources, and represent one of the most common types
of reactive oxygen species regulating signaling processes and promoting oxidative stress.
We showed that in yeast treated with HyO,, K63 ubiquitin spiked immediately and
diminished during the recovery phase, while K48 ubiquitination was sustained throughout
the experiment. The different dynamics of the ubiquitin linkage types indicate a complex
regulatory response managing cellular resistance to a common environmental stress.

Using a combination of new molecular tools, genetics, and systems approaches, we
identified the three enzymes, Rad6 (E2 conjugase), Brel (E3 ligase) and Ubp2 (DUB) that
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1duiosnuey Joyiny 1duosnuepy Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Silva et al.

Page 8

together define the specific pathway of K63 modification. To the best of our knowledge, this
is the first time this function has been highlighted for Rad6-Brel; the only other yeast E2
enzyme known to produce K63 chains is Ubc13, mediating DNA repair2. Furthermore, we
showed that it is the inhibition of Ubp2 which results in the rapid increase of K63 ubiquitin
upon peroxide treatment, rather than an increase in ubiquitin conjugation. While it is known
that members of the USP family of mammalian DUBs are generally inhibited by H,O,
treatment*>:%, we demonstrated for the first time that this is also the case in yeast. DUB
inhibition through oxidative stress has been proposed in vitro and shown for
monoubiquitination of PCNA*, but its importance during K63 ubiquitination under
oxidative stress was previously unknown. Further, some authors have suggested that Ubp2
may function in K63 deubiquitination!®47, but did not envisage its role during oxidative
stress. Our results unify these disparate observations: K63 ubiquitin increases in response to
oxidative stress through oxidative inhibition of the Ubp2 deubiquitinating enzyme. The
specificity of Ubp2 towards K63 polyubiquitin chain is still elusive, and its hydrolase
activity against other chain conformations, particularly linear polyubiquitin chains*3, will be
subject to ongoing studies.

Although peroxides can oxidize cysteine residues and inactivate enzymes, not every
catalytic cysteine is sensitive to oxidation*°. Notably, the ubiquitinating enzymes Rad6 and
Brel also have catalytic cysteines, but appear to be robust towards H,O»: even at high
peroxide concentrations, cells still accumulated K63 polyubiquitin. Further, if DUBs were
inhibited or deleted, yeast cells accumulated K63 ubiquitin even in the absence of H>O»,.
These results suggest a mechanism by which Rad6-Brel activity is constitutive, and
inactivation of the deubiquitinating enzyme is responsible for the stress-specific
ubiquitination. Deletion of any of these three enzymes, Rad6, Brel, or Ubp2, severely
impacts the balance of cellular K63 ubiquitin. Interestingly, it has been recently shown that
members of USP family of DUBs (Ubp in yeast) have lower target specificity to distinct
ubiquitin linkages than other DUB families ", and therefore we hypothesize that Ubp2 - and
possibly also the multifunctional Rad6 and Brel enzymes - require additional co-factors to
achieve target specificity in vivo.

This study provides the first large-scale proteomics analysis of a specific ubiquitin linkage
type, using a new isolation system and mass spectrometry. We expanded the number of
known K63 ubiquitinated targets from a handful'*15>! to over one hundred. These new
targets include proteins such as subunits of the V-ATPase VMA complex, cellular
permeases, proteins from the Golgi mannosyltransferase complex, and most notably a
substantial number of ribosomal proteins (Supplementary Table 1).

The observation of oxidant-regulated ribosome ubiquitination led us to investigate the role
of K63 ubiquitin in translation regulation. Our results suggest that K63 ubiquitination in
response to oxidative stress serves to stabilize the ribosome complex and polysomes,
therefore promoting protein synthesis and cellular viability. While previous studies have
identified ubiquitin modifications on ribosomal proteins and even the specific lysine
residues on protein targets*0-92, the enzymatic digest during sample preparation precluded
identification of the ubiquitin linkage type, preventing specific interpretations such as
presented here. Only one ribosomal subunit, Rpl28, is known to be K63-ubiquitinated during
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cell cycle progression*?, but without a connection to oxidative stress or the ubiquitinating
enzymes that catalyze the reaction.

Our combined results suggest that K63 polyubiquitination stabilizes polysomes during the
translation cycle. During every round of mRNA translation, K63 ubiquitin may be
conjugated and deconjugated to assist ribosome function (Fig. 7d). This hypothesis is
supported by several lines of evidence. First, when DUBs are inhibited by H,O, but
translation is still active - as is the case in the Agcn2 strain - cells accumulate very high
levels of K63 ubiquitin indicating that continuous translation involves K63 ubiquitin.
Second, treatment with puromycin, which leads to polysome dissociation due to early
translation termination, robustly increases K63 ubiquitin levels. In comparison,
cycloheximide and rapamycin, which block translation earlier in the cycle, do not trigger an
increased K63 response, indicating that ubiquitination may take place at a later translation
step. Third, during the stationary phase, which is known to inhibit translation almost
completely and to produce endogenous oxidants>3, K63 ubiquitination is highly impacted by
the presence of exogenous H>O; and even more so than in cells grown to log phase. Finally,
mapping K63-modified proteins to the ribosomal 3D structure suggests that modified
subunits may preferentially occur around the ribosome's exit tunnel and therefore impact
elongation or termination. In support of this interpretation, work in bacteria has shown that
cyclic stabilization of ribosomes is essential in supporting cellular survival and stress
tolerance®*. In eukaryotes, K63 ubiquitination is known to act as a scaffold to assemble
protein complexes in several signaling pathways!4-1551, Based on these reports, we
hypothesize that K63 ubiquitination could serve to recruit additional factors to enhance
stability of the ribosomes-mRNA complex during translation elongation or termination.
Validation of this hypothesis and a combined investigation of ribosome structure,
modification, and activity in response to stress will be the subject of future work. For
example, diglycine lysine antibodies>¢ can be used to identify the exact sites of modification
which in turn will provide further insights into the specific role of K63 ubiquitin in ribosome

function.

Cells subjected to oxidative stress down-regulate translation globally, but must activate
expression of some genes to cope with the oxidative challenge. The abundance of stress-
related proteins in yeast appears to be mostly set by transcription, however, increasing
evidence suggests key roles of post-transcriptional regulation, in particular at the level of
translation**37-38 Our results indicate that K63 ubiquitination supports expression of
antioxidant proteins and therefore cellular stress resistance. We showed that inability to
produce K63 polyubiquitin chains in the K63R mutant severely impacts cellular survival and
down-regulates a number of important stress-response proteins, such as chaperones Hsp10,
Hsp82, Hsc82, and the antioxidant enzymes Trx1, Prx1, Grx2 and Grx5 (Supplementary
Table 3).

Collectively, our results demonstrated a new and important regulatory role for K63
polyubiquitination during the oxidative stress response. The Ubp2-dependent accumulation
of K63 polyubiquitin supports previous suggestions of cysteine DUBs as sensitive redox
biosensors*® whose inactivation enables a very rapid response that is independent of
transcription, translation, or modification of proteins. Therefore, K63 ubiquitination can
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potentially serve as a redox biomarker in yeast and other organisms. Our findings raise many
additional questions that will be addressed by future work - for example, how Rad6-Brel
recognize and ubiquitinate their targets, how ribosomes may be stabilized by ubiquitination,
and how higher eukaryotes, such as mammals, use this regulatory pathway. Ubiquitination
emerges as a key player during the oxidative stress response by linking traditionally
opposing processes in protein expression: the translation machinery responsible for
synthesis of proteins and the proteasome system involved in their degradation.

ONLINE METHODS

Cell strains and culture

All yeast Saccharomyces cerevisiae strains used in this study are described in the
Supplementary Table 4. Standard recombination methods were used to delete genes;
deletions were confirmed by PCR. Cells were cultivated at 30 °C in synthetic dextrose
minimal medium (SD - 0.67% yeast nitrogen base, 2% dextrose and required amino acids) at
200 rpm agitation. Unless stated otherwise, cells underwent at least 6 divisions and were
treated with 0.6 mM H,O, for 45 min in log phase (ODggg ~ 0.3 — 0.5). Prior to proteasome
inhibition with MG-132, the RID1171 strain was incubated in minimal proline dextrose
medium to induce permeability®?. Quantitative SILAC experiments were performed in cells
grown in SD medium containing the amino acid dropout mixture depleted in arginine and
lysine (Sunrise Science Products). SILAC media were supplemented with light or heavy
isotopes of arginine and lysine (L-Arg6 !3C; L-Lys8 13C, 1N — Cambridge Isotopes). For
serial dilution assay, yeast culture was normalized to ODgq of 0.2 after the 45 min pulse of
H,0, and sequentially diluted at a 1:5 ratio before spotting onto YPD rich medium plates
without H,O,. Viability assay was performed using 5 uM FUNI1 Cell Stain dye (Life
Technologies) according to the manufacturer's protocol. The wild-type strain (WT) used for
the majority of the assays was the SUB280 strain. The SILAC experiment used the wild-
type GMS280 and the GMS413 K63R ubiquitin mutant strain. The experiments involving
the deletion collection (E2-E3 and other null mutants) used a different wild-type herein
named WT_ (5S288c). The DUB deletion experiments used WTpygs (SUB62). Cell
treatment reagents: 3-methyl adenine, actinomycin-D, #-butyl hydroperoxide, cumene
hydroperoxide, cycloheximide, diamide, HyO,, methyl methanesulfonate, paraquat, and
puromycin (Sigma), MG-132 (SantaCruz Biotechnologies), PR-619 (LifeSensors) and
rapamycin (EMD Millipore).

Mammalian cell culture

The HT22 murine hippocampal cells were cultured in Dulbecco's Modified Eagle's Medium
containing 10 % fetal bovine serum and antibiotics (penicillin and streptomycin). Cells were
treated for indicated times with 25 uM H,O; at 70 % confluency. The HT22 cells were a
kind gift from Dr. Raj Ratan (Burke Medical Research Institute). Protein extraction was
performed by cell sonication in NP40 lysis buffer (50 mM Tris-HCI pH 7.5, 150 mM NacCl,
0.5 % NP40, 20 mM iodoacetamide, 1x EMD Millipore protease inhibitor cocktail set I)
prior to western blotting.
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Protein preparation

Cells were disrupted by glass-bead agitation at 4 °C in standard buffer: 50 mM Tris-HC] pH
7.5, 150 mM NaCl, 20 mM iodoacetamide (IAM), 1x EMD Millipore protease inhibitor
cocktail set I. The extract was cleared by centrifugation and protein concentration was
determined by Bradford assay (BioRad). Protein oxidation - Oxidized (carbonylated)
proteins were derivatized with 2 mM DNPH (2,4-dinitrophenylhydrazine) for 30 min in the
presence of 6 % SDS and protected from light. The reaction was neutralized with 1 M Tris,
15 % glycerol and 10 % B-mercaptoethanol prior to western blotting analysis. Isolation of
K63 ubiquitinated proteins - K63 ubiquitinated proteins were isolated from cell lysate using
FLAG K63-TUBE (K63-Tandem Ubiquitin Binding Entities — LifeSensors, cat# UM604)
according to manufacturer's protocol. For the pulldown assay, the standard lysis buffer also
contained 50 nM of the K63-TUBE peptide and 5 mM EDTA. The cell lysate was incubated
for one additional hour at 4 °C after clearing by centrifugation. K63 proteins were
immunoprecipitated using magnetic Dynabeads Protein G (Invitrogen) loaded with 7 ug/mg
beads of anti-FLAG antibody (Sigma). The immunoprecipitation was performed for 1 h at
4°C under agitation. K63 targets were eluted with 0.2 M glycine pH 2.5 for 1 h at 4°C. The
pH of the eluate was neutralized and trypsin digestion for proteomic analysis was performed
as described below. Alternatively, the Dynabeads were boiled in Laemmli buffer containing
10 mM DTT for western blot. Uncropped images of gels and blots used in this study can be
found in Supplementary Data Set 1.

Western blotting

Proteins were separated by standard 10% SDS-polyacrylamide gel electrophoresis (SDS—
PAGE) loaded in Laemmli buffer containing 10 mM DTT. Samples were transferred to
PVDF membrane and immunoblotting was performed using the following antibodies: anti-
K63 ubiquitin (1:4,000 - cat# 05-1308, clone apu3, EMD Millipore), anti-K11 ubiquitin
(1:1,000 - cat# MABS107, clone 2A3/2E6 EMD Millipore), anti-K48 (1:10,000 - cat# 4289,
clone D9DS5 - Cell Signaling), anti-actin (1:5,000 - cat# 4967 - Cell Signaling), anti-GAPDH
(1:4,000 - cat# ab9485, Abcam), anti-DNP (1:8,000 - cat# D9656 - Sigma). Anti-mouse and
anti-rabbit secondary antibodies conjugated with HRP and ECL prime detection reagents
were acquired from GE Healthcare Life Sciences. All antibodies have been validated by the
manufacturer or are expected to react with the species used in this study based on sequence

similarity.

Ubp2 purification and DUB activity

TAP-tagged Ubp2 was purified from 3-5 mg of yeast cell extract (log phase in SD-medium)
using magnetic beads conjugated with mouse IgG (Cell Signaling). Beads were washed five
times with buffer containing 50 mM Tris-HCI pH 7.5, 150 mM NaCl, and 5 mM EDTA.
When specified, purified protein or cell lysate was incubated with 0.5 mM H,O; 10 mM
DTT, or 10 mM IAM for 10 to 15 min prior to activity measurement. Activity assays were
performed with DUBs attached to the beads or by using Sug of the whole cell lysate. DUB
activity was determined at 30 °C using 0.75 uM Ub-AMC fluorogenic substrate
(LifeSensors) and fluorescence kinetics was monitored at 460 nm (exc. at 380 nm). Ubp2
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activity against 1 pg K63 tetra-ubiquitin chain (LifeSensors) was monitored in vitro by 20 %
SDS-PAGE analysis.

Mass spectrometry analysis

Protein preparation for proteomics analysis was performed as previously described®. In
brief, tryptically digested proteins were separated on a 15 cm Agilent ZORBAX 300
StableBond C18 column (75 um ID, 3.5 pum particle, 300 A pore size) by reverse-phase
chromatography with a gradient of 5 to 60 % acetonitrile over 3 to Sh, performed with an
Eksigent NanoLC 2DPlus liquid chromatography system. The eluted peptides were injected
in-line onto an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific). Data-dependent
analysis was performed at a resolution of 60,000 and with the top 20 most intense ions
selected from each MS full scan, with dynamic exclusion set to 90 s if m/z acquisition was
repeated within a 45 s interval. To increase coverage and improve quantification, each
biological replicate was analyzed 3 to 4 times (technical replicates). The RAW data files
were combined and processed using MaxQuant (v. 1.3.0.5 — www.maxquant.org) to identify
and quantify protein abundance. The spectra were matched against the yeast Saccharomyces
cerevisiae database (Uniprot - 2012 release). Protein identification was performed using 10
ppm tolerance at the MS level (FT- mass analyzer) and 0.5 Da at the MS/MS level (Ion Trap
analyzer), with a posterior global false discovery rate of 1% based on the reverse sequence
of the yeast FASTA file. Up to two missed trypsin cleavages were allowed, oxidation of
methionine and N-terminal acetylation were searched as variable post-translational
modification, and cysteine carbamidomethylation as fixed. The minimum number of SILAC
peptide pairs used for quantitation was set to two. For identification and quantification of
K63 ubiquitin targets, only proteins present in both biological replicates containing at least
two peptides were considered for further analysis. For an even higher confidence
identification of K63 ubiquitinated proteins, the mass spectrometry data were also analyzed
with Proteome Discoverer (Thermo Scientific) with matching parameters. Proteins identified
by both search engines are listed in Supplementary Table 2. Targeted mass spectrometry —
Quantitative mass spectrometry measurements of signature peptides of ubiquitin linkages
were performed as previously described?® with a few modifications. Briefly, tryptic lysate
from SILAC samples was loaded into a 50 cm Easy Spray PepMap C18 column (75 um ID,
2 um particle, 100 A pore size) in-line with a Q-Exactive (Thermo Scientific) mass
spectrometer using a 120 min gradient (0 — 40 % ACN). Parallel reaction monitoring?’ was
performed with a targeted MS2 method using the inclusion list provided in Supplementary
Table 5. MS2 data was acquired with a resolution of 17,500, automatic gain control of 5e4,
maximum ion time of 250 ms, isolation window of 2 m/z, and normalized collision energy of
27. Peptide selection and quantitation was performed after manual inspection using Skyline
(MacCoss lab, proteome.gs.washington.edu/software/skyline/). Two biological replicates
and two technical injections were averaged for each data point. Gene Onthology analysis
(GO) was performed using the DAVID functional annotation tool (http://
david.abcc.nciferf.gov/). Function annotation was performed to assess significance of
function enrichment against the background of the proteome identified by mass
spectrometry. Sample size was a function of experimental depth (and not a choice of the
experimenter). All data were normally distributed or transformed (e.g. by taking the log) to
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fit a normal distribution. Variation across replicates is specified whenever replicate
experiments are reported.

Polysome analysis

Polysome profiling was performed as described previously®!. Briefly, cells were incubated
in the presence of 150 pg/ml cycloheximide for 10 min at 30 °C and lysed immediately in
extraction buffer (20 mM Tris-Acetate pH 7.0, 50 mM NaCl, 3 — 30 mM MgCl,, 20 mM
iodoacetamide, 200 ug/ml heparin, 200 ug/ml cycloheximide, 1X cOmplete mini EDTA-free
Roche protease inhibitor cocktail). A total of 400 pg of RNA was sedimented by
ultracentrifugation for 150 min at 36,000 x rpm (Beckman SW40 rotor) at 4 °C ina 7 to 47
% sucrose gradient (buffered in 50 mM Tris-Acetate pH 7.0, 30 mM MgCl,, and 200 pg/ml
cycloheximide). During sucrose gradient analysis, absorbance was monitored at 254 nm
while ~900 pl-fractions were collected using a Brandel density gradient fractionation
system. Proteins from polysome fractions were precipitated with TCA-Acetone prior to
western blotting.

Flow cytometry analysis

For DNA content analysis, yeast cells were fixed in 70% ethanol overnight. Cells were
centrifuged and incubated with 40 pg/ml RNAse A in Na-Citrate buffer for 2 h at 50 °C,
followed by incubation with 100 pg/ml proteinase K for additional 2 h at 50 °C. SYTOX
Green (Invitrogen) at 2 pM was added to the cells before the analysis in a BD FACSaria cell

sorter.

3D structural analysis

All 3D graphical images from the yeast 80S ribosomal structure (PDB ID 3058 and
3027)° were generated using Pymol software (Schrodinger).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. K63 polyubiquitin transiently accumulates in response to HyO,
a, Anti-K63- and K48- specific ubiquitin western blot of lysates from WT and K63R cells

upon treatment with, and subsequent recovery from, 0.6 mM H;O,. b, Anti-K63 ubiquitin
western blot of lysate from WT cells treated with H,O, for different amounts of time. c,
Histogram showing dynamics of K63 and K48 ubiquitin linkages measured by quantitative
targeted mass spectrometry. Plot shows mean of two biological replicates with two technical
replicates each, and error bars indicate the range of values across the replicates. d, Anti-K63
and anti-K48 ubiquitin western blot of lysate from WT cells subjected to indicated
compounds and heat-shock for designated times. e, Anti-K63 ubiquitin western blot of
lysate from WT cells treated with the indicated oxidizing agents for 30 min. Anti-GAPDH
was used as loading control. WT, wild-type SUB280 yeast strain. K63R, ubiquitin K63R
mutant SUB413 yeast strain. MW, molecular weight.
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Figure 2. Rad6-Brel conjugate K63 polyubiquitination in response to HyO;
(a,b) Anti-K63 ubiquitin western blot of lysates from (a) E2 and (b) Rad6-interacting-E3

deleted cells in the presence and absence of 0.6 mM H»O,. Anti-GAPDH was used as
loading control. WT,,), wild-type cells S288c used with the deletion collection. MW,

molecular weight.
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Figure 3. Ubp2 is reversibly inhibited by H,O,
a, Histogram with activity of intracellular DUBs from WT cells treated with the indicated

concentrations of HyO,. Activity was measured after incubation of cellular lysate with the
Ub-AMC fluorogenic substrate. Error bar, s.d. (P values were calculated using paired, one-
tailed Student's #-test, n = 3 independent cell growth). (b,c) Anti-K63 ubiquitin western blot
of lysates from (b) DUB deleted cells in the presence or absence of HyO, and (¢) WT and
ubp?2A after HyO, treatment for different amount of times. d, Scatter plot with activity of
native purified TAP-tagged Ubp2 (black) and 0.5 mM H,O,-treated Ubp2 (grey), measured
after incubation with Ub-AMC fluorogenic substrate for the indicated times. Arrow
indicates addition of 10 mM DTT. e, SDS-PAGE gel of 1ug K63 tetra-ubiquitin chains after
incubation for the indicated times with purified Ubp2 treated with 10 mM DTT or 0.5 mM
H50,. f, Anti-K63 ubiquitin blot of lysate from cells treated with HyO, after incubation with
native or H>O,-treated TAP-tagged Ubp2. Samples were incubated without DTT to prevent
activation of intracellular DUBs. Anti-GAPDH was used as loading control. WTpygg, wild-
type yeast strain SUB62. a.u., fluorescence arbitrary units. MW, molecular weight.
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Figure 4. Ribosomal proteins are a main target of K63 polyubiquitination under HyO; stress
a, Scheme describing the SILAC LC-MS/MS approach used to identify and quantify K63

conjugates by high-resolution mass spectrometry. b, Chart showing gene ontology (GO)
annotation for K63 ubiquitinated targets using DAVID functional annotation tool. (¥) GO
enrichment significant at FDR < 0.005 %. ¢, Surface 3D structure shows mapping of
ribosomal proteins modified by K63 ubiquitination (blue) onto the 80S ribosome particle.
The 60S large unit (PDB ID 3058)"? is represented in light grey and the 40S small unit
(PDB ID 302Z7)% is in dark grey. In pink, we highlight proteins in the nRNA-tRNA
interaction sites (top panel) and in the ribosome exit tunnel (bottom panel). WT, wild-type
SILAC GMS280 yeast strain. K63R, ubiquitin K63R mutant SILAC GMS413 yeast strain.
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Figure 5. K63 ubiquitin modifies proteins in monosome and polysome fractions
(a,b), Sucrose sedimentation profiles of polysomes from the (a) WT and (b) K63R mutant

cells extracted using a physiological MgCl, concentration (3 mM). (c—e) Anti-K63 ubiquitin
western blot from stabilized polysomes extracted using 30 mM MgCl, from (¢) WT and (d)
K63R mutant cells or () WT,, rad6A and brelA cells. Ponceau-S loading control is shown

in Supplementary Fig. 5. (*) Half of the sample volume was loaded for better visualization.
WT, wild-type SUB280 yeast strain, K63R, ubiquitin K63R mutant SUB413 yeast strain.
WT,, wild-type cells S288¢ used with the deletion collection. MW, molecular weight.
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Figure 6. K63 ubiquitination is linked to active translation
(a—c) Anti-K63 ubiquitin western blot of lysates from (a) WT, gcn2A and K63R mutant

cells, (b) WT cells treated for 30 min with designated translation inhibitors prior to HyO,
treatment and (¢) WT cells grown into Log phase ODg = 0.4 or after 24 h in culture
starting from ODggg = 0.2 (Stationary), in the presence (+) or absence (—) of the indicated
compounds. Anti-GAPDH was used as loading control. WT, wild-type SUB280 yeast strain.
K63R, ubiquitin K63R mutant SUB413 yeast strain. MW, molecular weight.
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Figure 7. Lack of K63 ubiquitin impacts cellular resistance to oxidative stress
a, Anti-DNP (oxidation), anti-K63 and anti-K48 ubiquitin western blots of cell lysate from

WT and K63R mutant cells upon treatment with, and subsequent recovery from, 4 mM
H>0,. Anti-GAPDH was used as loading control. b, Serial dilution assays from WT and
K63R mutant cells treated with different amounts of H,O,. After stress induction cells were
spotted onto YPD plates without H>O,. ¢, Correlation plot showing log base 2 SILAC ratio
K63R/WT for the mass spectrometry data from cell lysate replicates. We highlighted
individual examples of stress-related proteins with decreased expression to less than 25 % in
the K63R mutant compared to the levels found in the WT. Pearson correlation coefficient is
0.60. d, Model of the role of K63 polyubiquitination during the translation cycle in response
to HyO,. WT, wild-type SUB280 yeast strain. K63R, ubiquitin K63R mutant SUB413 yeast
strain. MW, molecular weight.
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