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Abstract

Cells respond to environmental stimuli with expression changes at both the mRNA and protein 

level, and a plethora of known and unknown regulators affect synthesis and degradation rates of 

the resulting proteins. To investigate the major principles of gene expression regulation in 

dynamic systems, we estimated protein synthesis and degradation rates from parallel time series 

data of mRNA and protein expression and tested the degree to which expression changes can be 

modeled by a set of simple linear differential equations. Examining three published datasets for 

yeast responding to diamide, rapamycin, and sodium chloride treatment, we find that almost one-

third of genes can be well-modeled, and the estimated rates assume realistic values. Prediction 

quality is linked to low measurement noise and the shape of the expression profile. Synthesis and 

degradation rates do not correlate within one treatment, consistent with their independent 

regulation. When performing robustness analyses of the rate estimates, we observed that most 

genes adhere to one of two major modes of regulation, which we term synthesis- and degradation-

independent regulation. These two modes, in which only one of the rates has to be tightly set, 

while the other one can assume various values, offer an efficient way for the cell to respond to 

stimuli and re-establish proteostasis. We experimentally validate degradation-independent 

regulation under oxidative stress for the heatshock protein Ssa4.

Introduction

Control of gene expression is a complex process involving tight regulation of rates of 

mRNA and protein synthesis and degradation by a variety of factors. Under environmental 

stress, cells adjust these rates to adequately respond at multiple levels of gene expression 

regulation. For example, during the environmental stress response in yeast, stress-response 

genes are transcriptionally up-regulated, while global protein synthesis and growth related 

genes are down-regulated1, 2. During mild oxidative stress, proteosomal protein degradation 

increases, but decreases at higher oxidant levels3. Ribosomal runoff and transit times are 
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generally slower upon H2O2 exposure, but the mRNAs of stress-related proteins are 

increasingly associated with ribosomes, suggesting enhanced translation4, 5. Exposure to 

hydrogen peroxide causes a rapid, but temporary inhibition of protein synthesis at the level 

of translation4. Adaptation to stress, in turn, lasts for many hours in mammalian cells6. In 

general, the relationship between translation changes under stress affecting genes and their 

5’UTRs, e.g. upstream Open Reading Frames, is a very complex and highly dynamic 

process7.

The relative contributions of the rates of synthesis and degradation to setting final protein 

concentrations have been a matter of debate and have been explored using both steady state 

(cross-sectional) and dynamic (time-series, longitudinal) experimental designs. A study in a 

differentiating human THP-1 myelomonocytic leukemia cell line found that synthesis rates 

are predominantly responsible for large changes in protein expression, while degradation 

rates tend to stay constant8. In contrast, another study of mammalian cells under TNAα 

stimulation proposes that degradation rates play a key role in controlling systematic 

proteome changes during perturbations9. Recent evidence has demonstrated that synthesis 

and degradation of RNA and proteins may be coupled in yeast10 and in mammalian cell8, 9. 

Such coupling can complicate the gene expression patterns observed in response to a 

stimulus.

The enormous complexity of the response has motivated the search for regulatory factors 

that, at the level of transcription, translation, and degradation, impact the shape of 

expression profiles. However, in this study we reverse this problem and ask which types of 

time-dependent expression profiles could the cell achieve without employing regulatory 

factors, but by assuming simple linear relationships between the contributing synthesis and 

degradation rates. In other words, for which profile shapes are additional regulatory factors 

not immediately necessary? Our question is motivated by the fact that even simple systems 

of coupled differential equations can often account for very complex behaviors: for example, 

in physics, it is known that three ordinary differential equations known as Lorenz equations 

can exhibit complex chaotic behaviors11. Here, we used a system of linear differential 

equations to model time-dependent protein expression changes in yeast cells responding to 

environmental stress, and successfully do so for a third of the genes. Using robustness 

analysis, we also explored the relative contributions of synthesis and degradation regulation 

to setting final protein concentrations. We find evidence that most well-predicted proteins 

generally regulate either synthesis or degradation, but not both.

Materials and methods

Data sets used and data preprocessing

We used three published time course datasets where both protein and RNA levels were 

measured in yeast responding to a stimulus (Table 1). The types of stimuli include 

diamide1, 12, 13, rapamycin14, and sodium chloride induced osmotic stress15. These time 

series are each composed of between six to eight time points collected over up to 360 min. 

The Diamide dataset contains estimates of absolute mRNA and protein concentrations, 

reported as molecules/cell. The other two datasets report relative concentrations, i.e. 

normalized to the value at time 0. The fourth, steady-state dataset comprises published 
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western blot measurements of decreases in protein concentrations to derive protein half-lives 

(and therefore degradation rates)16, and translation rate estimates based on polysome 

profiling measurements and assumptions on general speeds of translation17. To ensure high-

quality predictions, we only used the data for genes with one or no missing data points, 

leaving 530, 683, and 328 genes to examine in the Diamide, Sodium chloride, and 

Rapamycin data set, respectively.

Mathematical model to estimate protein synthesis and degradation rates

The goal of this analysis is the estimation of protein expression changes in response to a 

stimulus. We use first-order equations to estimate protein synthesis and degradation rates 

from time series data of protein and matching mRNA concentration changes. Each protein's 

time-dependent concentration can be modeled by the simple ordinary differential equation 

(ODE):

[Eq. 1]

where P(t) is the concentration of the protein at time t R(t) is the amount of RNA that codes 

for the protein present in the cell at time t; ks is the rate of protein synthesis, and kd is the 

rate of protein degradation. This ODE is a commonly used first approximation of the 

processes governing the central dogma of biology8, 9, 13, 15. In this model, ks and kd are 

assumed constant over the entire measurement time.  represents the change of protein 

abundance at time t Since measurements are done at discrete time points, the ODE can be 

approximated by a finite-difference approximation and rewritten as:

[Eq. 2]

where tn and tn+1 represent the times of two consecutive measurements, Δt = tn+1−tn. While 

the concentrations R(tn) and P(tn) are experimentally measured for each time point tn the 

constants ks and kd will be inferred in a way that fits the data point optimally given the 

finite-difference approximation -- a relatively safe assumption for these datasets, composed 

of primarily small time intervals relative to estimated and previously published rates. The 

optimization includes two biophysical constraints ks ≥ 0 and ks ≥ µ where µ is the rate of 

protein degradation due solely to cell division, assuming an equal distribution of protein 

molecules between the two daughter cells. The division time µ was measured experimentally 

for each of the three datasets or taken from the publication.

The finite-difference approximation, which assumes linear behavior between consecutive 

time points, is expected to hold because most of the measurements in all three datasets are 

concentrated at the beginning of the time series, where most proteins experience the most 

rapid changes in expression. This setup allows the time differences Δt to be small enough for 

most protein abundances not to exhibit a complex behavior between consecutive time points.

To perform linear regression, the ODE is further rearranged into:
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[Eq. 3]

where kdo = kd – µ and y(tn) is defined as

[Eq. 4]

In matrix form, Eq. 3 is then

[Eq. 5]

We built a matrix according to Eq. 5 for each gene separately and performed non-negative 

least squares regression using the nnls R package(http://cran.r-project.org/web/packages/

nnls/index.html). Regression yields non-negative values for kdo and ks, thus providing us 

with the estimates of the synthesis rate ks and the degradation rate kd. The quality of the 

model fit is evaluated separately for each gene.

Prediction Quality Measures (Error Models)

To assess the quality of the regression, we used the parameters ks and kd to predict protein 

expression profiles according to the ODE model and compare them to the observed profiles. 

The predicted protein abundance for each time point t2, t3…, tn+1 was calculated using the 

information from the previous time point and Eq. 2, such that P(tn) on the right-hand side of 

Eq. 2 is the predicted protein abundance from the model, except for n = 1 (the first time 

point), in which case P(t1) was taken to be the experimentally observed protein abundance at 

time=0 min. Thus, given the predicted rates, only the protein concentration observed at the 

first time point was used to generate the predicted protein expression profile (using lsoda 

function from odesolve package in R). We denote this as the ODE error model. We used 

Spearman correlation (Rs) between the observed and the predicted protein abundance time-

series to assess the quality of the predicted profile (prediction quality).

Alternatively, the values for P(tn) on the right-hand side of Eq. 2 can be taken to be the 

experimentally observed values. We denote this as the linear error model. This method 

requires all of the observed protein time points, in addition to the predicted rates, to generate 

the predicted protein profiles, which was computationally performed using a finite time 

difference approximation. This prediction quality measure correlates very well with the one 

we use here(Figure S1), but leads to over fitting (Figure S2). Furthermore, the linear error 

model yields lower or at most comparable numbers of genes for the same FDR cutoff than 

the ODE error model (Table S1, data not shown) across all three data sets. Therefore we 

chose the ODE error model for further studies.

Alternatively to using Spearman correlation to describe prediction quality, it is also possible 

to use the fraction of variance unexplained (fvu). While these two prediction quality 

measures are highly correlated (Pearson’s product-moment correlation p<1e-10, see 
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Supplement), we chose to use Spearman correlation as it better separates real from 

randomized data (not shown).

Randomization and FDR selection

To control for false positive predictions, we repeated the analysis on data where RNA and 

protein abundances were randomly shuffled within each gene's time-series profile. We 

selected the same FDR cutoff as for the non-randomized data. Given a Spearman correlation 

Rso, the FDR was calculated as the percentage of false-positives amongst all genes detected 

at a specific cutoff. For example, we required the Spearman correlation coefficient between 

observed and predicted protein concentrations to be Rs > Rso = 0.74 for the Diamide data, 

and obtained 116 such genes in the actual data set and 33 from the randomly shuffled dataset 

(FDR = 33/116 = 28%, Table S1). Rso was calculated separately for each data set to yield 

30% FDR, and all genes whose observed data was predicted with an Rs > Rso were called 

well-predicted (116/530 = 22% of well-predicted genes, Table 1). Note that the fraction of 

well-predicted genes is calculated differently from the calculation of the FDR(see “FDR” 

tab in the supplementary Excel file for percentage of well-predicted genes as a function of 

FDR). While the chosen FDR cutoff is higher than what one would use normally, it 

appropriately reflects the low prediction power of the dataset due to the very short time 

course. This FDR cutoff may not be stringent enough to conclude definitively whether any 

particular gene is predicted well for reasons other than chance, but it is sufficient for 

studying the general properties of the genes that are predicted well. The validity of this 

cutoff was also confirmed by manual inspection of the expression profiles (Figure 1).

Clustering

The Pearson distance metric used for clustering is adopted from Eisen et al.18. The absolute 

log-transformed protein and mRNA data were first divided by the respective value at time=0 

to calculate the profiles of relative concentrations. The profiles were then normalized, such 

that the distribution of each time-point’s values across all genes was set to mean 0 and 

variance 1. The R function hclust was used to perform hierarchical clustering, and cutoff 

was chosen so as to yield the appropriate number of clusters. This number of clusters was 

chosen based on the average silhouette distances (Figure S3). As the sixth cluster in the 

Sodium chloride data set would decrease the average silhouette distance (Figure S3) without 

changing any of our results, we used five clusters for all data sets for consistency.

Parameter landscapes

We used robustness analysis visualized as parameter landscapes to explore the uniqueness of 

solutions for ks and kd. Parameter landscapes display the error for predicting the protein 

concentration P(t) at a color scale for all ks and kd. Aside from reporting the optimal values 

for ks and kd (at 30% FDR, see above), we asked how robust these values are to changes and 

if other values would provide similarly good predictions of protein concentration changes. 

The appropriate range of ks and kd values was first chosen such that it includes the ks and kd 

values inferred by the time-series ODE model, and the ranges were then broken up into 40 

subdivisions equally-spaced on a log scale. For each gene, each of the 1,600 combinations of 

possible ks and kd values was used for calculating the protein time-series profile (Eq. 2). 
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This profile was then compared to the experimentally observed protein time-series profile 

and scored according to the fraction of variance unexplained (fvu). For visualization, 

fvu=1.0 was used as the upper cutoff, with all parameter combinations that yield an fvu 

larger than this cutoff (i.e. when mean square error of the prediction is greater than the 

variance in the protein data) being represented by the same shade of color.

The parameter landscapes calculated for each gene were then clustered by shape. To do so, 

the covariance matrix was calculated for each gene from the volume-normalized distribution 

of differences between the fvu values smaller than 1.0 and the 1.0 fvu cutoff. Then all 

profiles were hierarchically clustered, again using hclust, with a cutoff chosen to yield 5 

clusters (the appropriate number of clusters was chosen manually to yield clusters that are 

large enough and clearly different). The Foerstner metric was used to define the distances 

between all pairs of covariance matrices19. Using covariance matrices, but not the mean or 

extreme vectors, allows for clustering based on the shape of the contour of good but sub-

optimal solutions surrounding the optimal solution rather than absolute values of the optimal 

parameters. The Foerstner metric is convenient because it is invariant under affine 

inversions and affine transformations of coordinate systems, thus capturing only the shape 

and direction of the parameter landscape. We manually examined the clusters to confirm 

that similar profiles were clustered into the same groups.

Cell strain and culture

For experimental validation, Saccharomyces cerevisiae strain(EY0986 ATCC 201388: 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0, SSA4-GFP) expressing the GFP-tagged SSA4 gene 

was cultivated in YPD medium (2% peptone, 2% glucose, 1% yeast extract) to log phase 

OD600 ~ 0.5. Yeast cells were cultivated as in Gasch et al.1 to validate the Diamide dataset. 

Cells were treated with 1.5 mM diamide for 90 min. The length of culture was chosen based 

on the highest difference of protein expression for Ssa4. To inhibit translation and 

proteasome degradation, cells were incubated prior to the addition of diamide for 15 min in 

the presence of 100 µg/ ml cycloheximide (Sigma) or 75 µM of MG-132 (Santa Cruz 

Biotechnology) at 30 ° C, respectively. After stress induction, cells were immediately 

collected for immunoblotting analysis.

Western blotting

Cell disruption was performed by agitation with glass beads at 4 °C in standard buffer 

containing 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1x Protease inhibitor cocktail set I 

(EMD). The extract was cleared by centrifugation at 13,000×g for 30 min at 4 °C and 

protein concentration was determined by Bradford assay (BioRad). Proteins (17 µ g) were 

transferred to a PVDF membrane and immunoblotting was performed using mouse 

monoclonal anti-GFP antibody (1:5000, Roche). Rabbit polyclonal anti-GAPDH (1:3000 

ab9485) was used as loading control. Anti-mouse and anti-rabbit secondary antibodies 

conjugated with HRP and ECL prime detection reagents were acquired from GE Life 

Sciences.

Tchourine et al. Page 6

Mol Biosyst. Author manuscript; available in PMC 2015 November 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Sequence features analysis

We tested the association between 35 sequence features and prediction quality, synthesis, 

and degradation rates; references are listed in the Suppl. Table S6. For the analysis of 

associations with prediction quality, we used the Wilcox on test to compare the distribution 

of scores for a given sequence feature between the set of well-predicted genes and the same 

number of genes with the lowest prediction quality scores (i.e. Spearman correlation 

between observed and predicted profiles). Association with prediction quality was tested 

with Pearson correlation between the prediction quality scores for all genes with the 

corresponding scores of a given sequence feature. To analyze associations with rates, the 

Wilcox on test was used to compare the distribution of the respective feature of the top and 

the bottom quarter of well-predicted genes with the highest or lowest rates, respectively. The 

results of all these tests can be found in Supplementary Information (Tables S6 and S7).

An Excel table with the input data, predicted synthesis and degradation rates, figures of 

predicted protein levels and observed data, and parameter landscapes can be found in the 

Supplementary Information.

Results

One third of the protein expression profiles are well-modeled

A major result of our study is that, using comparatively simple linear functions with time-

constant rates (Eq. 2), approximately one third of all protein expression levels can be well-

predicted in their dynamic response to a stimulus and deliver estimates of rates of synthesis 

and degradation, named ks and kd, respectively. This result holds true across three different 

types of stimuli, namely Diamide, Sodium chloride, and Rapamycin stress, where we 

predicted 22%, 34%, and 29% of the observed genes, respectively (Table 1). The FDR 

cutoff is kept relatively high at 30%, as the number of data points within each time series is 

very small. The finding implies that two-thirds of all genes do not adhere to these rate 

equations which may be due to several reasons: (i) measurements may be too noisy to 

produce accurate expression profiles; (ii) synthesis and degradation rates may follow higher-

order rate equations or other functions producing complex expression profiles; or (iii) 

additional regulators of translation and degradation alter the output of the basic rate 

equations. We detected no significant enrichment in any gene functional category for well- 

or poorly predicted genes (not shown).

Six genes out of 71 genes present in all three datasets were well-predicted: SGT2, KAR2, 

OLA1, IMD4, HTS1, ZUO1. SGT2 is a Glutamine-rich cochaperone associated to the 

endoplasmic reticulum20 and its profiles are shown in Figure 1A–C. As one can see, the 

model built in each case is highly condition-specific for the different gene expression 

profiles. However, we also observe some general trends across the three conditions, which 

we discuss in the following sections. Figure 1 shows examples of genes with high (A–C, F) 

and low (D, E) predictabilities. Well-predicted profiles often have a monotonically 

increasing or decreasing shape, such as those for SGT2 in Figure 1A, B, but there are also 

many examples of well-predicted profiles with more complex behaviors. For example, in 

Figure 1C SGT2 first decreases in protein concentration, then increases, and finally levels 
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out. Our model is able to capture this behavior. In comparison, aside from noise in the data, 

low predictability is often associated with drastic expression changes due to reasons other 

than noise and these are evident from examination of profile clusters (discussed below). 

Such profiles often look smooth except for two or three consecutive outliers in the protein 

time-series data, as is shown for FLC2 and PRE8 in Figure 1D, E. These possible outliers 

may be due to technical artifacts or systematic errors rather than noise.

Some profile shapes can be modeled better than others

We then investigated how measurement noise affects predictability. With a small number of 

data points, it is challenging to differentiate between noisy profiles and profiles with 

complex behaviors that would cause a drastic change at one specific time point due to a 

biologically relevant mechanism. We assumed that on average, the number of times a 

protein changes direction in its expression trend (the number of sign changes in the slope of 

the protein expression curve) is indicative of the level of noise(or the level of orthogonal 

regulation). Thus, we used the number of changes in sign of expression to assess whether 

noise is related to predictability, i.e. the Spearman correlation coefficient between observed 

and predicted protein concentrations (Figure 2). Higher level of noise in protein abundance 

data, but not the RNA data, is associated with a lower predictability. This is likely due to the 

fact that RNA expression measurements are less noisy than protein measurements, which is 

reflected in a lower number RNA profiles with a high number of direction changes. The 

inverse relationship between noise and predictability is expected, but its magnitude is not 

large enough to render it the primary or only determinant of predictability. Other proxies of 

noise, such as absolute mRNA and protein concentrations, did not detect this relationship 

(Figure S4).

To determine profile shapes that can be well-predicted, we mapped the predictability against 

the clustered mRNA and protein expression profiles (Figure S5). We found that the number 

of well-predicted genes is not distributed uniformly across the five expression profile 

clusters (Pearson chi-squared test, p-value = 5e-11, 1e-09, and 1e-04 for diamide, sodium 

chloride, and rapamycin stress respectively): some profile shapes are predicted better than 

others (Table S2). It has previously been reported that only genes where both the RNA and 

the protein levels are strictly increasing (up-up profiles) can be described well by a 

correlative model15. The results for diamide stress and for rapamycin stress confirm that the 

profile clusters dominated by up-up profiles, i.e. expression profiles in which both mRNA 

and protein concentrations increase monotonically, are significantly better predicted than 

other clusters (Table S2, Figures S5, S6). However, in the sodium chloride stress data set, 

the down-down profiles, where both the RNA and the protein levels are on a steady decline, 

are modeled better than the other patterns. In sum, the expression profiles dominated by 

monotonic patterns in protein and RNA expression trend are modeled with the best 

accuracy, but more complex profiles can also be predicted (e.g. Figures 1C and F).

We examined expression profiles which could not be modeled by our approach, i.e. had very 

low correlation between predicted and observed protein concentrations. These profiles also 

share several qualities. For example, these profiles all have one time point for which the 

median protein profile either has a sudden kink or a trough (Figure 1D, E, Table S2, Figure 
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S6). These kinks are likely to be true signals rather than be due to noise, as an entire group 

of genes shows the same profiles – but the rate equations cannot model such sudden, 

singular shift. In the case of diamide stress, the sudden trough in cluster 2 (Figure 1E, Figure 

S6) may be due to post-translational modification of cysteine-rich proteins (undetected by 

mass spectrometry) which may or may not be of regulatory nature13. In sum, the relationship 

between profile clusters and predictability is not trivial, and different types of profiles can be 

predicted using our model. Good predictability can have several sources, e.g. simple 

expression profile shapes or low measurement noise.

In addition to the condition-dependent features such as profile shape, we tested 35 sequence 

features (Table S6) for association with prediction quality and for variation in synthesis and 

degradation rates. The features included amino acid frequencies, molecular weight, codon 

usage, degradation signals, and intrinsically disordered regions. We found weak association 

between all three measures of codon usage bias (CAI, CBI, and FOP) and prediction quality 

(Table S7) for the Diamide and Sodium Chloride data sets, but not for the Rapamycin data 

set: proteins with optimal codons tend to be better predicted than those with suboptimal 

codons. The lack of strong associations between sequence features and the results of our 

model may be due to the fact that the model predictions are highly dependent on 

experimental conditions, while sequence features are encoded in the genome and do not 

change between experiments.

The association between sequence features and variation in synthesis and degradation rates 

was only assessed for the Diamide stress data set, where the predicted rates have 

biologically realistic values. We found a weak negative correlation between all three 

measures of codon usage bias used (CAI, CBI, and FOP) and degradation rates, and no 

significant associations between any either features and synthesis rates.

Synthesis and degradation rates are uncorrelated

We examined general trends in the synthesis and degradation rates that our model extracted. 

In the Diamide data, absolute protein and mRNA concentrations are reported, while in the 

Rapamycin and Sodium chloride data relative measurements are reported which relate a 

protein or mRNA concentration to the concentration at time 01, 12–15.

We examined the relationship between synthesis and degradation rates (ks and kd) to test for 

putative coupling in gene regulation (Figure 3). Coupling would, for example, produce ‘fast 

responders’ that have higher rates of both protein synthesis and degradation, and ‘slow 

responders” whose rates are lower. In the Rapamycin dataset, we find a strong correlation 

between synthesis and degradation rates, suggesting that rapidly produced proteins are also 

rapidly degraded, and vice versa. In other words, the data suggests that proteins can be ‘fast’ 

or ‘slow’ in their response, but tend to not be of mixed types. This correlation is only weak 

in the other datasets. While biologically intriguing, we identified a mathematical explanation 

of this trend, which suggests that the correlation is due to extensive normalization and is 

detailed in the Supplement. Because of the weak correlations and the mathematical 

explanation, we conclude that the synthesis and degradation are largely uncorrelated 

parameters in these datasets and that there is no evidence for coupling.
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Parameter landscapes, a measure of prediction uniqueness

One of the standard techniques in mathematical modeling is the assessment of robustness of 

the estimated parameters by varying them and comparing the quality of the resulting 

predictions; we want to assess the uniqueness of one solution for a synthesis or degradation 

rate compared to a number of possible solutions. From a biological viewpoint, we want to 

know if tight regulation of one of the two rates is more crucial than the other for recovering 

the expression profile shape. To that end, we examined the parameter landscapes of the 

predictions (Figure 4), in which we plot the prediction accuracies onto a map of all possible 

parameters within a range; prediction accuracies are shown as colors that represent fraction 

of variance unexplained (Methods). Note that the two measures of prediction quality, 

Spearman correlation and fraction of variance unexplained, correlate well (Figure S7). Each 

point in the parameter landscape represents a measure of how well the predicted protein 

expression profile matches the observed profile. If a rate estimate is unique (with only one 

possible solution), it would be placed on a steep single ‘mountain’ in the parameter 

landscape that displays only one area with high prediction quality. In contrast, if a rate 

estimate delivers good prediction over a range of values, it will be displayed as a broader 

‘mountain range’ in the parameter landscape.

We clustered the parameter landscapes for all genes across the three datasets (Figure S8). 

Figure 4A–B shows the two most common types of profiles found in all three data sets 

which account for 80–90% of the well-predicted gene parameter landscapes (Figure S8). 

Figure 4A shows a landscape (a vertical landscape) for SGT2 under diamide stress where 

varying the degradation rate does not worsen model’s overall prediction capability; but the 

prediction is very sensitive to changes in synthesis rate. The parameter landscape suggests 

that the degradation rate could be changed over several orders of magnitude with 

approximately the same quality of prediction – the regulation of this gene is degradation 

independent.

Conversely, Figure 4B illustrates an example of a landscape (a horizontal landscape) for 

glutamine synthetase GLN1 in which the prediction is sensitive to changes in the 

degradation rate, but not in the synthesis rate. The regulation of GLN1 in response to 

diamide stress is degradation dependent and synthesis independent. In comparison, Figures 

4C and D show examples of parameter landscapes different from these two modes. Thus, for 

most well-predicted genes the parameter landscapes highlight two types of responses to the 

stimulus: a gene’s rates may change to address the stress challenge in either a synthesis or a 

degradation independent manner, only requiring precise change in the respective other rate.

To confirm our prediction that expression regulation depends only on a single rate, we 

selected the heat shock protein Ssa4, whose vertical parameter landscape suggests 

degradation-independent regulation. The expression of the Ssa4 protein increases more than 

100-fold in response to diamide stress, which allows for a reliable use of western blotting to 

track abundance changes. Therefore, we cultivated SSA4-GFP tagged cells and subjected 

them to diamide stress combined with inhibition of protein synthesis or proteasomal 

degradation using cycloheximide or MG-132, respectively. The results validate our 

prediction made from the parameter landscape for this gene: the process of attaining the 
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Ssa4 protein expression levels seen under diamide stress is driven by a finely tuned protein 

synthesis rate, but is largely independent of protein degradation (Figure 5).

Testing the opposite case of synthesis-independent regulation by western blotting proved to 

be much more challenging (not shown). Many synthesis-independent well-predicted genes 

show only small expression fold-changes, rendering them difficult to detect by western 

blotting. This complication is further enhanced by the intrinsically incomplete proteasome 

inhibition by MG-132 and the possible action of other proteolytic pathways.

Similar expression profiles have similar parameter landscapes

We explored the dependency between the time-series expression profiles and the predicted 

synthesis and degradation rates. First we asked whether the genes with similar expression 

profiles also have similar synthesis and degradation rates, but we found no such dependency 

(Figure S9). This result can be explained by the different scales of the expression profiles: 

each cluster has genes with very high and genes with very low expression values. But even 

in the Rapamycin data, in which the effect of scaling is much reduced due to extensive 

normalization, we do not observe that genes from the same profile clusters have more 

similar synthesis and degradation rates than genes from other profile clusters.

We find a relationship between the shape of the expression profiles and of parameter 

landscapes (Table S3, Chi-squared test p<1e-10): genes are not independently distributed 

across profile clusters of their parameter landscape clusters. Notably, the intersections of 

parameter landscape clusters and profile clusters allow us to capture genes that are more 

strongly enriched in some properties than either clustering alone. Focusing on the largest 

intersections of clusters helps create a mapping between a gene’s RNA and protein time-

series profile and its space of possible synthesis and degradation rates, represented by the 

gene’s parameter landscape.

Across the three data sets, the largest intersections (or co-clusters) of profile clusters and 

parameter landscape clusters occur between the same types of profiles and are shown in 

Figure 6. We denote these intersections as the up-up and the down-down co-cluster. ‘Up-up’ 

denotes up-regulation in both mRNA and protein expression along the time course; ‘down-

down’ refers to down-regulation in both. Typically, the genes in each of these co-clusters 

comprise from 50 to 90% of all well-modeled genes in the union of the profile cluster and 

parameter landscape cluster in question (table 2), indicating a significant similarity between 

the genes within each of these co-clusters. While there was no significant function 

enrichment for well- or poorly predicted genes alone (not shown), the genes in the co-

clusters are highly enriched in specific functions, and more so than each clustering on its 

own – suggesting that the co-clustering is a feasible method to extract functionally related 

genes.

The down-down co-clusters from all three stresses are enriched in ribosomal proteins, which 

is consistent with what we would expect: during different stresses, repression of synthesis of 

new ribosomes and increased degradation of ribosomes occur, therefore reducing the 

concentrations of ribosomal proteins1, 4, 21–23. The up-up co-clusters are enriched in 
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different gene functions depending on the stress, e.g. the cluster from the diamide stress is 

enriched in genes related to stress response and antioxidant defense.

The up-up co-cluster in the Rapamycin stress data set is enriched in amino acid synthesis 

and energy metabolism24. Furthermore, this comparison of expression profiles and 

parameter landscapes helps us discover the correct mapping between parameter landscape 

clusters and their underlying profiles. The up-up co-cluster in Figure 6 shows that 

independently of the type of stress, the synthesis rates need to be tightly regulated for genes 

whose transcription and translation are up-regulated, while their degradation rates are not as 

important to regulate because the resulting protein profiles are robust to large changes in the 

degradation rates. Conversely, in the down-down co-cluster, we see that the degradation rate 

is more important to regulate for profiles with decreasing RNA and protein levels, and the 

synthesis rate can vary a lot without a large effect on the resulting protein time-series 

profile. In conclusion, the results of co-clustering demonstrate that the general patterns of 

our model are consistent throughout the three data sets.

Comparing estimated and experimentally determined synthesis and degradation rates

Finally, we evaluate the degree to which the predicted synthesis and degradation rates match 

experimentally determined rates with respect to biologically plausible, absolute values. 

Despite extensive literature search, we could not obtain published data on protein translation 

or degradation rates under stress. The only dataset available was an analysis of H2O2 stress 

in Schizosaccharomyces pombe in which protein, mRNA, and translation efficiency data 

was collected25. We successfully estimated synthesis and degradation rates from this data 

that could predict time-dependent expression changes (Table S1), but could not compare 

values to the ones reported in the publication since the study measured ribosome attachment 

and density (by ribosome footprinting), but not actual rates.

Therefore, we compared our predicted rates to steady state values, which have actual rate 

estimates available. As explained above, comparison is only possible for the Diamide data 

set as it contains RNA and protein concentrations with absolute units, i.e. molecules per cell. 

For the 116 well-predicted genes, we calculated the natural log ratio of the predicted rate 

under stress to the observed rate under normal conditions16, 17. The log-ratios are distributed 

normally across the well-predicted genes for both the synthesis and degradation rates 

(Figure 7). The mean log-ratio for synthesis rates is −0.5±0.1, implying that, on average, the 

synthesis rates under stress are significantly smaller than the steady-state rates which is 

expected given a general down-regulation of translation (one-sample t-test, p-value=1e-4). 

This is also true for the degradation rates (−0.3±0.1). Most (68%) of the predicted synthesis 

rates range from 1.2 to 13.3 Proteins/(RNA*min), with a median of 4.0 (Table 1), which is 

very similar to observed synthesis rates which range from 1.7 to 11.4 Proteins/(RNA*min) 

with a median of 5.8. Most (68%) of the predicted half-lives under stress lie between 16 and 

104 minutes with a median of 41 minutes, as compared to observed steady-state half-lives 

that lie between 20 and 124 minutes, with a median of 45 minutes. These results show that 

the predicted values fall very well within the range of experimentally measured rates and 

that even a very simple model can predict realistic rates for a sizable subset of genes in the 

yeast genome.
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While it is exciting to see that the predicted rates fell well inside the range of experimentally 

observed values, we did not expect the resolution of the prediction to be precise enough to 

detect up- or down- regulation of individual genes during the stress response. However, we 

were able to select some interesting genes to illustrate the potential use of our predicted rates 

in protein expression regulation. For example, we found three stress-related chaperones 

(SSA1, AHP1, and CCS1) among the genes with the highest increases in predicted 

translation rates under stress when compared to the steady-state measurements (Figure 

S10A). Similarly, we found enzymes of amino acid metabolism (ARG1, GLN1, and THR4) 

and ribosomal proteins (RPS and RPL genes) to have predicted degradation rates under 

stress that exceed the steady state degradation rates (Figure S10B).

Discussion

Our analysis shows that the time-dependent protein expression behavior can be predicted for 

~30% of the genes in our datasets. To do so, we use first-order rate equations with time 

invariant rates. This result suggests that a substantial portion of protein expression changes 

in response to stress, including comparatively complex profile shapes, can be explained 

without the involvement of additional regulators or parameters. While we confirmed this 

result in three datasets, future work has to evaluate its generality. For example, when 

analyzing S. pomberesponding to oxidative stress, only ~10% of the genes can be predicted 

well using rate equations (Table S1, Supp. Data), which might be due to different technical 

or biological properties of this dataset.

We investigated several factors in their impact on predictability. There is a weak 

dependence of predictability on noise in the proteomics data: noisier gene expression 

patterns tend to be less well predicted than less noisy ones (Figure 2). Genes of similar 

function can have very different profiles and predictabilities. For example, PRE8 and 

RPN12 are both highly abundant proteasome subunits, but RPN12 is modeled well under 

oxidative stress, while PRE8 is not (Figure 1E, F). We investigated the shape of the mRNA 

and protein expression profiles in their predictability, and identified several shapes with 

single troughs or peaks that could not be well modeled. For example, a group of oxidative-

stress related genes, such as TSA1, SOD2, and PRE8 (Figure 1E) show a marked decrease 

in concentration at the 20 min time point during diamide stress which prevented 

predictability. In sum, the presence of additional regulators that may produce complex 

expression profiles, e.g. with such systematic deviations at specific time points or noisy 

measurements can explain the lack of predictability in ~70% of the genes.

We also found that use of sub-optimal codons in the open reading frame is associated with a 

lower prediction quality and a higher degradation rate (Table S7). Sub-optimal codons are 

interpreted as codons for which the respective tRNAs are comparatively rare, which may 

result in noisy, non-linear translation. Such scenario in turn breaks the linearity assumption 

of the finite-difference approximation and can result in a lower prediction quality. Note that 

this explanation does not affect the magnitude of the synthesis rate, as noisier translation 

does not imply higher or lower translation rate.
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Interestingly, we have found that for the majority of the well predicted genes, the model 

requires only one of the two rates, synthesis or degradation, to be tightly adjusted, while the 

other rate is free to accept a wide range of values. We call these regulatory regimes 

synthesis- or degradation-independent, respectively. In the respective parameter landscapes, 

this behavior is reflected in a steep ‘peak’ for one rate range, and a wide ‘mountain range’ 

for the other (Figure 4). For example, most ribosomal subunits are synthesis-independent 

under diamide stress, which means that it is important for the cell to set degradation of these 

proteins to a specific rate, but the synthesis rate can assume a number of different values 

without impacting the overall outcome in the time-dependent protein expression profile. 

This finding is consistent with translation being down-regulated under oxidative stress4, 26, 

and presumably the degradation of some ribosomes. In comparison, the regulation of stress 

response genes such as SOD1 and AHP1, a superoxide dismutase and thiol-specific 

peroxiredoxin, respectively, is degradation-independentin the diamide experiment. SOD1 

and AHP1 play important roles in counteracting the oxidative challenge by deactivating 

harmful reactive oxygen species27, and thus we expect that their synthesis may be tightly 

regulated at desired rates while degradation is left to various values. Indeed, the cell has 

mechanisms in place regulating the transcription and translation of these two proteins28–30. 

Most well predicted genes in our dataset are either synthesis- or degradation-independent 

which provides an economical and time efficient way for the cell to focus regulatory efforts 

on one mechanism, while neglecting the other, without losing any precision in the desired 

expression outcome. Figure 5 shows validation for this model at the example of SSA4.

The parameter landscapes describing the robustness of the predictions are linked to gene 

expression profiles. Proteins following synthesis-independent regulation largely have 

expression profiles in which both RNA and protein abundances decrease over time, while 

the degradation-independent proteins mostly increase in RNA and protein levels. Clustering 

genes according to both regulatory characteristics allows us to extract a group of genes 

whose behavior is highly similar to each other and that show stronger enrichment in specific 

gene functions than either characteristic alone. We find that the down-regulated, synthesis-

independent genes consist of many ribosomal proteins and proteins involved in RNA 

metabolism across the three datasets. In contrast, the up-regulated, degradation-independent 

genes differ in their function enrichments between the stresses. Under diamide stress, this 

group consists of antioxidant defense genes, while under rapamycin treatment it consists of 

amino acid metabolism and energy metabolism genes (Table 2).

We compared the predicted translation and degradation rates to experimentally measured 

values obtained from western-blotting and polysome profiling16, 17. Despite various 

simplifications and data normalization, our estimated translation rates are highly comparable 

to the experimentally determined values for cells grown under normal conditions. Likewise, 

the estimated protein half-lives are very similar on average to steady-state values obtained in 

independent studies. This result is promising as further optimization of the methods, i.e. 

including time-dependent rate functions, regulatory interactions between genes, or additional 

regulators, can lead to new approaches to estimate a so-far understudied area of gene 

expression regulation, that of protein synthesis and degradation rates. While we focused on 

analysis of relatively simple profiles, our model also predicted complex behaviors very well 
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(Figure 1C, E, Figure S5) which allows for further insights into complex behaviors. As more 

and more datasets on absolute mRNA and protein concentrations become available, future 

work will be able to extend and generalize the predictions to more cases and more complex 

models. Our pipeline is an important tool for analysis of time-series RNA and protein data 

collected from a dynamically changing system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Predictability of protein expression can have several reasons

The panels show representative RNA and protein time-series profiles of yeast under diamide 

stress. Panels A–C show one of the genes whose protein levels are predicted well 

(FDR<30%) for all three data sets. Our model can predict increasing (A), decreasing (B), 

and more complex profiles (C, F). High predictability is defined by a high Spearman 

correlation (and FDR<30%) between the observed protein abundance profile (black) and the 

protein abundance profile predicted with the non-negative linear square fit ODE model 

(blue). Panels D–E display profiles with a low predictability. In both cases, lack of 

predictability is likely due to a systematic measurement error in the protein data. Panels E 

and F show two genes whose biological functions are similar but whose profiles and 

predictabilities vary. Diamide stress data is presented in absolute abundance units (number 

of molecules per cell), and the rest of the data is presented in arbitrary units (a.u.) derived 

from relative abundances.
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Figure 2. Measurement noise impacts prediction quality

Each point represents a gene in the Diamide (A, D), Sodium chloride (B, E), or Rapamycin 

(C, F) stress data set. The y-coordinate of each point represents the prediction quality 

(measured in Spearman correlation Rs ) of the corresponding gene product, and the x-

coordinate represents the number of direction changes in either the protein profile (A–C) or 

the RNA profile (D–F). The number of direction changes is used as a proxy for noise 

measurement. Panels A–C show that there is a dependency between prediction quality and 

noise in the protein profiles (F-test, ** for p<0.01, *** for p<0.001), with more noise 

corresponding to lower prediction quality. D–F show that there is no such relationship 

between noise in the RNA profiles and prediction quality. The box in each box plot denotes 

the interquartile range.
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Figure 3. Relationship between synthesis and degradation rates

Each point represents a gene with its rates of protein synthesis or degradation (ks and kd 

values, respectively). Panels (a)–(c) describe the rates predicted by the ODE model under 

diamide, sodium chloride, and rapamycin stress respectively, with only the well-predicted 

genes plotted (FDR=30%). Panel (d) describes measured rates16, 17. We conclude the 

correlation is spurious and discuss the reasons in the supplement. a.u. – arbitrary units, P – 

protein concentration, R – RNA concentration, r – Pearson correlation coefficient, t - time.
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Figure 4. Parameter landscapes exploring uniqueness of rate prediction

Four examples of parameter landscape profiles under diamide stress. A–B show the two 

most common profiles. Each point represents a certain combination of synthesis rate ks and 

degradation rate kd, and the color represents the quality of the fit that our model produces 

given these parameters. The quality of fit is given in fraction of variance unexplained (fvu) 

with darkest blue corresponding to values close to 0 (best fit) and the darkest red 

representing all fits with fvu greater than or equal to 1.0. The rest of the values fall in 

between as shown on the color scale on the rightmost column of every heatmap. C presents 
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an example of a gene for which the fit is of approximately the same quality for a wide range 

of ks and kd values, and D shows an example where the solution is rather unique with very 

few additional solutions. The black circle on each heatmap represents the parameters that 

optimize the prediction (reported ks and kd values), and the white circle marks the center of 

the heatmap.
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Figure 5. Experimental validation of degradation-independent regulation

Panels A and B show the mRNA and protein expression profile with the predicted protein 

concentrations and the parameter landscape for the SSA4 gene, respectively. In panel C, the 

western blot shows the abundance change of the GFP-tagged heat shock protein Ssa4 in 

cells under diamide stress. After 90 min of 1.5 mM diamide stress, we observe a large 

increase in Ssa4 abundance, confirming the mass spectrometry results 13. Consistent with 

Ssa4’s degradation-independent mode of regulation, inhibition of protein synthesis with 

cycloheximide (CHX) substantially affects protein expression under stress, and inhibition of 
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protein degradation with MG-132 has only a minor effect on Ssa4 protein expression levels. 

GAPDH was used as loading control.
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Figure 6. Parameter landscape clusters correspond to profile clusters

Each heatmap shows a representative example for a cluster of parameter landscapes (see 

text). The ks and kd axes denote the synthesis and the degradation rates, respectively. The 

color represents the fraction of variance unexplained (fvu), with the bluer hue representing a 

lower value. The darkest red represents all values of fvu greater than or equal to 1.0. The 

line graph to the right of each heatmap represents the median profile of the profile cluster 

that has the largest intersection (by the number of genes in it) with the given cluster of 

parameter landscapes (see Table 2, Table S3). There are two major types of parameter 

landscape / profile cluster pairs: the “up-up” (left) and the “down-down” (right). These pairs 

occur in all three experiments (Diamide, Sodium chloride, Rapamycin), but contain different 

functional members (Table 2). P – protein concentration; R – RNA concentration, ks – 

synthesis rate, kd – degradation rate.
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Figure 7. Predicted rates are not random

The histograms show log (base e)-ratios of predicted Diamide stress and observed steady-

state synthesis (A) and degradation rates (B). The bars in represent the data points where the 

stress-induced ks values are inferred from the well-modeled genes (at FDR 30%). The mean 

of both of the distributions is significantly different from 0 (one-sample t-test, p=1e-4 and 

p=3e-4 respectively). The log ratio of 0 is denoted by a black vertical line.

Tchourine et al. Page 25

Mol Biosyst. Author manuscript; available in PMC 2015 November 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u

s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

Tchourine et al. Page 26

Table 1

Datasets and main relationships

Summary of experimental methods referenced in this paper and the key results. a.u. – arbitrary units, P – 

protein concentration, R – RNA concentration

Data set Diamide Rapamycin Sodium Chloride Unstressed

Reference Vogel 201113; Gasch 

20001

Fournier 201014 Lee 201115 Fraser 200417; 

Belle 200616

mRNA data Dual-channel microarray Dual-channel microarray Dual-channel microarray Translation: 
computational 
analysis of 
polysome profile 
data

Protein quantification method LC-MS/MS LC-MS/MS LC-MS/MS Western-blot of 
cycloheximide 
treated cells

Treatment Diamide Rapamycin High osmolarity none

Measurement time (min) 120 360 240 none

Number of genes used for 
modeling

530 328 683 3343

Number of well-predicted genes 
(FDR<30%)

116 94 233 n/a

Pearson correlation between 
log(ks) and log(kd)

0.45 0.80 0.76 −0.25

Median of ks 4.0 P/(R*min) 0.010 a.u. 0.27 a.u. 5.8 P/(R*min)

Median half-lives (min) 41 109 204 45
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Table 2

Properties of the most significant intersections between parameter landscape clusters and 

profile clusters

For each data set, the two intersections of profile clusters and parameter landscape clusters that contain the 

largest number of genes are taken; this was either an “up-up” or a “down-down” co-cluster for each data set 

(see Table S3, Figure S6, S8). Each entry in this table is a Venn diagram that shows the portion of the genes in 

the intersection of each of those co-clusters as compared to the union of the respective two clusters. The 

intersection dominates the union, and the overlap is significant. Total number of genes in the union of the two 

clusters for each co-cluster is specified by n.

“Up-up” co-cluster “Down-down” co-cluster

Diamide stress

Common gene functions stress response / antioxidant defense ribosomal proteins

Sodium chloride stress

Common gene functions --- RNA metabolism; ribosomal assembly, bio-genesis and maturation

Rapamycin stress

Common gene functions amino acid synthesis and energy metabolism ribosomal proteins
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