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Abstract

Technological advances now enable routine measurement of mRNA and protein abundances, and
estimates of their rates of synthesis and degradation that inform on their values and the degree of
change in response to stimuli. Importantly, more and more data on time-series experiments are
emerging, e.g. of cells responding to stress, enabling first insights into a new dimension of gene
expression regulation - its dynamics and how it allows for very different response signals across
genes. This review discusses recently published methods and datasets, their impact on what we
now know about the relationships between concentrations and synthesis rates of mRNAs and
proteins in yeast and mammalian cells, their evolution, and new hypotheses on translation
regulatory mechanisms generated by approaches that involve ribosome footprinting.

The different stages of protein expression regulation

The seemingly simple task of producing a protein molecule from its gene is in fact highly
complex. Protein production is regulated in multiple, diverse ways which all act in a
controlled, but stochastic and highly dynamic manner in what we collectively call ‘gene
expression regulation’. Gene expression regulation involves synthesis of mRNA and protein
via transcription and translation, respectively, and degradation of the molecules. Both
transcription and translation are coordinated by many participating factors and pathways.
Roughly 2,000 of the ~20,000 protein-coding genes in the human genome encode are
transcription factors!. A similar fraction of the genome appears to regulate the second stage
of protein synthesis: the human genome may encode as many as ~1,000 RNA-binding
proteins and ~1,000 miRNAs which putatively regulate both RNA degradation and

translation24.

Many additional processes add further complexity to gene expression regulation. Alternative
pre-mRNA splicing generates an average of four transcript variants per human gene>’.
Alternative translation initiation and termination can create additional variants. Once a
protein is made, ~200 unique post-translational modifications, including phosphorylation,

acetylation, ubiquitination, and SUMOylation, can be attached to target it for degradation,
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change its localization, interactions, and functions. Consequently, the Uniprot sequence
database comprises >68,000 human protein variants, produced from just over 20,000 genesS.

While sometimes overlooked, the degradation of mRNA and protein molecules is as much
regulated as is their synthesis. mRNA turnover regulation is highly complex, occurring
through two major pathways. In rapidly growing cells, most mRNA decay is initiated by
removal of the m’G cap found on the 5’ end. However, in some cases decay is initiated by
removal of the polyA tail — a process called deadenylation °. Furthermore, the vast majority
of protein degradation in eukaryotic cells is managed by the proteasome which itself consists
of a protease core and regulatory caps. Proteasomal degradation is initiated by lysine-48-
linked polyubiquitination of the target protein — a process regulated by more than 100
ubiquitinating and deubiquitinating enzymes in yeast, and hundreds in mammalian

cells®: 10- 11 The targets and condition-specific activities of these enzymes are only known
for a small subset.

These regulatory processes are further complicated by feedback mechanisms and coupling
between individual processes!2. For example, nRNA degradation has been reported to be
coupled to both transcription 13 and translation %- 4. Other work suggests that RNA-binding
proteins and miRNAs, two entirely different regulators of RNA translation and degradation,
can jointly regulate the same pathway 1°. Therefore, the ‘one gene — one protein’ hypothesis
is far from describing gene expression regulation in its entirety, ignoring the plethora of
different protein products, their interactions, combinatorial regulation, and changes in

response to stimuli.

This review first outlines recent methods that enable large-scale measurements of
concentrations and rates. We place special emphasis on an approach called ribosome
footprinting, which provides estimates of translation efficiency and has received much
attention with respect to both the insights it provides and its limitations. We then discuss
new insights into the principles and evolution of gene expression regulation from studies
using these techniques on yeast and mammalian cells. We finish by describing our view of
where the field of systems biology of gene regulation is headed and what questions are
likely to be addressed in the near future.

Experimental approaches to characterize gene expression regulation

Excitingly, the last decade has seen enormous technological and methodological advances
that enable large-scale measurements of the above-described multiple dimensions of gene
expression regulation — both with respect to measurements of concentrations and rates
(Table S1). While modifications and interactions can also be measured, they are not the
focus of this review. For comprehensive reviews of other ‘dimensions’ of gene expression

dynamics, see refs. 16- 17,

Measuring genome-wide mRNA and protein concentrations

Standard methods to estimate mRNA and protein concentrations are high-throughput RNA
sequencing and shotgun proteomics, respectively (Table S1). In most cases, molecular
concentrations of genes are estimated relative to each other. However, both approaches can

Mol Biosyst. Author manuscript; available in PMC 2015 September 18.



1duiosnuey Joyiny 1duosnuepy Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

McManus et al.

Page 3

be used with spike-in reference samples if absolute copy numbers per cell are desired. While
RNA-seq is truly genome-wide, shotgun proteomics has yet to cross that threshold.
Individual proteomics efforts from laboratories with highest-end instrumentation are now
able to identify up to ~12,000 proteins in mammalian cells, e.g. ref. '8, but routine
measurements identify fewer proteins. However, compared to just a few years ago,
proteomics has advanced enough to allow time-series experiments, measuring the abundance
of hundreds to thousands of proteins across multiple time points. As a result, the first
integrative studies that combine mRNA and matching protein concentration measurements
have recently been published (Table 1).

Similarly, new computational tools have emerged that enable statistical significance analysis
of these time course experiments to extract regulatory information (for focused reviews,

see 19-20) For example, a recent study by Jovanovic et al. used a mathematical model
involving differential equations to estimate translation and protein degradation rates from
time-series, pulsed labeling data 2. Earlier work in yeast 22 and human 23 applied similar
approaches: the change of protein concentration over time is modeled as a linear function of
protein synthesis based on the mRNA concentration and a translation rate, and degradation,
based on the existing protein concentration and a degradation rate. While a linear model is a
very simple approach, it can still reproduce comparatively complex concentration changes
for a large fraction of observed patterns 24. To quantify the contributions of the different
regulatory levels and identify genes and time points at which these significant changes
occur, we recently developed a statistical framework called Protein Expression Control
Analysis (PECA). PECA transforms time-course mRNA and matching protein expression
data into significance measures of regulation at both the RNA or protein level, resolved at a
per-time-point basis 2.

Such computational analyses of time-series data are vital to progress to the next stage of
gene expression analysis: the dynamics of regulatory systems. They provide highly specific
types of information at the level of individual genes, but also, in conjunction with other,
orthogonal information, describe emerging properties of the networks that regulate gene
expression. For example, time series data can verify the functional interactions between
regulators and their targets and is instrumental to identification of causal relationships 20.
Further, when we applied PECA to various yeast time series datasets 2>, we detected
significantly changing genes at a per-time-point basis and some cases of regulatory
‘buffering’, i.e. synthesis of mRNA molecules that were counteracted by degradation of
proteins (and vice versa) — observations that would be hidden in static data.

Measuring rates of synthesis and degradation

Recent technological developments now allow researchers to move beyond descriptions of
concentrations to experimental measurements of molecular synthesis and degradation rates
(Table S1). Classic approaches to estimate rates of mRNA degradation involve shutting off
transcription with either drugs (e.g. actinomycin and thiolutin) or temperature sensitive yeast
mutants of RNA polymerase II (rpb1-1)°(Table S1). After inhibiting synthesis, the
decreasing molecule concentrations are fit to a decay function to estimate degradation rates.
However, these approaches have two main disadvantages. First, degradation may not follow
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the assumed decay function. Second, these approaches severely disrupt cellular homeostasis,
and therefore provide poor estimates of the actual degradation rates. For example, thiolutin
has been shown to inhibit both mRNA synthesis and degradation in yeast?%- 27, Even the
well-regarded rpbI-1 mutation system in yeast appears to decrease transcription only 3-fold
at the non-permissive temperature, with rates recovering after about one hour 2. As a result,
there is little concordance among mRNA degradation rates measured in different studies.

To circumvent these problems, methods have been developed to measure degradation rates
in the absence of inhibitors. Instead, pulsed labeling is used to mark preexisting and newly
synthesized mRNAs or proteins. In the case of RNA, several techniques pulse-label RNA
with 4-thio-uridine, a non-disruptive analog that can be biochemically enriched after RNA
preparation 2% 30(Table S1). A time-resolved comparison of the labeled and unlabeled
molecules can then be used to estimate both transcription and RNA degradation rates.
Datasets first emerged for yeast, but are also now available for mammalian cells 23.

Similar logic applies to measuring protein synthesis and degradation. Time-resolved
proteomics measurements of differently labeled amino acids, in approaches such as pulsed-
and dynamic-SILAC3!- 32 have provided rate estimates for both yeast and mammalian cells
(Table S1). One challenge with proteomics-based measurements is insufficient coverage,
which is further decreased when several time points are required. Another challenge lies in
the rate of label incorporation into the proteins, which can lead to small mass spectrometric
peaks below the detection limit. Therefore it is very difficult to measure synthesis rates for
proteins that are rarely translated. To circumvent this challenge, novel approaches have been
developed which use a methionine-analog or a tagged puromycin translation inhibitor to
specifically enrich for newly synthesized proteins (Table S1). Such approaches, increase
sensitivity and coverage of the translation rate measurements — but have they have their own
disadvantages by the methionine analog affecting cellular homeostasis and not easily
penetrating thick cell walls such as those of yeast.

Ribosome profiling — generating hypotheses on translation regulation

Often, it is not the actual rate that is most interesting in an experiment, but an estimate of the
efficiency of the process — it may be more informative to learn how a rate is regulated in the
cell rather than to compare two rate values. Recent years have seen much excitement about a
new method that combines the resolution and deep coverage of next-generation sequencing
with measurements of translation efficiency — and to generate hypotheses on the
mechanisms underlying translation regulation. The method is interchangeably called
ribosome profiling, ribosome footprinting, or Ribo-seq (Table S1) 3.

The basic approach is outlined in Table S1 and Figure 2. The data generated by ribosome
profiling can provide both bulk translation efficiency estimates per gene and nuanced
mechanistic details of translation with respect to regulatory sequence elements in the
mRNA. While standardized computational methods for data analysis are still under
development, the relative number of ribosomes translating an open reading frame (ORF) can
be estimated by tallying the number of reads that cover each ORF. By comparing these
estimates of ribosome load with RNA-abundance estimates, the relative efficiency of
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translation (RPF/mRNA) can be measured. No other method provides this information
simultaneously at system-wide scale.

However, ribosome footprinting also has some disadvantages. First, it is one of the most
difficult experimental methods in RNA biology, involving many different steps. Second,
unless used in combination with different translation inhibitors and time-resolved
measurements3%, it does not provide actual rate estimates. Furthermore, ribosome
footprinting assumes that the number of mRNA-bound ribosomes correlates with translation
efficiencies. Although this is likely to be a reasonable assumption, a direct comparison of
ribosome footprinting and proteomics-based identification of newly synthesized proteins is
still needed. Finally, the slow uptake of translation inhibitors (which may be an essential

part of the method) can complicate studies in yeast 3.

New insights into gene expression regulation

For many years, comparisons of protein and mRNA concentrations have been limited to
steady-state measurements. Under these conditions, the population averages of protein and
mRNA concentrations in unperturbed cells do not vary over time, with the molecules
produced and degraded simultaneously at equilibrium rates. Excitingly, for both baker’s and
fission yeast and mammalian cells, several time-series datasets of protein and mRNA
expression are now available, complemented by a few measurements of synthesis and
degradation rates (Table 1). These data allow for early insights into the principles governing
gene regulation in dynamic systems, i.e. cells responding to a stimulus. The following
sections highlight what we think might be general trends and future perspectives in light of
these recent advances.

Relationships between concentrations and rates

The first question that has been asked for many years addresses the correlation between
mRNA and protein concentrations within one organism growing at steady state3®. A perfect
correlation between mRNA and protein concentrations would suggest no gene-specific
differences in translation or protein degradation — but reality is far from that. By 2009,
several estimates for the protein-mRNA correlation under steady state were available39, but
no common trend across bacteria and yeast was observed. For mammalian cells, both a
computational study in 2010 and an experimental approach in 2011 concluded that

»37 and protein-level regulation may be as important as

“transcription is only half the story
that of the RNA-level?3- 38, Similarly, in synchronized cells at different cell cycle stages,
post-transcriptional regulation has been observed for much of the proteome3. However,
these findings have been disputed, and reanalysis of the 2011 data showed that transcription
may indeed do the majority of the regulatory workload, accounting for 56 to 81% of the
overall variation in gene expression?.

Moving from steady-state to dynamic systems, an experimental study in dendritic cells
responding to lipopolysaccharide (LPS) treatment estimated that mRNA levels (set by both
transcription and degradation) explain 59 to 68% of the variance in protein levels?! — again
placing the main workload in gene expression regulation on transcription. The authors find

that RNA-level regulation governs the response of newly synthesized proteins, while
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protein-level regulation is more important for concentration adjustments of preexisting
proteins with basic cellular functions 2!. During the LPS response, nRNA changes drive the
overall expression response, and even for down-regulated mRNAs the discrepancy to
changes in protein concentrations can be explained by a combination of slow and delayed
protein degradation and translation?!. The study partially contrasts earlier findings in yeast
responding to osmotic stress, where the correlation between protein and mRNA abundances
was stronger for up-regulated than for down-regulated genes, suggesting that protein-level
regulation is dominant with respect to protein removal?2. One of the reasons for these drastic
reprogramming choices might lie in the fact that these studies subjected cells to very large
and rapid perturbations. Further nuances and implications of the relationship between
protein and mRNA concentrations in the cell are discussed in an excellent review in ref. 41,
A second, very basic question involves the ranges of concentrations and rates that were
found — and again a somewhat surprising picture emerged. For example, although RNA-seq
is arguably more sensitive compared to proteomics — collecting millions of reads compared
to tens of thousands of spectra — the dynamic range of mRNA concentrations seems
consistently smaller than that of protein concentrations 23 42, For example, RNA
concentrations in mammalian cells vary over four to five orders of magnitude, starting from
0.1 molecule per mammalian cell on average — while protein concentrations have been
found to cover up to six or even up to 12 orders of magnitude 8- 42, For example, ribosomes
each contain dozens of ribosomal proteins and exist in copy numbers as high as ten million
per mammalian cell 43,

Similarly, the rates of synthesis and degradation vary enormously between genes, but are in
general much larger at the protein level compared to the RNA level (Figure 1). For example,
yeast transcription rates range between 0.03 and 0.5 mRNA copies per minute and RNA
half-lives range from 2 to 60 minutes, but vary under different conditions (Table
$1)26-28.30 Transcription rates in mammalian cells range between 0.1 and 100 mRNA
copies per cell per hour 23. In comparison, proteins are much more stable than mRNA, with
median half-lives of hours if not days, and mammalian translation rates vary from 0.1 to 103
proteins per mRNA per hour across genes (Table 1). However, estimates gained from
ribosome profiling analyses placed this range much smaller, spanning only two orders of
magnitude3? — a finding that might be due to technical limitations. In sum, proteins,
compared to mRNA, have a larger dynamic range in rates of synthesis and degradation,
delivering one explanation for the fact that overall protein concentrations are much larger
than mRNA concentrations.

Speculations on reasons and consequences of different rates

As arefined view of gene expression regulation slowly emerges (Figure 1), we can begin to
ask questions as to why rates of mRNA and protein synthesis and degradation may have
evolved to their current values, and how, these rates produce very different expression
response patterns to internal or environmental challenges on a per-gene basis. This question
is especially interesting if one assumes that well-adapted biological systems must be capable
of mounting large and rapid responses to the fluctuations found in the wild, while remaining
robust to transient perturbations.
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The ability to change concentrations rapidly and drastically depends greatly on the absolute
concentration: it is much easier to change small concentrations than large ones. As described
above, mRNAs are usually expressed at concentrations lower than those of proteins (Figure
1), which allows for very fast and large fold-changes while not requiring much absolute
synthesis and degradation due to low molecule numbers. In contrast, changing the
concentrations of proteins, which are often higher than those of the corresponding mRNAs,
by only a small amount requires enormous efforts with respect to translation or degradation
and a large energy expense. Therefore unsurprisingly, stimulus-dependent fold-changes
observed at the mRNA-level are often much larger than those seen for proteins2!: 22- 44 This
consideration is perhaps one explanation for the small effects on translation often seen by
regulators such as miRNAs and RNA-binding proteins*>- 49,

Gene functions may place particular constraints on mRNA and protein synthesis and
degradation rates. For example, consider the differing requirements of transcription factors
(TFs) and ribosomal proteins (RPs). During vegetative growth, TFs often function with few
protein copies while RPs are required at very high copy number. However, the two classes
of genes may have similar mRNA concentrations (Figure 3, example I). Upon a stimulus,
transcription factors are often the first responders to cellular signals, requiring rapid
production and fold changes in a switch-like manner. Such a fast response could be enabled
by rapid translation or slow protein degradation. Therefore, it is unsurprising that ribosomes
and other highly expressed proteins have large translation rates which change drastically
during a stimulus to enable changes in absolute protein copy numbers3# 47, Similarly, the
temporal response patterns might differ based on gene function. As a first line of response to
signals, transcription factors often require rapid production and large fold-changes in a
switch-like manner, while house-keeping genes such as ribosomes or enzymes may not need
such a fast response. The low total concentrations of TFs also enables their rapid
degradation, leading to pulse-like responses.

In addition to the desired signal shape, concentration, and response time, different genes
may differ in their requirements for accuracy and robustness to variation in gene expression
levels — which can be achieved by specific combinations of transcription and translation
rates (Figure 3, example II). For some genes, the accuracy in producing the correct amount
might be crucial for their function, while others function well even if their cell-to-cell
concentration varies. Therefore, the concentrations of some proteins may change
stochastically over time more than those for others. A computational study in yeast
suggested such a scenario: high transcription rates combined with low translation rates lead
to less noise in final protein concentrations than the opposite case™S.

Interestingly, recent work suggests that gene expression noise is subject to purifying
selection for at least one yeast gene *°. Thus, “Nothing in Biology Makes Sense Except in
the Light of Evolution” (Theodosius Dobzhansky, 1973) may also apply to the evolution of
different rates of synthesis and degradation — and the time is ripe for models and hypotheses
that explain these selection processes.
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Ribosome profiling glances into mechanisms of translation regulation

Ribosome profiling reports ribosome positions at the level of codons or even nucleotides —
providing unique insights into possible mechanisms that affect translation efficiency of
genes, for example with respect to codon usage. Although many codons can be used to
specify the same amino acid, most organisms show clear usage preferences. Genes with
abundant mRNA generally use codons that are decoded by abundant tRNA, suggesting that
this codon usage bias contributes to increased translation efficiency of abundant mRNA
transcripts. To examine this relationship, many researchers have attempted to extract codon-
specific translation elongation rates from ribosome profiling data (Table 1), however these
studies resulted in markedly varying conclusions. Some suggest that rare codons stall
translation, but this effect is not seen after correcting for amplification and sequencing
biases present in ribosome profiling datasets>!. However, all of this work was done with
datasets from yeast grown in log-phase at steady-state, and, similar to the discussions above,
it is possible that the codon usage bias becomes more important during dynamic gene
expression regulation, e.g. during meiosis or mating.

Further, mapping the genomic locations of ribosome profiling reads has revealed that
ribosomes often bind to unexpected regions in the RNA. The most prominent of these
include eukaryotic mRNA transcript leader sequences (TLSs, also known as 5° UTRs).
Translation within TLSs often occurs in regions termed upstream ORFs (uORFs). While
UOREF translation has been known for decades anecdotally’2, ribosome profiling suggested
that it may be much more widespread than previously appreciated and that uORFs often
make use of start codons differing from the canonical AUG sequence 3. In fact, roughly
~10,000 uORFs are proposed to function in translation regulation during yeast meiosis>*.
Other ribosome profiling experiments revealed that ribosomes often associate with RNAs
thought to be non-coding. For example, Ingolia and colleagues reported that candidate long
non-coding RNAs (IncRNAs) from mouse embryonic stem cells were often bound by
ribosomes3*. Other data support translation of short ORFs in non-coding RNAs 336,
however further evidence indicates that most n.cRNAs do not encode functional

proteins>7- 98 _ raising the question whether binding by ribosomes indeed leads to translation
of the mRNA or not. One possibility is that ribosome association may function as a
surveillance mechanism to degrade improperly localized ncRNA via nonsense mediated

decay.

Conservation and divergence of concentrations and rates

Above we discussed the impact and consequences of the variation in mRNA and protein
concentrations across genes within one organism. We now examine the role of these
processes across organisms, during evolution (Figure 4). For example, mRNA abundances
of orthologous genes vary greatly between species. This variation has been observed in
comparisons across kingdoms, including yeast>®, Drosophila® ¢! mice®2, and humans®3.
Despite this widespread variation in mRNA abundance, more recent work suggests that
protein abundance is less divergent. In a comparison of D. melanogaster and C. elegans
proteome and transcriptome expression data, Schrimpf and colleagues discovered that the

correlation between these species’ protein abundance was higher than that seen for their
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mRNA abundance®. Soon after, Laurent et al. expanded this analysis to eight organisms
and reported that increased conservation of protein abundance could be found in
comparisons across all domains of life, including, E. coli, S. cerevisiae, and humans®. More
recently, the same phenomenon was observed in comparisons of lymphoblastoid cell lines
derived from humans, chimpanzees, and rhesus macaques®®: selection pressures to conserve
protein concentrations across organisms appear to be higher than those on mRNAs. A study
in mouse and human cells showed that strong conservation may also apply to protein
degradation rates 67 _ although rates appear to vary across subcellular localizations®8.

The fact that variation in mRNA abundance between species is not necessarily mirrored at
the protein level suggests that post-transcriptional processes act to buffer evolutionary
changes in expression regulation®®. Indeed, comparisons of mRNA abundance and turnover
rates in yeast revealed that mRNA degradation often offsets evolutionary differences in
mRNA levels’. Other work has found that translation regulation buffers species differences
in mRNA abundance’!- 72, These studies compared translation efficiency and mRNA
abundance in S. cerevisae and S. paradoxus using ribosome profiling and found that roughly
a quarter of the transcriptome exhibited changes in translation efficiency that were biased
toward reducing interspecies differences in protein production. While the observed extent of
this “translational buffering” varies between studies’>, a more recent comparison of S.
cerevisiae and S. uvarum (bayanus) identified even more translational buffering than earlier
studies’#, potentially due to precise control of environmental differences by co-culturing the

two species.

The molecular mechanisms underlying post-transcriptional buffering remain unclear.
Interestingly, many trans-acting factors have been found responsible for buffering via
mRNA turnover’? and translation’2. In many of these cases, buffering is likely mediated by
proteins that function at multiple levels of gene expression. For example, the yeast RNA
binding protein Rpb4 appear to affect both transcription and translation, as do the CCR4/Not
complex and Not5™f75, In other cases, buffering of species differences in mRNA levels was
mediated by cis-acting factors. For example, swapping promoter elements between S.
cerevisiae and S. paradoxus was sufficient to reproduce species differences in mRNA
turnover’®. Interestingly, promoter sequences have also been shown to determine the
subcellular localization and translation efficiency of mRNAs induced during glucose
starvation in yeast’’. Regardless of the exact mechanisms responsible, it appears that
transcription, mRNA turnover, and translation are intimately coupled in yeast in a manner
that generally increases the robustness of gene expression, i.e. the conservation of protein
expression levels across organisms.

Large-scale methods are now in place to measure both mRNA and protein concentrations
and their rates of synthesis and degradation (Table S1), and first datasets have become
available that describe these aspects of gene expression regulation in dynamic systems
(Table 1)'®. After some earlier insights, we may wonder where the field might be headed.
One of the next goals should be to obtain more time-series datasets from different organisms
and tissue types under a variety of conditions. These data will help evaluate the general
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trends already observed in yeast and mammalian cells (Table 1). For example, studies in
yeast have shown that under stress, the cells appear to strictly regulate either synthesis or
degradation of a given protein, but not both?*, and we do not know if this finding is

conserved across organisms.

Additional datasets would also help inform the discussion on the relative importance of
transcription versus translation. As often in biology, the answer may be a diplomatic “it
depends” — on the type of stimulus, the amount of protein that is needed, the response time
required, the desired signal shape, or the required accuracy in exact copy numbers (Figure
3). Different rates can achieve these scenarios. For example, in cells responding to LPS
treatment, transcription plays enables rapid synthesis of functionally relevant proteins, while
protein degradation acts more slowly and removes pre-existing functions2!. In comparison,
translation regulation plays major roles in both yeast and mammalian cell responses to
environmental challenges or the circadian rhythm** 78-80_Evidence for coupling among
transcription, translation, and mRNA turnover processes further complicates this picture —
and we are only beginning to understand the impact of such coupling!2.

To evaluate how much these first insights apply in general — across conditions or organisms
— we need not only more datasets, but also tools to analyze the data efficiently, specifically
incorporating the dynamics of gene expression changes. While the quantitative analysis of
RNA-sequencing and shotgun proteomics data is comparatively standardized, complex
methods, such as ribosome profiling still lag behind with respect to informatics tools. The
largest challenges lie in appropriate normalization and internal calibration to obtain, for
example, reliable quantification of changes in ribosome binding between different regions of
an mRNA or cross-normalization of transcription and translation data.

The future will likely also bring more integrative studies that combine several different
techniques to examine multiple aspects of gene expression within one system, e.g.
proteomics and transcriptomics measurements combined with translation and degradation
assays. Importantly, theses studies need to carefully consider which type of measurement
fits the biological question best and the relative sources of bias and error inherent to each
method. While providing essential information on the mechanisms of translation regulation,
ribosome profiling does not necessarily provide translation rates; a type of information
gained from pulsed-labeling proteomics techniques (Table S1). Future integrative studies
will demand increasingly advanced analysis techniques — an area that will also see much
future development. Mathematical techniques, such as higher order singular value
decomposition®!-83, may be used to extract patterns that are common and specific to sets of
diverse data matrices. We are at the beginning of an exciting era that moves towards a new
dimension of gene expression analysis: that of the dynamics of a response, and the intricate
interplay between the multiple regulatory processes that control protein production.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Annotating the Central Dogma of Molecular Biology
An illustrated version of the Central Dogma of Molecular Biology shows that, thanks to the

emergence of new technologies, we can now quantify the concentrations and rates that
produce and degrade mRNAs and proteins. Estimates are for mammalian cells, taken from
different sources (see text and mainly ref. 23). Numbers are for illustration purposes and
represent overall estimates.
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Figure 2. Ribosome profiling
Cell cultures are treated with cycloheximide and lysed in a buffer that maintains ribosome/

mRNA associated polysomes. Polysomes are split into two fractions. Nuclease digestion of
one fraction removes mRNA fragments not protected by ribosomes. Ribosome protected
fragments (RPFs) are then purified and cloned into high-throughput sequencing libraries
(left). mRNA is purified from the second fraction, fragmented by base hydrolysis, and
cloned into sequencing libraries (right). Libraries are then sequenced to deep coverage.
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Figure 3. Possible outcomes of different rates of synthesis and degradation

Different rates of synthesis and degradation can result in different concentrations and

Time

concentration changes over time. Example I. While having similar RNA concentrations,

protein B (e.g. a transcription factor) is much more abundant than protein A (e.g. a

ribosomal protein). Upon a stimulus (red arrow), RNA concentrations switch to a new

steady-state through increased transcription. For protein B, despite large changes in

translation rate, the response time to double the protein concentration (red bracket) is much

slower compared to protein A. Example II. At steady-state, transcription for protein B is
faster than for protein A which, at similar RNA degradation rates, results in B’s RNA being

more abundant than that for A. The resulting protein concentrations might be very similar.

Mol Biosyst. Author manuscript; available in PMC 2015 September 18.




1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

McManus et al.

Page 18

However, due to comparatively slow translation, B’s protein concentration is much noisier

over time than that for A.
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Figure 4. Comparisons of mRNA and protein concentrations among and between species
Shown are simple comparisons of mRNA and protein concentrations, which revealed a

surprising observation when compared across organisms (see text, ref. 3%). A. mRNA and
protein levels are positively correlated in both C. elegans and H. sapiens. B. Interspecies

comparisons show higher conservation of protein levels than of mRNA. As more datasets
become available, we are beginning to understand how mRNA and protein synthesis and

degradation rates contribute to the evolution of gene expression.
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Table 1
Example datasets on dynamic gene expression regulation

Examples of recently published datasets providing first insights into the dynamics of eukaryotic gene
expression regulation are shown below. While attempting to cover a range of published datasets, this
collection may not be comprehensive.

1duosnuepy Joyiny 1duosnuepy Joyiny 1duiosnuepy Joyiny

1duosnuepy Joyiny

mRNA and matching
protein time-series Approx.
analysis Organism Condition Number of time points | #genes Ref
Fournier, Mol Cell Rapamycin
Proteomics 2009 Yeast treatment 7 6,000 85
Vogel, Mol Cell Proteomics
2011 Yeast Ocxidative stress 8 800 44
Lee, Mol Sys Bio 2011 Yeast Osmotic stress 6 2,500 22
Lackner, Genome Biology
2012 Yeast (S. pombe) | Oxidative stress 5 2,100 86
Gruen, Cell Reports 2014 Nematode worms | Development 7 3,000 87
Ly, eLIFE 2014 Mammalian cells Cell cycle 3-6 6,000 88
Eichelbaum, Mol Cell Prot
2014 Mammalian cells LPS treatment 3-4 4,800 89
Robles, PLoS Gen 2014 Mammalian cells Circadian rhythm 16 3,000 80
Kristensen, Mol Sys Bio
2013 Mammalian cells Differentiation 3-5 1,900 90
Jovanovic, Science 2015 Mammalian cells | LPS treatment 6 2,300 21
T L. Rate (median or
ranscription rates .
typical range)
Pelechano, PLoS One,
2010 Yeast Normal 2 to 30 mRNAs/hr 4,700 26
Normal and 1 to 600 mRNAs/cell
Miller, Mol Sys Bio 2011 Yeast osmotic stress cycle 5,200 29
Schwanhaeusser, Nature
2011 Mammalian cells Normal 2 mRNA/hr 5,000 23
Half-life (median or
RNA degradation typical range)

Wang, PNAS, 2002 Yeast Normal 20 min (3 to 90 min) 4,700 91
Neymotin, RNA, 2004 Yeast Normal 15 min 5,200 30
Normal and
Miller, Mol Sys Bio, 2011 Yeast osmotic stress 11 min 5,200 29

Munchel, Mol Sys Bio,

2011 Yeast Normal and stress 20 min 5,200 92

Yang, Genome Res, 2003 Mammalian cells Normal 2 hrs 1,000s 93

Dolken, RNA, 2008 Mammalian cells Normal 20 min to 48 hrs 1,000s 94

Friedel, Nucl Acid Res,

2009 Mammalian cells Normal 4.5t05.1 hrs 8,000 95

Schwanhaeusser, Nature

2011 Mammalian cells Normal 7.6 to 9 hrs 5,000 23
Rate (median or

Translation rates typical range)
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mRNA and matching

protein time-series Approx.

analysis Organism Condition Number of time points | #genes Ref

Schwanhaeusser, Nature 140

2011 Mammalian cells | Normal proteins/(mRNA*hr) 5,000 23

Ingolia, Cell 2011 Mammalian cells | Normal 5.6 codons/sec 20,000 34
Half-life (median or

Protein degradation typical range)

Belle, PNAS 2006 Yeast Normal 4 to 161 min 3,750 96

Christiano, Cell Reports

2014 Yeast Normal 8.8 to 12.0 hrs 4,000 97

Yen, Science 2008 Mammalian cells Normal 0.5t0 2 hrs 8,000 98

Dobherty, J Proteome Res

2009 Mammalian cells | Normal 6 min to 10s of hrs 600 31

Price, PNAS 2010 Mammalian cells | Normal 72 to 216 hrs 2,500 99

Cambridge, J Prot Res

2011 Mammalian cells Normal - 4,100 67

Schwanhaeusser, Nature

2011 Mammalian cells Normal 46 hrs 5,000 23

Boisvert, Mol Cell

Proteomics 2012 Mammalian cells Normal 20 hrs 8,000 | 100
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