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Abstract

Technological advances now enable routine measurement of mRNA and protein abundances, and 

estimates of their rates of synthesis and degradation that inform on their values and the degree of 

change in response to stimuli. Importantly, more and more data on time-series experiments are 

emerging, e.g. of cells responding to stress, enabling first insights into a new dimension of gene 

expression regulation - its dynamics and how it allows for very different response signals across 

genes. This review discusses recently published methods and datasets, their impact on what we 

now know about the relationships between concentrations and synthesis rates of mRNAs and 

proteins in yeast and mammalian cells, their evolution, and new hypotheses on translation 

regulatory mechanisms generated by approaches that involve ribosome footprinting.

The different stages of protein expression regulation

The seemingly simple task of producing a protein molecule from its gene is in fact highly 

complex. Protein production is regulated in multiple, diverse ways which all act in a 

controlled, but stochastic and highly dynamic manner in what we collectively call ‘gene 

expression regulation’. Gene expression regulation involves synthesis of mRNA and protein 

via transcription and translation, respectively, and degradation of the molecules. Both 

transcription and translation are coordinated by many participating factors and pathways. 

Roughly 2,000 of the ~20,000 protein-coding genes in the human genome encode are 

transcription factors1. A similar fraction of the genome appears to regulate the second stage 

of protein synthesis: the human genome may encode as many as ~1,000 RNA-binding 

proteins and ~1,000 miRNAs which putatively regulate both RNA degradation and 

translation2-4.

Many additional processes add further complexity to gene expression regulation. Alternative 

pre-mRNA splicing generates an average of four transcript variants per human gene5-7. 

Alternative translation initiation and termination can create additional variants. Once a 

protein is made, ~200 unique post-translational modifications, including phosphorylation, 

acetylation, ubiquitination, and SUMOylation, can be attached to target it for degradation, 
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change its localization, interactions, and functions. Consequently, the Uniprot sequence 

database comprises >68,000 human protein variants, produced from just over 20,000 genes8.

While sometimes overlooked, the degradation of mRNA and protein molecules is as much 

regulated as is their synthesis. mRNA turnover regulation is highly complex, occurring 

through two major pathways. In rapidly growing cells, most mRNA decay is initiated by 

removal of the m7G cap found on the 5’ end. However, in some cases decay is initiated by 

removal of the polyA tail – a process called deadenylation 9. Furthermore, the vast majority 

of protein degradation in eukaryotic cells is managed by the proteasome which itself consists 

of a protease core and regulatory caps. Proteasomal degradation is initiated by lysine-48-

linked polyubiquitination of the target protein – a process regulated by more than 100 

ubiquitinating and deubiquitinating enzymes in yeast, and hundreds in mammalian 

cells8, 10, 11. The targets and condition-specific activities of these enzymes are only known 

for a small subset.

These regulatory processes are further complicated by feedback mechanisms and coupling 

between individual processes12. For example, mRNA degradation has been reported to be 

coupled to both transcription 13 and translation 9, 14. Other work suggests that RNA-binding 

proteins and miRNAs, two entirely different regulators of RNA translation and degradation, 

can jointly regulate the same pathway 15. Therefore, the ‘one gene – one protein’ hypothesis 

is far from describing gene expression regulation in its entirety, ignoring the plethora of 

different protein products, their interactions, combinatorial regulation, and changes in 

response to stimuli.

This review first outlines recent methods that enable large-scale measurements of 

concentrations and rates. We place special emphasis on an approach called ribosome 

footprinting, which provides estimates of translation efficiency and has received much 

attention with respect to both the insights it provides and its limitations. We then discuss 

new insights into the principles and evolution of gene expression regulation from studies 

using these techniques on yeast and mammalian cells. We finish by describing our view of 

where the field of systems biology of gene regulation is headed and what questions are 

likely to be addressed in the near future.

Experimental approaches to characterize gene expression regulation

Excitingly, the last decade has seen enormous technological and methodological advances 

that enable large-scale measurements of the above-described multiple dimensions of gene 

expression regulation – both with respect to measurements of concentrations and rates 

(Table S1). While modifications and interactions can also be measured, they are not the 

focus of this review. For comprehensive reviews of other ‘dimensions’ of gene expression 

dynamics, see refs. 16, 17.

Measuring genome-wide mRNA and protein concentrations

Standard methods to estimate mRNA and protein concentrations are high-throughput RNA 

sequencing and shotgun proteomics, respectively (Table S1). In most cases, molecular 

concentrations of genes are estimated relative to each other. However, both approaches can 
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be used with spike-in reference samples if absolute copy numbers per cell are desired. While 

RNA-seq is truly genome-wide, shotgun proteomics has yet to cross that threshold. 

Individual proteomics efforts from laboratories with highest-end instrumentation are now 

able to identify up to ~12,000 proteins in mammalian cells, e.g. ref. 18, but routine 

measurements identify fewer proteins. However, compared to just a few years ago, 

proteomics has advanced enough to allow time-series experiments, measuring the abundance 

of hundreds to thousands of proteins across multiple time points. As a result, the first 

integrative studies that combine mRNA and matching protein concentration measurements 

have recently been published (Table 1).

Similarly, new computational tools have emerged that enable statistical significance analysis 

of these time course experiments to extract regulatory information (for focused reviews, 

see 19, 20). For example, a recent study by Jovanovic et al. used a mathematical model 

involving differential equations to estimate translation and protein degradation rates from 

time-series, pulsed labeling data 21. Earlier work in yeast 22 and human 23 applied similar 

approaches: the change of protein concentration over time is modeled as a linear function of 

protein synthesis based on the mRNA concentration and a translation rate, and degradation, 

based on the existing protein concentration and a degradation rate. While a linear model is a 

very simple approach, it can still reproduce comparatively complex concentration changes 

for a large fraction of observed patterns 24. To quantify the contributions of the different 

regulatory levels and identify genes and time points at which these significant changes 

occur, we recently developed a statistical framework called Protein Expression Control 

Analysis (PECA). PECA transforms time-course mRNA and matching protein expression 

data into significance measures of regulation at both the RNA or protein level, resolved at a 

per-time-point basis 25.

Such computational analyses of time-series data are vital to progress to the next stage of 

gene expression analysis: the dynamics of regulatory systems. They provide highly specific 

types of information at the level of individual genes, but also, in conjunction with other, 

orthogonal information, describe emerging properties of the networks that regulate gene 

expression. For example, time series data can verify the functional interactions between 

regulators and their targets and is instrumental to identification of causal relationships 20. 

Further, when we applied PECA to various yeast time series datasets 25, we detected 

significantly changing genes at a per-time-point basis and some cases of regulatory 

‘buffering’, i.e. synthesis of mRNA molecules that were counteracted by degradation of 

proteins (and vice versa) – observations that would be hidden in static data.

Measuring rates of synthesis and degradation

Recent technological developments now allow researchers to move beyond descriptions of 

concentrations to experimental measurements of molecular synthesis and degradation rates 

(Table S1). Classic approaches to estimate rates of mRNA degradation involve shutting off 

transcription with either drugs (e.g. actinomycin and thiolutin) or temperature sensitive yeast 

mutants of RNA polymerase II (rpb1-1)9(Table S1). After inhibiting synthesis, the 

decreasing molecule concentrations are fit to a decay function to estimate degradation rates. 

However, these approaches have two main disadvantages. First, degradation may not follow 
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the assumed decay function. Second, these approaches severely disrupt cellular homeostasis, 

and therefore provide poor estimates of the actual degradation rates. For example, thiolutin 

has been shown to inhibit both mRNA synthesis and degradation in yeast26, 27. Even the 

well-regarded rpb1-1 mutation system in yeast appears to decrease transcription only 3-fold 

at the non-permissive temperature, with rates recovering after about one hour 28. As a result, 

there is little concordance among mRNA degradation rates measured in different studies.

To circumvent these problems, methods have been developed to measure degradation rates 

in the absence of inhibitors. Instead, pulsed labeling is used to mark preexisting and newly 

synthesized mRNAs or proteins. In the case of RNA, several techniques pulse-label RNA 

with 4-thio-uridine, a non-disruptive analog that can be biochemically enriched after RNA 

preparation 29, 30(Table S1). A time-resolved comparison of the labeled and unlabeled 

molecules can then be used to estimate both transcription and RNA degradation rates. 

Datasets first emerged for yeast, but are also now available for mammalian cells 23.

Similar logic applies to measuring protein synthesis and degradation. Time-resolved 

proteomics measurements of differently labeled amino acids, in approaches such as pulsed- 

and dynamic-SILAC31, 32, have provided rate estimates for both yeast and mammalian cells 

(Table S1). One challenge with proteomics-based measurements is insufficient coverage, 

which is further decreased when several time points are required. Another challenge lies in 

the rate of label incorporation into the proteins, which can lead to small mass spectrometric 

peaks below the detection limit. Therefore it is very difficult to measure synthesis rates for 

proteins that are rarely translated. To circumvent this challenge, novel approaches have been 

developed which use a methionine-analog or a tagged puromycin translation inhibitor to 

specifically enrich for newly synthesized proteins (Table S1). Such approaches, increase 

sensitivity and coverage of the translation rate measurements – but have they have their own 

disadvantages by the methionine analog affecting cellular homeostasis and not easily 

penetrating thick cell walls such as those of yeast.

Ribosome profiling – generating hypotheses on translation regulation

Often, it is not the actual rate that is most interesting in an experiment, but an estimate of the 

efficiency of the process – it may be more informative to learn how a rate is regulated in the 

cell rather than to compare two rate values. Recent years have seen much excitement about a 

new method that combines the resolution and deep coverage of next-generation sequencing 

with measurements of translation efficiency – and to generate hypotheses on the 

mechanisms underlying translation regulation. The method is interchangeably called 

ribosome profiling, ribosome footprinting, or Ribo-seq (Table S1) 33.

The basic approach is outlined in Table S1 and Figure 2. The data generated by ribosome 

profiling can provide both bulk translation efficiency estimates per gene and nuanced 

mechanistic details of translation with respect to regulatory sequence elements in the 

mRNA. While standardized computational methods for data analysis are still under 

development, the relative number of ribosomes translating an open reading frame (ORF) can 

be estimated by tallying the number of reads that cover each ORF. By comparing these 

estimates of ribosome load with RNA-abundance estimates, the relative efficiency of 
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translation (RPF/mRNA) can be measured. No other method provides this information 

simultaneously at system-wide scale.

However, ribosome footprinting also has some disadvantages. First, it is one of the most 

difficult experimental methods in RNA biology, involving many different steps. Second, 

unless used in combination with different translation inhibitors and time-resolved 

measurements34, it does not provide actual rate estimates. Furthermore, ribosome 

footprinting assumes that the number of mRNA-bound ribosomes correlates with translation 

efficiencies. Although this is likely to be a reasonable assumption, a direct comparison of 

ribosome footprinting and proteomics-based identification of newly synthesized proteins is 

still needed. Finally, the slow uptake of translation inhibitors (which may be an essential 

part of the method) can complicate studies in yeast 35.

New insights into gene expression regulation

For many years, comparisons of protein and mRNA concentrations have been limited to 

steady-state measurements. Under these conditions, the population averages of protein and 

mRNA concentrations in unperturbed cells do not vary over time, with the molecules 

produced and degraded simultaneously at equilibrium rates. Excitingly, for both baker’s and 

fission yeast and mammalian cells, several time-series datasets of protein and mRNA 

expression are now available, complemented by a few measurements of synthesis and 

degradation rates (Table 1). These data allow for early insights into the principles governing 

gene regulation in dynamic systems, i.e. cells responding to a stimulus. The following 

sections highlight what we think might be general trends and future perspectives in light of 

these recent advances.

Relationships between concentrations and rates

The first question that has been asked for many years addresses the correlation between 

mRNA and protein concentrations within one organism growing at steady state36. A perfect 

correlation between mRNA and protein concentrations would suggest no gene-specific 

differences in translation or protein degradation – but reality is far from that. By 2009, 

several estimates for the protein-mRNA correlation under steady state were available36, but 

no common trend across bacteria and yeast was observed. For mammalian cells, both a 

computational study in 2010 and an experimental approach in 2011 concluded that 

“transcription is only half the story”37 and protein-level regulation may be as important as 

that of the RNA-level23, 38. Similarly, in synchronized cells at different cell cycle stages, 

post-transcriptional regulation has been observed for much of the proteome39. However, 

these findings have been disputed, and reanalysis of the 2011 data showed that transcription 

may indeed do the majority of the regulatory workload, accounting for 56 to 81% of the 

overall variation in gene expression40.

Moving from steady-state to dynamic systems, an experimental study in dendritic cells 

responding to lipopolysaccharide (LPS) treatment estimated that mRNA levels (set by both 

transcription and degradation) explain 59 to 68% of the variance in protein levels21 – again 

placing the main workload in gene expression regulation on transcription. The authors find 

that RNA-level regulation governs the response of newly synthesized proteins, while 
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protein-level regulation is more important for concentration adjustments of preexisting 

proteins with basic cellular functions 21. During the LPS response, mRNA changes drive the 

overall expression response, and even for down-regulated mRNAs the discrepancy to 

changes in protein concentrations can be explained by a combination of slow and delayed 

protein degradation and translation21. The study partially contrasts earlier findings in yeast 

responding to osmotic stress, where the correlation between protein and mRNA abundances 

was stronger for up-regulated than for down-regulated genes, suggesting that protein-level 

regulation is dominant with respect to protein removal22. One of the reasons for these drastic 

reprogramming choices might lie in the fact that these studies subjected cells to very large 

and rapid perturbations. Further nuances and implications of the relationship between 

protein and mRNA concentrations in the cell are discussed in an excellent review in ref. 41.

A second, very basic question involves the ranges of concentrations and rates that were 

found – and again a somewhat surprising picture emerged. For example, although RNA-seq 

is arguably more sensitive compared to proteomics – collecting millions of reads compared 

to tens of thousands of spectra – the dynamic range of mRNA concentrations seems 

consistently smaller than that of protein concentrations 23, 42. For example, RNA 

concentrations in mammalian cells vary over four to five orders of magnitude, starting from 

0.1 molecule per mammalian cell on average – while protein concentrations have been 

found to cover up to six or even up to 12 orders of magnitude 18, 42. For example, ribosomes 

each contain dozens of ribosomal proteins and exist in copy numbers as high as ten million 

per mammalian cell 43.

Similarly, the rates of synthesis and degradation vary enormously between genes, but are in 

general much larger at the protein level compared to the RNA level (Figure 1). For example, 

yeast transcription rates range between 0.03 and 0.5 mRNA copies per minute and RNA 

half-lives range from 2 to 60 minutes, but vary under different conditions (Table 

S1)26, 28, 30. Transcription rates in mammalian cells range between 0.1 and 100 mRNA 

copies per cell per hour 23. In comparison, proteins are much more stable than mRNA, with 

median half-lives of hours if not days, and mammalian translation rates vary from 0.1 to 105 

proteins per mRNA per hour across genes (Table 1). However, estimates gained from 

ribosome profiling analyses placed this range much smaller, spanning only two orders of 

magnitude33 – a finding that might be due to technical limitations. In sum, proteins, 

compared to mRNA, have a larger dynamic range in rates of synthesis and degradation, 

delivering one explanation for the fact that overall protein concentrations are much larger 

than mRNA concentrations.

Speculations on reasons and consequences of different rates

As a refined view of gene expression regulation slowly emerges (Figure 1), we can begin to 

ask questions as to why rates of mRNA and protein synthesis and degradation may have 

evolved to their current values, and how, these rates produce very different expression 

response patterns to internal or environmental challenges on a per-gene basis. This question 

is especially interesting if one assumes that well-adapted biological systems must be capable 

of mounting large and rapid responses to the fluctuations found in the wild, while remaining 

robust to transient perturbations.
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The ability to change concentrations rapidly and drastically depends greatly on the absolute 

concentration: it is much easier to change small concentrations than large ones. As described 

above, mRNAs are usually expressed at concentrations lower than those of proteins (Figure 

1), which allows for very fast and large fold-changes while not requiring much absolute 

synthesis and degradation due to low molecule numbers. In contrast, changing the 

concentrations of proteins, which are often higher than those of the corresponding mRNAs, 

by only a small amount requires enormous efforts with respect to translation or degradation 

and a large energy expense. Therefore unsurprisingly, stimulus-dependent fold-changes 

observed at the mRNA-level are often much larger than those seen for proteins21, 22, 44. This 

consideration is perhaps one explanation for the small effects on translation often seen by 

regulators such as miRNAs and RNA-binding proteins45, 46.

Gene functions may place particular constraints on mRNA and protein synthesis and 

degradation rates. For example, consider the differing requirements of transcription factors 

(TFs) and ribosomal proteins (RPs). During vegetative growth, TFs often function with few 

protein copies while RPs are required at very high copy number. However, the two classes 

of genes may have similar mRNA concentrations (Figure 3, example I). Upon a stimulus, 

transcription factors are often the first responders to cellular signals, requiring rapid 

production and fold changes in a switch-like manner. Such a fast response could be enabled 

by rapid translation or slow protein degradation. Therefore, it is unsurprising that ribosomes 

and other highly expressed proteins have large translation rates which change drastically 

during a stimulus to enable changes in absolute protein copy numbers34, 47. Similarly, the 

temporal response patterns might differ based on gene function. As a first line of response to 

signals, transcription factors often require rapid production and large fold-changes in a 

switch-like manner, while house-keeping genes such as ribosomes or enzymes may not need 

such a fast response. The low total concentrations of TFs also enables their rapid 

degradation, leading to pulse-like responses.

In addition to the desired signal shape, concentration, and response time, different genes 

may differ in their requirements for accuracy and robustness to variation in gene expression 

levels – which can be achieved by specific combinations of transcription and translation 

rates (Figure 3, example II). For some genes, the accuracy in producing the correct amount 

might be crucial for their function, while others function well even if their cell-to-cell 

concentration varies. Therefore, the concentrations of some proteins may change 

stochastically over time more than those for others. A computational study in yeast 

suggested such a scenario: high transcription rates combined with low translation rates lead 

to less noise in final protein concentrations than the opposite case48.

Interestingly, recent work suggests that gene expression noise is subject to purifying 

selection for at least one yeast gene 49. Thus, “Nothing in Biology Makes Sense Except in 

the Light of Evolution” (Theodosius Dobzhansky, 1973) may also apply to the evolution of 

different rates of synthesis and degradation – and the time is ripe for models and hypotheses 

that explain these selection processes.
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Ribosome profiling glances into mechanisms of translation regulation

Ribosome profiling reports ribosome positions at the level of codons or even nucleotides – 

providing unique insights into possible mechanisms that affect translation efficiency of 

genes, for example with respect to codon usage. Although many codons can be used to 

specify the same amino acid, most organisms show clear usage preferences. Genes with 

abundant mRNA generally use codons that are decoded by abundant tRNA, suggesting that 

this codon usage bias contributes to increased translation efficiency of abundant mRNA 

transcripts. To examine this relationship, many researchers have attempted to extract codon-

specific translation elongation rates from ribosome profiling data (Table 1), however these 

studies resulted in markedly varying conclusions. Some suggest that rare codons stall 

translation50, but this effect is not seen after correcting for amplification and sequencing 

biases present in ribosome profiling datasets51. However, all of this work was done with 

datasets from yeast grown in log-phase at steady-state, and, similar to the discussions above, 

it is possible that the codon usage bias becomes more important during dynamic gene 

expression regulation, e.g. during meiosis or mating.

Further, mapping the genomic locations of ribosome profiling reads has revealed that 

ribosomes often bind to unexpected regions in the RNA. The most prominent of these 

include eukaryotic mRNA transcript leader sequences (TLSs, also known as 5’ UTRs). 

Translation within TLSs often occurs in regions termed upstream ORFs (uORFs). While 

uORF translation has been known for decades anecdotally52, ribosome profiling suggested 

that it may be much more widespread than previously appreciated and that uORFs often 

make use of start codons differing from the canonical AUG sequence 53. In fact, roughly 

~10,000 uORFs are proposed to function in translation regulation during yeast meiosis54.

Other ribosome profiling experiments revealed that ribosomes often associate with RNAs 

thought to be non-coding. For example, Ingolia and colleagues reported that candidate long 

non-coding RNAs (lncRNAs) from mouse embryonic stem cells were often bound by 

ribosomes34. Other data support translation of short ORFs in non-coding RNAs 55, 56, 

however further evidence indicates that most ncRNAs do not encode functional 

proteins57, 58 – raising the question whether binding by ribosomes indeed leads to translation 

of the mRNA or not. One possibility is that ribosome association may function as a 

surveillance mechanism to degrade improperly localized ncRNA via nonsense mediated 

decay.

Conservation and divergence of concentrations and rates

Above we discussed the impact and consequences of the variation in mRNA and protein 

concentrations across genes within one organism. We now examine the role of these 

processes across organisms, during evolution (Figure 4). For example, mRNA abundances 

of orthologous genes vary greatly between species. This variation has been observed in 

comparisons across kingdoms, including yeast59, Drosophila60, 61, mice62, and humans63. 

Despite this widespread variation in mRNA abundance, more recent work suggests that 

protein abundance is less divergent. In a comparison of D. melanogaster and C. elegans 

proteome and transcriptome expression data, Schrimpf and colleagues discovered that the 

correlation between these species’ protein abundance was higher than that seen for their 
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mRNA abundance64. Soon after, Laurent et al. expanded this analysis to eight organisms 

and reported that increased conservation of protein abundance could be found in 

comparisons across all domains of life, including, E. coli, S. cerevisiae, and humans65. More 

recently, the same phenomenon was observed in comparisons of lymphoblastoid cell lines 

derived from humans, chimpanzees, and rhesus macaques66: selection pressures to conserve 

protein concentrations across organisms appear to be higher than those on mRNAs. A study 

in mouse and human cells showed that strong conservation may also apply to protein 

degradation rates 67 – although rates appear to vary across subcellular localizations68.

The fact that variation in mRNA abundance between species is not necessarily mirrored at 

the protein level suggests that post-transcriptional processes act to buffer evolutionary 

changes in expression regulation69. Indeed, comparisons of mRNA abundance and turnover 

rates in yeast revealed that mRNA degradation often offsets evolutionary differences in 

mRNA levels70. Other work has found that translation regulation buffers species differences 

in mRNA abundance71, 72. These studies compared translation efficiency and mRNA 

abundance in S. cerevisae and S. paradoxus using ribosome profiling and found that roughly 

a quarter of the transcriptome exhibited changes in translation efficiency that were biased 

toward reducing interspecies differences in protein production. While the observed extent of 

this “translational buffering” varies between studies73, a more recent comparison of S. 

cerevisiae and S. uvarum (bayanus) identified even more translational buffering than earlier 

studies74, potentially due to precise control of environmental differences by co-culturing the 

two species.

The molecular mechanisms underlying post-transcriptional buffering remain unclear. 

Interestingly, many trans-acting factors have been found responsible for buffering via 

mRNA turnover70 and translation72. In many of these cases, buffering is likely mediated by 

proteins that function at multiple levels of gene expression. For example, the yeast RNA 

binding protein Rpb4 appear to affect both transcription and translation, as do the CCR4/Not 

complex and Not5ref.75. In other cases, buffering of species differences in mRNA levels was 

mediated by cis-acting factors. For example, swapping promoter elements between S. 

cerevisiae and S. paradoxus was sufficient to reproduce species differences in mRNA 

turnover76. Interestingly, promoter sequences have also been shown to determine the 

subcellular localization and translation efficiency of mRNAs induced during glucose 

starvation in yeast77. Regardless of the exact mechanisms responsible, it appears that 

transcription, mRNA turnover, and translation are intimately coupled in yeast in a manner 

that generally increases the robustness of gene expression, i.e. the conservation of protein 

expression levels across organisms.

Outlook

Large-scale methods are now in place to measure both mRNA and protein concentrations 

and their rates of synthesis and degradation (Table S1), and first datasets have become 

available that describe these aspects of gene expression regulation in dynamic systems 

(Table 1)16. After some earlier insights, we may wonder where the field might be headed. 

One of the next goals should be to obtain more time-series datasets from different organisms 

and tissue types under a variety of conditions. These data will help evaluate the general 
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trends already observed in yeast and mammalian cells (Table 1). For example, studies in 

yeast have shown that under stress, the cells appear to strictly regulate either synthesis or 

degradation of a given protein, but not both24, and we do not know if this finding is 

conserved across organisms.

Additional datasets would also help inform the discussion on the relative importance of 

transcription versus translation. As often in biology, the answer may be a diplomatic “it 

depends” – on the type of stimulus, the amount of protein that is needed, the response time 

required, the desired signal shape, or the required accuracy in exact copy numbers (Figure 

3). Different rates can achieve these scenarios. For example, in cells responding to LPS 

treatment, transcription plays enables rapid synthesis of functionally relevant proteins, while 

protein degradation acts more slowly and removes pre-existing functions21. In comparison, 

translation regulation plays major roles in both yeast and mammalian cell responses to 

environmental challenges or the circadian rhythm44, 78-80. Evidence for coupling among 

transcription, translation, and mRNA turnover processes further complicates this picture – 

and we are only beginning to understand the impact of such coupling12.

To evaluate how much these first insights apply in general – across conditions or organisms 

– we need not only more datasets, but also tools to analyze the data efficiently, specifically 

incorporating the dynamics of gene expression changes. While the quantitative analysis of 

RNA-sequencing and shotgun proteomics data is comparatively standardized, complex 

methods, such as ribosome profiling still lag behind with respect to informatics tools. The 

largest challenges lie in appropriate normalization and internal calibration to obtain, for 

example, reliable quantification of changes in ribosome binding between different regions of 

an mRNA or cross-normalization of transcription and translation data.

The future will likely also bring more integrative studies that combine several different 

techniques to examine multiple aspects of gene expression within one system, e.g. 

proteomics and transcriptomics measurements combined with translation and degradation 

assays. Importantly, theses studies need to carefully consider which type of measurement 

fits the biological question best and the relative sources of bias and error inherent to each 

method. While providing essential information on the mechanisms of translation regulation, 

ribosome profiling does not necessarily provide translation rates; a type of information 

gained from pulsed-labeling proteomics techniques (Table S1). Future integrative studies 

will demand increasingly advanced analysis techniques – an area that will also see much 

future development. Mathematical techniques, such as higher order singular value 

decomposition81-83, may be used to extract patterns that are common and specific to sets of 

diverse data matrices. We are at the beginning of an exciting era that moves towards a new 

dimension of gene expression analysis: that of the dynamics of a response, and the intricate 

interplay between the multiple regulatory processes that control protein production.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Annotating the Central Dogma of Molecular Biology

An illustrated version of the Central Dogma of Molecular Biology shows that, thanks to the 

emergence of new technologies, we can now quantify the concentrations and rates that 

produce and degrade mRNAs and proteins. Estimates are for mammalian cells, taken from 

different sources (see text and mainly ref. 23). Numbers are for illustration purposes and 

represent overall estimates.
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Figure 2. Ribosome profiling

Cell cultures are treated with cycloheximide and lysed in a buffer that maintains ribosome/

mRNA associated polysomes. Polysomes are split into two fractions. Nuclease digestion of 

one fraction removes mRNA fragments not protected by ribosomes. Ribosome protected 

fragments (RPFs) are then purified and cloned into high-throughput sequencing libraries 

(left). mRNA is purified from the second fraction, fragmented by base hydrolysis, and 

cloned into sequencing libraries (right). Libraries are then sequenced to deep coverage.
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Figure 3. Possible outcomes of different rates of synthesis and degradation

Different rates of synthesis and degradation can result in different concentrations and 

concentration changes over time. Example I. While having similar RNA concentrations, 

protein B (e.g. a transcription factor) is much more abundant than protein A (e.g. a 

ribosomal protein). Upon a stimulus (red arrow), RNA concentrations switch to a new 

steady-state through increased transcription. For protein B, despite large changes in 

translation rate, the response time to double the protein concentration (red bracket) is much 

slower compared to protein A. Example II. At steady-state, transcription for protein B is 

faster than for protein A which, at similar RNA degradation rates, results in B’s RNA being 

more abundant than that for A. The resulting protein concentrations might be very similar. 
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However, due to comparatively slow translation, B’s protein concentration is much noisier 

over time than that for A.
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Figure 4. Comparisons of mRNA and protein concentrations among and between species

Shown are simple comparisons of mRNA and protein concentrations, which revealed a 

surprising observation when compared across organisms (see text, ref. 84). A. mRNA and 

protein levels are positively correlated in both C. elegans and H. sapiens. B. Interspecies 

comparisons show higher conservation of protein levels than of mRNA. As more datasets 

become available, we are beginning to understand how mRNA and protein synthesis and 

degradation rates contribute to the evolution of gene expression.
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Table 1

Example datasets on dynamic gene expression regulation

Examples of recently published datasets providing first insights into the dynamics of eukaryotic gene 

expression regulation are shown below. While attempting to cover a range of published datasets, this 

collection may not be comprehensive.

mRNA and matching
protein time-series
analysis Organism Condition Number of time points

Approx.
#genes Ref

Fournier, Mol Cell
Proteomics 2009 Yeast

Rapamycin
treatment 7 6,000 85

Vogel, Mol Cell Proteomics
2011 Yeast Oxidative stress 8 800 44

Lee, Mol Sys Bio 2011 Yeast Osmotic stress 6 2,500 22

Lackner, Genome Biology
2012 Yeast (S. pombe) Oxidative stress 5 2,100 86

Gruen, Cell Reports 2014 Nematode worms Development 7 3,000 87

Ly, eLIFE 2014 Mammalian cells Cell cycle 3-6 6,000 88

Eichelbaum, Mol Cell Prot
2014 Mammalian cells LPS treatment 3-4 4,800 89

Robles, PLoS Gen 2014 Mammalian cells Circadian rhythm 16 3,000 80

Kristensen, Mol Sys Bio
2013 Mammalian cells Differentiation 3-5 1,900 90

Jovanovic, Science 2015 Mammalian cells LPS treatment 6 2,300 21

Transcription rates
Rate (median or
typical range)

Pelechano, PLoS One,
2010 Yeast Normal 2 to 30 mRNAs/hr 4,700 26

Miller, Mol Sys Bio 2011 Yeast
Normal and
osmotic stress

1 to 600 mRNAs/cell
cycle 5,200 29

Schwanhaeusser, Nature
2011 Mammalian cells Normal 2 mRNA/hr 5,000 23

RNA degradation
Half-life (median or
typical range)

Wang, PNAS, 2002 Yeast Normal 20 min (3 to 90 min) 4,700 91

Neymotin, RNA, 2004 Yeast Normal 15 min 5,200 30

Miller, Mol Sys Bio, 2011 Yeast
Normal and
osmotic stress 11 min 5,200 29

Munchel, Mol Sys Bio,
2011 Yeast Normal and stress 20 min 5,200 92

Yang, Genome Res, 2003 Mammalian cells Normal 2 hrs 1,000s 93

Dolken, RNA, 2008 Mammalian cells Normal 20 min to 48 hrs 1,000s 94

Friedel, Nucl Acid Res,
2009 Mammalian cells Normal 4.5 to 5.1 hrs 8,000 95

Schwanhaeusser, Nature
2011 Mammalian cells Normal 7.6 to 9 hrs 5,000 23

Translation rates
Rate (median or
typical range)
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mRNA and matching
protein time-series
analysis Organism Condition Number of time points

Approx.
#genes Ref

Schwanhaeusser, Nature
2011 Mammalian cells Normal

140
proteins/(mRNA*hr) 5,000 23

Ingolia, Cell 2011 Mammalian cells Normal 5.6 codons/sec 20,000 34

Protein degradation
Half-life (median or
typical range)

Belle, PNAS 2006 Yeast Normal 4 to 161 min 3,750 96

Christiano, Cell Reports
2014 Yeast Normal 8.8 to 12.0 hrs 4,000 97

Yen, Science 2008 Mammalian cells Normal 0.5 to 2 hrs 8,000 98

Doherty, J Proteome Res
2009 Mammalian cells Normal 6 min to 10s of hrs 600 31

Price, PNAS 2010 Mammalian cells Normal 72 to 216 hrs 2,500 99

Cambridge, J Prot Res
2011 Mammalian cells Normal - 4,100 67

Schwanhaeusser, Nature
2011 Mammalian cells Normal 46 hrs 5,000 23

Boisvert, Mol Cell
Proteomics 2012 Mammalian cells Normal 20 hrs 8,000 100
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