Particle Engineering Research from the NSF ERC Research Experience for Teachers (RET) Program at NJIT (Paper #44d)

Ecevit Bilgili¹, Meng Li¹, Lu Zhang¹, Mina Armani², Paul Orbe³, Marie Aloia⁴, Barbara Pielecha-Safira⁵ and Rajesh N. Dave¹

¹Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ

²Union City High School, Union City, NJ

³Union City High School Academy for Enrichment & Advancement, Union City, NJ

⁴Bayonne High School, Bayonne, NJ

⁵Wallington High School, Wallington, NJ

AIChE Meeting

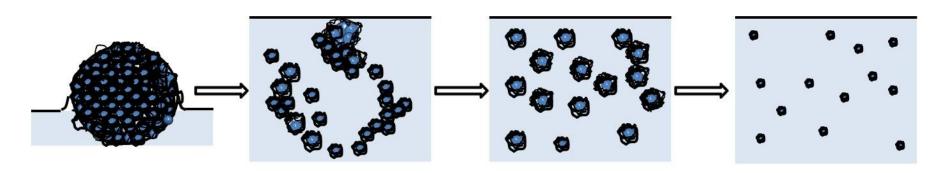
Hilton San Francisco Union Square, San Francisco, CA Nov. 13-18, 2016

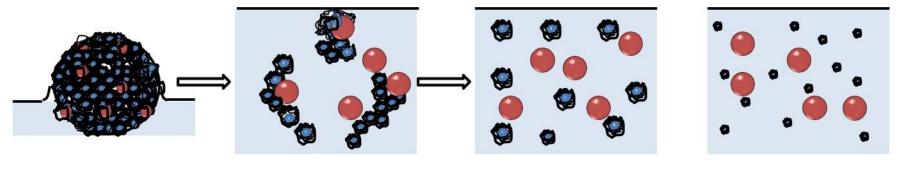
Background

- ➤ NJIT's Research Experiences for Teachers (RET) program in collaboration of the NSF Engineering Research Center for Structured Organic Particulate Systems (ERC-SOPS) and the Center for Pre-College Programs
- ➤ 14 high school teachers for 6-week summer research on various particulate materials and processes relevant to pharmaceutical products collaborating with graduate student mentors under the guidance of professors
- Workshops on technical writing, best research practice, effective collaboration in a team, pharmaceutical industry and process—formulation development, educational module development delivered by various faculty/CPCP experts
- Finally, in the educational component, the teachers came up with a professional development plan and prepared "educational modules", which were delivered to high school students.

Summer Research Topic I

The bioavailability enhancement of poorly water-soluble drugs via drug nanoparticle composites



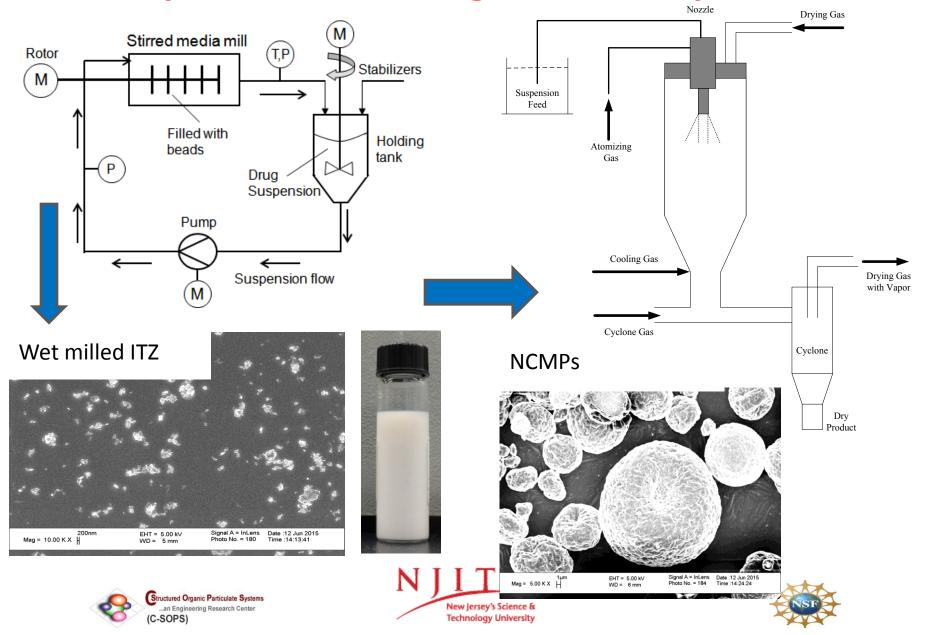

Background: Nanocomposite Microparticles

NCMPs with conventional soluble dispersants: soluble polymers, sugars, surfactants, etc.

Wetting Aggregate breakage Dissolution

NCMPs with co-milled superdisintegrant (crosslinked polymer) & soluble polymer

Wetting Swelling Aggregate breakage Dissolution



Polymer, Hydroxypropyl cellulose (HPC) Itraconazole (ITZ) with adsorbed HPC

Superdisintegrants

NCMP: nanocomposite microparticle comprising drug nanoparticles + dispersants

Preparation of Drug Nanocomposites

Characterization Methods

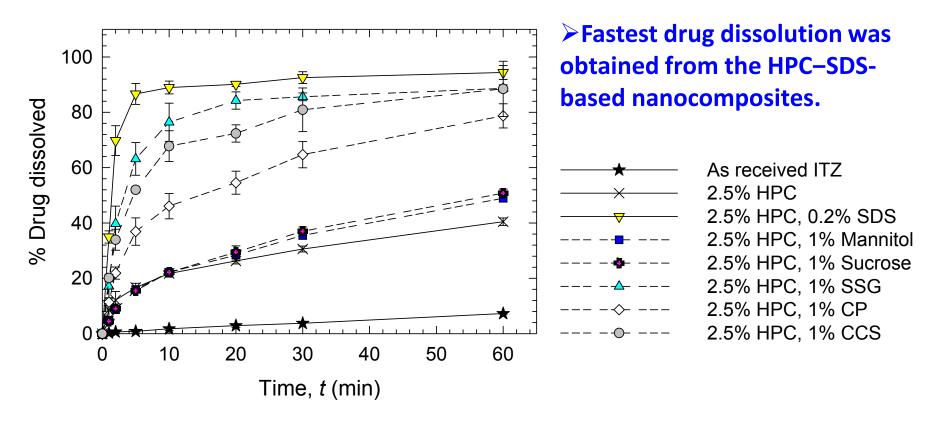
- Drug nanosuspensions
 - > Particle size analysis (laser diffraction, Coulter LS 12 320)
- Nanocomposites
 - Drug content: 100 mg nanocomposite dissolved in 20 ml dichloromethane.
 - ➤ Dissolution (USP II paddle method): 20 mg ITZ dose, 1000 ml dissolution medium, i.e., 3 g/L aq. SDS solution.
 - > UV spectroscopy: the absorbance was measured at a wavelength of 260 nm.

Formulations and Drug Content

Run no	HPC (% w/w) ^a	SDS (% w/w) ^a	Other additives (% w/w) ^a	Theoretical drug content (%)	Drug content and RSD in nanocomposites (% w/w) ^b
1	2.5	0	_	80.0	78.9 (5.19)
2	0	0.2	_	98.0	N/M
3	2.5	0.2	_	78.7	78.3 (4.66)
4	2.5	0	1 (Mannitol) ^c	74.1	72.4 (5.59)
5	2.5	0	1 (Sucrose) ^c	74.1	70.3 (4.20)
6	2.5	0	1 (SSG) ^d	74.1	74.0 (2.73)
7	2.5	0	1 (CP) ^d	74.1	72.8 (4.30)
8	2.5	0	1 (CCS) ^d	74.1	74.0 (3.69)

^aDrug loading in suspensions is 10%. % w/w is with respect to the weight of deionized water, 200 g.

➤ High drug loaded NCMPs: 70-80% with RSD < 6%.



b% w/w is the weight of ITZ with respect to the weight of NCMPs.

^cAdded after milling.

dCo-milled for 15 min.

Dissolution Profiles with Sugars/Sugar Alcohols/Superdisintegrants as Dispersants

➤ Superdisintegrants (SSG > CCS > CP) are more effective dispersants than sugar and sugar alcohol.

Summer Research Topic II

Effect of film thickness & superdisintegrants on strip film disintegration time

Background – Why Oral Strip Film?

Demand:

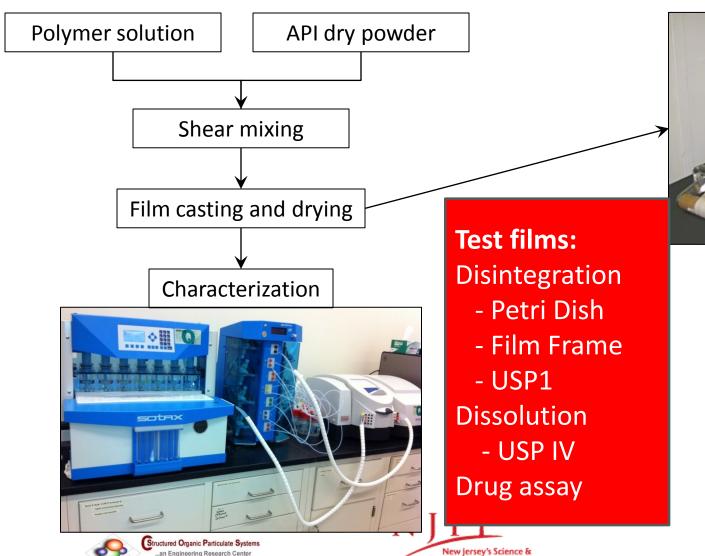
- Some patients cannot swallow pills
 - Very young, elderly, dysphagic
- Fast drug release improved bioavailabili
 - Faster relief for patients
 - No need to administer with water
- Personalized dosage

Issues:

- Strip films for oral applications need to disintegrate in the oral cavity to deliver active therapeutic agents.
- No standard disintegration test method for ODFs: USP1, petri dish, and frame methods used.
- Disintegration time affected by the thickness of the film besides the formulation.

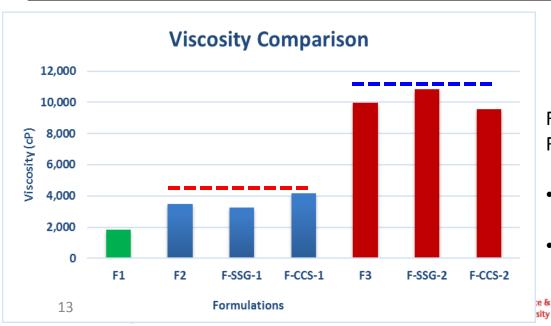
Objectives

- Comparative assessment of the reliability of various disintegration test methods
- Investigate the effect film thickness and two different superdisintegrants on the disintegration time of strip films



Process Summary & Equipment

Technology University

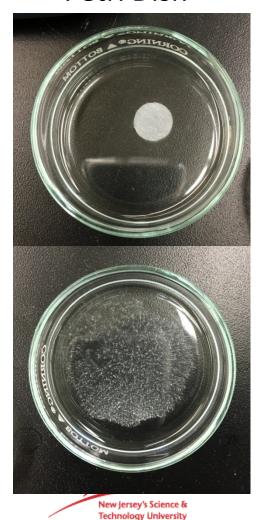


Formulations for Fenofibrate-Loaded Films

Formulations	HPMC-E15 (g)	Glycerin (ml)	API amount (g)	DI water (ml)	Superdisintegrants (g)	
F1	10	3	2.5	100	0.00	
F2	10	3	2.5	80	0.00	
F3	10	3	2.5	70	0.00	
F-SSG-1	10	3	2.5	100	0.75	
F-CCS-1	10	3	2.5	100	1.40	
F-SSG-2	10	3	2.5	100	1.75	
F-CCS-2	10	3	2.5	100	2.75	

API is fenofibrate (BCS II)

 $F2 = F-SSG-1 = F-CCS-1 = Viscosity \sim 4000 cP$ $F3 = F-SSG-2 = F-CCS-2 = Viscosity \sim 10,000 cP$


- Superdisintegrants increased the viscosity of the polymer solution
- SSG was able to achieve the same viscosity of CCS at lower concentrations

Characterization Equipments of Disintegration Time

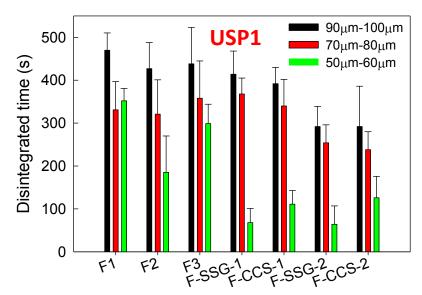
USP1

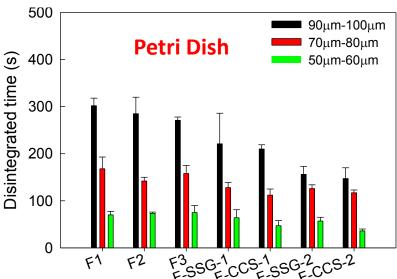
Petri Dish

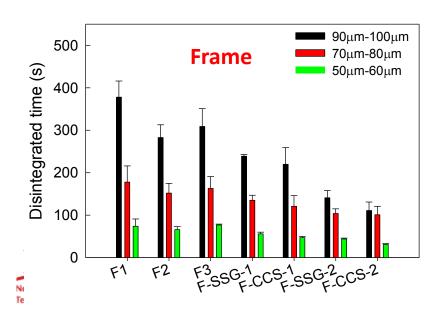
Slide Frame

Content uniformity of 50-60 µm films

Formulations	Film mass (mg)	RSD (%)	Film thickness (µm)	RSD (%)	API loading (mg/cm²)	wt% API	RSD (%)
F1	4.69	6.21	54.7	5.17	1.01	15.29	5.87
F2	5.50	3.74	60.1	4.53	1.14	14.78	0.69
F3	5.31	5.45	59.3	4.89	1.14	15.28	1.43
F-SSG-1	4.71	5.05	51.7	7.13	0.92	13.94	5.22
F-CCS-1	4.11	6.09	52.5	5.09	0.77	13.35	5.09
F-SSG-2	3.97	2.79	50.7	5.29	0.79	14.13	2.36
F-CCS-2	3.28	2.16	59.5	3.48	0.62	13.44	3.18


- * Target film thickness of 50-60 μm achieved, with 13-15% drug loading
- Low drug RSD (all < 6%). Higher viscosity helps; lower RSD at higher HPMC/additive concentrations.





Disintegration Time via Different Methods

- ➤ USP1 method predicts longer disintegration time with much larger RSD than the other two methods.
- ➤ Thickness effect was better discriminated by Petri Dish and Frame methods than the USP1.
- ➤ Thicker films disintegrated more slowly.
 Presence of superdisintegrants reduced the time.

Q&A

