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Abstract17

Plant population models are powerful tools for predicting climate change impacts in one18

location, but are di�cult to apply at landscape scales. We overcome this limitation by tak-19

ing advantage of two recent advances: remotely-sensed, species-specific estimates of plant20

cover and statistical models developed for spatio-temporal dynamics of animal populations.21

Using computationally e�cient model reparameterizations, we fit a spatiotemporal pop-22

ulation model to a 28 year time series of sagebrush (Artemisia spp.) percent cover over23

a 2.5 ◊ 5 km landscape in southwestern Wyoming while formally accounting for spatial24

�
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autocorrelation. We include interannual variation in precipitation and temperature as co-25

variates in the model to investigate how climate a�ects the cover of sagebrush. We then26

use the model to forecast the future abundance of sagebrush at the landscape scale under27

projected climate change, generating spatially explicit estimates of sagebrush population28

trajectories that have, until now, been impossible to produce at this scale. Our broad-scale29

and long-term predictions are rooted in small-scale and short-term population dynamics30

and provide an alternative to predictions o�ered by species distribution models that do not31

include population dynamics. Our approach, which combines several existing techniques in32

a novel way, demonstrates the use of remote sensing data to model population responses to33

environmental change that play out at spatial scales far greater than the traditional field34

study plot.35

Key words: population model, climate change, forecasting, spatiotemporal model, remote36

sensing, sagebrush, Artemisia, dimension reduction37

Introduction38

Forecasting the impacts of climate change on plant populations and communities is a cen-39

tral challenge for ecology (Clark et al. 2001, Petchey et al. 2015). Population models are40

ideally suited for meeting such a challenge because they provide a way to link climate41

drivers directly to population dynamics (Hare et al. 2010, Adler et al. 2012, Ross et al.42

2015, Shriver 2015). However, inference from population models is typically limited to43

small spatial extents because the data required is di�cult to collect across broad species44

ranges. Almost every study of plant population dynamics relies on demographic obser-45

vations recorded at the meter to sub-meter scale (see, e.g., Salguero-Gómez et al. 2015).46

Local-scale demographic data make building population projection models an easy task47

(Ellner and Rees 2006, Rees and Ellner 2009, Adler et al. 2012), but it is very di�cult48

to extrapolate small-scale studies to large spatial extents with any certainty because the49
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data likely only represent a small subset of parameter space and environmental conditions50

(Freckleton et al. 2011, Queenborough et al. 2011). The real challenge is not to simply51

make population forecasts, but to do so at spatial scales relevant to policy and manage-52

ment decisions (Queenborough et al. 2011).53

The ideal tool would be a broad-scale, dynamic population model (Schurr et al. 2012,54

Merow et al. 2014), but developing useful models at this scale has been limited by the55

availability of time series data at large spatial extents and statistical methods for fitting56

high-dimensional spatial models. Fortunately, new advances in remote sensing and statis-57

tics now allow us to overcome both of these limitations. First, new remote-sensing (RS)58

methods are now producing accurate time series of species-specific plant cover at land-59

scape scales. These data can be fit with dynamic population models which include yearly60

fluctuations in climate as covariates. Such RS time series have revolutionized models of61

how climate a�ects ecosystem-level processes (e.g., Running et al. 2004) and have been62

used to detect long-term trends in plant population abundance (e.g., Homer et al. 2015),63

but they have yet to be used to drive a dynamic population model. Second, animal pop-64

ulation modelers have developed dimension reduction and reparameterization techniques65

to e�ciently fit high-dimension spatiotemporal models (see Conn et al. 2015 for a review).66

These new statistical methods have yet to be applied to RS-derived plant population data67

at broad scales.68

Large-scale, spatially-explicit population models based on RS data could o�er a valuable69

new way to investigate the e�ects of large-scale environmental changes playing out at land-70

scape and regional scales. Most current assesments of how plant and animal populations71

will respond to climate change rely on species distribution models (SDMs). SDMs rely72

on static associations between contemporary climate and a species’ distribution or, more73

rarely, abundance to project future distribution or abundance (Elith and Leathwick 2009)74

and they are easily applied at landscape to continental scales (e.g., Maiorano et al. 2013,75
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Clark et al. 2014). However, the short-term and small-scale population dynamics that76

actually drive the large-scale distributions of species are not represented in most SDMs.77

Because SDMs typically rely on occurence data, their projections of habitat suitability or78

probability of occurence provide little information on the future states of populations in79

the core of their range – areas where a species exists now and is expected to persist in the80

future (Ehrlén and Morris 2015). Furthermore, because they lack short-term dynamics,81

SDMs usually cannot produce any estimate of the rate at which local populations will82

increase or decrease in the near-term and instead project a future equilibrium species dis-83

tribution that may or may not ever be reached. Direct validation of such predictions is84

extremely rare (Roberts and Hamann 2012). Large-scale dynamic population models could85

overcome these limitations. They would produce spatially-explicit estimates of species86

abundance within the species range (Ehrlén and Morris 2015), have the potential to model87

expansion in abundance outside the range when coupled with dynamic models of dispersal,88

and would provide testable predictions of how populations should respond to short-term89

climate perturbations. These short-term predictions also would give modelers the opportu-90

nity to repeatedly validate and refine their models (Luo et al. 2011).91

Sagebrush (Artemisia spp.) ecosystems o�er an ideal testing ground for new spatially ex-92

plicit population models derived from RS data. Sagebrush species are widely distributed93

(Kuchler 1964), they are sensitive to climate (Perfors et al. 2003, Miglia et al. 2005, Poore94

et al. 2009, Dalgleish et al. 2011, Xian et al. 2012, Apodaca 2013, Schlaepfer et al. 2014a,95

2014b, Harte et al. 2015, Homer et al. 2015), new landscape and regional scale time se-96

ries of sagebrush cover are now being produced from aerial imagery (Homer et al. 2012),97

and forecasts of future sagebrush ecosystems are in high demand due to the precarious98

conservation status of the greater sage-grouse (Centrocercus urophasianus) (Arnett and99

Riley 2015). SDMs typically predict that much of the area occupied by sagebrush ecosys-100

tems today will become unsuitable for sagebrush due to climate change, resulting in a dra-101

matic loss in the extent of sagebrush habitat by the end of this century (Shafer et al. 2001,102
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Neilson et al. 2005, Bradley 2010, Schlaepfer et al. 2012, Still and Richardson 2015). Eco-103

hydrology models supply a possible mechanism for sagebrush losses predicted by SDMs:104

climate warming could lead to earlier snowmelt, increased evaporation and ultimately105

less recharge of deeper soil layers in the spring (Schlaepfer et al. 2012, 2014a). In warmer106

parts of its range, increased temperature could be especially detrimental to sagebrush as107

it depends on water from deeper soil to survive and grow in this arid region (Pechanec108

et al. 1937, Schlaepfer et al. 2011, Germino and Reinhardt 2014). In contrast, at higher109

elevations and in colder regions, warming and earlier snowmelt could lengthen the growing110

season and increase sagebrush occurrence (Schlaepfer et al. 2012, 2014a). Direct observa-111

tions of individual plants and experimental plots tend to agree with these models: growth112

tends to respond negatively to spring and summer temperatures (Miglia et al. 2005, Poore113

et al. 2009, Apodaca 2013) except at higher elevations where earlier snowmelt may allow114

for a longer growing season (Perfors et al. 2003, Harte et al. 2015). A large-scale, spatially-115

explicit population model for sagebrush driven by interannual climate variability would116

provide a valuable new tool for assessing how sagebrush could respond to climate change117

in the future.118

Building on recent technological advances in spatial statistics (Latimer et al. 2009, Conn119

et al. 2015) and anticipating ever-increasing availability of RS data (He et al. 2015), we120

demonstrate how large-scale plant population models could be used to predict popula-121

tion impacts of climate change. As a proof-of-concept, we use a process model motivated122

by Gompertz density-dependent population growth and a remotely-sensed time series of123

sagebrush cover from Wyoming (Homer et al. 2012, 2015). We account for spatial autocor-124

relation with dimension reduction techniques (Latimer et al. 2009, Conn et al. 2015) and125

produce spatially-explicit estimates of sagebrush percent cover. Unlike most SDMs, our126

approach models the dynamics of plant abundance through time, and thus, is a popula-127

tion model, in the same spirit that models of animal counts through time are population128

models. The modeling framework we propose can be applied to any spatially-explicit time129
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series of plant cover or density, but its application to remotely-sensed data products o�ers130

the greatest potential to combine the information of population models (e.g., population131

status and temporal dynamics) and the spatial extent of species distribution models.132

Materials and Methods133

Data134

Remotely-sensed time series135

To demonstrate our modeling approach, we use a subset of a remotely-sensed time series136

of sagebrush (Artemisia spp.) canopy cover in Wyoming (Homer et al. 2012). As part of137

a separate study, Homer et al. 2012 estimated sagebrush percent cover using a regression138

tree to relate ground reflectances retrieved by three sources of optical imagery (QuickBird,139

Landsat, and AWiFS) to 1,780 field observations of sagebrush cover distributed across140

Wyoming. The regression tree model was further validated using another 297 field obser-141

vations. For Wyoming sagebrush, the model achieved an R

2 = 0.65 and an out-of-sample142

RMSE of 5.46% (Homer et al. 2012). To hind-cast sagebrush cover the regression tree143

model was applied to historical remote sensing images to generate yearly predictions of144

sagebrush cover for all of Wyoming for the years 1984-2011. This resulted in an annual145

time series of sagebrush cover at 30 meter resolution from 1984 to 2011 (Fig. B1). In this146

remote sensing product, values represent the percentage of a 30 ◊ 30 meter pixel covered147

by sagebrush. In our study, we focused on a 5,070 ◊ 2,430 meter subset totaling 13,689 30148

◊ 30 meter pixels each year (Fig. 1). Thus, the subset of the remote sensing product we149

use contains 369,603 observations spanning 27 year-to-year transitions (27 years ◊ 13,689150

pixels).151

Climate covariates152
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Our approach models interannual changes in plant cover as a function of seasonal climate153

variables. We used daily historic weather data for the center of our study site from the154

NASA Daymet data set (available online)1. The Daymet weather data are interpolated155

between coarse observation units and capture some spatial variation. We relied on weather156

data for the centroid of our study area. We calculated five climate variables from the157

Daymet data for the time period coinciding with our remotely sensed data (1984 to 2011).158

We narrowed our focus to climate covariates we know are important for sagebrush and159

that could be calculated from general circulation model projections. The five climate vari-160

ables in our population model are: (1) cumulative, “water year” precipitation for year t-2161

(lagPpt), (2) year t-1 fall through summer precipitation (ppt1 ), (3) year t fall through sum-162

mer precipitation (ppt2 ), (4) year t-1 average spring temperature (TmeanSpr1 ), and (5)163

year t average spring temperature (TmeanSpr2 ), where t-1 to t is the transition of interest.164

We selected these variables a priori based on previous studies (see Introduction), though165

not all emerge as important predictors in our model.166

Additive spatio-temporal model for sagebrush cover167

We use a descriptive model for sagebrush cover that includes additive spatial and temporal168

e�ects similar to that described by Conn et al. (2015). Interannual change in percent169

cover represents the integrated outcome of recruitment, survival, growth, and retrogression170

(shrinkage) of individual plants from year to year. We model observed integer percent171

cover (y) in cell i at time t as conditionally Poisson172

yi,t ≥ Poisson(µi,t), (1)

173

where µi,t is the expected percent cover of pixel i in year t174

log(µi,t) = —

0,t + —

1

yi,t≠1¸ ˚˙ ˝
temporal + dens. dep

+ x

Õ
t“¸˚˙˝

climate

+ ÷i¸˚˙˝
spatial

. (2)

1
http://daymet.ornl.gov/
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175 Our model of percent cover change includes a density-dependent e�ect of log-transformed176

cover in the previous year (yi,t≠1

), climate e�ects (xt), and a spatial random e�ect (÷) for177

each pixel i. Climate e�ects were standardized [(xi ≠ x̄)/‡(x)] to improve convergence during178

the model fitting stage and to allow for easier prior specification. The intercept, —

0,t, was179

allowed to vary through time; these random year e�ects recognize that all observations180

from a particular year share the same climate covariates and thus are not independent.181

We used a Poisson likelihood because integer percent cover values in the sagebrush data182

product can be considered a form of count data. We also evaluated a negative binomial183

model, but found little evidence for overdispersion beyond what our model was already184

accomodating via the spatial random e�ects (÷). There was no evidence of zero-inflation185

in our data, but see below (Accomodating zeros) for how we handled the small number186

of zero percent cover observations. We assume that the remotely sensed estimates of per-187

cent cover are "true" and free of error. This need not be the case, and if measurement or188

sampling error is known then it could be included in our Bayesian model as a "sampling189

model" (Hobbs and Hooten 2015).190

The spatial random e�ect (÷) accounts for spatial autocorrelation among pixels that occur191

near each other in space. Thus, ÷ acts as an o�set on the intercept (—
0,t), creating a spa-192

tial field that defines how pixels di�er from the mean, on average, in space (e.g., areas of193

perennially low or high cover, relative to average cover). Fitting the model with a spatial194

random e�ect (÷) is computationally demanding for large data sets like ours. The com-195

putational demand is due to the required calculations of the spatial covariance matrices,196

which increase as a cubic function of the number of locations (Wikle 2010). Key to our197

approach is a dimension reduction strategy that greatly reduces the number of parameters198

needed to be estimated to account for spatial variation by reducing the size of the spatial199

covariance matrices that need to be inverted at each MCMC iteration. Fitting models that200

appropriately account for spatial autocorrelation over large spatial extents would not be201

feasible without these modern techniques. Our dimension reduction strategy expresses the202
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high dimensional spatial random e�ect, ÷, as the product of an expansion matrix, K, and203

a smaller parameter vector, – (e.g., Hooten et al. 2003, Hooten and Wikle 2007, Conn et204

al. 2015). We can then approximate the spatial e�ect as205

÷ ¥ K–, (3)

–m ≥ Normal(0, ‡

2

÷). (4)

206

In this case, – is a m ◊ 1 vector of reduced spatial random e�ects, and K is a S ◊ m matrix207

that maps the reduced e�ects to the full S -dimensional space, where S is the total number208

of observed locations. Thus, we are able to reduce the e�ective number of parameters from209

S to m.210

The last remaining obstacle is to parameterize the matrix of basis functions, K. We use211

kernel convolution (Barry and Hoef 1996, Higdon 1998) to interpolate the spatial random212

e�ect between m “knots” that are nonrandomly distributed across the space of our study213

area. This means we are modeling spatial random e�ects at the knot level, and we use K214

to interpolate those e�ects between knots. We use an exponential kernel density to define215

the distance-decay function around the knots (w), such that the entries of K are216

Ks,m = ws,m/

Sÿ

s=1

ws,m (5)

217

where218

ws,m = exp
A

≠ds,m

‡

B

(6)

219

and ds,m is the Euclidean distance between the centroid of sample cell s and the location220

of knot m, and ‡ is the kernel bandwidth. It is possible, through exhaustive model se-221

lection and fitting, to determine the optimal form of the kernel and to estimate optimal222

values for ‡ (Higdon 2002, Hooten and Hobbs 2015). However, given the relative size of223

our dataset and computational limitations, we defined kernels around 231 knots (Fig. C2)224

whose nearest neighbor distances are approximately equal to the range of spatial depen-225

dence in residuals from a simple GLM fit without climate covariates and the spatial ran-226

dom e�ect (~500 meters; Appendix C). An infinite number of knots would result in an227

9



exact representation of the spatial process and covariance model. Computationally, using228

an infinite number of knots is not possible, thus the use of dimension reduction techniques229

serves as an approximation, where the accuracy increases with the number of knots. Given230

the tradeo� between knot number and computation time, we chose to base our knot num-231

ber on the spatial dependence as described above.232

The Bayesian posterior distribution of our spatio-temporal model can be expressed as233

[—, “, –, ‡

2

÷|y] Ã
A

TŸ

t=1

nŸ

i=1

[yi,t|—0,t, —

1

, “, –][—
0,t|—̄0

, ‡

2

—0 ]
B

◊ (7)
A

MŸ

m=1

[–m|‡2

÷]
B

[—̄
0

][—
1

][“][‡2

—0 ][‡2

÷].

234
Accomodating zeros235

Our process model (in Eq. 2) includes a log transformation of the observations (log(yt≠1

)).236

Thus, our model does not accomodate zeros. Fortunately, we had very few instances where237

pixels had 0% cover at time t-1 (N = 47, which is 0.01% of the data set). Thus, we ex-238

cluded those pixels from the model fitting process. However, when simulating the process,239

we needed to include possible transitions from zero to non-zero percent cover. We fit an240

intercept-only logistic model to estimate the probability of a pixel going from zero to non-241

zero cover242

yi ≥ Bernoulli(µi) (8)

logit(µi) = b

0

(9)

243

where y is a vector of 0s and 1s corresponding to whether a pixel was colonized (>0%244

cover) or not (remains at 0% cover) and µi is the expected probability of colonization as245

a function of the mean probability of colonization (b
0

). We fit this simple model using the246

‘glm’ command in R (R Core Team 2013). For data sets in which zeros are more common247

and the colonization process more important, the same spatial statistical approach we used248

for our cover change model could be applied and covariates such as cover of neighboring249
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cells could be included.250

Fitting the model251

We fit the spatiotemporal model in R (R Core Team 2013) using the ‘No-U-Turn’ Hamilto-252

nian Monte Carlo sampler in Stan (Stan Development Team 2014a) and the RStan pack-253

age (Stan Development Team 2014b). We obtained posterior distributions of all model254

parmaters from three MCMC chains comprised of 1,000 iterations each, after discarding255

an initial 1,000 iterations as burn in. Short chains of samples are a hallmark of the Stan256

algorithm, which is extremely e�cient. Compared to other samplers, fewer iterations are257

required to achieve convergence. Each chain was initialized with unique parameter val-258

ues and the model was fit in parallel using the Utah State University High-Performance259

Computing facility. Model fitting required five days on a four node Central Processing260

Unit with 2 ◊ AMD Opteron(tm) Processor 4386 @ 3.10 Ghz, 64GB of RAM per node,261

16 cores per node, and each chain launched in parallel on separate cores. We assessed262

convergence visually and calculated scale-reduction factors (Appendix D, R̂ < 1.1 for all263

parameters) (Gelman and Rubin 1992, Gelman and Hill 2009).264

Simulating the process265

We performed four sets of simulations to (1) compare observed and simulated equilib-266

rium cover, (2) compare observed and simulated year- and location-specific cover, (3) fore-267

cast future equilibrium population states under projected climate change, and (4) make268

temporally-explicit forecasts of sagebrush cover starting the final year of our observations269

and ending in year 2098. Using the posterior distribution of model parameters, we sim-270

ulated a matrix of pixels equal to the size of the study area (13,689 pixels or matrix ele-271

ments). For simulations (1) and (3) we initialized all pixels with arbitrarily low cover (1%)272

and then projected the model forward by randomly drawing climate covariates from the273
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observed climate time series (for 1) or a perturbed climate time series (for 3). We ran equi-274

librium simulations (1 and 3) for 2,000 time steps and then compared the output across275

simulations, after discarding an initial 100 time steps. To calculate average future equilib-276

rium sagebrush cover, we ran simulation (3) for each GCM and RCP scenario separately,277

and then averaged the results over GCMs. For simulation (2), we initialized each pixel278

with its actual percent cover value for time t and cell s and projected the model forward279

one time step and compared the one-step ahead forecast with the observed value. For280

simulation (4), we initialized each pixel with the final observed value in 2011 and then281

projected the model forward based on GCM yearly weather projections. We ran these sim-282

ulations for each GCM and RCP scenario combination separately and then aggregated283

the results over the GMCs by calculating the mean and the 90th percentiles for each RCP284

scenario.285

We used the posterior mean of each parameter for all simulations except for (4) where we286

ran 50 simulations with unique sets of parameters from the chains. Random year e�ects287

were included in simulations by randomly drawing a posterior mean year e�ect (—
0,t) for288

each iteration (simulations 1 and 3), using the posterior mean year e�ect for a specific year289

(simulation 2), or by a drawing a future-year random e�ect from the posterior mean and290

standard deviation of the mean intercept (simulation 4, e.g., —

0,T ≥ normal(—̄
0

, ‡

2

—0) for291

some future year T ). Our simulation approach provides a reasonable and computationally292

e�cient approximation to the true posterior predictive mean when used in these scenarios293

with our data.294

We required future projections of climate for our study area to conduct the equilibrium295

and temporally-explicit forecasts described above. Thus, we used the most recent climate296

projections from the Intergovernmental Panel on Climate Change (IPCC), the Coupled297

Model Intercomparison Project 5 (CMIP5; available online)2. The CMIP5 provides pro-298

jections from a suite of global circulations models (GCMs); we used projections from 18299

2
http://cmip-pcmdi.llnl.gov/cmip5/
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GCMs (Table A1) that produced weather projections for three “Representative Concen-300

tration Pathways”: RCP 4.5, RCP 6.0, and RCP 8.5 (described online)3. The three RCPs301

correspond to stabilization of radiative forcing before 2100, after 2100, and ongoing in-302

crease in greenhouse gas emissions, respectively.303

To simulate equilibrium sagebrush cover under projected future climate we applied average304

projected changes in precipitation and temperature to the observed climate time series.305

For each GCM and RCP scenario combination, we calculated average precipitation and306

temperature over the 1950-2000 time period and the 2050-2098 time period. We then cal-307

culated the absolute change in temperature between the two time periods (�T ) and the308

proportional change in precipitation between the two time periods (�P ) for each GCM309

and RCP scenario combination. Lastly, we applied �T and �P to the observed 28-year310

climate time series to generate a future climate time series for each GCM and RCP sce-311

nario combination. These generated climate time series were used to simulate equilibrium312

sagebrush cover. We simulated equilibrium cover separately for each GCM and RCP sce-313

nario combination before averaging the results, but we show the average projected climate314

changes across all models in Table 1.315

For the temporally-explicit forecasts we used yearly GCM projections from 2012 to 2098316

to simulate the process starting from the end point of the remotely sensed sagebrush cover317

data (ends in 2011). We aggregated daily GCM output for each GCM and RCP scenario318

into the seasonal climate covariates used to fit our model. These yearly climate time series319

were not aggregated further because we ran simulations for each GCM and RCP scenario,320

rather than one simulation per RCP scenario averaged over GCMs. The key assumption of321

our forecasting approach is that the historical correlations between weather and sagebrush322

cover change will continue to hold in the future.323

3
http://tntcat.iiasa.ac.at/RcpDb/
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Results324

Averaging across all GCMs, precipitation and temperature in our study area are projected325

to increase; the magnitude of increase depends on the RCP scenario (Table 1). Trajecto-326

ries of our climate covariates from GCM projections show similar trends (Fig. 2).327

All parameters in our model converged on stable posterior distributions (Appendix D).328

Only the lagPpt climate covariate can be considered important based on a 90% credible329

interval, and it had a positive e�ect on sagebrush percent cover change (Fig. 3). In other330

words, if the year 2000 water year was wetter than average, sagebrush cover would increase331

from the 2001 to the 2002 growing season. Other climate e�ects strongly overlapped zero332

but their posterior means were positive, except for fall-through-spring precipitation the333

first year of a cover transition (t-1), whose posterior mean was negative (Fig. 3). The334

posterior mean for the spatial random e�ect, ÷, captured the overall spatial structure of335

the observed data (Fig. E1). This indicates our choice of knot placement and dimension336

reduction strategy was adequate for describing permanent spatial variation in the data.337

When we simulated the pixel-based population model based on observed climate, it was338

able to reproduce the spatial pattern of observed percent cover, averaged over time (Fig.339

4A,B). Our model shows a tendency to underpredict perennially-low percent cover pixels340

(Fig. 4C), but does a better job at predicting high cover pixels. Point predictions are most341

confident, though slightly biased, in low percent cover pixels (Fig. 4D). The model is also342

able to adequately reproduce observed dynamics when we make one-step-ahead predictions343

based on observed climate and cover in the previous year for each pixel. When we made344

these in-sample, one-step-ahead forecasts, the model achieved an RMSE = 4.31, in units of345

percent cover. The Pearson’s correlation between observations and predictions was 0.62.346

When we apply the fitted model to IPCC climate change scenarios, the model predicts347

gains in sagebrush percent cover, on average (Figs. 5, 6A). The spatial e�ect remains348

strong enough in low cover regions to counteract the positive e�ect of projected precip-349
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itation increases (Fig. 5). Thus, our model predicts an increase in the heterogeneity of350

sagebrush cover because projected cover increases are smaller in low cover pixels than351

in high cover pixels (Fig. 5 and Fig. F1). For the temporally-explicit forecasts, we show352

spatially-averaged values and the associated uncertainty due to variability in GCM pro-353

jections, variability in model parameters, and uncertainty in our process model (Fig. 6A).354

Based on our model and GCM projections, we forecast an average increase in sagebrush355

cover at our study area, but a decrease is not outside the realm of possibility (shaded re-356

gions in Fig. 6A). The generally increasing trend reflects the positive e�ect of precipitation357

on sagebrush cover change estimated for our study area (Fig. 3). We also show how our358

model is capable of near-term forecasts in Fig 6B.359

Discussion360

Despite the need to forecast population responses to climate change over large spatial ex-361

tents, as demonstrated by the wide application of species distribution models (e.g., Clark362

et al. 2014), landscape-scale population models for plant species remain more concept than363

reality (Schurr et al. 2012, Merow et al. 2014). We introduced a new approach that uses364

methods from the dynamic spatio-temporal modeling literature (e.g., Conn et al. 2015) to365

fit a population model to remotely-sensed estimated of plant percent cover. As a proof-of-366

concept, we applied our approach to a remotely-sensed data product of sagebrush percent367

cover from 1984 to 2011 in Wyoming (Homer et al. 2012). We first discuss our results368

specific to sagebrush ecology and response to climate, and then discuss the more general369

implications and limitations of our proposed approach.370

Sagebrush response to climate and climate change371

The climate e�ects we estimated, based on cover data at 30 meter spatial resolution, are372

consistent with individual-level responses of sagebrush to climate-related variables. Re-373
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search on individual plants has shown that wetter winters are correlated with greater stem374

growth in sagebrush (Poore et al. 2009, Apodaca 2013) and that warmer spring tempera-375

tures may enhance sagebrush growth in cold climates by advancing the date of snowmelt376

and increasing the length of the growing season (Perfors et al. 2003, Harte et al. 2015). In377

agreement with those individual-level responses, posterior means for all precipitation and378

temperature e�ects in our model were positive, except for the e�ect of fall-through-spring379

precipitation in the first year of a cover transition (ppt1, Fig. 3). The cumulative amount380

of precipitation the year before a cover transition (pptLag in our model) emerged as the381

strongest predictor of sagebrush cover change (Fig. 3). However, mean estimates for the382

climate e�ects are relatively weak (Fig. 3).383

Such small e�ects could indicate that sagebrush are not very sensitive to interannual cli-384

mate variability, that our model is poorly specified, or that climate responses are di�cult385

to detect using coarse-scale data. Given findings from previous research demonstrating the386

importance of precipitation and temperature to sagebrush growth (Pechanec et al. 1937,387

Schlaepfer et al. 2011, Germino and Reinhardt 2014) and regeneration (Schlaepfer et al.388

2014b), it is unlikely that sagebrush are insensitive to climate. We used aggregated climate389

covariates that may not completely capture the climate-dependence of sagebrush cover390

change. However, the covariates we chose closely match the climate-related variables that391

have been shown to drive sagebrush growth, survival, and regeneration (e.g., Dalgleish et392

al. 2011, Schlaepfer et al. 2014b). More likely, aggregated estimates of plant abundance,393

such as percent cover, mask interannual variability at the level of the individual plant and394

makes it more di�cult to detect the drivers of internanual variability. Additionally, we395

chose not to downscale the Daymet weather data, meaning that in a given year all pixels396

shared the same climate, which limits our statistical power. Nonetheless, our model was397

capabable of detecting climate e�ects that agree with our knowledge of sagebrush ecology398

and allowed us to make forecasts of future sagebrush abundance.399
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Under projected climate, we forecast modest increases in sagebrush cover for all RCP400

scenarios in the long-term (Figs. 5,6A). Our forecasts reflect both the estimated e�ect401

size for each climate covariate and the amount of change in those covariates projected by402

the GCMs. Cumulative precipitation the year before a given year-to-year transition was403

the strongest standardized e�ect (Fig. 3), but precipitation is projected to increase only404

moderately (Table 1, Fig. 2) and the negative e�ect of fall-through-spring precipitation in405

the first year of a cover transition (ppt1 ) had an o�setting e�ect. In contrast, mean spring406

temperature had a weak positive e�ect on sagebrush cover changes, but the projected407

temperature increase is large (Table 1, Fig. 2).408

An interesting consequence of explicitly modeling the e�ect of space (through ÷) is the409

forecasted increase in spatial heterogeity (Fig. F1). Our model projects little change in410

low cover pixels but substantial increases in the cover of high cover pixels (Fig. 5). Had411

we not explicitly accounted for spatial-dependence in our model, we would have missed412

this result. We were unable to attribute the spatial structure apparent in the data (Fig.413

4A) and approximated by our model (÷, Fig. E1) to slope, aspect, elevation, or coarse soil414

type (results not shown). The lack of correlation between ÷ and landscape factors leads us415

to conclude that the spatial structure in our data set emerges from some combination of416

fine-scale microhabitat associations and legacy e�ects of disturbance.417

While we forecast an increase in sagebrush cover at our study area, SDM studies typically418

project dramatic declines in climate suitability for sagebrush with warming (Shafer et419

al. 2001, Neilson et al. 2005, Bradley 2010, Schlaepfer et al. 2012, Still and Richardson420

2015). There are many potential explanations for this apparent contrast, ranging from421

the type of model used to the particular climate covariates considered, but the location of422

our study area in a cold portion of sagebrush’s geographic distribution may be the best.423

The response of plant species to weather varies along climatic gradients (e.g., Clark et424

al. 2011, Vanderwel et al. 2013), and sagebrush are especially sensitive to the timing of425
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snowmelt because their growth depends on recharge of deep soil water (Schlaepfer et al.426

2012, 2014a). In warmer parts of the sagebrush range, earlier snowmelt is detrimental to427

growth and survival (Pechanec et al. 1937, Schlaepfer et al. 2011, Germino and Reinhardt428

2014). In colder regions, earlier snowmelt due to temperature increases can lengthen the429

growing season and increase sagebrush occurence and cover (Schlaepfer et al. 2012, 2014a).430

The average annual temperature across the sagebrush steppe biome is 6.9°C (sd = 1.6;431

Schlaepfer et al. 2011), whereas average temperature at our study area from 1980 to 2013432

was 4.6°C (calculated from Daymet estimates). Our study area lies at the cold extreme of433

the sagebrush range, thus the weak positive response to temperature that we estimated434

(Fig. 3) and carried through to our forecasts (Figs. 5,6A) likely represents the positive ef-435

fect of earlier snowmelt, and thus higher moisture availability early in the growing season.436

A previous analysis of a di�erent subset of the remote sensing data set we used also came437

to a di�erent conclusion, projecting future sagebrush decline (Homer et al. 2015). The438

discrepancy between the results of Homer et al. (2015) and ours primarily reflects a di�er-439

ence in the climate projections used for projecting future changes rather than di�erences440

in our inference about responses to historical variation in weather. Homer et al. (2015)441

used downscaled weather projections from a single model from the IPCC 4 whereas we442

used native-resolution weather projections from a suite of models from the IPCC 5. Con-443

sistent with our study, Homer et al. (2015) found a generally positive relationship between444

pixel-level sagebrush cover and precipitation, but the future climate scenario they chose445

resulted in a mean decrease in precipitation, causing a predicted decline in sagebrush cover.446

A second di�erence is that Homer et al. (2015) relied on regressions of decadal trends in447

sagebrush cover against decadal trends in climate at the level of individual pixels. Our448

current approach is fundamentally di�erent in that we specifically model the impact of in-449

terannual variation in weather on year-to-year changes in sagebrush cover using a dynamic450

population model. Thus, our model takes advantage of the additional information con-451

tained within short-term responses to climate fluctuations. Lastly, the location of Homer452
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et al.’s (2015) study area is, on average, at a lower elevation than our current study area.453

The geographic di�erence results in di�erent historical and projected climate, and, as dis-454

cussed above, sagebrush may respond di�erently to warming depending on geographic455

location.456

We projected sagebrush cover to the end of this century, but an important feature of our457

approach is that it can also produce short-term forecasts (Fig. 6B). For example, we could458

forecast the e�ects of a multi-year regional drought on sagebrush cover (Debinski et al.459

2010). Validating spatial population models against short-term predictions would give460

ecological forecasters a way to assess and improve the performance of their models, which461

would greatly increase our confidence in long-term forecasts. This cycle of prediction, vali-462

dation, and refinement is missing from most currently available population-level forecasts463

of the e�ects of climate change.464

A landscape-scale plant population modeling approach: opportunities and limi-465

tations466

Our approach for modeling plant populations overcomes two major hurdles for spatially-467

explicit population models. First, we used moderate resolution, remotely-sensed estimates468

of sagebrush percent cover as a response variable, enabling us to fit a dynamic population469

model over a large spatial extent. Species-specific estimates of plant abundance are becom-470

ing commonplace as remote sensing technology develops (e.g., Baldeck and Asner 2014,471

Colgan and Asner 2014), and in a few years several remotely-sensed time series may be472

available. Second, borrowing from new methods in spatio-temporal modeling of animal473

abundance (e.g., Conn et al. 2015), we fit the model using a dimension reduction strategy474

that accounted for spatial autocorrelation within a feasible computational time. Account-475

ing for spatial autocorrelation allows for statistically rigorous inference on the e�ects of476

interannual climate on sagebrush cover change in our study region. The spatial covariance477
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structure also provided a way to obtain spatially-explicit predictions at a resolution be-478

low that of the climate covariates (i.e., within the study region; Figs. 4,5). Our approach479

is amenable to any spatially-explicit time series of plant abundance, but we see remote-480

sensing datasets o�ering the largest opportunity for landscape-scale population models.481

Furthermore, it would be straighforward to include additional covariates related to dis-482

turbance (e.g., fire) or biotic interactions. Thus, we see our method as a first step toward483

coupling the mechanistic power of dynamic population models with the spatial extent of484

SDMs. The spatially- and temporally-explicit forecasts made possible by our approach485

should be especially relevant to land management decisions based on near-term forecasts.486

Several a priori modeling decisions determined the spatial extent and resolution of our re-487

sults. We retained the native spatial resolution of the remote sensing data (30 ◊ 30 meters).488

This constrained the extent that we could reasonably model because of the computational489

challenges in estimating spatial random e�ects. Even with our dimension reduction tech-490

nique, modeling a larger area at this resolution would require a greater number of spatial491

knots, and computation time would increase substantially (Wikle 2010). To model a larger492

spatial extent, we could aggregate the original remote-sensing time series data to a coarser493

spatial resoluation. This would allow us to model a much greater spatial extent with a sim-494

ilar number of knots and a similar computation time. While a coarser scale model would495

lose some fine-scale detail, it could be applied to a much larger area, potentially gaining496

some strength in estimating climate e�ects by spanning a greater range of climate vari-497

ation. However, gains made by incorporating greater regional variability by modeling at498

a coarser resolution could be o�set by the loss of information inherent when aggregating499

plant responses into larger pixels.500

Our spatial extent and resolution also a�ected our use of climate covariates. We did not501

downscale Daymet data to match the spatial resolution of the sagebrush data, meaning502

that in each year all pixels share the same climate covariates. This is a potential limita-503
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tion of our study, and could explain the weak e�ect of climate covariates that we observed504

(Fig. 3). We also did not allow di�erent portions of our study area to respond to climate505

in di�erent ways. Doing so would require spatially-varying climate e�ects and a substan-506

tial increase in computational time. However, in future applications, it will be important507

to allow climate e�ects to vary over space to better capture reality. Conn et al. (2015)508

provide examples of how such spatiotemporal interactions can be included in abundance509

models. We might expect climate e�ects to interact with spatial covariates such as soil510

type, slope, and aspect. In our relative small study area, we did not observe important511

e�ects of these factors, but it is possible to include such abiotic data layers as predictors512

when fitting models at larger spatial extents where variability may be greater.513

The uncertainty associated with our forecasts highlights several opportunities to improve514

our approach. First, parameter uncertainty could be reduced by regulating the variance515

of the posterior distributions of climate covariates via ridge regression (e.g., Gerber et al.516

2015). Second, uncertainty associated with climate projections could be reduced by identi-517

fying GCMs that perform exceptionally well for a particular study location (e.g., Rupp et518

al. 2013). Such considerations will be important when forecasting in support of particular519

management objectives. However, knowledge of uncertainty is itself important knowledge520

for management (Bradshaw and Borchers 2000). Deciding that no actions should be taken521

based on the data at hand is itself a management decision.522

Conclusion523

We introduced a new approach to fitting and simulating population models at large spa-524

tial extents with plant population data derived from state of the art remote sensing. We525

used the model to forecast future abundances of sagebrush in Wyoming and found that526

at our relatively cold site sagebrush should be expected to increase in cover. As more527

species-level remote sensing datasets become available and computing power increases this528
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approach will be applicable to a wider number of species and even larger spatial extents.529

Future modeling could include the e�ects of non-climate drivers – including the e�ects of530

species interactions and disturbance. For sagebrush, including fire and competition with531

non-native annual grasses in the model may be especially important for a complete ass-532

esment of the e�ects of climate change (Bradford and Lauenroth 2006). Fortunately, our533

spatio-temporal modeling framework could easily be extended to model additional species534

and dynamic processes as the data become availabe. The approach we have developed here535

fills an important gap in spatial scales between species distribution models and local-scale536

demographic population models.537
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Tables558

Table 1: Projected changes in temperature and precipitation at our study area from
CMIP5 average GCM projections for 2050-2100 relative to average temperature and pre-
cipitation from 1950-2000.
Emissions Scenario Absolute change in temperature Percentage change in precipitation
RCP 4.5 2.98° 8.94%
RCP 6.0 3.13° 8.64%
RCP 8.5 4.79° 11.0%
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Figures559

Figure 1: Location of the 5,070 × 2,430 meter kilometer study area in southwestern
Wyoming (black rectangle) and a snapshot of the percent cover data in 1984 (detailed
inset). Scale bar is relevant for US map only; refer to axes labels on the detailed inset of
sagebrush percent cover for scale of the study area.
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Figure 2: GCM yearly weather hindcasts (before solid line at 2011) and projections (after
solid line at 2011) for precipitation (A) and temperature (B) at our study area in south-
western Wyoming (see Fig. 1).
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Figure 3: Posterior distributions of climate covariates. The x-axis is the standardized
coe�cient value because we fit the statistical model for sagebrush cover change (Eq. 7)
using standardized covariate values. Only cumulative precipitation at time t-2 (pptLag) is
important (shown in blue; 90% CI does not overlap zero). Climate covariate codes: pptLag
= water year precipitation in year t-2 ; TmeanSpr1 = year t-1 average spring temperature;
ppt2 = year t fall through summer precipitation; TmeanSpr2 = year t average spring
temperature; ppt1 = year t-1 fall through summer precipitation.

27



Figure 4: Observed and predicted (A, B) equilibrium percent cover of sagebrush, and
prediction bias and precision (C, D) for the extent of our spatial area at 30-m resolution.
Observed equilibrium sagebrush cover (A) is the temporal mean of each pixel from the 28
year time series. Prediction results are from simulations that use posteior mean parameter
values. Precision in (D) represents the variability of each pixel over the course of the 2,000
iteration simulation. Axes definitions: Lat = latitude; Lon = longitude.
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Figure 5: Projected equilibrium cover under three IPCC climate change scenarios (RCP
= Representative Concentration Pathways) for our study area in southwestern Wyoming.
The top panel shows equilibrium cover based on simulations using observed climate. Sub-
sequent panels show equilibrium cover based on perturbed climate for each RCP scenario.
Forecasts are based on the projected climate changes in Table 1 applied to the observed
climate time series used to fit the statistical model. We used posterior mean parameter
estimates for all simulations. Color bar indicates percent cover of sagebrush in each 30x30
meter pixel. Axes definitions: Lat = latitude; Lon = longitude.
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Figure 6: Observed (black line before 2011) and forecasted (colored lines after 2011) sage-
brush percent cover. Long-term forecasts (A) were made for three IPCC emissions scenar-
ios (RCPs 4.5, 6.0, and 8.5) and are for the period of 2012 to 2098. Shaded regions show
limits of the 5th and 95th quantiles for simulations conducted using 50 di�erent sets of pa-
rameters from the MCMC output. Lines show mean trajectories. Uncertainty in forecasts
arises from uncertainty in GCM projections, uncerainty around the ecological process, and
uncertainty around parameter estimates. Before calculating the mean and quantiles for
each year across parameter sets and GCMs, we averaged percent cover over the 13,689 pix-
els. Panel (B) shows an example short-term forecast (10 years) using the MIROC5 GCM
projections under RCP 8.5. Each line shows a forecast from one parameter set.
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