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Abstract

Plant population models are powerful tools for predicting climate change impacts in one
location, but are difficult to apply at landscape scales. We overcome this limitation by tak-
ing advantage of two recent advances: remotely-sensed, species-specific estimates of plant
cover and statistical models developed for spatio-temporal dynamics of animal populations.
Using computationally efficient model reparameterizations, we fit a spatiotemporal pop-
ulation model to a 28 year time series of sagebrush (Artemisia spp.) percent cover over

a 2.5 x 5 km landscape in southwestern Wyoming while formally accounting for spatial
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autocorrelation. We include interannual variation in precipitation and temperature as co-
variates in the model to investigate how climate affects the cover of sagebrush. We then

use the model to forecast the future abundance of sagebrush at the landscape scale under
projected climate change, generating spatially explicit estimates of sagebrush population

trajectories that have, until now, been impossible to produce at this scale. Our broad-scale
and long-term predictions are rooted in small-scale and short-term population dynamics

and provide an alternative to predictions offered by species distribution models that do not
include population dynamics. Our approach, which combines several existing techniques in
a novel way, demonstrates the use of remote sensing data to model population responses to
environmental change that play out at spatial scales far greater than the traditional field

study plot.

Key words: population model, climate change, forecasting, spatiotemporal model, remote

sensing, sagebrush, Artemisia, dimension reduction

Introduction

Forecasting the impacts of climate change on plant populations and communities is a cen-
tral challenge for ecology (Clark et al. 2001, Petchey et al. 2015). Population models are
ideally suited for meeting such a challenge because they provide a way to link climate
drivers directly to population dynamics (Hare et al. 2010, Adler et al. 2012, Ross et al.
2015, Shriver 2015). However, inference from population models is typically limited to
small spatial extents because the data required is difficult to collect across broad species
ranges. Almost every study of plant population dynamics relies on demographic obser-
vations recorded at the meter to sub-meter scale (see, e.g., Salguero-Gémez et al. 2015).
Local-scale demographic data make building population projection models an easy task
(Ellner and Rees 2006, Rees and Ellner 2009, Adler et al. 2012), but it is very difficult

to extrapolate small-scale studies to large spatial extents with any certainty because the
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data likely only represent a small subset of parameter space and environmental conditions
(Freckleton et al. 2011, Queenborough et al. 2011). The real challenge is not to simply
make population forecasts, but to do so at spatial scales relevant to policy and manage-

ment decisions (Queenborough et al. 2011).

The ideal tool would be a broad-scale, dynamic population model (Schurr et al. 2012,
Merow et al. 2014), but developing useful models at this scale has been limited by the
availability of time series data at large spatial extents and statistical methods for fitting
high-dimensional spatial models. Fortunately, new advances in remote sensing and statis-
tics now allow us to overcome both of these limitations. First, new remote-sensing (RS)
methods are now producing accurate time series of species-specific plant cover at land-
scape scales. These data can be fit with dynamic population models which include yearly
fluctuations in climate as covariates. Such RS time series have revolutionized models of
how climate affects ecosystem-level processes (e.g., Running et al. 2004) and have been
used to detect long-term trends in plant population abundance (e.g., Homer et al. 2015),
but they have yet to be used to drive a dynamic population model. Second, animal pop-
ulation modelers have developed dimension reduction and reparameterization techniques
to efficiently fit high-dimension spatiotemporal models (see Conn et al. 2015 for a review).
These new statistical methods have yet to be applied to RS-derived plant population data

at broad scales.

Large-scale, spatially-explicit population models based on RS data could offer a valuable
new way to investigate the effects of large-scale environmental changes playing out at land-
scape and regional scales. Most current assesments of how plant and animal populations
will respond to climate change rely on species distribution models (SDMs). SDMs rely

on static associations between contemporary climate and a species’ distribution or, more
rarely, abundance to project future distribution or abundance (Elith and Leathwick 2009)

and they are easily applied at landscape to continental scales (e.g., Maiorano et al. 2013,
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Clark et al. 2014). However, the short-term and small-scale population dynamics that
actually drive the large-scale distributions of species are not represented in most SDMs.
Because SDMs typically rely on occurence data, their projections of habitat suitability or
probability of occurence provide little information on the future states of populations in
the core of their range — areas where a species exists now and is expected to persist in the
future (Ehrlén and Morris 2015). Furthermore, because they lack short-term dynamics,
SDMs usually cannot produce any estimate of the rate at which local populations will
increase or decrease in the near-term and instead project a future equilibrium species dis-
tribution that may or may not ever be reached. Direct validation of such predictions is
extremely rare (Roberts and Hamann 2012). Large-scale dynamic population models could
overcome these limitations. They would produce spatially-explicit estimates of species
abundance within the species range (Ehrlén and Morris 2015), have the potential to model
expansion in abundance outside the range when coupled with dynamic models of dispersal,
and would provide testable predictions of how populations should respond to short-term
climate perturbations. These short-term predictions also would give modelers the opportu-

nity to repeatedly validate and refine their models (Luo et al. 2011).

Sagebrush (Artemisia spp.) ecosystems offer an ideal testing ground for new spatially ex-
plicit population models derived from RS data. Sagebrush species are widely distributed
(Kuchler 1964), they are sensitive to climate (Perfors et al. 2003, Miglia et al. 2005, Poore
et al. 2009, Dalgleish et al. 2011, Xian et al. 2012, Apodaca 2013, Schlaepfer et al. 2014a,
2014b, Harte et al. 2015, Homer et al. 2015), new landscape and regional scale time se-
ries of sagebrush cover are now being produced from aerial imagery (Homer et al. 2012),
and forecasts of future sagebrush ecosystems are in high demand due to the precarious
conservation status of the greater sage-grouse (Centrocercus urophasianus) (Arnett and
Riley 2015). SDMs typically predict that much of the area occupied by sagebrush ecosys-
tems today will become unsuitable for sagebrush due to climate change, resulting in a dra-

matic loss in the extent of sagebrush habitat by the end of this century (Shafer et al. 2001,
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Neilson et al. 2005, Bradley 2010, Schlaepfer et al. 2012, Still and Richardson 2015). Eco-
hydrology models supply a possible mechanism for sagebrush losses predicted by SDMs:
climate warming could lead to earlier snowmelt, increased evaporation and ultimately

less recharge of deeper soil layers in the spring (Schlaepfer et al. 2012, 2014a). In warmer
parts of its range, increased temperature could be especially detrimental to sagebrush as
it depends on water from deeper soil to survive and grow in this arid region (Pechanec

et al. 1937, Schlaepfer et al. 2011, Germino and Reinhardt 2014). In contrast, at higher
elevations and in colder regions, warming and earlier snowmelt could lengthen the growing
season and increase sagebrush occurrence (Schlaepfer et al. 2012, 2014a). Direct observa-
tions of individual plants and experimental plots tend to agree with these models: growth
tends to respond negatively to spring and summer temperatures (Miglia et al. 2005, Poore
et al. 2009, Apodaca 2013) except at higher elevations where earlier snowmelt may allow
for a longer growing season (Perfors et al. 2003, Harte et al. 2015). A large-scale, spatially-
explicit population model for sagebrush driven by interannual climate variability would
provide a valuable new tool for assessing how sagebrush could respond to climate change

in the future.

Building on recent technological advances in spatial statistics (Latimer et al. 2009, Conn
et al. 2015) and anticipating ever-increasing availability of RS data (He et al. 2015), we
demonstrate how large-scale plant population models could be used to predict popula-
tion impacts of climate change. As a proof-of-concept, we use a process model motivated
by Gompertz density-dependent population growth and a remotely-sensed time series of
sagebrush cover from Wyoming (Homer et al. 2012, 2015). We account for spatial autocor-
relation with dimension reduction techniques (Latimer et al. 2009, Conn et al. 2015) and
produce spatially-explicit estimates of sagebrush percent cover. Unlike most SDMs, our
approach models the dynamics of plant abundance through time, and thus, is a popula-
tion model, in the same spirit that models of animal counts through time are population

models. The modeling framework we propose can be applied to any spatially-explicit time
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series of plant cover or density, but its application to remotely-sensed data products offers
the greatest potential to combine the information of population models (e.g., population

status and temporal dynamics) and the spatial extent of species distribution models.

Materials and Methods

Data

Remotely-sensed time series

To demonstrate our modeling approach, we use a subset of a remotely-sensed time series
of sagebrush (Artemisia spp.) canopy cover in Wyoming (Homer et al. 2012). As part of
a separate study, Homer et al. 2012 estimated sagebrush percent cover using a regression
tree to relate ground reflectances retrieved by three sources of optical imagery (QuickBird,
Landsat, and AWiFS) to 1,780 field observations of sagebrush cover distributed across
Wyoming. The regression tree model was further validated using another 297 field obser-
vations. For Wyoming sagebrush, the model achieved an R? = 0.65 and an out-of-sample
RMSE of 5.46% (Homer et al. 2012). To hind-cast sagebrush cover the regression tree
model was applied to historical remote sensing images to generate yearly predictions of
sagebrush cover for all of Wyoming for the years 1984-2011. This resulted in an annual
time series of sagebrush cover at 30 meter resolution from 1984 to 2011 (Fig. B1). In this
remote sensing product, values represent the percentage of a 30 x 30 meter pixel covered
by sagebrush. In our study, we focused on a 5,070 x 2,430 meter subset totaling 13,689 30
x 30 meter pixels each year (Fig. 1). Thus, the subset of the remote sensing product we
use contains 369,603 observations spanning 27 year-to-year transitions (27 years x 13,689

pixels).

Climate covariates
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Our approach models interannual changes in plant cover as a function of seasonal climate
variables. We used daily historic weather data for the center of our study site from the
NASA Daymet data set (available online)'. The Daymet weather data are interpolated
between coarse observation units and capture some spatial variation. We relied on weather
data for the centroid of our study area. We calculated five climate variables from the

Daymet data for the time period coinciding with our remotely sensed data (1984 to 2011).

We narrowed our focus to climate covariates we know are important for sagebrush and
that could be calculated from general circulation model projections. The five climate vari-
ables in our population model are: (1) cumulative, “water year” precipitation for year ¢-2
(lagPpt), (2) year t-1 fall through summer precipitation (ppt1), (3) year ¢ fall through sum-
mer precipitation (ppt2), (4) year t-1 average spring temperature (TmeanSprl), and (5)
year t average spring temperature ( TmeanSpr2), where t-1 to ¢ is the transition of interest.
We selected these variables a priori based on previous studies (see Introduction), though

not all emerge as important predictors in our model.

Additive spatio-temporal model for sagebrush cover

We use a descriptive model for sagebrush cover that includes additive spatial and temporal
effects similar to that described by Conn et al. (2015). Interannual change in percent
cover represents the integrated outcome of recruitment, survival, growth, and retrogression
(shrinkage) of individual plants from year to year. We model observed integer percent

cover (y) in cell 7 at time ¢ as conditionally Poisson
i+ ~ Poisson(p; ), (1)
where p;, is the expected percent cover of pixel ¢ in year ¢

10g(ﬂz‘,t> = Por+ B1Yir—1 + Xh + n . (2)
—_— ~— —~

temporal 4+ dens. dep  climate  spatial

Thttp://daymet.ornl.gov/
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Our model of percent cover change includes a density-dependent effect of log-transformed
cover in the previous year (y;;—1), climate effects (x;), and a spatial random effect (1) for
each pixel 7. Climate effects were standardized [(xz; —Z)/o(x)] to improve convergence during
the model fitting stage and to allow for easier prior specification. The intercept, £y, was
allowed to vary through time; these random year effects recognize that all observations
from a particular year share the same climate covariates and thus are not independent.
We used a Poisson likelihood because integer percent cover values in the sagebrush data
product can be considered a form of count data. We also evaluated a negative binomial
model, but found little evidence for overdispersion beyond what our model was already
accomodating via the spatial random effects (n). There was no evidence of zero-inflation
in our data, but see below (Accomodating zeros) for how we handled the small number

of zero percent cover observations. We assume that the remotely sensed estimates of per-
cent cover are "true" and free of error. This need not be the case, and if measurement or
sampling error is known then it could be included in our Bayesian model as a "sampling

model" (Hobbs and Hooten 2015).

The spatial random effect (1) accounts for spatial autocorrelation among pixels that occur
near each other in space. Thus, ) acts as an offset on the intercept (5o;), creating a spa-
tial field that defines how pixels differ from the mean, on average, in space (e.g., areas of
perennially low or high cover, relative to average cover). Fitting the model with a spatial
random effect () is computationally demanding for large data sets like ours. The com-
putational demand is due to the required calculations of the spatial covariance matrices,
which increase as a cubic function of the number of locations (Wikle 2010). Key to our
approach is a dimension reduction strategy that greatly reduces the number of parameters
needed to be estimated to account for spatial variation by reducing the size of the spatial
covariance matrices that need to be inverted at each MCMC iteration. Fitting models that
appropriately account for spatial autocorrelation over large spatial extents would not be

feasible without these modern techniques. Our dimension reduction strategy expresses the
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high dimensional spatial random effect, 1, as the product of an expansion matrix, K, and
a smaller parameter vector, a (e.g., Hooten et al. 2003, Hooten and Wikle 2007, Conn et

al. 2015). We can then approximate the spatial effect as
n~ Ka, (3)
&y, ~ Normal(0, 03). (4)
In this case, a is a m x 1 vector of reduced spatial random effects, and K is a .S x m matrix
that maps the reduced effects to the full S-dimensional space, where S is the total number

of observed locations. Thus, we are able to reduce the effective number of parameters from

S to m.

The last remaining obstacle is to parameterize the matrix of basis functions, K. We use

kernel convolution (Barry and Hoef 1996, Higdon 1998) to interpolate the spatial random
effect between m “knots” that are nonrandomly distributed across the space of our study
area. This means we are modeling spatial random effects at the knot level, and we use K
to interpolate those effects between knots. We use an exponential kernel density to define

the distance-decay function around the knots (w), such that the entries of K are

S
Ks,m = ws,m/ Z Ws,m, (5)
s=1

where

_ds m
W m = €XP ( ) (6)
o

and dy ,, is the Euclidean distance between the centroid of sample cell s and the location
of knot m, and o is the kernel bandwidth. It is possible, through exhaustive model se-
lection and fitting, to determine the optimal form of the kernel and to estimate optimal
values for o (Higdon 2002, Hooten and Hobbs 2015). However, given the relative size of
our dataset and computational limitations, we defined kernels around 231 knots (Fig. C2)
whose nearest neighbor distances are approximately equal to the range of spatial depen-
dence in residuals from a simple GLM fit without climate covariates and the spatial ran-

dom effect (~500 meters; Appendix C). An infinite number of knots would result in an
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exact representation of the spatial process and covariance model. Computationally, using
an infinite number of knots is not possible, thus the use of dimension reduction techniques
serves as an approximation, where the accuracy increases with the number of knots. Given
the tradeoff between knot number and computation time, we chose to base our knot num-

ber on the spatial dependence as described above.

The Bayesian posterior distribution of our spatio-temporal model can be expressed as

..oyl (1T Tl o) @

t=1:=1

/80,157 617 v, a] [60,1&

(H [amwﬂ) GBI o2

m=1

Accomodating zeros

Our process model (in Eq. 2) includes a log transformation of the observations (log(y:—1)).
Thus, our model does not accomodate zeros. Fortunately, we had very few instances where
pixels had 0% cover at time ¢-1 (N = 47, which is 0.01% of the data set). Thus, we ex-
cluded those pixels from the model fitting process. However, when simulating the process,
we needed to include possible transitions from zero to non-zero percent cover. We fit an
intercept-only logistic model to estimate the probability of a pixel going from zero to non-

Z€ro Cover
y; ~ Bernoulli(y;) (8)
logit(p:) = bo (9)
where y is a vector of Os and 1s corresponding to whether a pixel was colonized (>0%
cover) or not (remains at 0% cover) and p; is the expected probability of colonization as
a function of the mean probability of colonization (by). We fit this simple model using the
‘elm’ command in R (R Core Team 2013). For data sets in which zeros are more common

and the colonization process more important, the same spatial statistical approach we used

for our cover change model could be applied and covariates such as cover of neighboring

10
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cells could be included.

Fitting the model

We fit the spatiotemporal model in R (R Core Team 2013) using the ‘No-U-Turn” Hamilto-
nian Monte Carlo sampler in Stan (Stan Development Team 2014a) and the RStan pack-
age (Stan Development Team 2014b). We obtained posterior distributions of all model
parmaters from three MCMC chains comprised of 1,000 iterations each, after discarding
an initial 1,000 iterations as burn in. Short chains of samples are a hallmark of the Stan
algorithm, which is extremely efficient. Compared to other samplers, fewer iterations are
required to achieve convergence. Each chain was initialized with unique parameter val-
ues and the model was fit in parallel using the Utah State University High-Performance
Computing facility. Model fitting required five days on a four node Central Processing
Unit with 2 x AMD Opteron(tm) Processor 4386 @ 3.10 Ghz, 64GB of RAM per node,
16 cores per node, and each chain launched in parallel on separate cores. We assessed
convergence visually and calculated scale-reduction factors (Appendix D, R < 1.1 for all

parameters) (Gelman and Rubin 1992, Gelman and Hill 2009).

Simulating the process

We performed four sets of simulations to (1) compare observed and simulated equilib-
rium cover, (2) compare observed and simulated year- and location-specific cover, (3) fore-
cast future equilibrium population states under projected climate change, and (4) make
temporally-explicit forecasts of sagebrush cover starting the final year of our observations
and ending in year 2098. Using the posterior distribution of model parameters, we sim-
ulated a matrix of pixels equal to the size of the study area (13,689 pixels or matrix ele-
ments). For simulations (1) and (3) we initialized all pixels with arbitrarily low cover (1%)

and then projected the model forward by randomly drawing climate covariates from the

11
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observed climate time series (for 1) or a perturbed climate time series (for 3). We ran equi-
librium simulations (1 and 3) for 2,000 time steps and then compared the output across
simulations, after discarding an initial 100 time steps. To calculate average future equilib-
rium sagebrush cover, we ran simulation (3) for each GCM and RCP scenario separately,
and then averaged the results over GCMs. For simulation (2), we initialized each pixel
with its actual percent cover value for time ¢ and cell s and projected the model forward
one time step and compared the one-step ahead forecast with the observed value. For
simulation (4), we initialized each pixel with the final observed value in 2011 and then
projected the model forward based on GCM yearly weather projections. We ran these sim-
ulations for each GCM and RCP scenario combination separately and then aggregated
the results over the GMCs by calculating the mean and the 90th percentiles for each RCP

scenario.

We used the posterior mean of each parameter for all simulations except for (4) where we
ran 50 simulations with unique sets of parameters from the chains. Random year effects
were included in simulations by randomly drawing a posterior mean year effect (5, ;) for
each iteration (simulations 1 and 3), using the posterior mean year effect for a specific year
(simulation 2), or by a drawing a future-year random effect from the posterior mean and
standard deviation of the mean intercept (simulation 4, e.g., Sor ~ normal( /3, a[%o) for
some future year 7'). Our simulation approach provides a reasonable and computationally
efficient approximation to the true posterior predictive mean when used in these scenarios

with our data.

We required future projections of climate for our study area to conduct the equilibrium
and temporally-explicit forecasts described above. Thus, we used the most recent climate
projections from the Intergovernmental Panel on Climate Change (IPCC), the Coupled
Model Intercomparison Project 5 (CMIP5; available online)?. The CMIP5 provides pro-

jections from a suite of global circulations models (GCMs); we used projections from 18

2http://cmip-pemdi.linl.gov /cmip5/
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GCMs (Table A1) that produced weather projections for three “Representative Concen-
tration Pathways”: RCP 4.5, RCP 6.0, and RCP 8.5 (described online)3. The three RCPs
correspond to stabilization of radiative forcing before 2100, after 2100, and ongoing in-

crease in greenhouse gas emissions, respectively.

To simulate equilibrium sagebrush cover under projected future climate we applied average
projected changes in precipitation and temperature to the observed climate time series.
For each GCM and RCP scenario combination, we calculated average precipitation and
temperature over the 1950-2000 time period and the 2050-2098 time period. We then cal-
culated the absolute change in temperature between the two time periods (AT) and the
proportional change in precipitation between the two time periods (AP) for each GCM
and RCP scenario combination. Lastly, we applied AT and AP to the observed 28-year
climate time series to generate a future climate time series for each GCM and RCP sce-
nario combination. These generated climate time series were used to simulate equilibrium
sagebrush cover. We simulated equilibrium cover separately for each GCM and RCP sce-
nario combination before averaging the results, but we show the average projected climate

changes across all models in Table 1.

For the temporally-explicit forecasts we used yearly GCM projections from 2012 to 2098

to simulate the process starting from the end point of the remotely sensed sagebrush cover
data (ends in 2011). We aggregated daily GCM output for each GCM and RCP scenario

into the seasonal climate covariates used to fit our model. These yearly climate time series
were not aggregated further because we ran simulations for each GCM and RCP scenario,
rather than one simulation per RCP scenario averaged over GCMs. The key assumption of
our forecasting approach is that the historical correlations between weather and sagebrush

cover change will continue to hold in the future.

3http://tntcat.iiasa.ac.at/RepDb/

13



324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

Results

Averaging across all GCMs, precipitation and temperature in our study area are projected
to increase; the magnitude of increase depends on the RCP scenario (Table 1). Trajecto-

ries of our climate covariates from GCM projections show similar trends (Fig. 2).

All parameters in our model converged on stable posterior distributions (Appendix D).
Only the lagPpt climate covariate can be considered important based on a 90% credible
interval, and it had a positive effect on sagebrush percent cover change (Fig. 3). In other
words, if the year 2000 water year was wetter than average, sagebrush cover would increase
from the 2001 to the 2002 growing season. Other climate effects strongly overlapped zero
but their posterior means were positive, except for fall-through-spring precipitation the
first year of a cover transition (#-1), whose posterior mean was negative (Fig. 3). The
posterior mean for the spatial random effect, 1, captured the overall spatial structure of
the observed data (Fig. E1). This indicates our choice of knot placement and dimension

reduction strategy was adequate for describing permanent spatial variation in the data.

When we simulated the pixel-based population model based on observed climate, it was
able to reproduce the spatial pattern of observed percent cover, averaged over time (Fig.
4A B). Our model shows a tendency to underpredict perennially-low percent cover pixels
(Fig. 4C), but does a better job at predicting high cover pixels. Point predictions are most
confident, though slightly biased, in low percent cover pixels (Fig. 4D). The model is also
able to adequately reproduce observed dynamics when we make one-step-ahead predictions
based on observed climate and cover in the previous year for each pixel. When we made
these in-sample, one-step-ahead forecasts, the model achieved an RMSE = 4.31, in units of

percent cover. The Pearson’s correlation between observations and predictions was 0.62.

When we apply the fitted model to IPCC climate change scenarios, the model predicts
gains in sagebrush percent cover, on average (Figs. 5, 6A). The spatial effect remains

strong enough in low cover regions to counteract the positive effect of projected precip-
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itation increases (Fig. 5). Thus, our model predicts an increase in the heterogeneity of
sagebrush cover because projected cover increases are smaller in low cover pixels than

in high cover pixels (Fig. 5 and Fig. F1). For the temporally-explicit forecasts, we show
spatially-averaged values and the associated uncertainty due to variability in GCM pro-
jections, variability in model parameters, and uncertainty in our process model (Fig. 6A).
Based on our model and GCM projections, we forecast an average increase in sagebrush
cover at our study area, but a decrease is not outside the realm of possibility (shaded re-
gions in Fig. 6A). The generally increasing trend reflects the positive effect of precipitation
on sagebrush cover change estimated for our study area (Fig. 3). We also show how our

model is capable of near-term forecasts in Fig 6B.

Discussion

Despite the need to forecast population responses to climate change over large spatial ex-
tents, as demonstrated by the wide application of species distribution models (e.g., Clark
et al. 2014), landscape-scale population models for plant species remain more concept than
reality (Schurr et al. 2012, Merow et al. 2014). We introduced a new approach that uses
methods from the dynamic spatio-temporal modeling literature (e.g., Conn et al. 2015) to
fit a population model to remotely-sensed estimated of plant percent cover. As a proof-of-
concept, we applied our approach to a remotely-sensed data product of sagebrush percent
cover from 1984 to 2011 in Wyoming (Homer et al. 2012). We first discuss our results
specific to sagebrush ecology and response to climate, and then discuss the more general

implications and limitations of our proposed approach.

Sagebrush response to climate and climate change

The climate effects we estimated, based on cover data at 30 meter spatial resolution, are

consistent with individual-level responses of sagebrush to climate-related variables. Re-
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search on individual plants has shown that wetter winters are correlated with greater stem
growth in sagebrush (Poore et al. 2009, Apodaca 2013) and that warmer spring tempera-
tures may enhance sagebrush growth in cold climates by advancing the date of snowmelt
and increasing the length of the growing season (Perfors et al. 2003, Harte et al. 2015). In
agreement with those individual-level responses, posterior means for all precipitation and
temperature effects in our model were positive, except for the effect of fall-through-spring
precipitation in the first year of a cover transition (ppt1, Fig. 3). The cumulative amount
of precipitation the year before a cover transition (pptLag in our model) emerged as the

strongest predictor of sagebrush cover change (Fig. 3). However, mean estimates for the

climate effects are relatively weak (Fig. 3).

Such small effects could indicate that sagebrush are not very sensitive to interannual cli-
mate variability, that our model is poorly specified, or that climate responses are difficult
to detect using coarse-scale data. Given findings from previous research demonstrating the
importance of precipitation and temperature to sagebrush growth (Pechanec et al. 1937,
Schlaepfer et al. 2011, Germino and Reinhardt 2014) and regeneration (Schlaepfer et al.
2014b), it is unlikely that sagebrush are insensitive to climate. We used aggregated climate
covariates that may not completely capture the climate-dependence of sagebrush cover
change. However, the covariates we chose closely match the climate-related variables that
have been shown to drive sagebrush growth, survival, and regeneration (e.g., Dalgleish et
al. 2011, Schlaepfer et al. 2014b). More likely, aggregated estimates of plant abundance,
such as percent cover, mask interannual variability at the level of the individual plant and
makes it more difficult to detect the drivers of internanual variability. Additionally, we
chose not to downscale the Daymet weather data, meaning that in a given year all pixels
shared the same climate, which limits our statistical power. Nonetheless, our model was
capabable of detecting climate effects that agree with our knowledge of sagebrush ecology

and allowed us to make forecasts of future sagebrush abundance.
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Under projected climate, we forecast modest increases in sagebrush cover for all RCP
scenarios in the long-term (Figs. 5,6A). Our forecasts reflect both the estimated effect
size for each climate covariate and the amount of change in those covariates projected by
the GCMs. Cumulative precipitation the year before a given year-to-year transition was
the strongest standardized effect (Fig. 3), but precipitation is projected to increase only
moderately (Table 1, Fig. 2) and the negative effect of fall-through-spring precipitation in
the first year of a cover transition (ppt!) had an offsetting effect. In contrast, mean spring
temperature had a weak positive effect on sagebrush cover changes, but the projected

temperature increase is large (Table 1, Fig. 2).

An interesting consequence of explicitly modeling the effect of space (through n) is the
forecasted increase in spatial heterogeity (Fig. F1). Our model projects little change in
low cover pixels but substantial increases in the cover of high cover pixels (Fig. 5). Had
we not explicitly accounted for spatial-dependence in our model, we would have missed
this result. We were unable to attribute the spatial structure apparent in the data (Fig.
4A) and approximated by our model (n, Fig. E1) to slope, aspect, elevation, or coarse soil
type (results not shown). The lack of correlation between n and landscape factors leads us
to conclude that the spatial structure in our data set emerges from some combination of

fine-scale microhabitat associations and legacy effects of disturbance.

While we forecast an increase in sagebrush cover at our study area, SDM studies typically
project dramatic declines in climate suitability for sagebrush with warming (Shafer et

al. 2001, Neilson et al. 2005, Bradley 2010, Schlaepfer et al. 2012, Still and Richardson
2015). There are many potential explanations for this apparent contrast, ranging from
the type of model used to the particular climate covariates considered, but the location of
our study area in a cold portion of sagebrush’s geographic distribution may be the best.
The response of plant species to weather varies along climatic gradients (e.g., Clark et

al. 2011, Vanderwel et al. 2013), and sagebrush are especially sensitive to the timing of
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snowmelt because their growth depends on recharge of deep soil water (Schlaepfer et al.
2012, 2014a). In warmer parts of the sagebrush range, earlier snowmelt is detrimental to
growth and survival (Pechanec et al. 1937, Schlaepfer et al. 2011, Germino and Reinhardt
2014). In colder regions, earlier snowmelt due to temperature increases can lengthen the
growing season and increase sagebrush occurence and cover (Schlaepfer et al. 2012, 2014a).
The average annual temperature across the sagebrush steppe biome is 6.9°C (sd = 1.6;
Schlaepfer et al. 2011), whereas average temperature at our study area from 1980 to 2013
was 4.6°C (calculated from Daymet estimates). Our study area lies at the cold extreme of
the sagebrush range, thus the weak positive response to temperature that we estimated
(Fig. 3) and carried through to our forecasts (Figs. 5,6A) likely represents the positive ef-

fect of earlier snowmelt, and thus higher moisture availability early in the growing season.

A previous analysis of a different subset of the remote sensing data set we used also came
to a different conclusion, projecting future sagebrush decline (Homer et al. 2015). The
discrepancy between the results of Homer et al. (2015) and ours primarily reflects a differ-
ence in the climate projections used for projecting future changes rather than differences
in our inference about responses to historical variation in weather. Homer et al. (2015)
used downscaled weather projections from a single model from the IPCC 4 whereas we
used native-resolution weather projections from a suite of models from the IPCC 5. Con-
sistent with our study, Homer et al. (2015) found a generally positive relationship between
pixel-level sagebrush cover and precipitation, but the future climate scenario they chose
resulted in a mean decrease in precipitation, causing a predicted decline in sagebrush cover.
A second difference is that Homer et al. (2015) relied on regressions of decadal trends in
sagebrush cover against decadal trends in climate at the level of individual pixels. Our
current approach is fundamentally different in that we specifically model the impact of in-
terannual variation in weather on year-to-year changes in sagebrush cover using a dynamic
population model. Thus, our model takes advantage of the additional information con-

tained within short-term responses to climate fluctuations. Lastly, the location of Homer
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et al’s (2015) study area is, on average, at a lower elevation than our current study area.
The geographic difference results in different historical and projected climate, and, as dis-
cussed above, sagebrush may respond differently to warming depending on geographic

location.

We projected sagebrush cover to the end of this century, but an important feature of our
approach is that it can also produce short-term forecasts (Fig. 6B). For example, we could
forecast the effects of a multi-year regional drought on sagebrush cover (Debinski et al.
2010). Validating spatial population models against short-term predictions would give
ecological forecasters a way to assess and improve the performance of their models, which
would greatly increase our confidence in long-term forecasts. This cycle of prediction, vali-
dation, and refinement is missing from most currently available population-level forecasts

of the effects of climate change.

A landscape-scale plant population modeling approach: opportunities and limi-

tations

Our approach for modeling plant populations overcomes two major hurdles for spatially-
explicit population models. First, we used moderate resolution, remotely-sensed estimates
of sagebrush percent cover as a response variable, enabling us to fit a dynamic population
model over a large spatial extent. Species-specific estimates of plant abundance are becom-
ing commonplace as remote sensing technology develops (e.g., Baldeck and Asner 2014,
Colgan and Asner 2014), and in a few years several remotely-sensed time series may be
available. Second, borrowing from new methods in spatio-temporal modeling of animal
abundance (e.g., Conn et al. 2015), we fit the model using a dimension reduction strategy
that accounted for spatial autocorrelation within a feasible computational time. Account-
ing for spatial autocorrelation allows for statistically rigorous inference on the effects of

interannual climate on sagebrush cover change in our study region. The spatial covariance
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structure also provided a way to obtain spatially-explicit predictions at a resolution be-
low that of the climate covariates (i.e., within the study region; Figs. 4,5). Our approach
is amenable to any spatially-explicit time series of plant abundance, but we see remote-
sensing datasets offering the largest opportunity for landscape-scale population models.
Furthermore, it would be straighforward to include additional covariates related to dis-
turbance (e.g., fire) or biotic interactions. Thus, we see our method as a first step toward
coupling the mechanistic power of dynamic population models with the spatial extent of
SDMs. The spatially- and temporally-explicit forecasts made possible by our approach

should be especially relevant to land management decisions based on near-term forecasts.

Several a priori modeling decisions determined the spatial extent and resolution of our re-
sults. We retained the native spatial resolution of the remote sensing data (30 x 30 meters).
This constrained the extent that we could reasonably model because of the computational
challenges in estimating spatial random effects. Even with our dimension reduction tech-
nique, modeling a larger area at this resolution would require a greater number of spatial
knots, and computation time would increase substantially (Wikle 2010). To model a larger
spatial extent, we could aggregate the original remote-sensing time series data to a coarser
spatial resoluation. This would allow us to model a much greater spatial extent with a sim-
ilar number of knots and a similar computation time. While a coarser scale model would
lose some fine-scale detail, it could be applied to a much larger area, potentially gaining
some strength in estimating climate effects by spanning a greater range of climate vari-
ation. However, gains made by incorporating greater regional variability by modeling at

a coarser resolution could be offset by the loss of information inherent when aggregating

plant responses into larger pixels.

Our spatial extent and resolution also affected our use of climate covariates. We did not
downscale Daymet data to match the spatial resolution of the sagebrush data, meaning

that in each year all pixels share the same climate covariates. This is a potential limita-
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tion of our study, and could explain the weak effect of climate covariates that we observed
(Fig. 3). We also did not allow different portions of our study area to respond to climate
in different ways. Doing so would require spatially-varying climate effects and a substan-
tial increase in computational time. However, in future applications, it will be important
to allow climate effects to vary over space to better capture reality. Conn et al. (2015)
provide examples of how such spatiotemporal interactions can be included in abundance
models. We might expect climate effects to interact with spatial covariates such as soil
type, slope, and aspect. In our relative small study area, we did not observe important
effects of these factors, but it is possible to include such abiotic data layers as predictors

when fitting models at larger spatial extents where variability may be greater.

The uncertainty associated with our forecasts highlights several opportunities to improve
our approach. First, parameter uncertainty could be reduced by regulating the variance
of the posterior distributions of climate covariates via ridge regression (e.g., Gerber et al.
2015). Second, uncertainty associated with climate projections could be reduced by identi-
fying GCMs that perform exceptionally well for a particular study location (e.g., Rupp et
al. 2013). Such considerations will be important when forecasting in support of particular
management objectives. However, knowledge of uncertainty is itself important knowledge
for management (Bradshaw and Borchers 2000). Deciding that no actions should be taken

based on the data at hand is itself a management decision.

Conclusion

We introduced a new approach to fitting and simulating population models at large spa-
tial extents with plant population data derived from state of the art remote sensing. We
used the model to forecast future abundances of sagebrush in Wyoming and found that
at our relatively cold site sagebrush should be expected to increase in cover. As more

species-level remote sensing datasets become available and computing power increases this
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approach will be applicable to a wider number of species and even larger spatial extents.
Future modeling could include the effects of non-climate drivers — including the effects of
species interactions and disturbance. For sagebrush, including fire and competition with
non-native annual grasses in the model may be especially important for a complete ass-
esment of the effects of climate change (Bradford and Lauenroth 2006). Fortunately, our
spatio-temporal modeling framework could easily be extended to model additional species
and dynamic processes as the data become availabe. The approach we have developed here
fills an important gap in spatial scales between species distribution models and local-scale

demographic population models.
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Tables

Table 1: Projected changes in temperature and precipitation at our study area from
CMIP5 average GCM projections for 2050-2100 relative to average temperature and pre-
cipitation from 1950-2000.

Emissions Scenario Absolute change in temperature Percentage change in precipitation

RCP 4.5 2.98° 8.94%
RCP 6.0 3.13° 8.64%
RCP 8.5 4.79° 11.0%
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Figure 1: Location of the 5,070 x 2,430 meter kilometer study area in southwestern
Wyoming (black rectangle) and a snapshot of the percent cover data in 1984 (detailed
inset). Scale bar is relevant for US map only; refer to axes labels on the detailed inset of
sagebrush percent cover for scale of the study area.
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Figure 2: GCM yearly weather hindcasts (before solid line at 2011) and projections (after
solid line at 2011) for precipitation (A) and temperature (B) at our study area in south-
western Wyoming (see Fig. 1).
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Figure 3: Posterior distributions of climate covariates. The x-axis is the standardized
coefficient value because we fit the statistical model for sagebrush cover change (Eq. 7)
using standardized covariate values. Only cumulative precipitation at time ¢-2 (pptLag) is
important (shown in blue; 90% CI does not overlap zero). Climate covariate codes: pptLag
= water year precipitation in year ¢-2; TmeanSprl = year t-1 average spring temperature;
ppt2 = year t fall through summer precipitation; TmeanSpr2 = year ¢ average spring
temperature; pptl = year ¢-1 fall through summer precipitation.
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Figure 4: Observed and predicted (A, B) equilibrium percent cover of sagebrush, and
prediction bias and precision (C, D) for the extent of our spatial area at 30-m resolution.
Observed equilibrium sagebrush cover (A) is the temporal mean of each pixel from the 28
year time series. Prediction results are from simulations that use posteior mean parameter
values. Precision in (D) represents the variability of each pixel over the course of the 2,000
iteration simulation. Axes definitions: Lat = latitude; Lon = longitude.
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Figure 5: Projected equilibrium cover under three IPCC climate change scenarios (RCP
= Representative Concentration Pathways) for our study area in southwestern Wyoming.
The top panel shows equilibrium cover based on simulations using observed climate. Sub-
sequent panels show equilibrium cover based on perturbed climate for each RCP scenario.
Forecasts are based on the projected climate changes in Table 1 applied to the observed
climate time series used to fit the statistical model. We used posterior mean parameter
estimates for all simulations. Color bar indicates percent cover of sagebrush in each 30x30
meter pixel. Axes definitions: Lat = latitude; Lon = longitude.
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Figure 6: Observed (black line before 2011) and forecasted (colored lines after 2011) sage-
brush percent cover. Long-term forecasts (A) were made for three IPCC emissions scenar-
ios (RCPs 4.5, 6.0, and 8.5) and are for the period of 2012 to 2098. Shaded regions show
limits of the 5th and 95th quantiles for simulations conducted using 50 different sets of pa-
rameters from the MCMC output. Lines show mean trajectories. Uncertainty in forecasts
arises from uncertainty in GCM projections, uncerainty around the ecological process, and
uncertainty around parameter estimates. Before calculating the mean and quantiles for
each year across parameter sets and GCMs, we averaged percent cover over the 13,689 pix-
els. Panel (B) shows an example short-term forecast (10 years) using the MIROC5 GCM
projections under RCP 8.5. Each line shows a forecast from one parameter set.
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