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a b s t r a c t 

Automated microscopy image restoration, especially in Differential Interference Contrast (DIC) imaging 

modality, has attracted increasing attentions since it greatly facilitates long-term living cell analysis with- 

out staining. Although the previous work on DIC image restoration is able to restore the nuclei regions of 

living cells, it is still challenging to reconstruct the unnoticeable cytoplasm details in DIC images. In this 

paper, we propose to extract the tiny movement information of living cells in DIC images and reveal the 

hidden details in DIC images by magnifying the cells’ motion as well as attenuating the intensity variation 

from the background. From our restored images, we can clearly observe the previously-invisible details 

in DIC images. Experiments on two DIC image datasets show that the motion-based restoration method 

can reveal the hidden details of living cells. In addition, we demonstrate our restoration method can also 

be applied to other imaging modalities such as the phase contrast microscopy to enhance cells’ details. 

Furthermore, based on the pixel-level restoration results, we can obtain the object-level segmentation by 

leveraging a label propagation approach, providing promising results on facilitating the cell shape and be- 

havior analysis. The proposed algorithm can be a software module to enhance the visualization capability 

of microscopes. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

As predominantly phase objects, living cells are transparent and 

colorless under a traditional brightfield microscope, because they 

do not significantly alter the amplitude of the light waves pass- 

ing through them, as a consequence, producing little or no contrast 

under a brightfield microscope Yu et al. (2010) . Differential Inter- 

ference Contrast (DIC) microscopy technique (refer to Chapter 10 in 

Murphy (2001) ) has been widely used to observe living cells since 

1950’s because it is noninvasive to cells. 

The DIC microscope works by splitting a polarized illumination 

light wave into two component waves that are spatially sheared 

along a specific shear direction and then recombining the two 

waves after they pass through adjacent locations on the specimen 

plate. The recombination ( interference ) is sensitive to the phase 

variation of the two component waves. An adjustable bias retarda- 

tion is also added into the phase variation. Because the phase vari- 

ation is caused by the difference of the optical path length of two 

adjacent locations, this microscopy technique is then called “dif- 

ferential interference”, and the DIC microscopy converts the opti- 
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cal path length gradient of two locations along the shear direction 

into intensity variations which are visible to human. 

Although the nucleus and some big organelles are visible in 

DIC microscopy images, there are many cell details which are 

not obvious in DIC microscopy images such as the cytoplasm 

and cell membrane, and they are difficult to be observed by hu- 

man eyes. For example, Fig. 1 (a) shows two DIC microscopy im- 

age patches and Fig. 1 (b) shows the ground truth cell mask ob- 

tained by combining the observation from the corresponding phase 

contrast microscopy images Zernike (1955) . Fig. 1 (c) is the av- 

erage segmentation mask by ten human annotators, from which 

we find that even humankind is likely to ignore the unnotice- 

able cytoplasm which spreads out into the background, but these 

hidden details can be informative to analyze cells’ shape and 

behavior. For example, the accurate quantification of cell shape 

dynamics is important in understanding many biological pro- 

cesses including cell growth Banerjee et al. (2016) , cell differentia- 

tion Harris et al. (2014) and animal physiology Carter et al. (2016) . 

In this paper, we focus on restoring the invisible (as well as visible) 

details in DIC microscopy images. 

1.1. Related work 

Automated image restoration, transforming an observed image 

that is challenging for direct analysis into a new image that can be 

http://dx.doi.org/10.1016/j.media.2016.04.010 

1361-8415/© 2016 Elsevier B.V. All rights reserved. 
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Fig. 1. Challenges in seeing the hidden details in DIC microscopy images. (a). Two original DIC images. (b). The ground truth mask, which indicates where the cells are. (c). 

The mask indicates where the cells are by ten annotators merely with their naked eyes. 

effortless analyzed, has valuable applications in biological exper- 

iments, because it may make the segmentation and detection of 

specimens much easier and greatly facilitate the behavior analysis 

on specimens. For example, computational imaging models were 

developed in Su et al. (2012) Yin et al. (2010) to restore microscopy 

images Li and Yin (2015) Yin et al. (July 2012 ) or image sequences 

Yin and Kanade (2011) . In Kaakinen (2014) , the image restoration 

improves the performance of cell segmentation by Otsu threshold- 

ing, watershed and active contour methods. Multiple microscopy 

images with various camera exposure settings were also explored 

in Yin et al. (2014) , which restores microscopy images with zero 

response on non-cell background, facilitating the cell segmentation 

by thresholding Yin et al. (2015) . 

The microscopy image restoration is not exactly the same as 

the general image enhancement that has been widely explored 

in the natural scene image analysis such as improving global 

contrast of underwater images Ancuti et al. (2012) , estimating 

the high-resolution images from low-resolution images Ce and 

Sun (2014) , revealing imperceptible temporal variations in frames 

Wu et al. (2012) and so on. In the enhancement problem, orig- 

inal images are enhanced with sharper edges or higher resolu- 

tions. However, in the restoration problem, we would like to clearly 

observe the cells’ details and separate cells from their surround- 

ing background (i.e., the background pixel values are forced to be 

close to zero while the pixels with cell appearance details are 

non-zero). Since the general image enhancement techniques can- 

not be applied to our DIC image restoration problem, we analyze 

the unique image observations on DIC images and summarize the 

related restoration work below. 

Different from natural scene images, the relief-like images gen- 

erated by DIC microscopy (e.g., Fig. 2 (a)) have the pseudo 3D 

shadow-cast effect as if the specimens are illuminated from an 

oblique lighting resource, but this artifact only indicates the gradi- 

ent orientation of specimens’ optical path length rather than show- 

ing the real topographical structure. This artifact has motivated 

strong research interests in the DIC microscopy imaging society to 

restore the direct measurement on specimens’ physical properties 

rather than the indirect interpretation based on gradient signals 

of the phase variation. We summarize the DIC imaging restoration 

approaches into three categories below: hardware-based, multi- 

image based and single-image-based. 

Hardware extension was proposed to enhance the original 

DIC microscope, in order to restore the original signal of phase 

objects. For example, Arnison et al. (2003) inserted an extra 

quarter wave plate in the optical pipeline of a DIC microscope 

and restored the phase objects by varying the bias setting. 

Shribak et al. (2008) added liquid crystal devices in the original 

DIC microscope to develop an orientation-independent DIC mi- 

croscopy technique. These hardware-based restoration methods are 

very novel and unique, but they might not be accessible to every 

biology laboratory. 

A few approaches were proposed to restore the di- 

rect measurement on specimens from multiple DIC images 

King et al. (20 08) Preza (20 0 0) Yin et al. (2011) . These approaches 

either rotate prisms, change bias setting, step the shear azimuth 

or rotate the cell culture dishes to capture multiple DIC images, 

which may not be accessible or convenient for the long-term 

observation on cells in a common biology laboratory. 

A major pool of DIC restoration methods is based on mi- 

croscopy images obtained from the original DIC microscope. The 

basic techniques employed for microscopy image restoration or 

segmentation include edge detection, thresholding Neumann, Held, 

Liebel, Erfle, Rogers, Pepperkok, Ellenberg, 2006) , morphological 

operations Li et al. (2008) . These methods often fail when the 

cells are in low contrast with background. For the purpose of 

restoration in DIC microscopy images, lines are integrated along 

the shear direction inspired by the gradient interpretation property 

of DIC images Kam (1998) , but this method introduces streaking 

artifacts and is sensitive to gradient noise, as shown in Fig. 2 (b). 

Hilbert transform Arnison et al. (20 0 0) and low pass filtering 

Heise et al. (2005) were explored to improve the line integration 

result but they can only reduce the streaking artifact to a certain 
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Fig. 2. Challenges in the restoration of hidden details in DIC microscopy images. (a). Two original DIC images. (b). The restoration results by line integration Kam (1998) . (c). 

The restoration results by Wiener filter Heise et al. (2005) . (d). The restoration results by preconditioning Li and Kanade (2009) . 

Fig. 3. Overview of our algorithm. 

degree. General image processing technologies such as deconvolu- 

tion by Wiener filter Heise et al. (2005) Van Munster et al. (1997) 

or Landweber iterations Heise and Arminger (2007) were inves- 

tigated to restore the direct measurement on phase objects from 

DIC images, as shown in Fig. 2 (c). The performance of the Wiener 

deconvolution method depends on the prior knowledge of hard- 

ware parameters (e.g., the shear direction and bias setting of the 

DIC microscope) and image noise model. Furthermore, the line in- 

tegration and Wiener deconvolution methods can only restore the 

nuclei regions of cells, which have large gradient signals on phase 

variations, but neither of them can reveal the hidden details on the 

cytoplasm and cell membrane in the DIC images, which have weak 

gradient signals on phase variation. 

It is worth mentioning that sparse coding based approaches 

have been popular for biomedical image restoration. A precondi- 

tioning approach was proposed in Li and Kanade (2009) where 

the DIC image was reconstructed by minimizing a nonnegative- 

constrained convex objective function. A l 1 -regularized quadratic 

cost function was formulated in Yin et al. (July 2012 ) to restore 

artifact-free phase contrast images by modeling the phase contrast 

imaging system. However, when formulating the cost function, the 

performance of these sparse coding based methods depends on 

the specific imaging kernel in the data fidelity term and the spar- 

sity level in the regularization term. For example, a computational 

imaging kernel suitable for restoring dark migration cells may fail 

to restore other bright cells (e.g., mitotic or apoptotic cells) which 

have different physical properties Yin et al. (July 2012 ). Smooth- 

ness and sparseness regularization terms are added into the objec- 

tive function in the preconditioning method Li and Kanade (2009) , 

which ensures the function is well-posed but restricts the restora- 

tion of the details of cells, as shown in Fig. 2 (d). The sparsity reg- 

ularization forces many background pixels with small phase varia- 

tions to be zero in the restored image. Since the cytoplasm within 

the cell membrane has small phase variations, the corresponding 

pixels are mistakenly forced to be zero. In this paper, we are inter- 

ested in seeing the hidden details of cells and the existing sparse 

coding based approaches are not able to reveal enough detail in- 

formation of cells. 

1.2. Our proposal and algorithm overview 

Although the details of living cells in a single DIC image are 

unnoticeable by human eyes, they are likely to keep moving when 

we observe them in a continuous series of images, hence we are 

motivated to think of the following intriguing problem: 

Can we extract the tiny movement information of living cells in 

DIC images and reveal the hidden details in DIC images by magnifying 

the cells’ motion? 
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Fig. 4. The flowchart of computing the gradient-magnified image g ( t ). (a). The original image f ( t ). (b). The Laplacian pyramid. (c). The image with its spatial gradient 

information magnified, g ( t ). 

Fig. 5. The process to build the Laplacian pyramid. “↑ 2” and “↓ 2” denote upsampling and downsampling the image by the factor of 2, respectively. “�” is the subtraction 

operation of two images. The left side shows how the Gaussian pyramid is computed. On each level, the image is convolved with a Gaussian kernel and scaled down, thus 

the low frequency information is reserved on that level of the Gaussian pyramid. As the right side shows, the Laplacian pyramid is computed as the difference between each 

Gaussian pyramid level and its next lower level. Thus, each level of the Laplacian pyramid contains the high-frequency gradient information on that scale. Note that the last 

level of the Laplacian pyramid contains the low-frequency residual information, which is the direct copy of the last level of the Gaussian pyramid, so we delete the last level 

of the Laplacian pyramid before our reconstruction in Fig. 4 . 

In this paper, we propose a motion-based DIC image restora- 

tion algorithm, which is an extension of the conference version 

Jiang and Yin (2015) . As shown in Fig. 3 , the DIC image at times- 

tamp T is to be restored. We firstly extract and magnify the spa- 

tial gradient information of every DIC image within the time slid- 

ing window [ T − �t, T + �t]. The intensity values of a pixel lo- 

cation in the gradient images form a time-series signal and we 

filter it by an ideal bandpass filter to magnify the small motion. 

The motion is further magnified in forward and backward direc- 

tions independently in the temporal domain. Finally, the restora- 

tion results of two directions by motion magnification are com- 

bined to obtain the final restoration result which uncovers the hid- 

den details in the DIC image at timestamp T . Our work is different 

from the previous work which also considers motion information 

Hennies et al. (2014) Liu et al. (2014) , because we do not rely on 

cell detection and tracking. Instead, we extract tiny motion on in- 

dividual pixels and magnify it. 

2. DIC image restoration 

For simplicity, we denote the original DIC image at timestamp 

t as f ( t ), the pixel value of which at position ( m, n ) is f ( m, n, t ). 

Let v m ( t ) and v n ( t ) denote the motion components at position ( m, 

n ) regarding to horizontal and vertical coordinates, respectively. By 

the first-order Taylor expansion, we have 

f (m, n, t) = f (m, n, 0) + v m (t) 
∂ f 

∂m 
+ v n (t) 

∂ f 

∂n 
(1) 
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Fig. 6. Spatial gradient magnification. (a). Single level gradient image (the first level of the Laplacian pyramid). (b). Our gradient image by combining multi-levels of the 

Laplacian pyramid while ignoring the last low-frequency level. 

Fig. 7. The flowchart of our bandpass filtering. (a). The images with spatial gradient magnified, g ( t )’s, with t ∈ [ T − �t : T ] . (b). The DFT of g(m, n, T − �t : T ) . (c). The 

principle frequency image whose pixel value at location ( m, n ) is the principle frequency of g(m, n, T − �t : T ) . (d). The bitmask by thresholding the principle frequency 

image, from which we can know the tentative cell and background regions. (e). The ideal bandpass filtering result with the top being regarded as the background and the 

bottom being the cell. (f). The motion image h ( t ), computed by the inverse DFT, indicates the motion of each pixel. 

Therefore, the contrast between neighboring pixels in an im- 

age sequence (i.e., f (m, n, t) − f (m, n, 0) ) is determined by both 

motion information ( v m ( t ), v n ( t )) and spatial gradient informa- 

tion ( ∂ f 
∂m 

, 
∂ f 
∂n 

) . Given a particular image at timestamp T, f ( T ), we 

can restore image details by enhancing the contrast between f ( m, 

n, T ) and f (m, n, T + �t) (note that �t can be positive or neg- 

ative). According to Eq. 1 , we can magnify the contrast by ei- 

ther increasing ( ∂ f (m,n,T +�t) 
∂m 

, 
∂ f (m,n,T +�t) 

∂n 
) or increasing ( v m ( �t ), 

v n ( �t )). This motivates us to build a Laplacian pyramid to accu- 

mulate the spatial gradient information at multiple levels to mag- 

nify the spatial gradients ( Subsection 2.1 ), design a bandpass fil- 

ter ( Subsection 2.2 ) and accumulate the motion information in the 

temporal sliding window ( Subsection 2.3 and 2.4 ) to magnify the 

tiny motion caused by fine cell structures. 

2.1. Magnify the spatial gradient information 

Fig. 4 illustrates our process to extract and enhance the spatial 

gradient information from DIC microscopy images. Given a DIC im- 

age f ( t ) ( Fig. 4 (a)), we decompose it to several levels by the Lapla- 

cian pyramid ( Fig. 4 (b)) and then reconstruct them by ignoring the 

last level ( Fig. 4 (c)). 

Fig. 5 illustrates the principle of extracting the spatial gradi- 

ent information of f ( t ). Each level of the Gaussian pyramid retains 

the low frequency information on that level. After building a Gaus- 

sian pyramid on an input DIC image, its Laplacian pyramid can be 

obtained by subtracting each Gaussian pyramid level by the next 

lower level, reserving the high frequency information on each in- 

dividual level. Thus, the image on each level of the Laplacian pyra- 
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Fig. 8. Motion magnification. (a). Three consecutive DIC images. (b). Motion images of (a) after the bandpass filter. (c). From left to right: accumulated forward motion image, 

motion image by combining the backward and forward motion images, accumulated backward motion image. 

mid can be regarded as the gradient image on that level. How- 

ever, it is necessary to note that the last level of the Laplacian 

pyramid is the residual information after Laplacian decomposition, 

and more accurately, the image on the last level of the Laplacian 

pyramid is just a copy of the last level of the corresponding Gaus- 

sian pyramid, recording the low frequency information, which is 

the reason that we need to remove the last level before the recon- 

struction for the gradient (high frequency) magnification. 

Fig. 6 (b) shows one final result after our gradient magnifi- 

cation. Compared with the single level gradient image, such as 

the first level of the Laplacian pyramid ( Fig. 6 (a)), our gradient- 

magnified image ( Fig. 6 (b)) that combines several levels reveals 

more and clearer gradient information about the cells. We denote 

the gradient-magnified image corresponding to f ( t ) as g ( t ) which 

will be the input of our motion magnification process. 

From Fig. 6 , another observation of our spatial gradient magni- 

fication is that it can increase the signal-to-noise ratio. In the sin- 

gle level gradient image ( Fig. 6 (a)), the gradient operation ampli- 

fies the noise. But, after combining multiple levels in the Laplacian 

pyramid into a gradient-magnified image ( Fig. 6 (b)), the gradient 

information in each level is accumulated or magnified while the 

noise in each level is relatively reduced or smoothed by the accu- 

mulation/averaging. 

Note that the spatial gradient information is not sensitive to 

the signal instability over time. For example, for each image from 

f (T − �t) to f (T + �t) , the pixel value of background is spatially 

stable (i.e., ( ∂ f 
∂m 

, 
∂ f 
∂n 

) should be small on background pixels), but 

the image can temporally change because of illumination varia- 

tions, thus resulting in unwanted temporal motion in the back- 

ground. Since we consider the spatial gradient information of each 

image individually, the ( ∂ f 
∂m 

, 
∂ f 
∂n 

) will be small in the background 

for all images by our method, mitigating the unwanted temporal 

motion in the background. 

2.2. Bandpass filter 

Intuitively, motion information ( v m ( t ), v n ( t )) can be extracted by 

the consecutive image difference of g ( t )’s, but it is likely to amplify 

the background noise which is unrelated to cells’ movement. We 

need to retain the tiny motion information of cells, meanwhile in- 

hibiting the unwanted movement information of background pix- 

els. 

In this subsection, g ( t ) is filtered by an ideal bandpass filter pix- 

elwise and the signal-to-noise ratio of each pixel in the tempo- 

ral domain is increased. The flowchart of our bandpass filtering is 

shown in Fig. 7 , where Fig. 7 (a) shows g ( t ) with t ∈ [ T − �t, T ] 1 . 

For each pixel ( m, n ), we can build a vector g(m, n, T − �t : T ) 

which indicates the pixel value change at ( m, n ) during the time 

period of [ T − �t : T ] . The Discrete Fourier Transform (DFT) is then 

applied to g(m, n, T − �t : T ) and Fig. 7 (b) shows examples of fre- 

quency vs. magnitude on two typical pixel locations. The princi- 

ple frequency is defined as the frequency with the largest magni- 

1 As shown in Fig. 3 , the motion magnification processes towards forward and 

backward directions in the temporal domain are similar, thus we mainly describe 

the forward process in this subsection without loss of generality. 
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Fig. 9. Object-level cell segmentation based on the restoration. (a). DIC image. (b). Our restored DIC image. (c). Pixel-level cell region segmentation by thresholding the 

restored image. (d). Restoration by the preconditioning Li and Kanade (2009) . (e). Labeled cell pixels (color-coded) obtained from the preconditioning. (f). Labeled background 

pixels (gray) obtained from our restoration. (g). The background probability of each pixel computed by label propagation. (h). The inferred label of every pixel. (i). The 

corresponding phase contrast image as a ground truth reference. (j,k,l). The zoom-in subimages of (a,h,i) within the black dash regions, respectively. 

tude. As shown in Fig. 7 (c), we build a principle frequency map 

whose pixel value at location ( m, n ) is the principle frequency 

of g(m, n, T − �t : T ) . We observe that in the cells’ regions, the 

principle frequency is lower than that in the background (cell re- 

gions and background regions are presented by black and bright 

regions in Fig. 7 (c), respectively). This is because noise variation in 

the background has a higher frequency (fast changes) but with a 

smaller range of intensity variation, so people may not notice it. 

However, the intensity change of a pixel location caused by cell 

movement has a lower frequency (slow changes) but with a larger 

range of intensity variation, thus people are possible to observe cell 

details in continuous DIC images. 

The principle frequency map shown in Fig. 7 (c) inspires us 

to tentatively determine cell regions and background. We set all 

pixel values in the principle frequency map which are larger than 

the minimum of the principle frequency map as zero, yielding a 

bitmask that indicates cell regions and background, as shown in 

Fig. 7 (d). The bitmask can roughly tell where the living cells are, 

offering us the hint on where to retain cells’ tiny movement and 

where to inhibit the motion from the background noise. 

For each pixel ( m, n ) in g ( t ), its movement pattern may not be 

exactly the same during the time interval ( t ∈ [ T − �t : T ] ), thus 

we design an ideal bandpass filter with the aid of the bitmask 

to keep the most salient movement of cells as well as the small- 

est movement in the background. The bandpass filtering increases 

the contrast between the cell motion and background intensity 

variation, therefore facilitating the observation on fine details of 

cells. 

For the tentative background regions obtained from Fig. 7 (d), 

the frequency range to be passed in the bandpass filter is set as 

the frequency corresponding to the smallest magnitude, thus all 

frequency components which are larger are attenuated (rejected). 

Note that we do not directly set all frequency components of 

the tentative background pixel as zero, because the tentative fore- 

ground and background segmentation in Fig. 7 (d) may not be accu- 

rate. For the tentative foreground regions obtained from Fig. 7 (d), 

the frequency range to be passed in the bandpass filter is set as the 

frequency corresponding to the largest magnitude, thus only the 

dominant frequency component related to the cell motion is kept. 

Fig. 7 (e) shows the two filtering results corresponding to Fig. 7 (b) 

with the top being regarded as the background and the bottom be- 

ing the cell. After the bandpass filtering, we apply the inverse DFT 

on each pixel’s frequency signals to obtain the motion images, h ( t ). 
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Fig. 10. Experiment setup and dataset samples. (a). Datasets are collected by Zeiss Axiovert 200M microscope. (b). A DIC sample image in Dataset 1. (c). A DIC sample image 

in Dataset 2. (d). The phase contrast microscopy image corresponding to (b). (e).The phase contrast microscopy image corresponding to (c). 

2.3. Motion accumulation 

After the aforementioned processes, we obtain the motion im- 

age h ( t ) that includes the movement information of each pixel at 

timestamp t . Fig. 8 (a) shows three original DIC images and Fig. 8 (b) 

shows their corresponding motion images. It is clear that the mo- 

tion in each individual motion-magnified image is still weak and 

we need to further magnify it. In this section, we magnify the mo- 

tion in a temporal sliding window to reveal cell details. This is 

implemented by the temporally weighted accumulation of motion. 

The magnification formula for the forward process ( [ T − �t, T ] ) is 

defined as 

r fw (T ) = 

T 
∑ 

t= T −�t 

e −
T−t 
�t | h (t) | . (2) 

The magnification formula for the backward process ( [ T , T + 

�t] ) is similarly defined as 

r bw (T ) = 

T +�t 
∑ 

t= T 

e −
t−T 
�t | h (t) | (3) 

where r fw ( T ) and r bw ( T ) are the motion-magnified images for f ( t ) by 

the forward and backward processes, respectively. e −
T−t 
�t and e −

t−T 
�t 

ensure that the closer the image h ( t ) is to the target image h ( T ), 

the more contribution h ( t ) makes to r fw ( T ) or r bw ( T ). r fw ( T ) and 

r bw ( T ) are shown in the first and third images in Fig. 8 (c), respec- 

tively. Compared with the motion images in Fig. 8 (b), the motion is 

clearly accumulated/magnified in forward and backward processes. 
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Fig. 11. The proposed restoration method helps us observe the invisible in DIC images. (a). The original DIC images. (b). The corresponding phase contrast images as a ground 

truth reference. (c). The restored DIC images obtained by our restoration algorithm. 

2.4. Combine forward and backward motion images 

r fw ( T ) and r bw ( T ) accumulate the motion during the temporal 

period [ T − �t, T ] and [ T , T + �t] , respectively. The final restora- 

tion image r ( T ) for the original target image f ( T ) can be directly 

defined as the elementwise min-operation on r fw ( T ) and r bw ( T ): 

r(T ) = min (r fw (T ) , r bw (T )) . (4) 

As shown in Fig. 8 (a), a cell moves from the image center to- 

wards the top-right from f (T − �t) to f (T + �t) . Fig. 8 (c) shows 

the forward motion image, combined motion image and backward 

motion image, respectively. In Fig. 8 (c), we observe that if only one 

direction of motion information is used, there will be artifacts un- 

related to the motion in f ( T ). The artifacts are from the accumu- 

lated motion in the past or future DIC images. If we compute the 

minimum of r fw ( T ) and r bw ( T ), the artifacts are removed, leaving 

the cell details in the current frame only. 

3. Object-level cell segmentation based on the restoration 

In our restored DIC images, background pixels have values close 

to zero while cell pixels have non-zero values. Fig. 9 (a) and (b) 

show one DIC image and its restoration, respectively. Segmenting 

cell pixels from the background pixels can be easily achieved by 

simply thresholding the restored image, as shown in Fig. 9 (c). 

After we recover the hidden details of cell cytoplasm within the 

cell membrane, the pixel-level segmentation in Fig. 9 (c) can not 

separate the clustered cells from each other. We leverage the label 

propagation method in a supervised graph Su et al. (March 2016 ) 

to obtain the object-level segmentation. Given a restored image 

for the graph-based cell segmentation, first, we need some labeled 
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Fig. 12. Seeing more details about cells’ behavior over time. (a). Sample DIC images with a time interval of 100 minutes. (b). The corresponding phase contrast microscopy 

images as ground truth references. (c). DIC restoration images, from which we can analyze the shape change of a cluster of cells over time. 

pixel samples from the background and different cells. Since the 

preconditioning method Li and Kanade (2009) can obtain the cell 

nuclei regions as shown in Fig. 9 (d), we find the local maximums 

in the preconditioned results and use them (cell nucleus) as the la- 

beled pixel samples for different cells (represented by color blobs 

in Fig. 9 (e)). The labeled pixel samples for the background (repre- 

sented by gray pixels in Fig. 9 (f)) are those pixels whose values in 

our restoration result ( Fig. 9 (b)) are zero. 

Suppose we have labeled N c cells and 1 background class, we 

denote the labeled sample pixels as { (x l , y l ) } 
N l 
l=1 

where N l is the 

total number of labeled pixels, x l and y l are the feature vector and 

label vector of the l th labeled pixel, respectively. y l is a row vector 

of length N c + 1 with only one entry with the value of one and all 

other entries being zero. For example, y l = [1 , 0 , ... 0] indicates the 

sample belongs to the background and y l = [0 , 1 , 0 , ... 0] indicates 

the sample belongs to the first cell. For all other unlabeled pixels 

in the restored image, we denote them as { (x u , y u ) } 
N u 
u =1 where N u 

is the total number of unlabeled pixels. 

Considering each pixel in the restored image as a node in a reg- 

ular grid graph and each pixel is linked to its 8-connected neigh- 

bors, we compute the link weight as 

w i j = e −
(h i −h j ) 

2 

λ (5) 

where h i denotes the pixel value at pixel i in our restored im- 

age. λ is a normalization factor and we choose it as the mean 

of all possible square costs between neighboring pixels (i.e., λ = 

mean i, j [(h i − h j ) 
2 ] ). 

Based on the pairwise link weight, we compute the affinity ma- 

trix of the graph and permute it into the following structure 

W = 

[

W ll W lu 

W ul W uu 

]

(6) 

where W ll represents the pairwise link weight between labeled 

samples, W lu represents the pairwise link weight between labeled 

samples and unlabeled samples, W lu = W T 
ul 

, and W uu represents 

the pairwise link weight between unlabeled samples. Then, we 

compute the Laplacian matrix of the graph as 

L = D − W (7) 

where the degree matrix D is computed as 

D (i, i ) = 

N l + N u 
∑ 

j=1 

W (i, j) (8) 

The label vectors of the unlabeled pixel samples in the 

graph is obtained by minimizing the following objective func- 

tion Su et al. (2014) 

O (Y u ) = trace ([ Y l ;Y u ] 
T L [ Y l ;Y u ]) (9) 

where Y l = [ ... ; y l ; ... ] and Y u = [ ... ; y u ; ... ] are the label matrices of 

the labeled and unlabeled pixels, each row of which is an indicator 

vector. Taking the derivative on O ( Y u ) and setting it to zero lead to 

the optimal inference for unlabeled pixels as 

Y 
∗
u = −L −1 

uu L ul Y l (10) 

where L uu represents the submatrix of L that corresponds to unla- 

beled pixels and L ul represents the submatrix of L that correlates 

the unlabeled and labeled pixels. 

Y ∗u is a label matrix with the size of N u ∗ (N c + 1) . Each column 

of Y ∗u represents the probabilities of the unlabeled pixels belonging 

to the specific class. For example, the first column of Y ∗u represents 

the background probabilities of unlabeled pixels. Fig. 9 (g) shows 

the background probability of every pixel in the restored image 

and the labeled background pixels are with probability 1 (white 

in Fig. 9 (g)). For every unlabeled pixel, we determine its class by 

its maximum value in y ∗u . Fig. 9 (h) shows the class labels of all pix- 

els where the color blob represents different cell identities that are 

consistent with the nuclei regions provided by the preconditioning 

method ( Fig. 9 (e)). The phase contrast image is shown in Fig. 9 (i) 

as a ground-truth reference. In Fig. 9 (j-l), we crop some sub-images 

of the full images for the zoom-in visualization. We observe that 

our restoration can facilitate the cell segmentation, while it is very 

challenging to segment individual cells from the cell clusters in the 

original DIC ( Fig. 9 (j)) or phase contrast images ( Fig. 9 (l)). 

4. Experimental results 

In this section, first we describe our experiment setup to obtain 

the microscopy images. Then, we qualitatively demonstrate how 

well our restoration method can help visualize the invisible in DIC 

images. Thirdly, we compare our restoration method based on mo- 

tion magnification with four other restoration methods both quali- 

tatively and quantitatively. Furthermore, we illustrate that the pro- 

posed restoration method can be applied to other imaging modal- 

ity such as the phase contrast microscopy. In addition to visual- 

izing the hidden details of cells, we further demonstrate that our 

pixel-level restoration method can benefit the object-level cell seg- 

mentation with accurate shapes. 
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Fig. 13. Qualitative method comparison. (a). The original DIC images. (b). The corresponding phase contrast microscopy images as a ground truth reference. (c). The restored 

DIC images by our restoration algorithm. (d). The restoration by line integration Kam (1998) . (e). The restoration results by Wiener filter Heise et al. (2005) . (f). The restoration 

by preconditioning Li and Kanade (2009) . (g). The restoration by Eulerian image magnification Wu et al. (2012) . 

4.1. Experiment setup 

The proposed image restoration algorithm was tested on two 

sets of Differential Interference Contrast images with the resolu- 

tion of 1388 × 1040 pixels, which were captured by Zeiss Ax- 

iovert 200M microscope ( Fig. 10 (a)). The cells were cultured in 

an incubation system placed on the top stage of the microscope 

which didn’t move during the entire experiments and the time- 

lapse images on living cells were taken every 5 minutes. The first 

dataset includes 445 DIC images with each image containing about 

70 cells ( Fig. 10 (b) is a sample image). Fig. 10 (c) shows a sample 

image from dataset 2, which includes 500 DIC images and has a 

wider visual field. Each image in dataset 2 contains about 150 liv- 

ing cells. When labeling the ground truth of cell masks, we found 

it was very likely to make mistakes if only DIC images are used. 

To minimize the human error, we captured the phase contrast mi- 

croscopy images on the same cell dish simultaneously when we 

captured DIC images. Fig. 10 (d) and Fig. 10 (e) show the phase con- 
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Fig. 14. The recall vs. precision comparison with other approaches (Precondition: Li and Kanade (2009); Wiener: Heise et al. (2005); Line Integration: Kam (1998) ) applied 

to DIC images. (a). Comparison on dataset 1. (b). Comparison on dataset 2. (c). The area under the recall-precision curve. 

trast microscopy images corresponding to the DIC image samples 

in Fig. 10 (b) and Fig. 10 (c), respectively. Thus, the ground truth was 

labeled by combining DIC images and their corresponding phase 

contrast images. 

4.2. Seeing the invisible in DIC images 

Fig. 11 shows the proposed restoration algorithm is able to re- 

veal the invisible details in DIC images. In Fig. 11 , the images in 

red or blue boxes are the original DIC images and the correspond- 

ing phase contrast images, respectively. Phase contrast images are 

displayed here to help observe the ground truth. As shown in im- 

ages in green boxes in Fig. 11 , our approach can restore the details 

such as the cytoplasm of living cells, even though the cytoplasm is 

spread out and mixed with the background in the original DIC im- 

ages. With the ability to present more details about living cells, it 

is easy to observe cells’ behavior in the restored image sequence. 

For instance, Fig. 12 shows some DIC images and their correspond- 

ing restoration results on a cluster of cells within a time inter- 

val of 100 minutes (the corresponding phase contrast images are 

provided to help visualize the ground truth). It is clear to observe 

cells’ shape change and their movement, which provides more in- 

formation for the cell shape and behavior analysis over time. 

4.3. Method comparison 

We compare the proposed restoration approach with the pre- 

vious work both qualitatively and quantitatively. Fig. 13 (a) and 
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Fig. 15. Advanced visualization by combing the proposed restoration method and preconditioning Li and Kanade (2009) . (a). The original DIC images. (b). The corresponding 

phase contrast microscopy images as ground truth references. (c). The restoration results by our motion magnification method only. (d). The DIC restoration results by the 

preconditioning Li and Kanade (2009) only. (e). The advanced restoration results by combing our motion magnification method and the preconditioning Li and Kanade (2009) . 

(b) show some DIC and phase contrast images with different cell 

sizes. From Fig. 13 (c) to Fig. 13 (f), we show the restoration re- 

sults of our restoration method and three existing DIC restoration 

work on DIC images (Line integration Kam (1998) , Wiener filtering 

Heise et al. (2005) , and preconditioning Li and Kanade (2009) ). Un- 

like the three previous work that only reveals the nucleus of living 

cells and usually misses the cytoplasm, our method reveals more 

cell details even though they are invisible to naked human eyes. 

In addition, as shown Fig. 13 (c) and Fig. 13 (g), we also com- 

pare the performance of our method with a typical image enhance- 

ment method proposed in Wu et al. (2012) where the small tem- 

poral variations in videos are revealed by the spatial decomposi- 

tion, followed by the temporal filtering with a known frequency. 

The method in Wu et al. (2012) can partially display some hidden 

details of cells, but it also brings artifacts such as the bright and 

dark regions which are caused by the missmatching between the 

single unique predefined frequency and the various frequencies of 

moving cells. 

The restored image (a grayscale image with background pix- 

els close to zero and non-zero cell pixel values) enables us to 

achieve the cell region segmentation (a binary image) simply by 

using a global threshold. The pixel value range in restored im- 

ages is normalized to [0, 1], thus we can segment the restora- 

tion image with any threshold within [0, 1]. We gradually in- 

crease the segmentation threshold by 0.01 from 0 to 1. For each 

threshold, the average precision and recall for all images in the 

dataset is computed. Fig. 14 (a) and (b) show the recall vs. preci- 

sion curves on the two datasets by trying different thresholds from 

0 to 1 for four methods: our restoration approach, line integration 

Kam (1998) , Wiener filter Heise et al. (2005) and preconditioning 

Li and Kanade (2009) . For each threshold, TP is the number of true 

positives (cell pixels). FP is the number of false positive pixels. FN 

is the number of false negative pixels. Thus, precision is defined as 
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Fig. 16. Qualitative object-level cell segmentation evaluation. (a). The original DIC images. (b). The corresponding phase contrast images as a ground truth reference. (c). The 

restored DIC images by our restoration method. (d). The restoration results by preconditioning Li and Kanade (2009) , which are the initial labeled pixel samples. (e). The 

object-level cell segmentation results. 

Precision = TP/(TP+FP) and recall is defined as Recall = TP/(TP+FN). To 

quantitatively compare the performance, we compute the Area Un- 

der the recall-precision Curve (AUC). As summarized in Fig. 14 (c), 

our proposed restoration algorithm greatly outperforms the other 

three approaches since we can restore cells’ fine details in addition 

to the nucleus. 

4.4. Advanced visualization 

The proposed restoration method relies on motion magnifi- 

cation for restoring cells’ fine structures, which means that our 

method pays more attention to the motion among a series of im- 

ages rather than a single image. However, the stationary informa- 

tion restored from a single image might provide complement infor- 

mation to the restored details from motion magnification. This in- 

spires us to combine the motion information from our restoration 

method with the restored stationary information from the previ- 

ous work for the advanced visualization of DIC images. Precon- 

ditioning method Li and Kanade (2009) is a typical method that 

only depends on the target DIC image. Compared with the other 

works Kam (1998) Heise et al. (2005) , preconditioning brings less 

artifacts and has better performance on restoring cell regions with 

large gradient signals of the phase variation. Fig. 15 (e) shows the 

restoration results by equally adding the restoration results from 

our restoration method ( Fig. 15 (c)) into the preconditioned results 

( Fig. 15 (d)). The advanced visualization is better than either motion 

magnification or preconditioning alone because it not only shows 

the hidden details of living cells such as the cytoplasm and cell 

membrane, but also presents the cell nuclei more clearly. 

4.5. Application to object-level cell segmentation 

Fig. 16 shows the qualitative object-level cell segmentation per- 

formance by the method proposed in Section 3 . As illustrated in 
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Fig. 17. Seeing the invisible details in phase contrast microscopy images. (a). The original phase contrast images. (b). The restoration results by the proposed restoration 

method applied to the phase contrast images. (c). The restoration results by sparsity regularized method proposed in Yin et al. (July 2012 ) applied to the phase contrast 

images. (d). The corresponding DIC images. (e). The restoration results by the proposed restoration method applied to the DIC images. 

Fig. 16 (c), the hidden details on cells can be revealed but the pixel- 

level restoration can not separate one cell from another when they 

are clustered. Taking the cell nuclei regions ( Fig. 16 (d)) obtained by 

the preconditioning method Li and Kanade (2009) as initial labeled 

pixel samples, we can compute the probability of the unlabeled 

pixels belonging to a specific cell class, based on the restoration 

results ( Fig. 16 (c)). Fig. 16 (e) is the oject-level cell segmentation 

results where each cell can be accurately segmented even though 

they gather together as a cluster. 

To quantitatively evaluate the object-level cell segmentation, we 

compute the Tanimoto coefficient (TC), which is defined as: 

T C = 
area (C sc 

⋂ 
C gt ) 

area (C sc 
⋃ 

C gt ) 
(11) 

where C sc and C gt are the segmented cell regions by the proposed 

object-level segmentation algorithm and ground truth annotated 

by humans, respectively. The average TC for dataset 1 is 0.89 and 

that for dataset 2 is 0.85. This object-level cell segmentation would 

be helpful to analyze cells’ behavior and shape change over time. 

4.6. Application to phase contrast microscopy images 

Besides DIC microscopy, phase contrast microscopy 

Zernike (1955) is another popular non-invasive microscopy 

imaging modality, which converts the minute phase difference 

between waves traversing the biological specimen and those 

passing through the surrounding medium to a visible differ- 

ence in image intensity. We have been using phase contrast 

images as ground truth references in this paper. In fact, both 

DIC and phase contrast microscopy have their own advantages 

and drawbacks (please refer to http://www.microscopyu.com/ 

tutorials/java/phasedicmorph/index.html for the detailed compar- 

ison), so both of the two imaging modalities have been widely 

used by biologists for different biological experiments. Similar to 
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Fig. 18. The recall vs. precision comparison among the sparsity regularized method Yin et al. (July 2012) , our restoration method on DIC images and our restoration method 

on phase contrast microscopy images. (a). Comparison on dataset 1. (b). Comparison on dataset 2. (c). The area under the ROC curve. 

DIC microscopy, phase contrast microscopy is also insensitive at 

regions having small differences of optical path length, such as the 

flat specimens which produce little contrast and often appear in 

the image at the same intensity level as the background. Thus, it is 

significant to study the possibility to apply our proposed method 

to phase contrast images as well. It is promising because our 

proposed method does not rely on the image formation process 

of microscopy images, which differs from our previous phase con- 

trast restoration methods that depend on the microscopy imaging 

model Yin et al. (July 2012) . 

Fig. 17 shows the qualitative results by applying our proposed 

method to restore microscopy images. Fig. 17 (b) and Fig. 17 (e) 

show the restoration results of phase contrast images and DIC im- 

ages by our restoration method, respectively. The restoration re- 

sults on two imaging modalities are very similar, which indicates 

our method can successfully reveal the hidden details of cells in 

phase contrast images and obtain comparable performance as DIC 

images. Fig. 17 (c) shows the restoration results by applying the 

sparsity regularized method proposed in Yin et al. (July 2012) to 

phase contrast images, which does not work well in these cases 

where the cells are spread out to the background and their inten- 

sities are similar to the background. 

With the same evaluation method described in Section 4.3 , 

we compare our restoration on phase contrast images with the 

previous sparsity regularized method Yin et al. (July 2012) and 

our restoration on corresponding DIC images. Fig. 18 summarizes 

the comparison among the three methods. The comparison be- 

tween the sparsity regularized method Yin et al. (July 2012) and 

our method applied to phase contrast images indicates that our 

method improves the state-of-the-art with a large margin in the 
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phase contrast imaging modality. When applying our restoration 

method to both DIC and phase contrast imaging modalities, the 

AUCs for DIC images and phase contrast images are 0.9438 and 

0.9359 for dataset 1, and 0.8577 and 0.8053 for dataset 2, re- 

spectively. The proposed method applied to DIC images achieves 

slightly better performance than that applied to phase contrast im- 

ages. 

5. Conclusion 

In this paper, we propose a novel motion-based DIC image 

restoration algorithm. The gradient information in DIC images is 

magnified based on a Laplacian pyramid method. The tiny motion 

of each cell pixel is magnified by filtering a time-series of gradient- 

magnified DIC image signals on the pixel location using an ideal 

bandpass filter, while the intensity variation on the background 

pixels is attenuated. The motion information of a target image is 

further magnified by a weighted sum of a series of motion images 

from time-lapse image sequences. From our restored images, we 

can clearly observe the previously-invisible details in DIC images 

such as the cytoplasm and cell membrane. The restored images fa- 

cilitate the cell segmentation greatly. Combining with the single- 

image-based restoration method which recovers the cell nuclei re- 

gions, our restoration based on a series of DIC images can visualize 

the full details of cell appearance. Furthermore, we demonstrate 

that the motion-based restoration method can be applied to other 

imaging modalities such as phase contrast microscopy to recover 

appearance details on cell regions that have similar intensities to 

the background in original images. Additionally, we also leverage 

the label propagation method in a supervised graph to obtain the 

object-level segmentation based on the pixel-level restoration re- 

sults. In the future, we plan to explore cell image analysis tasks 

based on our restoration algorithm such as the cell shape dynam- 

ics during the cell proliferation process. 
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