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Automated microscopy image restoration, especially in Differential Interference Contrast (DIC) imaging
modality, has attracted increasing attentions since it greatly facilitates long-term living cell analysis with-
out staining. Although the previous work on DIC image restoration is able to restore the nuclei regions of
living cells, it is still challenging to reconstruct the unnoticeable cytoplasm details in DIC images. In this
paper, we propose to extract the tiny movement information of living cells in DIC images and reveal the
hidden details in DIC images by magnifying the cells’ motion as well as attenuating the intensity variation
from the background. From our restored images, we can clearly observe the previously-invisible details
in DIC images. Experiments on two DIC image datasets show that the motion-based restoration method
can reveal the hidden details of living cells. In addition, we demonstrate our restoration method can also
be applied to other imaging modalities such as the phase contrast microscopy to enhance cells’ details.
Furthermore, based on the pixel-level restoration results, we can obtain the object-level segmentation by
leveraging a label propagation approach, providing promising results on facilitating the cell shape and be-
havior analysis. The proposed algorithm can be a software module to enhance the visualization capability

of microscopes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As predominantly phase objects, living cells are transparent and
colorless under a traditional brightfield microscope, because they
do not significantly alter the amplitude of the light waves pass-
ing through them, as a consequence, producing little or no contrast
under a brightfield microscope Yu et al. (2010). Differential Inter-
ference Contrast (DIC) microscopy technique (refer to Chapter 10 in
Murphy (2001)) has been widely used to observe living cells since
1950’s because it is noninvasive to cells.

The DIC microscope works by splitting a polarized illumination
light wave into two component waves that are spatially sheared
along a specific shear direction and then recombining the two
waves after they pass through adjacent locations on the specimen
plate. The recombination (interference) is sensitive to the phase
variation of the two component waves. An adjustable bias retarda-
tion is also added into the phase variation. Because the phase vari-
ation is caused by the difference of the optical path length of two
adjacent locations, this microscopy technique is then called “dif-
ferential interference”, and the DIC microscopy converts the opti-
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cal path length gradient of two locations along the shear direction
into intensity variations which are visible to human.

Although the nucleus and some big organelles are visible in
DIC microscopy images, there are many cell details which are
not obvious in DIC microscopy images such as the cytoplasm
and cell membrane, and they are difficult to be observed by hu-
man eyes. For example, Fig. 1(a) shows two DIC microscopy im-
age patches and Fig. 1(b) shows the ground truth cell mask ob-
tained by combining the observation from the corresponding phase
contrast microscopy images Zernike (1955). Fig. 1(c) is the av-
erage segmentation mask by ten human annotators, from which
we find that even humankind is likely to ignore the unnotice-
able cytoplasm which spreads out into the background, but these
hidden details can be informative to analyze cells’ shape and
behavior. For example, the accurate quantification of cell shape
dynamics is important in understanding many biological pro-
cesses including cell growth Banerjee et al. (2016), cell differentia-
tion Harris et al. (2014) and animal physiology Carter et al. (2016).
In this paper, we focus on restoring the invisible (as well as visible)
details in DIC microscopy images.

1.1. Related work

Automated image restoration, transforming an observed image
that is challenging for direct analysis into a new image that can be
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(a)

effortless analyzed, has valuable applications in biological exper-
iments, because it may make the segmentation and detection of
specimens much easier and greatly facilitate the behavior analysis
on specimens. For example, computational imaging models were
developed in Su et al. (2012)Yin et al. (2010) to restore microscopy
images Li and Yin (2015) Yin et al. (July 2012) or image sequences
Yin and Kanade (2011). In Kaakinen (2014), the image restoration
improves the performance of cell segmentation by Otsu threshold-
ing, watershed and active contour methods. Multiple microscopy
images with various camera exposure settings were also explored
in Yin et al. (2014), which restores microscopy images with zero
response on non-cell background, facilitating the cell segmentation
by thresholding Yin et al. (2015).

The microscopy image restoration is not exactly the same as
the general image enhancement that has been widely explored
in the natural scene image analysis such as improving global
contrast of underwater images Ancuti et al. (2012), estimating
the high-resolution images from low-resolution images Ce and
Sun (2014), revealing imperceptible temporal variations in frames
Wu et al. (2012) and so on. In the enhancement problem, orig-
inal images are enhanced with sharper edges or higher resolu-
tions. However, in the restoration problem, we would like to clearly
observe the cells’ details and separate cells from their surround-
ing background (i.e., the background pixel values are forced to be
close to zero while the pixels with cell appearance details are
non-zero). Since the general image enhancement techniques can-
not be applied to our DIC image restoration problem, we analyze
the unique image observations on DIC images and summarize the
related restoration work below.

Different from natural scene images, the relief-like images gen-
erated by DIC microscopy (e.g., Fig. 2(a)) have the pseudo 3D
shadow-cast effect as if the specimens are illuminated from an
oblique lighting resource, but this artifact only indicates the gradi-
ent orientation of specimens’ optical path length rather than show-
ing the real topographical structure. This artifact has motivated
strong research interests in the DIC microscopy imaging society to

(b) (0

Fig. 1. Challenges in seeing the hidden details in DIC microscopy images. (a). Two original DIC images. (b). The ground truth mask, which indicates where the cells are. (c).
The mask indicates where the cells are by ten annotators merely with their naked eyes.

restore the direct measurement on specimens’ physical properties
rather than the indirect interpretation based on gradient signals
of the phase variation. We summarize the DIC imaging restoration
approaches into three categories below: hardware-based, multi-
image based and single-image-based.

Hardware extension was proposed to enhance the original
DIC microscope, in order to restore the original signal of phase
objects. For example, Arnison et al. (2003) inserted an extra
quarter wave plate in the optical pipeline of a DIC microscope
and restored the phase objects by varying the bias setting.
Shribak et al. (2008) added liquid crystal devices in the original
DIC microscope to develop an orientation-independent DIC mi-
croscopy technique. These hardware-based restoration methods are
very novel and unique, but they might not be accessible to every
biology laboratory.

A few approaches were proposed to restore the di-
rect measurement on specimens from multiple DIC images
King et al. (2008)Preza (2000)Yin et al. (2011). These approaches
either rotate prisms, change bias setting, step the shear azimuth
or rotate the cell culture dishes to capture multiple DIC images,
which may not be accessible or convenient for the long-term
observation on cells in a common biology laboratory.

A major pool of DIC restoration methods is based on mi-
croscopy images obtained from the original DIC microscope. The
basic techniques employed for microscopy image restoration or
segmentation include edge detection, thresholding Neumann, Held,
Liebel, Erfle, Rogers, Pepperkok, Ellenberg, 2006), morphological
operations Li et al. (2008). These methods often fail when the
cells are in low contrast with background. For the purpose of
restoration in DIC microscopy images, lines are integrated along
the shear direction inspired by the gradient interpretation property
of DIC images Kam (1998), but this method introduces streaking
artifacts and is sensitive to gradient noise, as shown in Fig. 2(b).
Hilbert transform Arnison et al. (2000) and low pass filtering
Heise et al. (2005) were explored to improve the line integration
result but they can only reduce the streaking artifact to a certain
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(a) (b)
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Fig. 2. Challenges in the restoration of hidden details in DIC microscopy images. (a). Two original DIC images. (b). The restoration results by line integration Kam (1998). (c).
The restoration results by Wiener filter Heise et al. (2005). (d). The restoration results by preconditioning Li and Kanade (2009).
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Fig. 3. Overview of our algorithm.

degree. General image processing technologies such as deconvolu-
tion by Wiener filter Heise et al. (2005)Van Munster et al. (1997)
or Landweber iterations Heise and Arminger (2007) were inves-
tigated to restore the direct measurement on phase objects from
DIC images, as shown in Fig. 2(c). The performance of the Wiener
deconvolution method depends on the prior knowledge of hard-
ware parameters (e.g., the shear direction and bias setting of the
DIC microscope) and image noise model. Furthermore, the line in-
tegration and Wiener deconvolution methods can only restore the
nuclei regions of cells, which have large gradient signals on phase
variations, but neither of them can reveal the hidden details on the
cytoplasm and cell membrane in the DIC images, which have weak
gradient signals on phase variation.

It is worth mentioning that sparse coding based approaches
have been popular for biomedical image restoration. A precondi-
tioning approach was proposed in Li and Kanade (2009) where
the DIC image was reconstructed by minimizing a nonnegative-
constrained convex objective function. A [;-regularized quadratic
cost function was formulated in Yin et al. (July 2012) to restore
artifact-free phase contrast images by modeling the phase contrast
imaging system. However, when formulating the cost function, the
performance of these sparse coding based methods depends on
the specific imaging kernel in the data fidelity term and the spar-
sity level in the regularization term. For example, a computational

imaging kernel suitable for restoring dark migration cells may fail
to restore other bright cells (e.g., mitotic or apoptotic cells) which
have different physical properties Yin et al. (July 2012). Smooth-
ness and sparseness regularization terms are added into the objec-
tive function in the preconditioning method Li and Kanade (2009),
which ensures the function is well-posed but restricts the restora-
tion of the details of cells, as shown in Fig. 2(d). The sparsity reg-
ularization forces many background pixels with small phase varia-
tions to be zero in the restored image. Since the cytoplasm within
the cell membrane has small phase variations, the corresponding
pixels are mistakenly forced to be zero. In this paper, we are inter-
ested in seeing the hidden details of cells and the existing sparse
coding based approaches are not able to reveal enough detail in-
formation of cells.

1.2. Our proposal and algorithm overview

Although the details of living cells in a single DIC image are
unnoticeable by human eyes, they are likely to keep moving when
we observe them in a continuous series of images, hence we are
motivated to think of the following intriguing problem:

Can we extract the tiny movement information of living cells in
DIC images and reveal the hidden details in DIC images by magnifying
the cells’ motion?
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Fig. 4. The flowchart of computing the gradient-magnified image g(t). (a). The original image f(t). (b). The Laplacian pyramid. (c). The image with its spatial gradient
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Fig. 5. The process to build the Laplacian pyramid. “42” and “ 2" denote upsampling and downsampling the image by the factor of 2, respectively. “©” is the subtraction
operation of two images. The left side shows how the Gaussian pyramid is computed. On each level, the image is convolved with a Gaussian kernel and scaled down, thus
the low frequency information is reserved on that level of the Gaussian pyramid. As the right side shows, the Laplacian pyramid is computed as the difference between each
Gaussian pyramid level and its next lower level. Thus, each level of the Laplacian pyramid contains the high-frequency gradient information on that scale. Note that the last
level of the Laplacian pyramid contains the low-frequency residual information, which is the direct copy of the last level of the Gaussian pyramid, so we delete the last level

of the Laplacian pyramid before our reconstruction in Fig. 4.

In this paper, we propose a motion-based DIC image restora-
tion algorithm, which is an extension of the conference version
Jiang and Yin (2015). As shown in Fig. 3, the DIC image at times-
tamp T is to be restored. We firstly extract and magnify the spa-
tial gradient information of every DIC image within the time slid-
ing window [T — At, T + At]. The intensity values of a pixel lo-
cation in the gradient images form a time-series signal and we
filter it by an ideal bandpass filter to magnify the small motion.
The motion is further magnified in forward and backward direc-
tions independently in the temporal domain. Finally, the restora-
tion results of two directions by motion magnification are com-
bined to obtain the final restoration result which uncovers the hid-
den details in the DIC image at timestamp T. Our work is different

from the previous work which also considers motion information
Hennies et al. (2014)Liu et al. (2014), because we do not rely on
cell detection and tracking. Instead, we extract tiny motion on in-
dividual pixels and magnify it.

2. DIC image restoration

For simplicity, we denote the original DIC image at timestamp
t as f(t), the pixel value of which at position (m, n) is fim, n, t).
Let vi(t) and v,(t) denote the motion components at position (m,
n) regarding to horizontal and vertical coordinates, respectively. By
the first-order Taylor expansion, we have
af f

f(m,n,t)=f(m,n,0)+vm(t)ﬁ+vn(t)§—n (1)



W. Jiang, Z. Yin/Medical Image Analysis 34 (2016) 65-81 69

Fig. 6. Spatial gradient magnification. (a). Single level gradient image (the first level of the Laplacian pyramid). (b). Our gradient image by combining multi-levels of the

Laplacian pyramid while ignoring the last low-frequency level.
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Fig. 7. The flowchart of our bandpass filtering. (a). The images with spatial gradient magnified, g(t)’s, with t € [T — At : T]. (b). The DFT of g(m,n, T — At : T). (c). The
principle frequency image whose pixel value at location (m, n) is the principle frequency of g(m,n, T — At : T). (d). The bitmask by thresholding the principle frequency
image, from which we can know the tentative cell and background regions. (e). The ideal bandpass filtering result with the top being regarded as the background and the
bottom being the cell. (f). The motion image h(t), computed by the inverse DFT, indicates the motion of each pixel.

Therefore, the contrast between neighboring pixels in an im-
age sequence (i.e., f(m,n,t) — f(m,n,0)) is determined by both
motion information (vp(t), va(t)) and spatial gradient informa-
tion (ﬂ, ﬂ). Given a particular image at timestamp T, f{T), we

am’ an

can restore image details by enhancing the contrast between f(m,
n, T) and f(m,n, T + At) (note that At can be positive or neg-
ative). According to Eq. 1, we can magnify the contrast by ei-
ther increasing (af(m’g,’qf*“), af(m,g,nnm)) or increasing (vm(At),
vp(At)). This motivates us to build a Laplacian pyramid to accu-
mulate the spatial gradient information at multiple levels to mag-
nify the spatial gradients (Subsection 2.1), design a bandpass fil-
ter (Subsection 2.2) and accumulate the motion information in the
temporal sliding window (Subsection 2.3 and 2.4) to magnify the
tiny motion caused by fine cell structures.

2.1. Magnify the spatial gradient information

Fig. 4 illustrates our process to extract and enhance the spatial
gradient information from DIC microscopy images. Given a DIC im-
age f(t) (Fig. 4(a)), we decompose it to several levels by the Lapla-
cian pyramid (Fig. 4(b)) and then reconstruct them by ignoring the
last level (Fig. 4(c)).

Fig. 5 illustrates the principle of extracting the spatial gradi-
ent information of f{(t). Each level of the Gaussian pyramid retains
the low frequency information on that level. After building a Gaus-
sian pyramid on an input DIC image, its Laplacian pyramid can be
obtained by subtracting each Gaussian pyramid level by the next
lower level, reserving the high frequency information on each in-
dividual level. Thus, the image on each level of the Laplacian pyra-
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Fig. 8. Motion magnification. (a). Three consecutive DIC images. (b). Motion images of (a) after the bandpass filter. (c). From left to right: accumulated forward motion image,
motion image by combining the backward and forward motion images, accumulated backward motion image.

mid can be regarded as the gradient image on that level. How-
ever, it is necessary to note that the last level of the Laplacian
pyramid is the residual information after Laplacian decomposition,
and more accurately, the image on the last level of the Laplacian
pyramid is just a copy of the last level of the corresponding Gaus-
sian pyramid, recording the low frequency information, which is
the reason that we need to remove the last level before the recon-
struction for the gradient (high frequency) magnification.

Fig. 6(b) shows one final result after our gradient magnifi-
cation. Compared with the single level gradient image, such as
the first level of the Laplacian pyramid (Fig. 6(a)), our gradient-
magnified image (Fig. 6(b)) that combines several levels reveals
more and clearer gradient information about the cells. We denote
the gradient-magnified image corresponding to f(t) as g(t) which
will be the input of our motion magnification process.

From Fig. 6, another observation of our spatial gradient magni-
fication is that it can increase the signal-to-noise ratio. In the sin-
gle level gradient image (Fig. 6(a)), the gradient operation ampli-
fies the noise. But, after combining multiple levels in the Laplacian
pyramid into a gradient-magnified image (Fig. 6(b)), the gradient
information in each level is accumulated or magnified while the
noise in each level is relatively reduced or smoothed by the accu-
mulation/averaging.

Note that the spatial gradient information is not sensitive to
the signal instability over time. For example, for each image from
f(T = At) to f(T + At), the pixel value of background is spatially
stable (i.e., (%, %) should be small on background pixels), but
the image can temporally change because of illumination varia-

tions, thus resulting in unwanted temporal motion in the back-
ground. Since we consider the spatial gradient information of each
image individually, the (2. 2/ will be small in the background
for all images by our method, mitigating the unwanted temporal

motion in the background.
2.2. Bandpass filter

Intuitively, motion information (v;,(t), va(t)) can be extracted by
the consecutive image difference of g(t)’s, but it is likely to amplify
the background noise which is unrelated to cells’ movement. We
need to retain the tiny motion information of cells, meanwhile in-
hibiting the unwanted movement information of background pix-
els.

In this subsection, g(t) is filtered by an ideal bandpass filter pix-
elwise and the signal-to-noise ratio of each pixel in the tempo-
ral domain is increased. The flowchart of our bandpass filtering is
shown in Fig. 7, where Fig. 7(a) shows g(t) with t € [T — At, T]'.
For each pixel (m, n), we can build a vector g(m,n, T — At :T)
which indicates the pixel value change at (m, n) during the time
period of [T — At : T]. The Discrete Fourier Transform (DFT) is then
applied to g(m,n, T — At : T) and Fig. 7(b) shows examples of fre-
quency vs. magnitude on two typical pixel locations. The princi-
ple frequency is defined as the frequency with the largest magni-

T As shown in Fig. 3, the motion magnification processes towards forward and
backward directions in the temporal domain are similar, thus we mainly describe
the forward process in this subsection without loss of generality.
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Fig. 9. Object-level cell segmentation based on the restoration. (a). DIC image. (b). Our restored DIC image. (c). Pixel-level cell region segmentation by thresholding the
restored image. (d). Restoration by the preconditioning Li and Kanade (2009). (e). Labeled cell pixels (color-coded) obtained from the preconditioning. (f). Labeled background
pixels (gray) obtained from our restoration. (g). The background probability of each pixel computed by label propagation. (h). The inferred label of every pixel. (i). The
corresponding phase contrast image as a ground truth reference. (j,k,1). The zoom-in subimages of (a,h,i) within the black dash regions, respectively.

tude. As shown in Fig. 7(c), we build a principle frequency map
whose pixel value at location (m, n) is the principle frequency
of g(m,n, T — At : T). We observe that in the cells’ regions, the
principle frequency is lower than that in the background (cell re-
gions and background regions are presented by black and bright
regions in Fig. 7(c), respectively). This is because noise variation in
the background has a higher frequency (fast changes) but with a
smaller range of intensity variation, so people may not notice it.
However, the intensity change of a pixel location caused by cell
movement has a lower frequency (slow changes) but with a larger
range of intensity variation, thus people are possible to observe cell
details in continuous DIC images.

The principle frequency map shown in Fig. 7(c) inspires us
to tentatively determine cell regions and background. We set all
pixel values in the principle frequency map which are larger than
the minimum of the principle frequency map as zero, yielding a
bitmask that indicates cell regions and background, as shown in
Fig. 7(d). The bitmask can roughly tell where the living cells are,
offering us the hint on where to retain cells’ tiny movement and
where to inhibit the motion from the background noise.

For each pixel (m, n) in g(t), its movement pattern may not be
exactly the same during the time interval (t € [T — At : T]), thus

we design an ideal bandpass filter with the aid of the bitmask
to keep the most salient movement of cells as well as the small-
est movement in the background. The bandpass filtering increases
the contrast between the cell motion and background intensity
variation, therefore facilitating the observation on fine details of
cells.

For the tentative background regions obtained from Fig. 7(d),
the frequency range to be passed in the bandpass filter is set as
the frequency corresponding to the smallest magnitude, thus all
frequency components which are larger are attenuated (rejected).
Note that we do not directly set all frequency components of
the tentative background pixel as zero, because the tentative fore-
ground and background segmentation in Fig. 7(d) may not be accu-
rate. For the tentative foreground regions obtained from Fig. 7(d),
the frequency range to be passed in the bandpass filter is set as the
frequency corresponding to the largest magnitude, thus only the
dominant frequency component related to the cell motion is kept.
Fig. 7(e) shows the two filtering results corresponding to Fig. 7(b)
with the top being regarded as the background and the bottom be-
ing the cell. After the bandpass filtering, we apply the inverse DFT
on each pixel’s frequency signals to obtain the motion images, h(t).
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Fig. 10. Experiment setup and dataset samples. (a). Datasets are collected by Zeiss Axiovert 200M microscope. (b). A DIC sample image in Dataset 1. (c). A DIC sample image
in Dataset 2. (d). The phase contrast microscopy image corresponding to (b). (e).The phase contrast microscopy image corresponding to (c).

2.3. Motion accumulation

After the aforementioned processes, we obtain the motion im-
age h(t) that includes the movement information of each pixel at
timestamp t. Fig. 8(a) shows three original DIC images and Fig. 8(b)
shows their corresponding motion images. It is clear that the mo-
tion in each individual motion-magnified image is still weak and
we need to further magnify it. In this section, we magnify the mo-
tion in a temporal sliding window to reveal cell details. This is
implemented by the temporally weighted accumulation of motion.
The magnification formula for the forward process ([T — At, T]) is
defined as

T

rw( = > e = [h@). (2)

t=T—At

The magnification formula for the backward process ([T, T +
At]) is similarly defined as

T+At

(M) = Y e 5 [h(D)| 3)
t=T

where r4,(T) and ry,,(T) are the motion-magnified images for f(t) by
. _T—t _t-T
the forward and backward processes, respectively. e” At and e 4t

ensure that the closer the image h(t) is to the target image h(T),
the more contribution h(t) makes to r5,(T) or r4,(T). 14,(T) and
ryw(T) are shown in the first and third images in Fig. 8(c), respec-
tively. Compared with the motion images in Fig. 8(b), the motion is
clearly accumulated/magnified in forward and backward processes.
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(a)

(c)

Fig. 11. The proposed restoration method helps us observe the invisible in DIC images. (a). The original DIC images. (b). The corresponding phase contrast images as a ground

truth reference. (c). The restored DIC images obtained by our restoration algorithm.

2.4. Combine forward and backward motion images

17w(T) and ry,(T) accumulate the motion during the temporal
period [T — At,T] and [T, T + At], respectively. The final restora-
tion image r(T) for the original target image f{T) can be directly
defined as the elementwise min-operation on r5,(T) and rp,(T):

r(T) = min(r, (T). Ty (T)). (4)

As shown in Fig. 8(a), a cell moves from the image center to-
wards the top-right from f(T — At) to f(T + At). Fig. 8(c) shows
the forward motion image, combined motion image and backward
motion image, respectively. In Fig. 8(c), we observe that if only one
direction of motion information is used, there will be artifacts un-
related to the motion in f{T). The artifacts are from the accumu-
lated motion in the past or future DIC images. If we compute the

minimum of r4,(T) and ry,(T), the artifacts are removed, leaving
the cell details in the current frame only.

3. Object-level cell segmentation based on the restoration

In our restored DIC images, background pixels have values close
to zero while cell pixels have non-zero values. Fig. 9(a) and (b)
show one DIC image and its restoration, respectively. Segmenting
cell pixels from the background pixels can be easily achieved by
simply thresholding the restored image, as shown in Fig. 9(c).

After we recover the hidden details of cell cytoplasm within the
cell membrane, the pixel-level segmentation in Fig. 9(c) can not
separate the clustered cells from each other. We leverage the label
propagation method in a supervised graph Su et al. (March 2016)
to obtain the object-level segmentation. Given a restored image
for the graph-based cell segmentation, first, we need some labeled
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Fig. 12. Seeing more details about cells’ behavior over time. (a). Sample DIC images with a time interval of 100 minutes. (b). The corresponding phase contrast microscopy
images as ground truth references. (c). DIC restoration images, from which we can analyze the shape change of a cluster of cells over time.

pixel samples from the background and different cells. Since the
preconditioning method Li and Kanade (2009) can obtain the cell
nuclei regions as shown in Fig. 9(d), we find the local maximums
in the preconditioned results and use them (cell nucleus) as the la-
beled pixel samples for different cells (represented by color blobs
in Fig. 9(e)). The labeled pixel samples for the background (repre-
sented by gray pixels in Fig. 9(f)) are those pixels whose values in
our restoration result (Fig. 9(b)) are zero.

Suppose we have labeled N, cells and 1 background class, we
denote the labeled sample pixels as {(xl,y,)}flzll where N; is the
total number of labeled pixels, x; and y,; are the feature vector and
label vector of the Ith labeled pixel, respectively. y; is a row vector
of length N: + 1 with only one entry with the value of one and all
other entries being zero. For example, y, = [1,0, ...0] indicates the
sample belongs to the background and y, = [0, 1,0, ...0] indicates
the sample belongs to the first cell. For all other unlabeled pixels
in the restored image, we denote them as {(xu,yu)}g; where Ny
is the total number of unlabeled pixels.

Considering each pixel in the restored image as a node in a reg-
ular grid graph and each pixel is linked to its 8-connected neigh-
bors, we compute the link weight as

(hi—hj)?
Wi =e "% (5)

where h; denotes the pixel value at pixel i in our restored im-
age. A is a normalization factor and we choose it as the mean
of all possible square costs between neighboring pixels (i.e., A =
mean; ;[ (h; — h;)?]).

Based on the pairwise link weight, we compute the affinity ma-
trix of the graph and permute it into the following structure

W, Wy
W= 6
|:Wul Wuu ( )

where W), represents the pairwise link weight between labeled
samples, Wy, represents the pairwise link weight between labeled
samples and unlabeled samples, W, =W51, and Wy, represents
the pairwise link weight between unlabeled samples. Then, we
compute the Laplacian matrix of the graph as

L=D-W (7)
where the degree matrix D is computed as

Nj-+Ny
D(i,i) = Z W(, j) (8)

j=1

The label vectors of the unlabeled pixel samples in the
graph is obtained by minimizing the following objective func-
tion Su et al. (2014)

O(Yu) = trace([Y;; Yul"LIY;; Yu]) (9)

where Y, =[...;y;;...] and Y, =[...; yu; ...] are the label matrices of
the labeled and unlabeled pixels, each row of which is an indicator
vector. Taking the derivative on O(Y,) and setting it to zero lead to
the optimal inference for unlabeled pixels as

Y, = -LyL,Y, (10)

where L, represents the submatrix of L that corresponds to unla-
beled pixels and L, represents the submatrix of L that correlates
the unlabeled and labeled pixels.

Y; is a label matrix with the size of Ny x (Nc + 1). Each column
of Y;, represents the probabilities of the unlabeled pixels belonging
to the specific class. For example, the first column of Y}, represents
the background probabilities of unlabeled pixels. Fig. 9(g) shows
the background probability of every pixel in the restored image
and the labeled background pixels are with probability 1 (white
in Fig. 9(g)). For every unlabeled pixel, we determine its class by
its maximum value in y;. Fig. 9(h) shows the class labels of all pix-
els where the color blob represents different cell identities that are
consistent with the nuclei regions provided by the preconditioning
method (Fig. 9(e)). The phase contrast image is shown in Fig. 9(i)
as a ground-truth reference. In Fig. 9(j-1), we crop some sub-images
of the full images for the zoom-in visualization. We observe that
our restoration can facilitate the cell segmentation, while it is very
challenging to segment individual cells from the cell clusters in the
original DIC (Fig. 9(j)) or phase contrast images (Fig. 9(1)).

4. Experimental results

In this section, first we describe our experiment setup to obtain
the microscopy images. Then, we qualitatively demonstrate how
well our restoration method can help visualize the invisible in DIC
images. Thirdly, we compare our restoration method based on mo-
tion magnification with four other restoration methods both quali-
tatively and quantitatively. Furthermore, we illustrate that the pro-
posed restoration method can be applied to other imaging modal-
ity such as the phase contrast microscopy. In addition to visual-
izing the hidden details of cells, we further demonstrate that our
pixel-level restoration method can benefit the object-level cell seg-
mentation with accurate shapes.
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Fig. 13. Qualitative method comparison. (a

The original DIC images. (b). The corresponding phase contrast microscopy images as a ground truth reference. (c). The restored

).
DIC images by our restoration algorithm. (d). The restoration by line integration Kam (1998). (e). The restoration results by Wiener filter Heise et al. (2005). (f). The restoration
by preconditioning Li and Kanade (2009). (g). The restoration by Eulerian image magnification Wu et al. (2012).

4.1. Experiment setup

The proposed image restoration algorithm was tested on two
sets of Differential Interference Contrast images with the resolu-
tion of 1388 x 1040 pixels, which were captured by Zeiss Ax-
iovert 200M microscope (Fig. 10(a)). The cells were cultured in
an incubation system placed on the top stage of the microscope
which didn’t move during the entire experiments and the time-
lapse images on living cells were taken every 5 minutes. The first

dataset includes 445 DIC images with each image containing about
70 cells (Fig. 10(b) is a sample image). Fig. 10(c) shows a sample
image from dataset 2, which includes 500 DIC images and has a
wider visual field. Each image in dataset 2 contains about 150 liv-
ing cells. When labeling the ground truth of cell masks, we found
it was very likely to make mistakes if only DIC images are used.
To minimize the human error, we captured the phase contrast mi-
croscopy images on the same cell dish simultaneously when we
captured DIC images. Fig. 10(d) and Fig. 10(e) show the phase con-
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Fig. 14. The recall vs. precision comparison with other approaches (Precondition: Li and Kanade (2009); Wiener: Heise et al. (2005); Line Integration: Kam (1998)) applied
to DIC images. (a). Comparison on dataset 1. (b). Comparison on dataset 2. (c). The area under the recall-precision curve.

trast microscopy images corresponding to the DIC image samples
in Fig. 10(b) and Fig. 10(c), respectively. Thus, the ground truth was
labeled by combining DIC images and their corresponding phase
contrast images.

4.2. Seeing the invisible in DIC images

Fig. 11 shows the proposed restoration algorithm is able to re-
veal the invisible details in DIC images. In Fig. 11, the images in
red or blue boxes are the original DIC images and the correspond-
ing phase contrast images, respectively. Phase contrast images are
displayed here to help observe the ground truth. As shown in im-
ages in green boxes in Fig. 11, our approach can restore the details
such as the cytoplasm of living cells, even though the cytoplasm is

spread out and mixed with the background in the original DIC im-
ages. With the ability to present more details about living cells, it
is easy to observe cells’ behavior in the restored image sequence.
For instance, Fig. 12 shows some DIC images and their correspond-
ing restoration results on a cluster of cells within a time inter-
val of 100 minutes (the corresponding phase contrast images are
provided to help visualize the ground truth). It is clear to observe
cells’ shape change and their movement, which provides more in-
formation for the cell shape and behavior analysis over time.

4.3. Method comparison

We compare the proposed restoration approach with the pre-
vious work both qualitatively and quantitatively. Fig. 13(a) and
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Fig. 15. Advanced visualization by combing the proposed restoration method and preconditioning Li and Kanade (2009). (a). The original DIC images. (b). The corresponding
phase contrast microscopy images as ground truth references. (c). The restoration results by our motion magnification method only. (d). The DIC restoration results by the
preconditioning Li and Kanade (2009) only. (e). The advanced restoration results by combing our motion magnification method and the preconditioning Li and Kanade (2009).

(b) show some DIC and phase contrast images with different cell
sizes. From Fig. 13(c) to Fig. 13(f), we show the restoration re-
sults of our restoration method and three existing DIC restoration
work on DIC images (Line integration Kam (1998), Wiener filtering
Heise et al. (2005), and preconditioning Li and Kanade (2009)). Un-
like the three previous work that only reveals the nucleus of living
cells and usually misses the cytoplasm, our method reveals more
cell details even though they are invisible to naked human eyes.
In addition, as shown Fig. 13(c) and Fig. 13(g), we also com-
pare the performance of our method with a typical image enhance-
ment method proposed in Wu et al. (2012) where the small tem-
poral variations in videos are revealed by the spatial decomposi-
tion, followed by the temporal filtering with a known frequency.
The method in Wu et al. (2012) can partially display some hidden
details of cells, but it also brings artifacts such as the bright and
dark regions which are caused by the missmatching between the

single unique predefined frequency and the various frequencies of
moving cells.

The restored image (a grayscale image with background pix-
els close to zero and non-zero cell pixel values) enables us to
achieve the cell region segmentation (a binary image) simply by
using a global threshold. The pixel value range in restored im-
ages is normalized to [0, 1], thus we can segment the restora-
tion image with any threshold within [0, 1]. We gradually in-
crease the segmentation threshold by 0.01 from O to 1. For each
threshold, the average precision and recall for all images in the
dataset is computed. Fig. 14(a) and (b) show the recall vs. preci-
sion curves on the two datasets by trying different thresholds from
0 to 1 for four methods: our restoration approach, line integration
Kam (1998), Wiener filter Heise et al. (2005) and preconditioning
Li and Kanade (2009). For each threshold, TP is the number of true
positives (cell pixels). FP is the number of false positive pixels. FN
is the number of false negative pixels. Thus, precision is defined as
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Fig. 16. Qualitative object-level cell segmentation evaluation. (a). The original DIC images. (b). The corresponding phase contrast images as a ground truth reference. (c). The
restored DIC images by our restoration method. (d). The restoration results by preconditioning Li and Kanade (2009), which are the initial labeled pixel samples. (e). The

object-level cell segmentation results.

Precision=TP/(TP+FP) and recall is defined as Recall=TP/(TP+FN). To
quantitatively compare the performance, we compute the Area Un-
der the recall-precision Curve (AUC). As summarized in Fig. 14(c),
our proposed restoration algorithm greatly outperforms the other
three approaches since we can restore cells’ fine details in addition
to the nucleus.

4.4. Advanced visualization

The proposed restoration method relies on motion magnifi-
cation for restoring cells’ fine structures, which means that our
method pays more attention to the motion among a series of im-
ages rather than a single image. However, the stationary informa-
tion restored from a single image might provide complement infor-
mation to the restored details from motion magnification. This in-
spires us to combine the motion information from our restoration
method with the restored stationary information from the previ-

ous work for the advanced visualization of DIC images. Precon-
ditioning method Li and Kanade (2009) is a typical method that
only depends on the target DIC image. Compared with the other
works Kam (1998)Heise et al. (2005), preconditioning brings less
artifacts and has better performance on restoring cell regions with
large gradient signals of the phase variation. Fig. 15(e) shows the
restoration results by equally adding the restoration results from
our restoration method (Fig. 15(c)) into the preconditioned results
(Fig. 15(d)). The advanced visualization is better than either motion
magnification or preconditioning alone because it not only shows
the hidden details of living cells such as the cytoplasm and cell
membrane, but also presents the cell nuclei more clearly.

4.5. Application to object-level cell segmentation

Fig. 16 shows the qualitative object-level cell segmentation per-
formance by the method proposed in Section 3. As illustrated in
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(d) | . S5

Fig. 17. Seeing the invisible details in phase contrast microscopy images. (a). The original phase contrast images. (b). The restoration results by the proposed restoration
method applied to the phase contrast images. (c). The restoration results by sparsity regularized method proposed in Yin et al. (July 2012) applied to the phase contrast
images. (d). The corresponding DIC images. (e). The restoration results by the proposed restoration method applied to the DIC images.

Fig. 16(c), the hidden details on cells can be revealed but the pixel-
level restoration can not separate one cell from another when they
are clustered. Taking the cell nuclei regions (Fig. 16(d)) obtained by
the preconditioning method Li and Kanade (2009) as initial labeled
pixel samples, we can compute the probability of the unlabeled
pixels belonging to a specific cell class, based on the restoration
results (Fig. 16(c)). Fig. 16(e) is the oject-level cell segmentation
results where each cell can be accurately segmented even though
they gather together as a cluster.

To quantitatively evaluate the object-level cell segmentation, we
compute the Tanimoto coefficient (TC), which is defined as:

C— area(Cse () Car)
— area(Ce U Get)
where Csc and Cg are the segmented cell regions by the proposed

object-level segmentation algorithm and ground truth annotated
by humans, respectively. The average TC for dataset 1 is 0.89 and

(11)

that for dataset 2 is 0.85. This object-level cell segmentation would
be helpful to analyze cells’ behavior and shape change over time.

4.6. Application to phase contrast microscopy images

Besides DIC microscopy, phase contrast microscopy
Zernike (1955) 1is another popular non-invasive microscopy
imaging modality, which converts the minute phase difference
between waves traversing the biological specimen and those
passing through the surrounding medium to a visible differ-
ence in image intensity. We have been using phase contrast
images as ground truth references in this paper. In fact, both
DIC and phase contrast microscopy have their own advantages
and drawbacks (please refer to http://www.microscopyu.com/
tutorials/java/phasedicmorph/index.html for the detailed compar-
ison), so both of the two imaging modalities have been widely
used by biologists for different biological experiments. Similar to
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Fig. 18. The recall vs. precision comparison among the sparsity regularized method Yin et al. (July 2012), our restoration method on DIC images and our restoration method
on phase contrast microscopy images. (a). Comparison on dataset 1. (b). Comparison on dataset 2. (c). The area under the ROC curve.

DIC microscopy, phase contrast microscopy is also insensitive at
regions having small differences of optical path length, such as the
flat specimens which produce little contrast and often appear in
the image at the same intensity level as the background. Thus, it is
significant to study the possibility to apply our proposed method
to phase contrast images as well. It is promising because our
proposed method does not rely on the image formation process
of microscopy images, which differs from our previous phase con-
trast restoration methods that depend on the microscopy imaging
model Yin et al. (July 2012).

Fig. 17 shows the qualitative results by applying our proposed
method to restore microscopy images. Fig. 17(b) and Fig. 17(e)
show the restoration results of phase contrast images and DIC im-
ages by our restoration method, respectively. The restoration re-
sults on two imaging modalities are very similar, which indicates

our method can successfully reveal the hidden details of cells in
phase contrast images and obtain comparable performance as DIC
images. Fig. 17(c) shows the restoration results by applying the
sparsity regularized method proposed in Yin et al. (July 2012) to
phase contrast images, which does not work well in these cases
where the cells are spread out to the background and their inten-
sities are similar to the background.

With the same evaluation method described in Section 4.3,
we compare our restoration on phase contrast images with the
previous sparsity regularized method Yin et al. (July 2012) and
our restoration on corresponding DIC images. Fig. 18 summarizes
the comparison among the three methods. The comparison be-
tween the sparsity regularized method Yin et al. (July 2012) and
our method applied to phase contrast images indicates that our
method improves the state-of-the-art with a large margin in the
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phase contrast imaging modality. When applying our restoration
method to both DIC and phase contrast imaging modalities, the
AUCs for DIC images and phase contrast images are 0.9438 and
0.9359 for dataset 1, and 0.8577 and 0.8053 for dataset 2, re-
spectively. The proposed method applied to DIC images achieves
slightly better performance than that applied to phase contrast im-
ages.

5. Conclusion

In this paper, we propose a novel motion-based DIC image
restoration algorithm. The gradient information in DIC images is
magnified based on a Laplacian pyramid method. The tiny motion
of each cell pixel is magnified by filtering a time-series of gradient-
magnified DIC image signals on the pixel location using an ideal
bandpass filter, while the intensity variation on the background
pixels is attenuated. The motion information of a target image is
further magnified by a weighted sum of a series of motion images
from time-lapse image sequences. From our restored images, we
can clearly observe the previously-invisible details in DIC images
such as the cytoplasm and cell membrane. The restored images fa-
cilitate the cell segmentation greatly. Combining with the single-
image-based restoration method which recovers the cell nuclei re-
gions, our restoration based on a series of DIC images can visualize
the full details of cell appearance. Furthermore, we demonstrate
that the motion-based restoration method can be applied to other
imaging modalities such as phase contrast microscopy to recover
appearance details on cell regions that have similar intensities to
the background in original images. Additionally, we also leverage
the label propagation method in a supervised graph to obtain the
object-level segmentation based on the pixel-level restoration re-
sults. In the future, we plan to explore cell image analysis tasks
based on our restoration algorithm such as the cell shape dynam-
ics during the cell proliferation process.
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