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Abstract

The number of Circulating Tumor Cells (CTCs) in blood

indicates the tumor response to chemotherapeutic agents

and disease progression. In early cancer diagnosis and

treatment monitoring routine, detection and enumeration of

CTCs in clinical blood samples have significant applica-

tions. In this paper, we design a Deep Convolutional Neu-

ral Network (DCNN) with automatically learned features

for image-based CTC detection. We also present an effec-

tive training methodology which finds the most represen-

tative training samples to define the classification bound-

ary between positive and negative samples. In the experi-

ment, we compare the performance of auto-learned feature

from DCNN and hand-crafted features, in which the DCNN

outperforms hand-crafted feature. We also prove that the

proposed training methodology is effective in improving the

performance of DCNN classifiers.

1. Introduction

Malignant cells may break away from the primary tu-

mor, and form a secondary tumor at a distant organ site dur-

ing the process of cancer metastasis. Malignant cells are

found circulating in blood in the early stages of solid tumor

progression [1, 2, 6, 7]. The number of Circulating Tumor

Cells (CTCs) in blood can predict disease progression and

indicate tumor response to chemotherapeutic agents [6, 7].

Thus, the development of routine techniques for detection

and enumeration of CTCs in clinical blood samples is in

need. The early diagnosis of cancer even before tumors are

visible using traditional imaging approaches may be bene-

fited from an automated technique for CTC detection.

1.1. Related Work

Routine detection of CTCs is difficult since CTCs in

blood are infrequent, 1 per 1 billion normal cells found

in the blood [1]. Many methods try to quantify and cap-

ture CTCs from human blood depending on surface mark-

ers on tumor cells. One widely used marker for the detec-

tion of carcinoma cells in the blood is epithelial cell adhe-

sion molecule (epCAM) [8]. Magnetic beads with immobi-

lized anti-epCAM [9] and other anti-tumor antibodies [10]

are used for immunomagnetic separation of malignant cells

from the normal blood cell population. Immunomagnetic-

based selection of CTCs is attractive because of its sim-

plicity and the availability of the needed tools and reagents.

Commercially available systems based on epCAM-positive

selection have been successfully implemented in CTC eval-

uation.

Figure 1. Visualization of Circulating Tumor Cells (CTCs) using

Phase Contrast Microscopy Imaging. (a) An image containing

CTCs. (b) CTC samples with different shapes and sizes, some of

which cluster together. (c) Samples from non-CTC background,

which are similar to CTCs in intensity and shape.

1.2. Motivation and Contributions

Methods that use antibodies against tumor cells require

prior knowledge of the markers which vary widely accord-

ing to various types and stages of cancer. These antibody-

based systems that efficiently detect carcinomas will miss

many other types of malignancies including leukemia, lym-

phoma and non-epithelial tumors. Svensson et al. [16] use a

Bayesian classifier based on a probabilistic generative mix-

ture model to detect CTCs. However, their system is based

on fluorescent microscopy images which is an invasive ap-

proach. There is a great interest in the CTC community



Figure 2. The Overview of our proposed framework.

to develop a noninvasive method that is not dependent on

tumor cell markers and capable of detection across a wide

range of cancer types. Mao et al. [5] propose a CTC de-

tection system with the bootstrap training. However, the

system is lack of the capability of finding the most repre-

sentative samples for training.

A phase contrast microscopy image containing some

CTCs is shown in Fig.1(a). The CTCs exhibit large vari-

ations in shape and size and they overlap with each other

(Fig.1(b)). Some non-CTC background has similar appear-

ance to the CTCs (Fig.1(c)). It is very hard to distinguish

CTCs from the background by simple intensity thresholding

or morphological operation.

Therefore, reliable image features are needed to detect

CTCs. Deep Convolutional Neural Network (DCNN) has

shown its effectiveness on object detection and classifica-

tion in recent years [3, 4]. It has been proven to be an ef-

fective tool in several biomedical applications such as mi-

tosis cell detection [13, 14]. In a DCNN architecture, it

has several layers of convolutional filters with each layer

followed by either max or mean pooling operations to pro-

duce abstract and useful representations of the input object.

The parameters of kernels are automatically learned without

any human effort. Thus, the learned convolutional kernels

should be the most effective feature extractor compared to

any other human-designed feature descriptors.

The balance between the number of positive and negative

samples is quite important in the DCNN training. However,

CTCs in blood are infrequent so that it is hard to acquire a

large amount of CTCs image patches for DCNN training.

Meanwhile, there are many more negative samples from the

background with redundancies so that it is infeasible to in-

clude every possible negative sample in training. Thus, a

training methodology which is able to collect the most rep-

resentative training samples from limited training images is

needed to avoid the class imbalance problem.

The above three needs (noninvasive microscopy imag-

ing, image feature extraction, and training with representa-

tive samples) motivate us to develop a CTC detection sys-

tem with the following contributions:

• We propose an image-based CTC detection system

based on DCNN. The proposed system is non-invasive

without staining markers that damage the viabilities of

CTCs.

• An effective training methodology is proposed. It finds

the most representative samples to better define the

classification boundary between positive and negative

samples.

2. Methodology

2.1. Overview

The diagram of our framework is shown in Fig. 2. In the

ith iteration, DCNN detector Di is trained from positive

and negative training dataset plus the false positives gener-

ated from detectors D1 to Di−1, and the ith detector Di

generates a set of false positives FPi. FPi is added to the

training dataset to train the detector Di+1 in the i + 1 iter-

ation. The iteration stops when the performance converges.

This sequence of iterations is defined as one ROUND of

training in the paper. Then, we apply all Di’s (i ∈ [1, N ])
in one ROUND of N iterations to all the collected false pos-

itive samples during N iterations. The confidence scores Si

are the output values of Di to label the false positive sam-

ples as positive. Since we have N iterations in one ROUND,

each false positive will have a N × 1 feature vector. K-



means clustering method is applied to classify these false

positives based on their feature vectors into two groups:

easy samples and hard samples. Only hard samples are

added to the original negative training dataset to start an-

other ROUND of iteratively training. We obtain one DCNN

detector eventually after multi-ROUNDs of training (each

ROUND has multi-iterations), i.e., the final trained detector

is the DCNN in the last iteration of the last ROUND.

2.2. Data Acquisition

Figure 3. Staining and fluorescence imaging are used to obtain the

ground truth. (a) A phase contrast microscopy image containing

three CTCs; (b) The corresponding fluorescence image shows the

location of CTCs.

MCF-7 breast cancer cells are labeled with a red fluo-

rescence cell-tracker dye for 30 minutes. In reality, the

CTCs are very rare and the ratio of CTCs to red blood

cells is as low as 1:109. Thus, to have more positive sam-

ples for training and validation, we mix the MCF-7 cells

with purified sheep red blood cells at a ratio of 1:10,000.

Then we use an 18x18 mm coverslip to mount the CTC

samples onto glass slides. We acquire fluorescence and

phase contrast image sets using a Leica DMIRE2 epiflu-

orescence microscope equipped with a 10X objective and

12-bit monochrome CCD camera as shown in Fig.3. The

bright regions in fluorescence image are the locations of

CTC cells. Note that, we only use invasive staining pro-

cess and fluorescence imaging to obtain the ground truth

for training and evaluating. In our non-invasive CTC detec-

tion, the CTCs will not be stained so fluorescence imaging

will not be avaliable.

2.3. DCNN Architecture

Figure 4. The architecture of DCNN for CTC detection.

In this section, we review the DCNN architecture we

proposed in [5]. The DCNN architecture is shown in Fig.4.

The input image patch to DCNN is normalized to 40 × 40
pixels. The first layer has 6 different convolutional filters

with size 5× 5. The convolution operation is formulated as

yj = sigm(bj +
∑

i

kij ∗ xi) (1)

where xi and yj are the i-th input map and j-th output

map, respectively. bj is the bias term and kij is the con-

volutional kernel between xi and yj . The sigmoid function,

sigm, maps output values to the range of [-1,1].

The second layer is a max-pooling layer which is used

to extract local signal in every 2 × 2 region. Max-pooling

function is expressed as

zjp,q = max
0≤m,n ≤2

{yi2×p+m,2×q+n} (2)

where the pixel at (p, q) of the output map zj pools over a

2× 2 region in yi.
The third layer is a convolutional layer which has 12 ker-

nels. Then it is followed by a max-pooling layer. The last

layer is fully connected to the output layer by performing

the dot product between the weight vector and input vector.

The weighted sum is then passed to a sigm function.

All the parameters in kernels, bias terms and weight vec-

tors are automatically learned by back propagation with the

learning rate set to 0.1.

2.4. Training Methodolgy

The locations of positive training samples are automat-

ically obtained around the bright regions in fluorescence

images. In order to enhance the tolerance to variations

of intensity and rotation, we rotate the phase contrast mi-

croscopy images every 30 degrees and automatically crop

positive samples from them.

It is important to build a comprehensive negative training

dataset in order to precisely define the classification bound-

ary between positive and negative samples. But collecting

negative samples which cover every possible variation in the

background may introduce a lot of repetitive samples and

cause a large class imbalance between positive and nega-

tive samples. Thus, how to collect a representative set of

negative samples becomes crucial.

We propose a bootstrapping method to collect repre-

sentative negative samples from limited training images.

Unlike other training methodologies which train detectors

with all the found false positives until the performance con-

verges, our approach continues to refine the classification

boundary by training with the most representative samples

among the false positives.

Traditional boosting training methods train the detector

iteratively [5]. After one iteration, the detector will collect

false positives and add them to negative training dataset, and

then start a new training iteration. As shown in Fig. 5(a),



Figure 5. Iteratively training a detector by adding the false positives in the previous iteration to the training dataset for the next iteration. (a)

ROC of each iteration; (b) CTC detection of the 1st iteration; (c) CTC detection of the 3rd iteration; (5) CTC detection of the 5th iteration.

Red: false positive; Green: true positive; Blue: miss detection.

Figure 6. Confidence scores of false positive samples in each ROUND. The confidence scores are the output values of classifiers that

classify false positive samples as positives.

the traditional iterative training ends when the performance

converges. However, the detector after the iterative training

still contains many false positives (Fig.5(d)).

When we apply the trained detector of each iteration on

all the false positives, a large amount of false positives gen-

erate low responses as shown in the first ROUND training in

Fig. 6, which means they can be easily classified as negative

samples. As illustrated in Fig. 7, these easy false positive

samples are close to the classification boundary. But the

remaining small amount of false positive samples with rel-

atively high responses are hard samples far away from the

classification boundary. To let the classification boundary

get closer to those hard samples, hard samples should gain

more weights in the training.

Suppose we have N iterations in one ROUND of iter-

ative training, then we apply these N detectors on all the

Figure 7. Illustration of Easy and Hard Samples. Easy Samples are

in yellow circles which are close to the decision boundary and hard

samples are in red circles which are far away from the decision

boundary.



false positives collected from all iterations. For each false

positive sample, it has a Nx1 confidence score feature vec-

tor. The confidence score is the output of a classifier which

indicates how likely a false positive sample is classified as

a positive. The higher the confidence score is, the more

likely the false positive sample is classified as a positive. We

simply apply k-means clustering method to classify these

false positives based on their confidence score feature vec-

tors into two groups: easy samples which have low confi-

dence scores and hard samples which have high confidence

scores. To enhance the influence of these hard samples on

the training, we start another ROUND of iterative training

by only adding these hard samples to the previous negative

training dataset. By this iterative training, only a small num-

ber of false positives will be collected. As shown in Fig. 6,

the number of false positive samples reduces from 11000 in

the first ROUND to 2500 in the second ROUND. The pro-

portion of samples with relatively high scores in the second

ROUND is larger than that in the first ROUND. Thus, hard

samples gain more weights in the new training ROUND.

3. Experimental Results

3.1. Evaluation Metric

We acquired 45 phase contrast microscopy images, each

of which has its corresponding fluorescence image as the

ground truth. We randomly select 35 images for training

and the rest 10 for testing. To avoid bias, we repeat this

random experiment 5 times. The evaluation result is based

on the average performance of 5 trials. As defined in PAS-

CAL [15], a detection is a True Positive (TP) if the area

of the intersection between the detection window and the

ground truth exceeds 50 percent of their union area, other-

wise it is a False Positive (FP). If one cell is not detected, it

is missed (False Negative, FN). We define precision as P =
|TP |/(|TP |+ |FP |), recall as R = |TP |/(|TP |+ |FN |),
and F score as the Harmonic mean of precision and recall.

Figure 8. F scores of DCNN and SVM.

F Score

1st Round HoG + HoC 75.4 %

1st Round DCNN 91.2 %

2nd Round HoG + HoC 78.4 %

2nd Round DCNN 97.0 %
Table 1. F scores.

3.2. Comparison of DCNN and Hand-Crafted Fea-
tures

The Histogram-of-Gradients (HoG, [11]) feature can be

used to extract regional gradient information, capturing the

shape of objects. The Histogram of Color (HoC) of image

patches may be considered as another feature to separate

cells from the background. We distribute the color of image

patches into 32 bins. In the experiment we feed the HoG

+ HoC to Support Vector Machine (SVM, [12]) to compare

with DCNN.

The average number of positive training samples during

the five trials is 1400. Training the DCNN classifier takes

2 hours and training the SVM takes around 0.5 hour. Note:

we only use fluorescence images as the ground truth. No

information from fluorescence images is extracted as image

features for CTC detection.

As shown in Tab. 1, after applying our training method,

the F score of SVM + HoG + HoC increases to 78.4%.

The F score of DCNN increases to 97%. The F score of

DCNN is larger than that of SVM + HoG + HoC by 18.6

percentage points in the second ROUND. This result in-

dicates that DCNN finds better features than HoG + HoC

to detect CTCs. Some detection examples of DCNN are

shown in Fig.9.

3.3. Validation of the Proposed Training Method

We evaluate our training methodology for both SVM and

DCNN classifiers. Fig.8 shows the F score in every itera-

tion of two ROUNDs. Both the SVM and DCNN classifiers

converge in 5 iterations in each ROUND. The performance

of both DCNN and SVM + human-designed feature im-

prove after the first ROUND, which shows that our training

method is effective in finding representative samples. With-

out our training method, the DCNN achieves F scores of

91.2% [5]. The F score of SVM + HoG + HoC only achieve

75.4%. They increase to 97% and 78.4% respectively with

our training method, as summarized in Table 1.

4. Conclusion and Discussion

In this paper, we proposed an image-based CTC detec-

tion system based on DCNN. We also proposed an effec-

tive training method which targets at finding the most rep-

resentative training samples. The comparison of DCNN and

SVM classifier shows that our DCNN classifier works bet-

ter and the proposed training method is able to improve

the performance of classifiers by reducing the redundancy



Figure 9. Samples of CTC detection.

in negative samples. The high performance of DCNN on

a challenging dataset shows that it is promising to solve

the problem of automated CTC detection in a non-invasive

way. Our image-based CTC detection is not dependent on

cell marker expression, and is not limited to any particu-

lar cancer type. Our detection approach could be adapted

to microfluidics devices for accurate and rapid enumeration

of CTCs in clinical blood samples for early diagnosis and

treatment monitoring.
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