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ABSTRACT

We propose a novel cell segmentation approach by extract-
ing Multi-exposure Maximally Stable Extremal Regions
(MMSER) in phase contrast microscopy images on the same
cell dish. Using our method, cell regions can be well iden-
tified by considering the maximally stable regions with re-
sponse to different camera exposure times. Meanwhile, halo
artifacts with regard to cells at different stages are leveraged
to identify cells’ stages. The experimental results validate that
high quality cell segmentation and cell stage classification can
be achieved by our approach.

Index Terms— Microscopy, cell segmentation, Maximal-
ly Stable Extremal Regions

1. INTRODUCTION

As a non-invasive technique, phase contrast microscopy has
been one of the widely used microscopy models to observe
live cells without staining them [25]. With the high de-
mand for effective and efficient automated processing of the
phase contrast microscopy data, cell segmentation algorithms
have been developed to firstly localize the cell regions in
microscopy images before other cell analysis tasks such as
tracking and classification. Various microscopy cell seg-
mentation approaches have been investigated by scientists
over years [6, 10], including thresholding based techniques
[3], morphological operations [11], graph based algorithms
[1, 15], machine learning based approaches [4, 16], level-set
[18], atlas based techniques [9] and Laplacian-of-Gaussian
filtering methods [17].

The imaging system of phase contrast microscopy con-
sists of a phase contrast microscope and a digital camera to
record time-lapse microscopy images on cells, hence the mi-
croscopy images depend on both the optics and the camera
setting such as its exposure time. Recently, cell image anal-
ysis methods based on microscope optics models have been
explored in [19, 21, 20]. One challenge of these methods is
to segment cells at different stages [22]. For example, cells
become thick in the culturing dish during mitotic and apoptot-
ic stages, leading to different phase retardations in the phase
contrast microscopy imaging compared to cells under the mi-
gration stage. Therefore, a dictionary of diffraction patterns
has been derived to approximate various phase retardations
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[12, 13].

In addition to the front-end of the imaging pipeline (op-
tics), a cell image segmentation approach based on the rear-
end of the imaging pipeline (camera setting) was developed
[23, 24]. Variously exposed phase contrast microscopy im-
ages on the same cell dish are used to restore cells’ irradi-
ance signals, while the irradiance signals from non-cell back-
ground regions are restored as zero. The image artifact such
as halo around cells is restored as zero in [23], but this artifact
is informative to classify cells at different stages.

In this paper, we propose a novel cell segmentation ap-
proach by extracting Multi-exposure Maximally Stable Ex-
tremal Regions (MMSER) in variously exposed phase con-
trast microscopy images. Due to different exposure time
periods, irradiance signals have different responses to cell re-
gions and artifacts. By extracting MMSER components over
different intensity thresholds and exposure times, we are able
to identify the most stable regions indicating cells, as well as
those artifacts around them. Our contribution is twofold:

(1) First, we consider multi-exposed microscopy images
to extract Multi-exposure Maximally Stable Extremal Re-
gions (MMSER) to identify cells and their artifact regions;

(2) Second, we accurately classify cell and halo regions
via a local Graph-cut algorithm, facilitating cell stage moni-
toring.

2. METHODOLOGY

Local region descriptors have been widely used for objec-
t segmentation, detection and identification. Among these
methods, Mikolajczyk and Schmid [7] revealed that the Max-
imally Stable Extremal Region (MSER) detector introduced
by Matas et al. [5] performs very well on a wide range of
experiments. MSERs denote a set of distinguished region-
s, which are defined by an extremal property of its intensity
function in the region and on its outer boundary. In this chap-
ter, we will first introduce our proposed methods of extract-
ing Multi-exposure MSERs denoting cell and artifact regions
in multi-exposure microscopy images. Then we will discuss
how to classify these regions into cells and halos, for accurate
cell segmentation and cell stage monitoring.

For our time-lapse microscopy image sequences, each set
of multi-exposure images is taken every 5 minutes with a
range of known exposure durations ([50, 100, 200, 250, 300,
350, 400, 500]ms, in total, about 2:15 seconds for capturing



images per set. Due to the fact that cells are migrating very
slowly in a dish, and the time taken for capturing each im-
age set (2:15 seconds) is relatively very small compared to
the time-lapse interval of 5 minutes, we can consider the ir-
radiance signal for each cell is stable and there is no position
change for each cell pixel within the time we capture each set
of multiple exposure images. Thus, no further image registra-
tion procedure is needed. Zeiss Axiovision 4.7 microscope is
used for microscopy image acquisition for our experiments.
2.1. Multi-exposure MSER Extraction
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Fig. 1. Multiple exposure imgs on
millisecond) and binary images with different thresholds.

MSERs denote a set of distinguished regions that are de-
tected in a gray scale image, which have relative stable car-
dinalities across different intensity thresholds. These regions
are defined by an extremal property of the intensity function
in the region R and on its outer boundary 0 R. For MMSERs
we consider two types of extremal regions R which are de-
fined by:

(HVp € R,¥q € OR,I(p) > I(q) (maximum intensity
region, denoting bright blobs)

(2Q)Vp € R,¥q € OR,I(p) < I(¢) (minimum intensity
region, denoting dark blobs)
where I(p) and I(p) denote the pixel intensity at locations p
and ¢, respectively.

These extremal regions are represented as connected com-

ponents in binary images [ ;j;; which is obtained by:
1, if Legp(p) > thr
thr _ 9 erp
Leay (p) = {0 otherwise M

where I, is the image with exposure time exp, thr is the
threshold and thr € [min(ley), max(leyy)]. Given a set
of multi-exposure phase contrast microscopy images exp €
{50,100,200....,500}, each image can be used to produce a
set of these connected components. Fig.1 illustrates an exem-
plary set of 3 input multi-exposure images, and some of the
thresholded images which contain related connected compo-
nents. Note that cells are mostly dark blobs, which will be
identified as minimum intensity region. We use R (n) to
denote the nth connected component region obtained from
the exp exposure time with the threshold value thr.

527

We observe that for a connected component Réﬁ; (m), we
can either change the threshold thr by Athr, or change the
exposure time by Aexp, to increase/decrease its local region
to obtained a dilated/eroded region RZZ;J;AAIZP (n), as shown
in Fig.2. Here Athr denotes the step size of changing the in-
tensity threshold value. Athr denotes the step size of chang-

ing the exposure time. In Fig.2 we use solid/dotted arrows

from R (m) to Réﬁ;//(n) to represent that Ré@;ﬁ(n) is an
. . th
dilated/eroded region of Rg;7 (m).
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Fig. 2. An Example of finding MMSER.

An inclusion relationship between a smaller region R(m)
and a larger region R(n) ensures that R(n) is a dilated region

F RO pim)  R(n) & Vp € R(m).p € R(n). @)

For example in Fig.2, R{""=300 denotes a connected com-
ponent region obtained from 200ms exposure time and
thr = 300. By either decreasing the exposure time to 100m-
s, or using a higher threshold thr = 400, we can obtain
connected components RE'T=300 and REMT=500. respective-
ly, which are dilated regions of RZ%ZZ%. Contrarily, by
either increasing the exposure time to 400ms, or using a
lower threshold thr = 200, we can obtain connected compo-
nents RE'T=300 and REI=300. respectively, which are eroded
Thus, overall RIA=300

regions of R¥r=300 has four out-

exp=200"
ward arrows, pointed to R7 =300, RIM=300. REMT=300 and
thr=200 -
R =300, respectively.

For each connected component R(m) obtained from any
exposure image, a variability value W(R(m)) is calculated
1

by:
)= i), 2

U(R(m (1B(m)], = |R(n)].)
€ neN(m)

|B(m)]

) 3)

(&



where 91(m) denotes the set of all the connected components
pointed by arrows from R(m), and |.|. denotes the cardinali-
ty. Eq.3 reflects how much an extremal region will be affected
by different thresholds or exposure times. Multi-exposure M-
SERs correspond to those connected components that have
locally minimal variability values ¥ of the graph.

For example in Fig.2, RI""=300 has four outward arrows
pointing to four connected components with size {954,923,811
,547}. So we can calculate W(RET=300) = 1[]954 — 901| +
923 — 901|+ /811 — 901|+|547 — 901|]/901 = 0.144. Sim-
ilarly, we can calculate the W of its four neighbors: W ( R =300
~ 0.729, @(Rgg;:{gg) ~ 2.929, \I!(REZ;Z%%%) ~ 2.764,
W(RE=300) ~ 0.418. Therefore, R""=300 is an MMSER
with local minimum W, whose shape and region stay relative-
ly stable and unaffected by different intensity thresholds and
exposure times.

By applying the MMSER searching technique to a set of
multi-exposure microscopy cell images on the same dish, we
can extract a large set of MMSERSs denoting cells, as well
as their artifact (halos) regions by finding local minimum ¥
values.

2.2. Unsupervised Identification of Cell Regions

It is observed that in most exposures, cells appear to be dark-
er than the background in phase contrast microscopy images,
while halos appear to be brighter than the background. There-
fore, by creating a new averaged image [,,, (Fig.3(a)(d)) via
taking the mean of all exposure images, pixels at cell regions
should have low intensities, and pixels at halo regions should
have high intensities.

Fig. 3. Examples of unsupervised classification between cells
and halos. (a)(d) Original averaged microscopy image I,,;
(b)(e) Acculumated MMSER image 14 for (a) and (d); (c)(f)
Segmentation of cells and halos using Graph-cut.

We also create a new accumulated image I4 (Fig.3(b)(e)),
by counting the number of times each pixel appears in every
MMSER extracted from a multi-exposure image set. For a
specific pixel p, the intensity I4(p) represents the number of
times pixel p appears in all MMSERs. Since cells have sta-
ble irradiance signal in all exposures compared to background
and halos, cell regions should have steady output of MMSERs
in all exposures, while halos usually have MMSERS in higher
exposures only. Therefore normal cell regions should have
higher pixel intensities in /4, while in halo regions pixels
should have lower intensities in /4, as shown in Fig.3(b).

But for cells during mitotic/apoptotic stages, they usually
become thicker and thus they have different phase retarda-
tions compared to migration cells. The halos of these cells
will be much brighter and stable in all exposures. Therefore
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halos of these cells also have steady output of MMSERSs in all
exposures, which leads to high intensities in 74. As shown in
Fig.3(e), the mitosis cell has high intensities in both cell and
halo regions in 14.

Considering the observations above, we propose a local
Graph-cut algorithm to implement the unsupervised cell-halo
classification. The algorithm consists of 3 steps:

(1) A clustering procedure on I is undertaken for imple-
menting the local Graph-cut inside each pixel cluster. Each
non-zero connected components with their centroid distances
less than D are considered to be in the same cluster. In this pa-
per, D is set as 3 times the average diameter of cells for each
data set. For example in Fig.3(a)(b), 4 clusters are found from
14 by clustering, and in Fig.3(d)(e), 2 clusters are obtained.

(2) Inside each pixel cluster, we define seeds for cells as:
(pixels with the highest intensity in I4) U (pixels with the
lowest intensity in the averaged image I,,,); Likewise we also
define seeds for halos in each pixel cluster as: (pixels with
the lowest intensity in I4) U (pixels with the highest intensity
in I,,,). Noted that in this step we only consider pixels inside
each cluster that we found in step(1), so only cell and halo
pixels are considered.

(3) Using the seeds, we apply the local Graph-cut inside
each pixel cluster to identify cell pixels and halo pixels, with
the energy function defined as:

E= Z Ey(zp) + Z Epq(zp, q) “)

pEV (p.9)€E

where (V, E) defines an undirected graph of one cluster,
whose nodes V' correspond to pixels inside the cluster. E
denotes the link set between neighboring nodes. z,, € {0,1}
is the segmentation label of pixel p, where 0 and 1 correspond
to the halos and the cells, respectively. The energy function
includes an unary cost of each node, and the pairwise cost
between neighboring pixels.

The unary cost is defined as:

Ey(xp) = (1 — ) * (~InPy(p)) + zp * (—InP(p)) ()
where P, (p) and P.(p) are the probability of pixel p being
classified as halos and cells, respectively. The probabilities
can be computed by fitting pixel p into Gaussian Mixture
Models of halos and cells, which are built by the seeds of
these two classes using their pixels’ intensities in 4 and I,,,.

The pairwise cost is defined as:

Im(p) — I (q) 2
maz(L,,)

Ia(p) = 1a(q) 2y, 2
)
where o is the boundary sharpness parameter which controls
the smoothness of pairwise term. The pairwise cost considers
the smoothness in both the average intensity image I, and
the accumulated MMSER image /4.

By implementing our Graph-cut algorithm in each clus-
ter, we can distinguish between cells and halos as shown in
Fig.3(c)(f). Halos are presented in red color, and cells are

Epq(zp,24) = exp[—((
(6)



shown in green. We can notice that cell regions are well iden-
tified. Meanwhile, the size of surrounding halos can provide
us with information about what stage a specific cell is cur-
rently in, since cells in mitosis/apoptotis create brighter and
larger halos than regular migrating cells. In our next chapter,
we will experimentally test our algorithm on microscopy cell
segmentation tasks. Meanwhile, we also yield a basic criteri-
on for evaluating cells’ stage by halo inferring.

3. EXPERIMENTS
We collected phase contrast microscopy images on 4 different
cell dishes with low and high cell densities, and each set has
8 different exposure durations ([50 100 200 250 300 350 400
500]ms).
3.1. Qualitative Evaluation
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Fig. 4. The Comparison of different cell segmentation meth-
ods. (a) Original image (200ms); (b) Original image (400m-
s); (c) Segmentation result by [22]; (d) MSER segmentation
from (a); (e) MSER segmentation from (b); (f) Segmentation
by our method; (g) Zoom-in of three types of cells from (a);
(h) Segmentation result of (g) by our method.

In Fig.4 we show the qualitative comparison between our
multi-exposure MSER cell segmentation approach with oth-
er methods. Fig.4(d) and Fig.4(e) are the segmentation re-
sults from single exposure MSER segmentation with 200ms
(Fig.4(a)) and 400ms (Fig.4(b)), respectively. Obvious mis-
takes can be easily noticed on halos and mitosis cell region-
s using single exposure methods. In Fig.4(c) we show the
segmentation result obtained by the phase contrast restoration
method introduced in [22], which encountered similar seg-
mentation problem for mitotsis cells, exemplified by the cell
in the red rectangle in Fig.4(a).

In Fig.4(f) we show the result by using our method. We
can see that not only cells in all types are segmented accurate-
ly, but also the halos are identified which can inform us of the
cell’s current stages. As shown in Fig.4(g), we exemplarily
pick three types of cells with different halo artifacts, which
can be easily identified by our method shown in Fig.4(h).
Considering that mitosis cells usually have large halos, and
normal migrating cells have very small halos, we use the area
ratio between the cell region and its surrounding halo as the
criterion to decide what stage a specific cell is currently in.

3.2. Quantitative Evaluation
We obtained ground truth cell masks (no halos considered)
by multiple annotators who manually label cell masks in all
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SACC dishl | dish2 | dish3 | dish4
Our method 0.996 | 0.994 | 0.971 | 0.947
Single-image (200ms) | 0.741 | 0.665 | 0.628 | 0.631
MSER segmentation
Optic based restoration | 0.974 | 0.974 | 0.956 | 0.849
[22]
Cell-sensitive 0.993 | 0.994 | 0.975 | 0.918
segmentation [23]

Table 1. Cell segmentation accuracy of different methods.

microscopy images with exposure time 200ms. To reduce the
inter-person variability, the intersection of their annotations
is used as the ground truth for testing. We choose the Seg-
mentation ACCuracy (SACC) to evaluate the performance of
different methods, which is defined as: SACC = (|TP| +
|Ns| — |FP|)/(|Ns| + |Ps|) where P; and N, denote cell
and background pixels, respectively. True positive (7'P) de-
notes cell pixels segmented correctly and false positive(F'P)
denotes cell pixels segmented mistakenly. Table 1 compares
the performance of different segmentation methods on 4 cel-
1 microscopy image sequences. The results show that our
Multi-exposure MSER segmentation method achieves high-
ly reliable results compared to other single-exposure methods
and optics-based segmentation approaches.

We also experimentally evaluate the detection accuracy of
mitosis cells and normal cells on 4 cell dishes. The Detection
ACCuracy(DACC) is defined similar to segmentation accu-
racy, whose objects are mitosis cells instead of pixels. We
classify cells with cell-halo ratio larger than 6.1 as those in
mitosis stage, and cells with ratio less than 1.4 as normal cell-
s (these optimal thresholds are chosen by cross-validation).
Cells with ratio between 6.1 and 1.4 are classified as cells in
the transition stage. In our experiments, the average DACCs
of mitosis cells and normal cells are 0.979 and 0.966, respec-
tively.

4. CONCLUSION

We propose a novel cell segmentation approach by extract-
ing Multi-exposure MSERs for local cell-halo classification.
A set of variously exposed phase contrast microscopy images
on the same cell dish are obtained to estimate different irra-
diance signals from cells and halos, which are later used for
accurate cell segmentation and cell stage inference. The ex-
perimental results validate the reliability of our approach in
high-accuracy cell segmentation and the capability in moni-
toring cell stages.
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