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ABSTRACT

We propose a novel cell segmentation approach by extract-

ing Multi-exposure Maximally Stable Extremal Regions

(MMSER) in phase contrast microscopy images on the same

cell dish. Using our method, cell regions can be well iden-

tified by considering the maximally stable regions with re-

sponse to different camera exposure times. Meanwhile, halo

artifacts with regard to cells at different stages are leveraged

to identify cells’ stages. The experimental results validate that

high quality cell segmentation and cell stage classification can

be achieved by our approach.

Index Terms— Microscopy, cell segmentation, Maximal-

ly Stable Extremal Regions

1. INTRODUCTION

As a non-invasive technique, phase contrast microscopy has

been one of the widely used microscopy models to observe

live cells without staining them [25]. With the high de-

mand for effective and efficient automated processing of the

phase contrast microscopy data, cell segmentation algorithms

have been developed to firstly localize the cell regions in

microscopy images before other cell analysis tasks such as

tracking and classification. Various microscopy cell seg-

mentation approaches have been investigated by scientists

over years [6, 10], including thresholding based techniques

[3], morphological operations [11], graph based algorithms

[1, 15], machine learning based approaches [4, 16], level-set

[18], atlas based techniques [9] and Laplacian-of-Gaussian

filtering methods [17].

The imaging system of phase contrast microscopy con-

sists of a phase contrast microscope and a digital camera to

record time-lapse microscopy images on cells, hence the mi-

croscopy images depend on both the optics and the camera

setting such as its exposure time. Recently, cell image anal-

ysis methods based on microscope optics models have been

explored in [19, 21, 20]. One challenge of these methods is

to segment cells at different stages [22]. For example, cells

become thick in the culturing dish during mitotic and apoptot-

ic stages, leading to different phase retardations in the phase

contrast microscopy imaging compared to cells under the mi-

gration stage. Therefore, a dictionary of diffraction patterns

has been derived to approximate various phase retardations

[12, 13].

In addition to the front-end of the imaging pipeline (op-

tics), a cell image segmentation approach based on the rear-

end of the imaging pipeline (camera setting) was developed

[23, 24]. Variously exposed phase contrast microscopy im-

ages on the same cell dish are used to restore cells’ irradi-

ance signals, while the irradiance signals from non-cell back-

ground regions are restored as zero. The image artifact such

as halo around cells is restored as zero in [23], but this artifact

is informative to classify cells at different stages.

In this paper, we propose a novel cell segmentation ap-

proach by extracting Multi-exposure Maximally Stable Ex-

tremal Regions (MMSER) in variously exposed phase con-

trast microscopy images. Due to different exposure time

periods, irradiance signals have different responses to cell re-

gions and artifacts. By extracting MMSER components over

different intensity thresholds and exposure times, we are able

to identify the most stable regions indicating cells, as well as

those artifacts around them. Our contribution is twofold:

(1) First, we consider multi-exposed microscopy images

to extract Multi-exposure Maximally Stable Extremal Re-

gions (MMSER) to identify cells and their artifact regions;

(2) Second, we accurately classify cell and halo regions

via a local Graph-cut algorithm, facilitating cell stage moni-

toring.

2. METHODOLOGY

Local region descriptors have been widely used for objec-

t segmentation, detection and identification. Among these

methods, Mikolajczyk and Schmid [7] revealed that the Max-

imally Stable Extremal Region (MSER) detector introduced

by Matas et al. [5] performs very well on a wide range of

experiments. MSERs denote a set of distinguished region-

s, which are defined by an extremal property of its intensity

function in the region and on its outer boundary. In this chap-

ter, we will first introduce our proposed methods of extract-

ing Multi-exposure MSERs denoting cell and artifact regions

in multi-exposure microscopy images. Then we will discuss

how to classify these regions into cells and halos, for accurate

cell segmentation and cell stage monitoring.

For our time-lapse microscopy image sequences, each set

of multi-exposure images is taken every 5 minutes with a

range of known exposure durations ([50, 100, 200, 250, 300,

350, 400, 500]ms, in total, about 2:15 seconds for capturing978-1-4799-2349-6/16/$31.00 ©2016 IEEE 526



images per set. Due to the fact that cells are migrating very

slowly in a dish, and the time taken for capturing each im-

age set (2:15 seconds) is relatively very small compared to

the time-lapse interval of 5 minutes, we can consider the ir-

radiance signal for each cell is stable and there is no position

change for each cell pixel within the time we capture each set

of multiple exposure images. Thus, no further image registra-

tion procedure is needed. Zeiss Axiovision 4.7 microscope is

used for microscopy image acquisition for our experiments.

2.1. Multi-exposure MSER Extraction

Fig. 1. Multiple exposure images on the same cell dish (ms:

millisecond) and binary images with different thresholds.

MSERs denote a set of distinguished regions that are de-

tected in a gray scale image, which have relative stable car-

dinalities across different intensity thresholds. These regions

are defined by an extremal property of the intensity function

in the region R and on its outer boundary ∂R. For MMSERs

we consider two types of extremal regions R which are de-

fined by:

(1)∀p ∈ R, ∀q ∈ ∂R, I (p) > I (q) (maximum intensity

region, denoting bright blobs)

(2)∀p ∈ R, ∀q ∈ ∂R, I (p) < I (q) (minimum intensity

region, denoting dark blobs)

where I (p) and I (p) denote the pixel intensity at locations p

and q , respectively.

These extremal regions are represented as connected com-

ponents in binary images I threxp which is obtained by:

I threxp (p) =

{

1, if Iexp(p) > thr
0, otherwise

(1)

where Iexp is the image with exposure time exp, thr is the

threshold and thr ∈ [min(Iexp),max(Iexp)]. Given a set

of multi-exposure phase contrast microscopy images exp ∈
{50,100,200,...,500}, each image can be used to produce a

set of these connected components. Fig.1 illustrates an exem-

plary set of 3 input multi-exposure images, and some of the

thresholded images which contain related connected compo-

nents. Note that cells are mostly dark blobs, which will be

identified as minimum intensity region. We use Rthr
exp(n) to

denote the nth connected component region obtained from

the exp exposure time with the threshold value thr .

We observe that for a connected component Rthr
exp(m), we

can either change the threshold thr by ∆thr , or change the

exposure time by ∆exp, to increase/decrease its local region

to obtained a dilated/eroded region R
thr±∆thr

exp±∆exp(n), as shown

in Fig.2. Here ∆thr denotes the step size of changing the in-

tensity threshold value. ∆thr denotes the step size of chang-

ing the exposure time. In Fig.2 we use solid/dotted arrows

from Rthr
exp(m) to Rthr ′

exp′(n) to represent that Rthr ′

exp′(n) is an

dilated/eroded region of Rthr
exp(m).

Fig. 2. An Example of finding MMSER.

An inclusion relationship between a smaller region R(m)
and a larger region R(n) ensures that R(n) is a dilated region

of R(m):
R(m) ⊂ R(n) ⇔ ∀p ∈ R(m), p ∈ R(n). (2)

For example in Fig.2, Rthr=300
exp=200 denotes a connected com-

ponent region obtained from 200ms exposure time and

thr = 300. By either decreasing the exposure time to 100m-

s, or using a higher threshold thr = 400, we can obtain

connected components Rthr=300
exp=100 and Rthr=400

exp=200, respective-

ly, which are dilated regions of Rthr=300
exp=200 . Contrarily, by

either increasing the exposure time to 400ms, or using a

lower threshold thr = 200, we can obtain connected compo-

nents Rthr=300
exp=400 and Rthr=200

exp=200, respectively, which are eroded

regions of Rthr=300
exp=200 . Thus, overall Rthr=300

exp=200 has four out-

ward arrows, pointed to Rthr=300
exp=100, Rthr=400

exp=200, Rthr=300
exp=400 and

Rthr=200
exp=200, respectively.

For each connected component R(m) obtained from any

exposure image, a variability value Ψ(R(m)) is calculated

by:

Ψ(R(m)) =
1

|N(m)|c

∑

n∈N(m)

∣

∣

∣

∣

(|R(m)|c − |R(n)|c)

|R(m)|c

∣

∣

∣

∣
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where N(m) denotes the set of all the connected components

pointed by arrows from R(m), and |.|c denotes the cardinali-

ty. Eq.3 reflects how much an extremal region will be affected

by different thresholds or exposure times. Multi-exposure M-

SERs correspond to those connected components that have

locally minimal variability values Ψ of the graph.

For example in Fig.2, Rthr=300
exp=200 has four outward arrows

pointing to four connected components with size {954,923,811

,547}. So we can calculate Ψ(Rthr=300
exp=200) =

1
4 [|954− 901|+

|923− 901|+|811− 901|+|547− 901|]/901 ≈ 0.144. Sim-

ilarly, we can calculate the Ψ of its four neighbors:Ψ(Rthr=200
exp=200)

≈ 0.729, Ψ(Rthr=300
exp=100) ≈ 2.929, Ψ(Rthr=400

exp=200) ≈ 2.764,

Ψ(Rthr=300
exp=400) ≈ 0.418. Therefore, Rthr=300

exp=200 is an MMSER

with local minimum Ψ, whose shape and region stay relative-

ly stable and unaffected by different intensity thresholds and

exposure times.

By applying the MMSER searching technique to a set of

multi-exposure microscopy cell images on the same dish, we

can extract a large set of MMSERs denoting cells, as well

as their artifact (halos) regions by finding local minimum Ψ
values.

2.2. Unsupervised Identification of Cell Regions

It is observed that in most exposures, cells appear to be dark-

er than the background in phase contrast microscopy images,

while halos appear to be brighter than the background. There-

fore, by creating a new averaged image Im (Fig.3(a)(d)) via

taking the mean of all exposure images, pixels at cell regions

should have low intensities, and pixels at halo regions should

have high intensities.

Fig. 3. Examples of unsupervised classification between cells

and halos. (a)(d) Original averaged microscopy image Im ;

(b)(e) Acculumated MMSER image IA for (a) and (d); (c)(f)

Segmentation of cells and halos using Graph-cut.

We also create a new accumulated image IA (Fig.3(b)(e)),

by counting the number of times each pixel appears in every

MMSER extracted from a multi-exposure image set. For a

specific pixel p, the intensity IA(p) represents the number of

times pixel p appears in all MMSERs. Since cells have sta-

ble irradiance signal in all exposures compared to background

and halos, cell regions should have steady output of MMSERs

in all exposures, while halos usually have MMSERs in higher

exposures only. Therefore normal cell regions should have

higher pixel intensities in IA, while in halo regions pixels

should have lower intensities in IA, as shown in Fig.3(b).

But for cells during mitotic/apoptotic stages, they usually

become thicker and thus they have different phase retarda-

tions compared to migration cells. The halos of these cells

will be much brighter and stable in all exposures. Therefore

halos of these cells also have steady output of MMSERs in all

exposures, which leads to high intensities in IA. As shown in

Fig.3(e), the mitosis cell has high intensities in both cell and

halo regions in IA.

Considering the observations above, we propose a local

Graph-cut algorithm to implement the unsupervised cell-halo

classification. The algorithm consists of 3 steps:

(1) A clustering procedure on IA is undertaken for imple-

menting the local Graph-cut inside each pixel cluster. Each

non-zero connected components with their centroid distances

less than D are considered to be in the same cluster. In this pa-

per, D is set as 3 times the average diameter of cells for each

data set. For example in Fig.3(a)(b), 4 clusters are found from

IA by clustering, and in Fig.3(d)(e), 2 clusters are obtained.

(2) Inside each pixel cluster, we define seeds for cells as:

(pixels with the highest intensity in IA) ∪ (pixels with the

lowest intensity in the averaged image Im ); Likewise we also

define seeds for halos in each pixel cluster as: (pixels with

the lowest intensity in IA) ∪ (pixels with the highest intensity

in Im ). Noted that in this step we only consider pixels inside

each cluster that we found in step(1), so only cell and halo

pixels are considered.

(3) Using the seeds, we apply the local Graph-cut inside

each pixel cluster to identify cell pixels and halo pixels, with

the energy function defined as:

E =
∑

p∈V

Ep(xp) +
∑

(p,q)∈E

Ep,q(xp, xq) (4)

where (V,E) defines an undirected graph of one cluster,

whose nodes V correspond to pixels inside the cluster. E

denotes the link set between neighboring nodes. xp ∈ {0, 1}
is the segmentation label of pixel p, where 0 and 1 correspond

to the halos and the cells, respectively. The energy function

includes an unary cost of each node, and the pairwise cost

between neighboring pixels.

The unary cost is defined as:

Ep(xp) = (1− xp) ∗ (−lnPh(p)) + xp ∗ (−lnPc(p)) (5)

where Ph(p) and Pc(p) are the probability of pixel p being

classified as halos and cells, respectively. The probabilities

can be computed by fitting pixel p into Gaussian Mixture

Models of halos and cells, which are built by the seeds of

these two classes using their pixels’ intensities in IA and Im .

The pairwise cost is defined as:

Ep,q(xp, xq) = exp[−((
Im(p)− Im(q)

max(Im)
)2

+ (
IA(p)− IA(q)

max(IA)
)2)/σ2]

(6)

where σ is the boundary sharpness parameter which controls

the smoothness of pairwise term. The pairwise cost considers

the smoothness in both the average intensity image Im and

the accumulated MMSER image IA.

By implementing our Graph-cut algorithm in each clus-

ter, we can distinguish between cells and halos as shown in

Fig.3(c)(f). Halos are presented in red color, and cells are528



shown in green. We can notice that cell regions are well iden-

tified. Meanwhile, the size of surrounding halos can provide

us with information about what stage a specific cell is cur-

rently in, since cells in mitosis/apoptotis create brighter and

larger halos than regular migrating cells. In our next chapter,

we will experimentally test our algorithm on microscopy cell

segmentation tasks. Meanwhile, we also yield a basic criteri-

on for evaluating cells’ stage by halo inferring.

3. EXPERIMENTS

We collected phase contrast microscopy images on 4 different

cell dishes with low and high cell densities, and each set has

8 different exposure durations ([50 100 200 250 300 350 400

500]ms).

3.1. Qualitative Evaluation

Fig. 4. The Comparison of different cell segmentation meth-

ods. (a) Original image (200ms); (b) Original image (400m-

s); (c) Segmentation result by [22]; (d) MSER segmentation

from (a); (e) MSER segmentation from (b); (f) Segmentation

by our method; (g) Zoom-in of three types of cells from (a);

(h) Segmentation result of (g) by our method.

In Fig.4 we show the qualitative comparison between our

multi-exposure MSER cell segmentation approach with oth-

er methods. Fig.4(d) and Fig.4(e) are the segmentation re-

sults from single exposure MSER segmentation with 200ms

(Fig.4(a)) and 400ms (Fig.4(b)), respectively. Obvious mis-

takes can be easily noticed on halos and mitosis cell region-

s using single exposure methods. In Fig.4(c) we show the

segmentation result obtained by the phase contrast restoration

method introduced in [22], which encountered similar seg-

mentation problem for mitotsis cells, exemplified by the cell

in the red rectangle in Fig.4(a).

In Fig.4(f) we show the result by using our method. We

can see that not only cells in all types are segmented accurate-

ly, but also the halos are identified which can inform us of the

cell’s current stages. As shown in Fig.4(g), we exemplarily

pick three types of cells with different halo artifacts, which

can be easily identified by our method shown in Fig.4(h).

Considering that mitosis cells usually have large halos, and

normal migrating cells have very small halos, we use the area

ratio between the cell region and its surrounding halo as the

criterion to decide what stage a specific cell is currently in.

3.2. Quantitative Evaluation

We obtained ground truth cell masks (no halos considered)

by multiple annotators who manually label cell masks in all

SACC dish1 dish2 dish3 dish4

Our method 0.996 0.994 0.971 0.947

Single-image (200ms) 0.741 0.665 0.628 0.631

MSER segmentation

Optic based restoration 0.974 0.974 0.956 0.849

[22]

Cell-sensitive 0.993 0.994 0.975 0.918

segmentation [23]

Table 1. Cell segmentation accuracy of different methods.

microscopy images with exposure time 200ms. To reduce the

inter-person variability, the intersection of their annotations

is used as the ground truth for testing. We choose the Seg-

mentation ACCuracy (SACC) to evaluate the performance of

different methods, which is defined as: SACC = (|TP | +
|Ns| − |FP |)/(|Ns| + |Ps|) where Ps and Ns denote cell

and background pixels, respectively. True positive (TP ) de-

notes cell pixels segmented correctly and false positive(FP )

denotes cell pixels segmented mistakenly. Table 1 compares

the performance of different segmentation methods on 4 cel-

l microscopy image sequences. The results show that our

Multi-exposure MSER segmentation method achieves high-

ly reliable results compared to other single-exposure methods

and optics-based segmentation approaches.

We also experimentally evaluate the detection accuracy of

mitosis cells and normal cells on 4 cell dishes. The Detection

ACCuracy(DACC) is defined similar to segmentation accu-

racy, whose objects are mitosis cells instead of pixels. We

classify cells with cell-halo ratio larger than 6.1 as those in

mitosis stage, and cells with ratio less than 1.4 as normal cell-

s (these optimal thresholds are chosen by cross-validation).

Cells with ratio between 6.1 and 1.4 are classified as cells in

the transition stage. In our experiments, the average DACCs

of mitosis cells and normal cells are 0.979 and 0.966, respec-

tively.

4. CONCLUSION

We propose a novel cell segmentation approach by extract-

ing Multi-exposure MSERs for local cell-halo classification.

A set of variously exposed phase contrast microscopy images

on the same cell dish are obtained to estimate different irra-

diance signals from cells and halos, which are later used for

accurate cell segmentation and cell stage inference. The ex-

perimental results validate the reliability of our approach in

high-accuracy cell segmentation and the capability in moni-

toring cell stages.
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