Scopus
EXPORT DATE:01 Mar 2017
Mao, Y., Yin, Z.
A hierarchical convolutional neural network for mitosis detection in phase-contrast microscopy images
(2016) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9901 LNCS, pp. 685-692.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84996477495 \&doi=10.1007\%2f978-3-319-46723-
8_79\&partnerID $=40 \& m d 5=d a d 3 f d b 653 f 49 \mathrm{~d} 373 \mathrm{cb}$ fdef 66 a 545 ff 3
DOI: 10.1007/978-3-319-46723-8_79
AFFILIATIONS: Department of Computer Science, Missouri University of Science and Technology, Rolla, United States
ABSTRACT: We propose a Hierarchical Convolution Neural Network (HCNN)
for mitosis event detection in time-lapse phase contrast microscopy. Our method contains two stages: first, we extract candidate spatialtemporal patch sequences in the input image sequences which potentially contain mitosis events. Then, we identify if each patch sequence contains mitosis event or not using a hieratical
convolutional neural network. In the experiments, we validate the design of our proposed architecture and evaluate the mitosis event detection performance. Our method achieves 99.1% precision and 97.2% recall in very challenging image sequences of multipolar-shaped C3H10T1/2 mesenchymal stem cells and outperforms other state-of-theart methods. Furthermore, the proposed method does not depend on handcrafted feature design or cell tracking. It can be straightforwardly adapted to event detection of other different cell types. © Springer International Publishing AG 2016.
INDEX KEYWORDS: Cell culture; Computer vision; Convolution; Neural networks; Stem cells, Convolution neural network; Convolutional neural network; Mesenchymal stem cell; Mitosis detections; Phase-contrast microscopy; Proposed architectures; Spatial temporals; State-of-theart methods, Medical imaging
FUNDING DETAILS: IIA-1355406, EPSCoR, Office of Experimental Program to Stimulate Competitive Research; IIA-1355406, NSF, National Science Foundation; IIS-1351049, NSF, National Science Foundation
FUNDING TEXT: This research was supported by NSF CAREER award IIS1351049,NSF EPSCoR grant IIA-1355406,ISC and CBSE centers at Missouri S\&T.
REFERENCES: Quattoni, A., Hidden conditional random fields (2007) IEEE Trans. Pattern Anal. Mach. Intell, 29 (10), pp. 1848-1853;
Liu, A., Mitosis sequence detection using hidden conditional random fields (2010) Proceedings of IEEE International Symposium on Biomedical Imaging;
Huh, S., Automated mitosis detection of stem cell populations in
phasecontrast microscopy images (2011) IEEE Trans. Med. Imaging, 30
(3), pp. 586-596;

Liu, A., A semi-markov model for mitosis segmentation in time-lapse phase contrast microscopy image sequences of stem cell populations (2012) IEEE Trans. Med. Imaging, 31 (2), pp. 359-369;

Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J., Mitosis detection in breast cancer histology images with deep neural networks (2013) MICCAI 2013. LNCS, 8150, pp. 411-418.,

Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N.
(eds.), Springer, Heidelberg;
Rabiner, L.R., A tutorial on hidden Markov models and selected applications in speech recognition (1989) Proc. IEEE, 77 (2), pp. 257286;
Suykens, J., Least squares support vector machine classifiers (1999)
Neural Process. Lett, 9 (3), pp. 293-300;
Lowe, D.G., Distinctive image features from scale-invariant keypoints (2004) Int. J. Comput. Vis, 60 (2), pp. 91-110;

Karpathy, A., Large-scale video classification with convolutional neural networks (2014) Proceedings of CVPR;
Murphy, D., (2001) Fundamentals of Light Microscopy and Electronic Imaging, , Wiley, New York CORRESPONDENCE ADDRESS: Yin, Z.; Department of Computer Science, Missouri University of Science and TechnologyUnited States; email: yinz@mst.edu
EDITORS: Unal G., Ourselin S., Joskowicz L., Sabuncu M.R., Wells W. PUBLISHER: Springer Verlag
ISSN: 03029743
ISBN: 9783319467221
LANGUAGE OF ORIGINAL DOCUMENT: English
ABBREVIATED SOURCE TITLE: Lect. Notes Comput. Sci.
DOCUMENT TYPE: Conference Paper
SOURCE: Scopus

