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ABSTRACT

We investigate the temporal record of magmatism in the Fiordland sector of the Median Batholith (New Zealand) with the goal of evaluating 
models for cyclic and episodic patterns of magmatism and deformation in continental arcs. We compare 20 U-Pb zircon ages from >2300 
km2 of Mesozoic lower and middle crust of the Western Fiordland Orthogneiss to existing data from the Median Batholith to: (1) document 
the tempo of arc construction, (2) estimate rates of magmatic addition at various depths during arc construction, and (3) evaluate the role 
of cyclical feedbacks between magmatism and deformation during high and low magma addition rate events. Results from the Western 
Fiordland Orthogneiss indicate that the oldest dates are distributed in northern and southern extremities: the Worsley Pluton (123–121 Ma), 
eastern McKerr Intrusives (128–120 Ma), and Breaksea Orthogneiss (123 Ma). Dates within the interior of the Western Fiordland Orthogneiss 
(Misty and Malaspina Plutons, western McKerr Intrusives) primarily range from 118 to 115 Ma and signify a major flux of mafic to interme-
diate magmatism during which nearly 70% of the arc root was emplaced during a brief, ~3 m.y., interval. The spatial distribution of dates 
reveals an inward-focusing, arc-parallel younging of magmatism within the Western Fiordland Orthogneiss during peak magmatic activity. 
Coupled with existing data from the wider Median Batholith, our data show that Mesozoic construction of the Median Batholith involved at 
least two high-flux magmatic events: a surge of low-Sr/Y plutonism in the Darran Suite from ca. 147 to 136 Ma, and a terminal surge of high-
Sr/Y magmatism in the Separation Point Suite from 128 to 114 Ma, shortly before extensional collapse of the Zealandia Cordillera at 108–106 
Ma. Separation Point Suite magmatism occurred at all structural levels, but was concentrated in the lower crust, where nearly 50% of the 
crust consists of Cretaceous arc-related plutonic rocks. Existing isotopic data suggest that the flare-up of high-Sr/Y magmatism was primarily 
sourced from the underlying mantle, indicating an externally triggered, dynamic mantle process for triggering the Zealandia high–magma 
addition rate event, with only limited contributions from upper plate materials.
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INTRODUCTION

Cyclic and episodic patterns of crustal growth are generally believed to 
have dominated the geologic record for more than 3 b.y. (Bradley, 2011; 
Voice et al., 2011; Condie and Kroner, 2013). In Phanerozoic orogenic 
belts, studies of continental arcs often emphasize the non–steady-state 
character of magmatism whereby episodic and relatively short lived, high 
magma addition rate (MAR) events significantly contribute to the overall 
budget of new crust added to the continental lithosphere (e.g., Armstrong, 
1988; Kimbrough et al., 2001; Ducea, 2002; Ducea and Barton, 2007; 
DeCelles et al., 2009). These high-MAR events can exert primary con-
trols on orogenic belts, including widespread thermal and mass transfer 
from the mantle to the crust, vertical uplift and exhumation, and erosion 
at the surface (e.g., de Silva at al., 2015; DeCelles and Graham, 2015).

Studies of shallow to mid-crustal plutons and batholiths in the North 
American and South American Cordilleras have recognized patterns of 
episodic and cyclic magmatism and deformation that operate on ~30–70 

m.y. intervals (Haschke et al., 2002, 2006; DeCelles et al., 2009; DeCelles 
and Graham, 2015; Paterson and Ducea, 2015; de Silva et al., 2015; Lee 
and Anderson, 2015; Pepper et al., 2016). At a finer scale, temporal fluc-
tuations in magma supply within arcs appear to be fractal, with episodic-
ity recurring at progressively finer scales (de Silva et al., 2015). Existing 
models that attempt to explain the episodic nature of arc magmatism 
commonly invoke either external forcing of arc systems caused by events 
outside the arc, and/or cyclic processes driven internally by feedbacks 
between linked tectonic, sedimentary, and magmatic processes (Haschke 
et al., 2002, 2006; DeCelles et al., 2009; Chapman et al., 2013; Cao et al., 
2015; Paterson and Ducea, 2015; Ducea et al., 2015). External forcing can 
involve a variety of potential processes, including changes in mantle flow 
patterns, plate reconfigurations due to far-field effects or local processes 
(e.g., ridge-trench or tectonic collisions), and/or changes in slab dynam-
ics (e.g., slab breakoff or rollback). In contrast, internal feedbacks may 
involve repeated and linked tectonic and magmatic processes, including 
underthrusting of foreland or retroarc material into lower crustal parts 
of arcs, crustal thickening, and loss of mafic and/or ultramafic plutonic 
roots. A key feature commonly emphasized in internally forced models 
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is the significant role of upper plate materials in triggering episodes of 
high-volume magmatism. Despite extensive work on arc magmatic tem-
pos, particularly in the last decade, there is currently no consensus on 
the cause of episodic and cyclical magmatism in arcs. Consequently, a 
number of processes remain unconstrained, including triggering mecha-
nisms, the rates of magmatic addition to various structural levels (lower, 
middle, and upper crust), the relative contribution of the mantle versus 
preexisting crustal sources, and the role of deformation in cyclical and 
episodic patterns of magmatism.

The complexity of non–steady-state magmatism is perhaps best illus-
trated in the Mesozoic North American Cordillera arc of the western USA 
and Mexico, where voluminous shallow- to mid-crustal rocks were gen-
erated episodically during various high-MAR events that have distinct 
geochemical features in different segments of the arc (e.g., Ducea, 2001). 
For example, in the central Sierra Nevada segment, batholithic rocks are 
characterized by geochemical and isotopic signatures that point to increas-
ing contributions of recycled crust and lithospheric mantle extracted from 
deep (>35–40 km) within the arc that appear to be cyclical and peak from 
ca. 100 to 85 Ma (e.g., Ducea and Barton, 2007; Lackey et al., 2008; 
DeCelles et al., 2009; Chapman et al., 2013; Cao et al., 2015). Chapman 
et al. (2013) suggested that in the southern Sierra Nevada segment and 
further south to the northern Peninsular Ranges, Cretaceous high-flux 
magmatism resulted from shallowing of the Farallon plate and widespread 
devolatilization of schistose rocks during a brief, <10 m.y. high-MAR 
episode (see also Grove et al., 2008 for the northern Peninsular Ranges 
Batholith). Whereas Chapman et al. (2013) and Grove et al. (2008) empha-
sized partial melting of supracrustal material at the base of the arc (either 
from the retroarc or accretionary complex), data from the southern Coast 
Plutonic Complex (British Columbia) and North Cascades (Washington) 
show strong depleted-mantle signatures with little evidence for significant 
supracrustal involvement (Cui and Russell, 1995; Shea et al., 2016). These 
variations from the Mesozoic North American arc system raise the ques-
tion of whether the strong upper plate geochemical characteristics in the 
Sierra Nevada–Salinia–Mojave arc segments reflect cyclical, internally 
forced processes involving partial melting of fertile continental crust, or 
simply elevated geothermal gradients resulting from increasing mantle 
melt influx to the base of the crust controlled by changes in the geometry 
and geodynamics of the subduction zone (de Silva et al., 2015).

Despite a lack of consensus regarding the causes of episodic fluc-
tuations in arc magmatism, a common feature of internal and external 
forcing models is that triggering processes occur deep within the arc, in 
the underlying mantle wedge and/or in a lower crustal, melting, assimila-
tion, storage, and homogenization zone (Hildreth and Moorbath, 1988). 
Therefore, direct observations of exhumed magmatic arcs, particularly 
lower crustal arc sections, have the potential to provide insights into the 
causes of episodic magmatism and the magmatic and residual products 
produced during high-MAR events.

We investigate temporal patterns of magmatism and deformation along 
the Mesozoic, paleo-Pacific margin of southeast Gondwana, now isolated 
and preserved in Zealandia, which records a history of episodic magma-
tism that operated from the Carboniferous to Early Cretaceous (Mortimer 
et al., 1999; Mortimer, 2004; Fig. 1). We focus on the exhumed arc root 
exposed in the Fiordland sector of Zealandia and use SHRIMP-RG (sensi-
tive high-resolution ion microprobe–reverse geometry) dates and zircon 
trace element data from 20 new samples coupled with existing dates to: 
(1) document the tempo of arc construction and temporal variations in 
magmatism along the Mesozoic Gondwana margin; (2) estimate rates of 
magmatic addition at various structural levels during arc construction; and 
(3) evaluate the role of cyclical feedbacks between magmatism and defor-
mation, including externally and internally forced processes during high 

and low MAR events. We show that construction of the Median Batho-
lith involved at least two high-flux and geochemically distinct magmatic 
events: a surge of low-Sr/Y plutonism in the Darran Suite from ca. 147 to 
136 Ma, and a terminal surge of high-Sr/Y magmatism in the Separation 
Point Suite from 128 to 114 Ma, shortly before extensional collapse of the 
Zealandia Cordillera, beginning ca. 108–106 Ma. The terminal high flux 
event in the Separation Point Suite occurred at all structural levels, but 
was concentrated in the lower crust, where nearly 50% of the crust con-
sists of Cretaceous arc-related plutonic rocks. This phase of magmatism, 
starting at 128 Ma, reflects a fundamental change in magma composition, 
with garnet playing a role as either a fractionating or residual phase, and 
signifies a major transition in internal arc and/or subduction zone dynam-
ics in the Median Batholith. Continentward migration of the arc axis 
and contraction and/or transpression in Fiordland during the high-MAR 
event suggest that flattening of the slab and/or changes in subduction 
zone geometry were associated with triggering the high-flux event. The 
overall mafic and isotopically juvenile character (Decker, 2016) of the 
arc root in Western Fiordland also points toward an externally triggered, 
mantle-generated event with only limited contributions from upper plate 
materials. We see no evidence that the two Mesozoic surges are related 
either by internally or externally forced processes, and we suggest that 
the processes driving them are independent.

GEOLOGIC SETTING AND PREVIOUS WORK

Mesozoic Arc in Fiordland, Westland, Stewart Island

The South Island of New Zealand preserves a nearly complete, exhumed 
section of a Mesozoic Cordilleran-type magmatic arc (Figs. 1–3) (Mor-
timer et al., 1999). Arc-related plutonic and volcanic rocks were emplaced 
episodically over a period of ~250 m.y. from the Carboniferous to Early 
Cretaceous (Fig. 4), and collectively compose the ~10,200 km2 com-
posite Median Batholith (Kimbrough et al., 1993, 1994; Mortimer et al., 
1999; Hollis et al., 2004; Tulloch and Kimbrough, 2003; Allibone et al., 
2009a, 2009b). The Median Batholith was constructed on the continen-
tal margin of the paleo-Pacific margin of Gondwana in what is now the 
Western Province of New Zealand (Figs. 1A, 1B) (Mortimer et al., 2014). 
Approximately 70% of the Median Batholith consists of Triassic to Early 
Cretaceous plutonic rocks that intruded into Carboniferous to Permian 
igneous rocks and Ordovician metasedimentary rocks. We focus on the 
Mesozoic components of the Median Batholith in Fiordland, including the 
Darran Suite and Separation Point Suite, the latter of which was emplaced 
during a high-MAR event from 128 to 114 Ma. We briefly introduce 
the Darran Suite and Separation Point Suite. Additional information is 
included in Tables 1–2.

Darran Suite
The Darran Suite (sensu Allibone et al., 2009a) consists of calc-alkalic 

to alkalic-calcic volcanic and plutonic rocks emplaced between ca. 230 
and 136 Ma during a prolonged and episodic period of arc magmatism on 
or east of the convergent Gondwana margin (Figs. 1A, 1B) (Kimbrough 
et al., 1994; Tulloch and Kimbrough, 2003; Scott and Palin, 2008; Scott 
et al., 2009; Allibone et al., 2009a). It consists of a belt ~300 km long 
and 15 km wide that occupies much of the outboard (eastern) side of the 
Median Batholith. The inboard and outboard portions of the batholith 
are separated by intrabatholith faults and shear zones such as the Grebe 
mylonite zone and Gutter shear zone (Fig. 2) (Allibone and Tulloch, 2008; 
Scott et al., 2011). Although previous studies have mapped Darran Suite 
rocks within the inboard side of the Median Batholith, recognition of 
plutons of unambiguous Darran Suite intruding the Western Province 
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TABLE 1. SAMPLE LOCALITIES AND GEOCHRONOLOGY SUMMARY

Sample P 
Collection

Pluton Rock type* Location Lat (°S) Long Age 
(Ma; 2σ standard error)

MSWD Number of 
zircons†

5NZ12 P85714 Eastern McKerr intrusives Two-mica granite George Sound 44.965201 167.426942 128.3 ± 3.9 1.6 4
15NZ20 P85715 Eastern McKerr intrusives Hbl diorite George Sound 44.899746 167.387870 120.1 ± 2.8 1.6 9
12NZ17B P83645 Malaspina Pluton Grt-bearing leucosome Breaksea Sound 45.568569 166.793545 117.0 ± 1.0 0.4 11
13NZ16B P83712 Malaspina Pluton Hbl diorite Acheron Passage 45.693742 166.720344 118.0 ± 2.1 1.4 10
13NZ22 P83718 Malaspina Pluton Hbl diorite Breaksea Sound 45.569681 166.790631 116.9 ± 1.6 0.3 8
13NZ34A P83730 Malaspina Pluton Two-pyroxene diorite Acheron Passage 45.654666 166.718933 118.0 ± 1.8 1.4 8
13NZ40D-1 P83733 Malaspina Pluton Bt-Hbl diorite with 

relict pyroxene
Vancouver Arm 45.549658 166.853386 116.4 ± 1.3 1.0 8

13NZ59 P83750 Malaspina Pluton Hbl-Bt Qz diorite First Arm 45.340134 166.912906 117.5 ± 1.0 2.0 7
12NZ22A P83650 Misty Pluton Hbl diorite South of Gaer Arm 45.307248 167.109253 114.7 ± 1.1 0.2 12
12NZ24 P83652 Misty Pluton Hbl diorite Marrington Peaks 45.344945 167.172045 115.8 ± 2.1 1.5 8
12NZ33 P83661 Misty Pluton Hbl monzodiorite Bradshaw Sound 45.305890 167.153981 114.3 ± 2.1 2.6 8
12NZ36B P83664 Misty Pluton Bt-Hbl Qz diorite with 

relict pyroxene
Bradshaw Sound 45.271430 167.138984 Pop 1: 114.2 ± 1.3 0.4 2

12NZ36B P83664 Misty Pluton Bt-Hbl Qz diorite with 
relict pyroxene

Bradshaw Sound 45.271430 167.138984 Pop 2: 119.7 ± 1.3 0.4 7

12NZ36B P83664 Misty Pluton Bt-Hbl Qz diorite with 
relict pyroxene

Bradshaw Sound 45.271430 167.138984 Pop 3: 127.9 ± 1.2 1.1 7

13NZ46 P83738 Misty Pluton Two-pyroxene 
monzodiorite

Caswell Sound 45.044192 167.290175 116.9 ± 1.2 0.6 12

13NZ52A P83743 Misty Pluton Two-pyroxene diorite Charles Sound 45.092523 167.156780 116.8 ± 1.6 1.1 9
13NZ55A P83746 Misty Pluton Hbl-Bt Qz diorite Nancy Sound 45.114086 167.039648 115.2 ± 1.9 1.3 10
13NZ58 P83749 Misty Pluton Two-pyroxene diorite Nancy Sound 45.155586 167.090876 115.3 ± 1.5 0.5 8
14NZ34A P83848 Western McKerr intrusives Bt-Hbl diorite Caswell Sound 45.020713 167.214870 118.4 ± 0.9 0.4 8
14NZ35A P83849 Western McKerr intrusives Hbl diorite Caswell Sound 45.012009 167.194568 117.7 ± 1.6 2.1 8
15NZ2 P85716 Worsley Pluton Two-pyroxene diorite Bligh Sound 44.871556 167.522328 121.6 ± 1.9 0.7 10
15NZ27 P85717 Worsley Pluton Two-pyroxene diorite Bligh Sound 44.780061 167.517868 123.2 ± 1.6 1.0 13

Note: P Collection— sample identification number in the GNS Petlab collection (http://pet.gns.cri.nz/#/); MSWD—mean square of weighted deviates. Pop—population.
*Mineral abbreviations after Whitney and Evans (2010).
†Zircons used in age calculations.

TABLE 2. AREAL ADDITION RATES FOR THE MEDIAN BATHOLITH (INCLUDING WESTERN FIORDLAND ORTHOGNEISS)

Intrusive suite Area 
(km2)

Assumed 
paleothickness 

(km)*

Crystallization  
age/age range 

(Ma)

Duration of 
magmatism 

(m.y.)†

Areal addition rate 
(km2/ m.y.)

Magma addition rate 
(km3/m.y.)

References§

Separation Point Suite; WFO component in western Fiordland (lower crust; P > 10 kbar)

Worsley 569.0 25 124–121.8 2.2 259 6466 1, 2, 3, 4
McKerr East 155.1 25 120.1–128.3 8.2 19 473 1, 4
McKerr West 72.6 25 118.4–117.7 1.0 73 1816 1, 8
Misty 669.7 25 116.8–114.2 2.5 268 6697 1, 9
Malaspina 554.0 25 118.0–115.4 2.6 213 5327 1, 2, 4, 5, 6
Northwest Malaspina 54.6 25 117.5 ± 1.0 2.0 27 683 1
Breaksea Orthogneiss 46.7 25 123.2 ± 1.3 2.6 18 449 7
Resolution Island Orthogneiss 25.2 25 115.1 ± 1.6 3.2 8 197 6
Omaki Orthogneiss 39.6 25 127.9–124.9 3.0 13 330 12
Supper Cove Orthogneiss 135.3 25 128 ± 1 2.0 68 1691 2
Mount Edgar Diorite 25.8 25 128.8 ± 2.4 4.8 5 134 5
Total Lower Crust 4461.0
SPS WFO/Host Rock (%) 52.6

Separation Point Suite TTG component in eastern Fiordland (middle crust; P = 4–9 kbar)

Refrigerator Orthogneiss 118.0 25 120.7 ± 1.1 2.2 54 1341 10
Puteketeke Pluton 164.7 25 120.8–119.9 1.0 165 4117 10, 12
West Arm Leucogranite 259.8 25 116.3 ± 1.2 2.4 108 2707 10
North Fiord Granite (upper crust) 35.2 25 122.0 ± 1.7 3.4 10 259 3
Takahe Granodiorite 0.1 25 122.4 ± 2.2 4.4 0 0 3
Titiroa Granite 100.8 25 122.5 ± 1.9 3.8 27 663 3
Caroline Pluton 15.0 25 n.d. n.d. n.d. n.d. n.d.
Mount George Gabbro 48.4 25 127 n.d. n.d. n.d. 17
Indecision Creek Complex 111.4 25 135–124 11.0 10 253 17
Total Middle crust 3743.0
SPS TTG/Host Rock (%) 22.8

(continued )
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TABLE 2. AREAL ADDITION RATES FOR THE MEDIAN BATHOLITH (INCLUDING WESTERN FIORDLAND ORTHOGNEISS) (continued )

Intrusive suite Area 
(km2)

Assumed 
paleothickness 

(km)*

Crystallization  
age/age range 

(Ma)

Duration of 
magmatism 

(m.y.)†

Areal addition rate 
(km2/ m.y.)

Magma addition rate 
(km3/m.y.)

References§

Separation Point Suite TTG component in southwest Fiordland (upper crust; P < 4 kbar)

Spot 59 Pluton 17.6 5 115–105 10.0 2 9 18
Prices Pluton 3.0 5 115–105 10.0 0 2 18
Five Fingers Pluton 21.3 5 118.4 ± 0.7 1.4 15 76 12
Mouat Pluton 32.9 5 125–115 10.0 3 16 18
Only Islands Diorite 6.1 5 122 ± 1 2.0 3 15 20
Bald Peaks Pluton 6.9 5 122 n.d. n.d. n.d. 12
Fannin Pluton 22.9 5 121 ± 33 66.0 0 2 12
Anchor Island Intrusives #3 n.d. 5 115-105 10.0 n.d. n.d. 18
Total Upper Crust 3022.0
SPS TTG/Host Rock (%) 3.7

Rahu Suite in southwest Fiordland (shallow crust; P < 4 kbar)

Brothers Pluton 123.1 5 120.8 ± 0.1 1.0 123 615 12
Treble Mountain Pluton 17.1 5 130.0–127.5 2.5 7 34 12, 20
Red Head Pluton 4.6 5 121.1 ± 0.2 1.0 5 23 12
North Port granite 12.1 5 128.7 ± 0.3 1.0 12 61 12
Lake Monk Granite 11.0 5 135 ± 6 12.0 1 5 12?
Revolver Pluton 116.6 5 130.9 ± 0.15 1.0 117 583 20
Indian Island Granite 41.2 5 126 n.d. n.d. n.d. 12
Trevaccoon Pluton 6.1 5 129 ± 1.0 2.0 3 15 20
Anchor Island Intrusives #2 n.d. 5 115 ± 1.7 3.4 n.d. n.d. 12
Total Upper Crust 3022.0
Rahu TTG/Host Rock (%) 11.0
SPS and Rahu/Host Rock (%) 14.6

Darran Suite (undivided, mostly middle crust)

Middle Poteriteri Pluton 6.1 25 125 ± 10 20.0 0 8 18
Murchison Intrusives 120.9 25 137.1 ± 0.1 1.0 121 3022 12
Largs Group 21.5 5 140 ± 2 4.0 5 27 19
Darran Leucogabbro 316.0 25 141–135 6.0 53 1317 11
Nurse Suite 34.8 25 141–140.8 1.0 35 870 8, 10
Glade Suite 21.1 25 142–140.6 1.4 15 376 8, 10
Halfway Peak Hornblende Gabbro 33.0 25 146.0 ± 2.2 4.4 8 188 11
Harrison Gneiss 35.3 25 146.5–146.2 1.0 35 882 16
Cleughearn Pluton 26.6 25 154.5-153.8 1.4 19 475 13
Mount Luxmore Mafic Complex 15.9 25 158.8 ± 2.3 4.6 3 87 13
Hunter Intrusives 240.8 25 170–130 40.0 6 151 10, 11, 13, 15
Howitt Peaks Gabbro 6.2 25 170–130 40.0 0 4 17
Hanging Valley Granitoid Intrusives 5.4 25 170–130 40.0 0 3 17
Dana tonalite 5.3 25 170–130 40.0 0 3 17
West Kepler Gabbro 8.7 25 175–140 35.0 0 6 17
Selwyn Creek Gneiss 15.8 25 176.9–154.4 22.5 1 18 5, 16
Loch Burn Formation 33.3 5 195–145 40.0 1 4 11, 15
Mistake Suite 70.8 25 224 ± 6 12.0 6 148 11
Holly Burn Intrusives 112.5 25 232 ± 3 6.0 19 469 21
Hut Leucogranite 10.5 25 n.d. n.d. n.d. n.d. 17
Mount Anau Complex 2.7 25 n.d. n.d. n.d. n.d. n.d.

Note: WFO—Western Fiordland Orthogneiss; SPS—Separation Point Suite; P—pressure; TTG—tonalite-trondhjemite-granodiorite; n.d.—no data.
*Pluton thicknesses assumed to be 25 km for lower and middle crust, and 5 km for shallow crust. Volcanic assemblages are assigned 5 km thicknesses.
†Durations calculated as follows. For plutons with single dates, durations are based on assigned 2σ weighted average errors. For high precision thermal ionization mass 

spectrometry dates, pluton construction is assumed to occur over at least ~1 m.y. (cf. Coleman et al., 2004). For cases where there are multiple dates, durations are 
calculated as the difference between oldest and youngest dates.

§References: 1—this study; 2—Tulloch and Kimbrough (2003); 3—Bolhar et al. (2008); 4—Hollis et al. (2004); 5—Hollis et al. (2003); 6—Klepeis et al. (2016); 7—Hout 
et al. (2012); 8—Klepeis et al. (2004); 9—Allibone et al. (2009b); 10—Scott and Palin (2008); 11—Kimbrough et al. (1994), 12—Ramezani and Tulloch (2009); 13—Muir 
et al. (1998); 14—Marcotte et al. (2005); 15—Scott et al. (2008); 16—Decker (2016); 17—undated (date estimated in Allibone et al., 2009a); 18—undated (date estimated 
in Allibone et al., 2007); 19—Mortimer et al. (1999); 20—Gollan et al. (2005); 21—McCoy-West et al. (2014).
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is not confirmed (e.g., Tulloch and Kimbrough, 2003; Allibone et al., 
2009a, 2009b).

Plutonic rocks of the Darran Suite are composed of a bimodal suite 
of mafic and felsic, low Sr/Y (<40) gabbro, diorite, quartz diorite, quartz 
monzodiorite, tonalite, granodiorite, and monzogranite. Muir et al. (1998) 
observed that outboard Darran Suite rocks show enrichments in large ion 
lithophile elements (e.g., Rb, Ba, Th, K) and light rare earth elements 
(REEs), and depletions in mantle-normalized Nb values, consistent with 
derivation from a subduction zone setting. Radiogenic isotopes values are 
primitive; initial 87Sr/86Sr ratios range from 0.7037 to 0.7049, and initial 
e

Nd
 values cluster at +3 to +4 (Muir et al., 1998). These features together 

with the lack of observed zircon inheritance suggest that outboard Darran 
Suite magmas underwent little to no interaction with preexisting conti-
nental crust during their petrogenesis.

Separation Point Suite
The Separation Point Suite consists of a suite of high-Sr/Y (>40) 

plutonic rocks emplaced between ca. 128 and 105 Ma (Tulloch and Kim-
brough, 2003). Felsic plutonic rocks include tonalites, trondhjemites, 
granodiorites, and granites that form two major belts in Fiordland and 
Nelson-Westland (northwestern South Island). The Separation Point 
Suite belts are currently divided into two sections by the Alpine fault. In 
the Nelson-Westland area, the Separation Point Suite includes elongate 
intrusive bodies that strike northeast–southwest for ~120 km (Muir et al., 
1995; Bolhar et al., 2008; Sagar et al., 2016). In eastern Fiordland, they 
comprise a north-south–trending elongate plutonic complex (e.g., Muir 
et al., 1998; Bolhar et al., 2008; Scott and Palin, 2008; Allibone et al., 
2009a). A minor volume of this component occurs in upper crustal rocks 
in southwestern Fiordland as small intrusive bodies along the Tasman Sea 
(Fig. 2). The Separation Point Suite plutonic belt is mostly inboard of the 
Darran Suite plutonic belt, but intrusions into the outboard Darran Suite 
are also common (Tulloch and Kimbrough, 2003). Ages for the Separation 
Point Suite in Westland-Nelson range from 127 to 112 Ma (Muir et al., 
1995; Bolhar et al., 2008; Sagar et al., 2016), in eastern Fiordland ages 
range from 123 to 116 Ma (Bolhar et al., 2008; Scott and Palin, 2008; 
Ramezani and Tulloch, 2009), and in southwestern Fiordland ages range 
from 122 to 118 Ma (Ramezani and Tulloch, 2009). On Stewart Island, 
dates range from 128 to 105 Ma (Allibone and Tulloch, 2004). The rela-
tive locations of older Darran Suite and younger Separation Point Suite 
plutonic belts clearly record progressively younger arc activity migrating 
inboard from ca. 230 Ma to ca. 100 Ma. Emplacement pressures for the 
Darran and Separation Point Suite rocks range from 2 to 7 kbar (Tulloch 
and Challis, 2000; Allibone and Tulloch, 2008; Scott et al., 2009).

Mafic plutonic rocks of the Separation Point Suite are the focus of 
this study and include seven variably metamorphosed Early Cretaceous 
plutons of the Western Fiordland Orthogneiss. It occupies >2300 km2 and 
consists of diorite, quartz diorite, monzodiorite, and minor gabbro (Fig. 3). 
Allibone et al. (2009b) distinguished plutons based on emplacement ages, 
petrography, structural and metamorphic features, and geochemistry (see 
Allibone et al., 2009b, for a detailed description of the plutons). Plutons of 
the Western Fiordland Orthogneiss in Fiordland that were sampled in this 
study include the Worsley, Misty, and Malaspina Plutons, and the eastern 
and western McKerr Intrusives (Fig. 3). The Western Fiordland Ortho-
gneiss is estimated to have been emplaced at 10–18 kbar (see Allibone et 
al., 2009b, and references therein), synchronous with regional transpres-
sion/contractional deformation in northern Fiordland, in Caswell Sound 
in western Fiordland (Daczko et al., 2001, 2002; Klepeis et al., 2004; 
Marcotte et al., 2005), in the Grebe mylonite zone in eastern Fiordland 
(Scott et al., 2011), and the Freshwater fault system, Escarpment fault, 
and Gutter shear zone on Stewart Island (Allibone and Tulloch, 2008).

METHODS

U-Pb Zircon Geochronology and Trace Element Methods

Zircons were separated using standard mineral separation procedures 
involving crushing, density separation on a Wilfley water table, magnetic 
separation up to 1.5A using a Frantz isodynamic separator, and methylene 
iodide heavy liquid. Approximately 50–80 zircons were picked from each 
sample using a Leica S8APO binocular microscope for casting in epoxy. 
Zircons were selected on the basis of being clear, colorless, and inclu-
sion free. Some samples had bimodal grain sizes, and thus the suites of 
zircons were picked to represent each size fraction. Cathodoluminescence 
(CL) images were collected using a FEI Quanta 600 scanning electron 
microscope (SEM) at the California State University Northridge scanning 
electron microscope laboratory for the purpose of detecting internal struc-
tures, inclusions, and physical defects of the zircons (Fig. 5). U-Pb zircon 
geochronology and trace element analyses were conducted at the Stan-
ford–U.S. Geological Survey SHRIMP-RG facility. Detailed descriptions 
of methods for isotopic analysis are given in the Data Repository Item1, 
and summarized in Table 1. All zircon CL images, ion probe spot loca-
tions, and chondrite-normalized REE patterns are also provided in the 
Data Repository Item.

Zircon Thermometry

We use SHRIMP-RG measurements of Ti concentrations collected 
simultaneously with 206Pb/238U isotopic ages, and the Ferry and Watson 
(2007) calibration to calculate temperatures associated with zircon growth 
(Fig. 5). All samples contain quartz fixing the aSiO

2
 at unity. Several 

samples with granulite facies mineral assemblages contain rutile; how-
ever, samples that retain original igneous mineral assemblages generally 
lack rutile, suggesting that rutile is likely a secondary metamorphic phase. 
We therefore present model Ti-in-zircon temperatures calculated assum-
ing an absence of rutile and estimate the activity of TiO

2
 at 0.6 based on 

the presence of ilmenite. In cases where rutile was part of the igneous 
assemblage, our corrected Ti-in-zircon temperatures would overestimate 
crystallization temperatures by ~50 °C. Both calculations are presented 
in the Data Repository data trace element zircon data file.

Areal and Magma Addition Rate Calculations

U-Pb zircon dates are used to determine time scales of magmatism and 
establish links between periods of high magma flux and tectonic events. 
We calculate both areal intrusive rates (km2/m.y.) and magma addition 
rates (km3/m.y.) from zircon crystallization ages and area estimates modi-
fied from GNS QMAP geographic information system data (Turnbull et 
al., 2010). Estimation of magmatic fluxes follows the strategy outlined by 
Gehrels et al. (2009) and involves (1) subdividing the Median Batholith 
into shallow, middle, and lower crustal components based on emplacement 
pressures where known, (2) subdividing plutonic units into temporally 
homogeneous segments, (3) subtracting nonplutonic rocks from area 
estimates, (4) multiplying the area of exposed lower and middle crustal 
plutonic rocks by a thickness of 25 km, and shallow plutonic rocks by a 
thickness of 5 km (for MAR calculations), and (5) dividing the resulting 
value by the duration of magmatism in each region to determine average 

1 GSA Data Repository Item 2017080, Zircon rare earth element plots, cathodolumi-
nescence images, sample location information, and zircon isotope and geochemical 
data, is available at www.geosociety.org/datarepository/2017, or on request from 
editing@geosociety.org.

http://www.geosociety.org/datarepository/2017
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magmatic fluxes. Emplacement depths are assigned as follows: shallow 
crust is represented by southwestern Fiordland, where emplacement pres-
sures are ≤4 kbar; middle crustal depths are observed in eastern Fiordland, 
where emplacement pressures are 4–9 kbar; and lower crustal depths are 
observed in western Fiordland, where pressures are >10 kbar (Tulloch 
and Challis, 2000; Allibone et al., 2007, 2009a, 2009b, 2009c; Scott et al., 
2009). Durations of magmatism are difficult to quantify because some plu-
tons are undated, some have a single date, and some have multiple dates. 
For plutons with single dates, we calculate durations based on assigned 
2σ weighted average errors. For cases where there are multiple dates, 
durations are calculated as the difference between oldest and youngest 
dates. In the case of high-precision thermal ionization mass spectrometry 
(TIMS) dates with 2σ errors <1 m.y., we assume a minimum time scale 
of at least 1 m.y. for pluton construction (e.g., Coleman et al., 2004). The 
choice of 25 km pluton thicknesses for MAR calculations for the lower 
crustal Western Fiordland Orthogneiss is assumed as a lower limit based 
on seismic velocity data beneath the orthogneiss that indicates that mafic 
and/or ultramafic arc crust extends to depths of 40 km (Eberhart-Phillips 
and Reyners, 2001). The use of 25 km for lower and middle crustal also 

allows direct comparison to published values in other well-studied oro-
genic belts (e.g., Coast Mountains Batholith, Sierra Nevada Batholith, 
North Cascades plutonic complex: Ducea and Barton, 2007; Gehrels et 
al., 2009; Paterson et al., 2011). We note that the precise amount of the 
high-velocity root that is Western Fiordland Orthogneiss is uncertain and 
some component is likely ultramafic cumulate or underplated material; 
we therefore emphasize and show areal addition calculations, but pres-
ent both in Table 2.

RESULTS

Sample Descriptions

Samples were collected (using helicopter and boat) from ~3000 km2 
of lower crust in western Fiordland. Our data span ~130 km parallel 
and ~30 km perpendicular to the strike of the paleoarc axis, which is 
roughly approximated by the present-day western Fiordland coastline 
(Figs. 2 and 3). Sampling includes (from north to south) two samples 
of the Worsley Pluton, two samples from the eastern McKerr Intrusives, 

Misty Pluton (12NZ22)

Misty Pluton (12NZ24) Malaspina Pluton (13NZ16B)

Malaspina Pluton (13NZ40D1)

Malaspina Pluton (13NZ59)

Figure 5

Worsley Pluton (15NZ27)

124.9 ± 2.8
124.7 ± 2.5

124.4 ± 2.9

120.2 ± 2.8

Worsley Pluton (15NZ2)

124.1 ± 5.4

123.0 ± 3.0 123.2 ± 3.8

114.2± 2.1 114.5 ± 1.4 114.4 ± 2.4 114.4 ± 2.7

114.7 ± 2.2118.3 ± 2.0114.0 ± 1.7112.4 ± 2.2
117.6 ± 2.7

113.7 ± 3.5

117.8 ± 3.8

120.0 ± 2.6
113.8 ± 3.2

116.3 ± 1.3

118.0 ± 2.6118.0 ± 2.1

114.1 ± 1.9

114.9 ± 3.0

117.3 ± 1.9

122.2 ± 1.0

120.9 ± 1.0
117.3 ± 1.5

Figure 5. Cathodoluminescence images of representative zircons from the Western Fiordland Orthogneiss. Solid white circles indicate location of sen-
sitive high-resolution ion microprobe–reverse geometry (SHRIMP-RG) spots where U-Pb isotopes and trace element concentrations were collected 
simultaneously. Quoted uncertainties are 1s. Scale bars are 100 mm.
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two samples from the western McKerr Intrusives, eight samples from the 
Misty Pluton, and six samples from the Malaspina Pluton. Locations are 
shown in Figure 3 and Table 1. The geology of major Western Fiordland 
Orthogneiss plutons was given in Allibone et al. (2009b). For deformation 
and metamorphic descriptions of the Western Fiordland Orthogneiss, see 
Oliver (1976, 1977), Bradshaw (1989c, 1990), Gibson and Ireland (1995), 
Clarke et al. (2000), Daczko et al. (2002), Hollis et al. (2004), Klepeis 
et al. (2004, 2007, 2016), Allibone et al. (2009b), De Paoli et al. (2009), 
and Stowell et al. (2014).

Internal Zircon Textures in CL

Zircons from the Western Fiordland Orthogneiss are characterized 
by weak oscillatory zoning and irregular external appearances, consis-
tent with late-stage igneous zircon growth from a mafic magma and/or 
very slow and complex crystallization during prolonged residence in the 
lower crust (Fig. 5) (Corfu et al., 2003). Sector zoning is also common. 
Some zircons display embayment and truncation of growth zoning sug-
gesting resorption during granulite to amphibolite facies metamorphism 
(Clarke et al., 2000; Stowell et al., 2014; Schwartz et al., 2016). In some 
cases, 1–5 mm luminescent, metamorphic rims overgrow weak oscillatory 
zoning textures; however, these domains were generally avoided during 
SHRIMP-RG analyses.

Zircon Geochronology

Malaspina Pluton
The Malaspina Pluton spans >500 km2 and consists of diorite, horn-

blende diorite, and monzodiorite with scarce hornblendite and garnet 
pyroxenite (Oliver, 1976, 1980; Allibone et al., 2009b). Our sampling 
consists of two diorites from Acheron Passage south of Breaksea Sound, 
a hornblende diorite and a garnet-bearing trondhjemite vein from John 
Island in Breaksea Sound, a diorite from Vancouver Arm, and a hornblende 
diorite from First Arm.

A hornblende diorite (13NZ59) from First Arm yielded eight individual 
SHRIMP-RG spot analyses from eight individual zircon grains that are 
concordant and yield dates ranging from 122.2 ± 1.0 Ma to 117.3 ± 1.9 
Ma. One spot analysis yielded a statistically younger age (113.1 ± 2.6 
Ma) than the majority of the population and could be a product of new 
metamorphic growth during granulite facies metamorphism (Stowell et 
al., 2014; Schwartz et al., 2016); therefore it was excluded from the error-
weighted average calculation. The remaining seven zircons yielded an 
error-weighted average 206Pb/238U age of 120.3 ± 1.8 Ma (mean square 
of weighted deviates, MSWD = 2.0; Fig. 6A). The slightly high MSWD 
(2.0) may indicate mixing of two components, although CL images do 
not reveal obvious xenocrysts (Fig. 5). Using Isoplot 3.75 (Ludwig, 2012), 
which includes a partial implementation of the Sambridge and Compston 
(1994) mixture modeling method for deconvolution of suites of zircons 
that have multiple age components, the complex range of zircon dates 
was separated into 2 populations which yield ages of 117.5 ± 1.0 Ma 
(relative percentage = 43%), 121.3 ± 0.6 Ma (relative percentage = 57%) 
with a relative misfit of 0.43. In this case, the 117.5 Ma age corresponds 
to the timing of magmatic emplacement and the 121.3 Ma component 
represents older zircon xenocrysts. In the absence of additional informa-
tion, we view both age interpretations as viable. These results overlap 
with several existing ages from Doubtful Sound including two SHRIMP 
ages of 115.9 ± 1.2 Ma (Klepeis et al., 2016) and 115.6 ± 2.4 Ma (Hollis 
et al., 2004), and three laser ablation–multicollector–inductively coupled 
plasma–mass spectrometry (LA-MC-ICP-MS) ages of 114.2 ± 1.6 Ma, 
115.4 ± 1.7 Ma, and 116.1 ± 1.7 Ma (Stowell et al., 2014).

A two-pyroxene diorite sample (13NZ34A) from Acheron Passage 
yielded eight concordant individual SHRIMP-RG spot analyses from eight 
individual zircon grains. Analyses range from 114.9 ± 2.4 Ma to 120.4 ± 
1.0 Ma and yield an error-weighted average 206Pb/238U age of 118.0 ± 1.8 
Ma (MSWD = 1.4; Fig. 6B). Another sample from Acheron Passage, a 
hornblende diorite (sample 13NZ16B), yielded 10 individual SHRIMP-
RG spot analyses from 10 individual zircon grains (Fig. 5). These analy-
ses yielded dates ranging from 112.0 ± 2.7 Ma to 120.5 ± 1.1 Ma. The 
error-weighted average 206Pb/238U age of all 10 zircons is 118.0 ± 2.1 Ma 
(MSWD = 1.4; Fig. 6D). An existing U-Pb zircon TIMS date ~20 km 
to the east in Wet Jacket Arm yielded an age of 116.6 ± 1.2 Ma, which 
overlaps our results within uncertainty (Mattinson et al., 1986; Tulloch 
and Kimbrough, 2003).

The biotite hornblende diorite with relict pyroxene sample from Break-
sea Sound on Vancouver Arm (sample 13NZ40D1) yielded nine concor-
dant individual SHRIMP-RG spot analyses from nine separate zircons with 
dates that range from 112.6 ± 2.5 to 119.9 ± 1.9 Ma. One individual zircon 
analysis yielded a much younger date of 107.4 ± 3.4 Ma. This date could 
be a product of new metamorphic growth because it overlaps metamorphic 
zircon dates from granulite facies marbles in the Doubtful Sound shear 
zone in First Arm, which give a metamorphic zircon age of 105.6 ± 1.9 
Ma (Schwartz et al., 2016). This suggestion is consistent with the highly 
rounded and embayed morphology of zircons from this sample, which 
likely underwent some dissolution during metamorphism (Fig. 5). The 
remaining zircons give an error-weighted average 206Pb/238U age of 116.4 
± 1.3 Ma (MSWD = 1.0; Fig. 6C). Another deformed hornblende diorite 
near Breaksea Sound (sample 13NZ22) yielded eight separate, concor-
dant SHRIMP-RG spot analyses from eight individual zircon grains that 
range from 114.2 ± 3.0 Ma to 118.5 ± 2.8 Ma. The error-weighted aver-
age 206Pb/238U age of all spots is 116.9 ± 1.6 Ma (MSWD = 0.31; Fig. 6E).

Garnet-Bearing vein. A garnet-bearing trondhjemite vein (12NZ17B) 
that crosscuts host diorite near 13NZ22 (above) yielded 11 individual 
SHRIMP-RG spot analyses from 11 individual zircon grains ranging 
from 114.0 ± 2.5 Ma to 119.0 ± 2.9 Ma. The error-weighted average 
206Pb/238U age is 117.0 ± 1.0 Ma (MSWD = 0.35; Fig. 6F), statistically 
indistinguishable from the error-weighted average age of the host. One 
spot analysis produced a relatively older age (121.5 ± 0.8 Ma) suggest-
ing that it might be a xenocryst; it was excluded from the error-weighted 
average 206Pb/238U age calculation.

Misty Pluton
The Misty Pluton occupies >670 km2 and is the largest unit in the 

Western Fiordland Orthogneiss. Allibone et al. (2009b) distinguished three 
magmatic phases that include (1) a pale, medium-grained, two-pyroxene ± 
hornblende diorite and monzodiorite in the northern and central portions of 
the Misty Pluton; (2) a darker, medium- to coarse-grained diorite and quartz 
monzodiorite with relict corroded clinopyroxene in the southern portion of 
the pluton around Doubtful Sound; and (3) a dark, medium-grained, com-
monly strongly foliated hornblende-rich diorite located along the eastern 
margin of the pluton. Our sampling consists of two samples from the two-
pyroxene diorite phase, three samples from the hornblende diorite with the 
relict pyroxene phase, and three samples from the hornblende-rich phase.

Two-Pyroxene Diorite Phase. One sample from Caswell Sound 
(13NZ46) yielded 12 individual SHRIMP-RG analyses from 12 separate 
zircon grains. The majority of 206Pb/238U dates range from 113.0 ± 3.0 Ma 
to 119.2 ± 1.5 Ma. One zircon has an older age of 123.6 ± 1.7 Ma, and 
is likely a xenocryst. Excluding this older analysis, the error-weighted 
averaged 206Pb/238U age is 116.9 ± 1.2 Ma (MSWD = 0.64; Fig. 6G). 
Another two-pyroxene monzonite from Emileus Arm in Charles Sound 
(sample 13NZ52A) yielded nine individual SHRIMP-RG spot analyses 
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from nine individual zircon grains ranging from 111.7 ± 3.1 Ma to 120.6 
± 2.0 Ma. The error-weighted average 206Pb/238U age is 116.8 ± 1.6 Ma 
(MSWD = 1.11; Fig. 6H).

Relict Pyroxene Diorite Phase. The most complex and unique sample 
is a biotite hornblende quartz diorite from McDonnell Island in Bradshaw 
Sound (sample 12NZ36B). Individual zircon spot analyses (n = 16) from 
16 individual grains yielded an overdispersion in dates from 106 ± 12 to 
133 ± 3 Ma (Fig. 6I). The error-weighted average 206Pb/238U age of all 
zircons is 121.2 ± 3.2 Ma (MSWD = 17). One zircon 206Pb/238U age was 
omitted from the calculations because it has a much younger age and 
large uncertainty (105.8 ± 12.1 Ma). The young age could represent new 
metamorphic growth during metamorphism, because it correlates with 
206Pb/238U metamorphic zircon ages in the Doubtful Sound shear zone 
(105.6 ± 1.9 Ma; Schwartz et al., 2016). The large MSWD value for 
the sample population indicates scatter in excess of the analytical error. 
Deconvolution using the Sambridge and Compston (1994) mixture mod-
eling method yields ages of 114.2 ± 0.7 Ma (relative percentage = 13%), 
119.8 ± 0.7 Ma (relative percentage = 44%), and 127.9 ± 0.6 Ma (relative 
percentage = 44%) with a relative misfit of 0.089. In this case, the older 
127.9 Ma population likely represents xenocrystic cargo, whereas the 
youngest 114.2 Ma population may represent either the latest magmatic 
phase or recrystallization during granulite facies metamorphism. In the 
absence of additional information, it is possible that either the 114.2 or 
the 119.8 Ma populations may be magmatic.

A biotite hornblende monzodiorite with relict pyroxene from Brad-
shaw Sound (sample 12NZ22A) yielded 12 individual SHRIMP-RG spot 
analyses on 12 separate zircon grains with a 206Pb/238U date range of 112.5 
± 2.0–116.3 ± 2.6 Ma (Fig. 5). The error-weighted average 206Pb/238U age 
of all the zircons is 114.7 ± 1.1 Ma (MSWD = 0.19; Fig. 6J). Another 
sample from Bradshaw Sound, a hornblende monzodiorite with relict 
pyroxene (sample 12NZ33), yielded 12 separate SHRIMP-RG spot analy-
ses on 12 individual zircon grains with a range of 109.1 ± 2.8–116.7 ± 1.4 
Ma. Two individual zircon ages were distinctly young (102.2 ± 3.0 Ma 
and 102.2 ± 2.8 Ma) compared to the rest of the sample, and thus were 
excluded from the error-weighted average 206Pb/238U age calculation as 
possibly representing new metamorphic growth (Schwartz et al., 2016). 
In contrast, two zircon ages were older than the rest of the sample (122.4 
± 2.4 Ma and 124.2 ± 4.6 Ma) and were also excluded from the error-
weighted average 206Pb/238U age calculations as likely being xenocrysts. 
The error-weighted average 206Pb/238U age of the remaining zircons is 
114.3 ± 2.1 (MSWD = 2.6; Fig. 6K).

Hornblende Diorite Phase. SHRIMP-RG analysis of a biotite quartz 
diorite from Nancy Sound (sample 13NZ55A) yielded 10 individual spot 
analyses on 10 separate zircon grains. The individual zircon ages ranged 
from 111.2 ± 1.6 Ma to 120.1 ± 2.6 Ma. The error-weighted average 
206Pb/238U age of all the zircons is 115.2 ± 1.9 Ma (MSWD = 1.3; Fig. 6L). 
Another sample from Nancy Sound, a biotite hornblende quartz diorite 
(sample 13NZ58), yielded eight individual SHRIMP-RG analyses on eight 
separate zircon grains ranging from 110.5 ± 4.4 to 116.8 ± 1.84 Ma (Fig. 
6M). The error-weighted average 206Pb/238U age is 115.3 ± 1.5 Ma (MSWD 
= 0.5). One individual zircon age produced an age of 122.5 ± 1.8 Ma and 
was excluded from the error-weighted average 206Pb/238U age calculation 
as a probable xenocryst. A biotite hornblende diorite (sample 12NZ24) 
yielded eight individual SHRIMP-RG analyses on eight separate zircon 
grains with dates ranging from 112.4 ± 2.2 to 119.6 ± 1.8 Ma (Figs. 5 
and 6N). The error-weighted average 206Pb/238U age of all the zircons is 
115.8 ± 2.1 Ma (MSWD = 1.46).

Our dates are somewhat younger than an LA-MC-ICP-MS zircon 
date of 122.6 ± 1.9 Ma from the hornblende diorite unit along the east-
ern margin of the pluton reported in Allibone et al. (2009b), but overlap 

with another LA-MC-ICP-MS date of 114.6 ± 1.9 Ma from a hornblende 
diorite gneiss (Stowell et al., 2014). Older, xenocrystic(?) zircons from 
the latter sampled yielded a weighted average date of 119.7 ± 1.0 Ma, 
which also overlaps within error to the xenocrysts we observe in this and 
other phases of the Misty Pluton.

Western McKerr Intrusives
The western McKerr Intrusives area is ~73 km2, and consists of a het-

erogeneous suite of diorite, quartz monzodiorite, tonalite, granodiorite, 
and monzonite that intrude the Caswell Sound Gneiss (Bradshaw, 1985; 
Daczko et al., 2002; Klepeis et al., 2004; Allibone et al., 2009b). In Cas-
well Sound, the western McKerr Intrusives are thrust over the Misty Plu-
ton along granulite to amphibolite facies ductile thrust faults (Daczko et 
al., 2002; Klepeis et al., 2004). Our sampling consists of two hornblende 
diorites from Caswell Sound.

A biotite hornblende diorite (13NZ34A) yielded nine individual 
SHRIMP-RG analyses on nine separate zircon grains with dates rang-
ing from 108.9 ± 2.3 to 119.3 ± 1.8 Ma (Fig. 6O). One zircon date was 
younger than the majority (108.9 Ma), and thus was excluded from the 
error-weighted average 206Pb/238U age calculation. The error-weighted 
average 206Pb/238U age of the remaining eight zircons is 118.4 ± 0.9 Ma 
(MSWD = 0.4). Another hornblende diorite (13NZ35A) yielded eight 
individual SHRIMP-RG analyses on eight separate zircon grains with 
dates ranging from 113.3 ± 1.7 to 123.2 ± 2.6 Ma. The error-weighted 
average 206Pb/238U age of all zircons is 117.7 ± 1.6 Ma (MSWD = 2.1; 
Fig. 6P). These data overlap the LA-MC-ICP-MS age of 116.8 ± 3.7 Ma 
from a monzodiorite reported in Klepeis et al. (2004).

Eastern McKerr Intrusives
The eastern McKerr Intrusives consist of ~155 km2 of variably foli-

ated, medium- to coarse-grained equigranular diorite, quartz diorite, and 
quartz monzodiorite (Bradshaw, 1985; Allibone et al., 2009b). Unlike 
other Western Fiordland Orthogneiss plutons, the eastern McKerr Intru-
sives contain a significant component of xenolithic granitic orthogneisses 
and metasedimentary rocks of unknown affinity (Bradshaw and Kim-
brough, 1991). Our sampling consists of a McKerr hornblende diorite and 
a two-mica granitic orthogneiss from a xenolithic raft in George Sound.

A biotite hornblende diorite (15NZ20) from host diorite in George 
Sound yielded nine separate SHRIMP-RG spot analyses on nine individual 
zircon grains with dates ranging from 114.7 ± 2.6 to 124.4 ± 3.3 Ma (Fig. 
6R). The error-weighted average 206Pb/238U age of all zircons is 120.1 ± 
2.8 (MSWD = 1.6). Our date overlaps an existing SHRIMP zircon date 
of 120.0 ± 2.6 Ma reported in Hollis et al. (2004).

SHRIMP-RG analysis of a muscovite biotite granitic orthogneiss 
(15NZ12) from a xenolithic raft in the eastern end of George Sound 
yielded complex results; eight zircon spot analyses gave dates ranging 
from 304 ± 10 Ma to 125 ± 2.9 Ma (Fig. 6Q). Zircon dates cluster in two 
populations with an error-weighted average 206Pb/238U age of 128.3 ± 3.9 
Ma (n = 4; MSWD = 1.6) for the younger population and an age of 288 
± 23 (n = 3; MSWD = 2.2.) for the older population. Discordant zircons 
from granitic orthogneisses reported in Bradshaw and Kimbrough (1991) 
give a similar upper intercept date of ca. 341 ± 34 Ma, although neither 
data set precisely constrains the age of the older population.

Worsley Pluton
The Worsley Pluton is the second-most aerially extensive unit, ~569 km2. 

It consists of a core unit of two-pyroxene diorite, monzodiorite, and monzo-
nite that is surrounded by a hornblende diorite unit that commonly contains 
relict pyroxene (Bradshaw, 1985, 1989a, 1990; Allibone et al., 2009b). Our 
sampling consists of two samples from the two-pyroxene core (Fig. 3).
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A two-pyroxene diorite (15NZ2) from Bligh Sound gave 11 zircon spot 
analyses from 11 grains with dates ranging from 113.7 ± 3.6 to 125.1 ± 2.7 
Ma (Figs. 5 and 6S). The youngest spot is a rim and is likely metamorphic. 
The error-weighted average 206Pb/238U age of the remaining zircons is 
121.6 ± 1.9 (MSWD = 0.7). Another two-pyroxene diorite (15NZ27) from 
Bligh Sound gave 13 zircon spot analyses from 12 individual grains with 
dates ranging from 119.3 ± 2.4 to 128.9 ± 3.5 Ma (Figs. 5 and 6T). Core 
and rim analyses on one grain yielded statistically indistinguishable results 
(124.4 ± 2.9 and 120.2 ± 2.8, respectively). The error-weighted average 
206Pb/238U age of all zircons is 123.2 ± 1.6 (MSWD = 1.0). Our dates 
overlap with previous U-Pb zircon TIMS and SHRIMP chronology from 
the core unit that yielded dates of 124 ± 1.0 Ma (Tulloch and Kimbrough, 
2003), 123.68 ± 0.36 Ma (A. Tulloch, 2016, personal commun.), 123.4 
± 1.1 Ma (Bolhar et al., 2008), and 121.8 ± 1.7 Ma (Hollis et al., 2004).

Zircon Geochemistry and Thermometry

Zircons from the Western Fiordland Orthogneiss that range from ca. 124 
to 114 Ma (Fig. 7) are distinguished by Th/U values >0.3, Th concentrations 
ranging from 4 to 1074 ppm, and U concentrations ranging from 12 to 1326 
ppm (Fig. 8A). Chondrite-normalized REE patterns show pronounced posi-
tive Ce and negative Eu anomalies (Fig. 8B), and moderate to steep slopes 
from middle to heavy REEs (Figs. 8B, 8C). Dy/Yb is positively correlated 
with Th/U, consistent with intrasample fractionation trends (Fig. 8C) from 
a parental magma with Th/U of ~1.0 and Dy/Yb of ~0.4. Two samples from 
the Misty Pluton in Bradshaw Sound display distinct fractionation trends 
pointing toward a chemically distinct parental magma (Th/U = 3; Dy/Yb = 
0.3). Corrected Ti-in-zircon temperatures for all Western Fiordland Ortho-
gneiss zircons range from 780 to 870 °C. The mean Ti-in-zircon tempera-
ture for the Western Fiordland Orthogneiss is 838 ± 46 °C (1s standard 
deviation; n = 135; Fig. 8D). Intrapluton average temperatures range from 

~840 to 880 °C for the central and southern Malaspina Pluton, and ~850 
°C for the northwest Malaspina Pluton; ~780–850 °C for the Misty Pluton; 
~800–850 °C for the western McKerr Intrusives, ~840 °C for the eastern 
McKerr Intrusives, and 800–840 °C for the Worsley Pluton.

DISCUSSION

Identifying Igneous Zircons in Lower Arc Crust

A particular problem in quantifying tempos of lower arc construction 
is distinguishing zircons produced from magmatic crystallization from 
those produced during subsequent metamorphic or deformational events. 
This is particularly important for zircons in this study because the West-
ern Fiordland Orthogneiss underwent high-temperature metamorphism 
(eclogite-granulite and amphibolite facies) and partial melting from 116 
to 105 Ma, possibly resulting in new metamorphic growth (Oliver, 1980; 
Bradshaw, 1990; Klepeis et al., 2007; Allibone et al., 2009b, 2009c; Stow-
ell et al., 2014; Schwartz et al., 2016). In this study we attempt to overcome 
these issues in several ways: (1) samples with clear migmatitic textures 
were avoided, and samples were chosen to minimize deformational and 
metamorphic overprints; (2) despite these attempts, some samples have 
granulite or amphibolite facies metamorphic assemblages (see Table 1); 
therefore, ion probe spots were carefully chose to avoid thin (<10 µm) 
luminescent rims present in some samples that are likely metamorphic 
in origin; (3) trace elements were collected during U-Pb analysis from 
all zircons to identify heavy REE depletions that may signify cocrystal-
lization of metamorphic garnet at granulite to upper amphibolite facies 
conditions, and/or the presence of low Th/U domains that indicate growth 
in fluid-present conditions at amphibolite facies and lower temperature 

conditions (Harley et al., 2007; Rubatto 2002); and (4) we compare our 
SHRIMP-RG zircon dates to those from metamorphic zircons and titanites 
in paragneisses in contact aureoles of the Western Fiordland Orthogneiss 
(Schwartz et al., 2016), and to metamorphic garnet dates from the West-
ern Fiordland Orthogneiss (Stowell et al., 2014), with the expectation 
that metamorphic dates should largely postdate igneous crystallization.

In general, CL imaging of zircons in this study reveals that Western 
Fiordland Orthogneiss zircons display weak oscillatory and sector zoning, 
characteristic of zircons grown from mafic to intermediate melts (Grimes et 
al., 2009; Schwartz et al., 2010). Trace element analyses of these domains 
yield chondrite-normalized REE abundances that have heavy REE enrich-
ments and light REE depletions, pronounced positive cerium anomalies, 
and negative europium anomalies (Figs. 8A–8C). No Western Fiordland 
Orthogneiss zircons in this study display flattening of the heavy REEs 
that might suggest equilibrium growth in the presence of garnet (Fig. 8B).

Rubatto (2002) proposed that zircons formed during amphibolite facies 
metamorphism in oxidizing environments will commonly have low abun-
dances of Th (melt insoluble) and high U concentrations (melt soluble), 
resulting in Th/U values <~0.1. Although several samples display amphibo-
lite facies overprints, all zircons analyzed in this study have Th/U values 
>0.3 (Fig. 8A). Ti-in-zircon thermometry gives temperatures that are >750 

°C, with a Western Fiordland Orthogneiss average of ~826 °C consistent 
with late-stage crystallization from a mafic magma. Incorporating uncer-
tainties in the activity of TiO

2
 also yields magmatic temperatures >~740 

°C, rather than subsolidus or low-temperature metamorphic conditions 
temperatures predicted from pseudosection modeling (Stowell et al., 2014). 
Together with the lack of observed chondrite normalized heavy REE deple-
tions, these geochemical features support the notion that Western Fiordland 
Orthogneiss zircons grew in equilibrium with a mafic to intermediate melt 
and not during granulite or amphibolite facies metamorphism.

Comparison of our SHRIMP-RG dates with those from metamorphic 
host rocks reveals that Western Fiordland Orthogneiss dates are generally 
older, but overlap with the oldest metamorphic zircon, titanites, and garnet 
dates from host rocks. For example, metamorphic zircons in metasedi-
mentary rocks in the Western Fiordland Orthogneiss contact aureole yield 
206Pb/238U (SHRIMP-RG) dates of 116.3–112.0 Ma (Schwartz et al., 2016) 
versus dates of 123.2–114.2 Ma from zircons in this study (see also dates 
in Gibson and Ireland, 1995; Hollis et al., 2004). Titanite laser ablation 
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split stream (LASS) ICP-MS chronology from the same host rocks yields 
dates ranging from 116.2 to 107.6 Ma (Schwartz et al., 2016). Sm-Nd 
garnet dates from the Western Fiordland Orthogneiss range from 115.6 ± 
2.6 Ma to 110.6 ± 1.9 Ma (Stowell et al., 2014), and a minor population 
of metamorphic zircon rims and titanites in the Doubtful Sound region 
extends to even younger dates of 105.6–102.3 Ma (Schwartz et al., 2016). 
These metamorphic dates are in general younger than Western Fiordland 
Orthogneiss dates, and those that overlap likely reflect contact metamor-
phic heating in host rocks during batholith emplacement.

Of the 216 zircons analyzed in this study, 7 zircons were rejected as 
statistically younger outliers (see preceding) and these give dates rang-
ing from 113 to 102 Ma (see Data Repository Table DR2). These dates 
overlap with metamorphic dates suggesting minor recrystallization or 
metamorphic growth. We therefore interpret the majority of zircons dates 
in this study as recording the timing of igneous crystallization.

Tempos of Arc Construction

Along the southeast Gondwana margin, subduction was active for >150 
m.y., resulting in the addition of large volumes of magmatic rocks that 
constitute the Mesozoic Median Batholith (Figs. 9, 10A, 10B, and 10C) 
(Mortimer et al., 1999). Like other well-studied orogenic belts, the pace of 
magmatic addition in the Median Batholith was not steady state, but was 
punctuated by high-volume magmatic pulses (Figs. 4 and 9). The largest 

of these pulses, or flare-ups, resulted in emplacement of the Cretaceous 
Separation Point Suite (including the Western Fiordland Orthogneiss plu-
tons). Our results from the deepest level of the Median Batholith reveal 
that construction occurred by emplacement of several plutons starting at 
128.3 ± 3.9 Ma and continuing to 114.2 ± 0.7 Ma (Fig. 9). At pluton scale, 
growth of the Western Fiordland Orthogneiss involved two voluminous 
pulses: (1) the Worsley Pluton, Breaksea Orthogneiss, and eastern McKerr 
Intrusives ca. 128–120 Ma, and (2) the western McKerr Intrusives, Misty 
and Malaspina Plutons, and Resolution Orthogneiss from ca. 120 to 114 
Ma (Fig. 10D). Peak magmatic production occurred during the later inter-
val ca. 118–115 Ma (Fig. 7), during which time ~70% of the exposed 
Western Fiordland Orthogneiss was emplaced into Paleozoic host rocks. 
Collectively, construction of the Western Fiordland Orthogneiss signifies a 
surge of >2300 km2 of mafic to intermediate magmas into the lower crust 
of the Median Batholith over ~14 m.y. Apparent intrusive rates from the 
lower crustal portion of Fiordland peaked at ~650 km2/m.y., although we 
note that these values do not include shallow- and mid-crustal plutons in 
Eastern Fiordland, Stewart Island, Westland, and other parts of the orogen 
in Antarctica and Australia. These data are similar in magnitude and dura-
tion to documented high-MAR events in other Cordilleran arcs that range 
to ~1200 km2/m.y. in the Sierra Nevada and Coast Mountains Batholiths 
(Ducea, 2001; Ducea and Barton, 2007; DeCelles et al., 2009; Paterson 
et al., 2011; Ducea et al., 2015), but differ in that emplacement pressures 
were greater (>10 kbar; DePaoli et al., 2009; Daczko and Halpin, 2009; 
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Allibone et al., 2009b; Stowell et al., 2014) and involved predominantly 
mafic to intermediate diorites and monzodiorites.

The voluminous magmatic surge that characterized construction of the 
Western Fiordland Orthogneiss is illustrated in Figure 9, which shows 
areal addition rates, sometimes called apparent areal fluxes, for the Median 
Batholith calculated from the present-day surficial rock distributions and 
206Pb/238U zircon dates (Table 2). We only consider data from the Darran 
and Separation Point Suites, and do not include data from A-type rocks 
in our analysis as their petrogenesis and significance are not well con-
strained (e.g., Pomona Island Granite, Fowler Granite). The high areal 
addition rates associated with the Western Fiordland Orthogneiss overlap 
temporally with mid- and shallow-crustal Separation Point Suite in eastern 
and southwestern Fiordland, respectively (Fig. 9). These data demonstrate 
that the initiation of high-Sr/Y magmatism associated with the Separa-
tion Point Suite and Western Fiordland Orthogneiss coincided with a 
surge of magmatism at all structural levels, particularly the lower and 
middle crust. It is notable that surges in high-Sr/Y magmatism occurred 
throughout Zealandia, in Nelson, Westland, and Stewart Island (Table 
2), Queensland, Australia, and Thurston Island in East Antarctica (Kim-
brough et al., 1994; Tulloch and Kimbrough, 2003). The percentage of 
flare-up–related Cretaceous plutonic rocks and/or host rocks also increases 
systematically with depth from shallow (15%) to middle (23%) to deep 
crustal levels (53%). Comparison of areal addition rates between the 
Western Fiordland Orthogneiss and other Separation Point Suite plutons 
in Fiordland reveals that Cretaceous plutonic activity was concentrated 
in the lower crust during the arc flare-up, and systematically decreased 
upward, consistent with observations from other Cordilleran arcs systems 
(e.g., Paterson et al., 2004, 2011; de Silva, 2008; Miller et al., 2009; de 
Silva et al., 2015). As pointed out in Tulloch and Kimbrough (2003), 
no volcanic rocks are associated with the Separation Point Suite, and 
we speculate that the absence may reflect the high SiO

2
 contents and 

viscosities of the mid- to shallow-crustal Separation Point Suite rocks. 
High volatile contents relative to more mafic Darran Suite rocks may also 
have resulted in rapid degassing and crystallization, resulting in a further 
increase in effective viscosity.

In contrast to the single surge of magmatism recorded in the Western 
Fiordland Orthogneiss and wider Separation Point Suite, the older and 
longer lived Darran Suite displays an episodic record of magmatism with 
peak production occurring ca. 147–136 Ma (Kimbrough et al., 1994). 

Only minor volcanic rocks are preserved in the Darran Suite and they 
make up <5% of the exposed crust (see discussion in Kimbrough et al., 
1994). Peak magmatic production is associated with emplacement of the 
extensive Murchison Intrusives and Darran Leucogabbro, and calculated 
flux values are likely minima, as other large plutonic complexes remain 
poorly mapped and studied (e.g., Hunter Intrusives and Lake Hankinson 
Complex), requiring further mapping, chemistry, and chronologic inves-
tigations to refine areal addition rates. We are thus cautious in interpreta-
tion of specific flux rates for the Darran Suite and note that these rates 
will likely change as more geochemical and isotopic data are collected. 
Despite this caveat, we note that construction of the Median Batholith in 
the Fiordland involved: (1) peak production of low-Sr/Y magmas in the 
Darran Suite from 147 to 136 Ma (Kimbrough et al., 1994); (2) abrupt 
termination of Darran Suite magmatism ca. 136 Ma; (3) an apparent ~8 
m.y. magmatic gap from 136 to 128 Ma (Tulloch et al., 2011), and (4) 
a surge of high-Sr/Y magmatism in the Western Fiordland Orthogneiss 
and Separation Point Suite starting at 128 Ma and continuing to 114 Ma 
(Mattinson et al., 1986; Muir et al., 1998; Tulloch and Kimbrough, 2003; 
Hollis et al., 2004; Bolhar et al., 2008; Scott and Palin, 2008; this study). 
As noted by previous workers, this terminal surge of high-Sr/Y magmas in 
the Median Batholith reflects a fundamental change in magma composi-
tion with garnet playing a role as either a fractionating or residual phase 
(Muir et al., 1995, 1998; Tulloch and Kimbrough, 2003). Development of 
high-Sr/Y magmatism at all depths signifies a major transition in internal 
arc and/or subduction zone dynamics at this sector of the Median Batholith 
during the interval between 136 and 128 Ma (Tulloch and Kimbrough, 
2003; Tulloch et al., 2011). We explore the tectonic significance of this 
transition in the following.

Arc-Parallel and Arc-Normal Magma Focusing in the Median 
Batholith

To better understand possible mechanisms for the transition in arc 
chemistry from low- to high-Sr/Y magmatism and high magmatic produc-
tion rates, we compiled published 206Pb/238U zircon dates from Fiordland 
to elucidate possible spatiotemporal patterns (Table 2). Results reveal that 
the transition from Darran Suite to Separation Point Suite magmatism was 
coincident with arc-normal (continentward) migration of the frontal arc 
axis from the Late Jurassic to the Early Cretaceous (e.g., Kimbrough et 
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al., 1993; Muir et al., 1995; Tulloch and Kimbrough, 2003; Hollis et al., 
2004; Klepeis et al., 2007, 2016; Bolhar et al., 2008; Scott and Palin, 2008). 
In eastern Fiordland, continentward migration is recorded in the tempo-
ral transition from Separation Point Suite plutonism east of the Grebe 
mylonite zone ca. 122 Ma (Bolhar et al., 2008) to Separation Point Suite 
plutonism west of the Grebe mylonite zone from 121 to 116 Ma (Scott and 
Palin, 2008). This migration occurred during a period of regional thrusting, 
transpression, and crustal thickening along the Grebe mylonite zone and 
Gutter shear zone (Fig. 2) (e.g., Daczko et al., 2001, 2002; Klepeis et al., 
2004; Marcotte et al., 2005; Allibone and Tulloch, 2008; Scott et al., 2009, 
2011). Whole-rock and zircon isotopic data suggest that neither the out-
board Separation Point Suite nor inboard Western Fiordland Orthogneiss 
involved significant contributions of preexisting crust (McCulloch et al., 
1987; Muir et al., 1995; Bolhar et al., 2008; Decker, 2016); rather, both 
suites were likely sourced from the mantle and/or lower plate, indicating 
that westward migration of the arc axis resulted from changes in subduc-
tion zone dynamics such as flattening of the underlying slab.

Compiled zircon dates within the Western Fiordland Orthogneiss reveal 
a pattern of time-transgressive, inward magmatic younging toward Doubt-
ful Sound (Fig. 10D). Consideration of Figure 10D shows that the oldest 
dates in the Western Fiordland Orthogneiss are located in the northern 
Worsley Pluton (124–121 Ma; Hollis et al., 2004; Tulloch and Kimbrough, 
2003; Bolhar et al., 2008), the eastern McKerr Intrusives (ca. 128 Ma), 
the southern Breaksea Orthogneiss (ca. 123 Ma; Hout et al., 2012; Kle-
peis et al., 2016), and the easternmost Misty Pluton (123 Ma; Allibone 
et al., 2009b). Plutonic rocks between these regions, particularly in the 
Misty and Malaspina Plutons, become progressively younger toward the 
Doubtful Sound region; the youngest dates in this study (ca. 114 Ma) are 
from Bradshaw Sound (Figs. 10D, 10E). Interpretation of these data in 
terms of Cretaceous arc tempos is complicated by several factors, includ-
ing uncertainties in igneous emplacement depth and postemplacement 
modification by multiple phases of deformation related to Cretaceous 
extensional orogenic collapse and Cenozoic normal faulting. In general, 
emplacement pressures are poorly constrained due to the effects of post–
igneous emplacement granulite and amphibolite facies recrystallization. 
Historically, the presence of relict igneous orthopyroxene in the Western 
Fiordland Orthogneiss has been interpreted to signify mid-crust igneous 
emplacement depths (Bradshaw, 1989c; Clarke et al., 2000); however, 
more recent studies have argued that orthopyroxene stability may be more 
a function of redux conditions of the magma rather than pressure condi-
tions (Chapman et al., 2015). Studies of igneous emplacement depths 
based on thermobarometry of contact metamorphic assemblages indi-
cate intrusion at depths equivalent to 10 and 14 kbar (Malaspina Pluton; 
Allibone et al., 2009c); however, these contact assemblages are rare and 
their occurrence and distribution are insufficient to identify systematic 
correlations between depth of emplacement and crystallization age.

Tectonic modification of the crustal structure of western Fiordland is 
also an important consideration in evaluating temporal magmatic patterns. 
By ca. 106 Ma, ductile normal faulting associated with the development of 
the Doubtful Sound shear zone (Gibson et al., 1988; Oliver, 1980) moved 
the Misty Pluton (hanging wall) down and to the northeast relative to the 
Malaspina Pluton (footwall) in a direction oblique to the overall trend 
of the arc (Klepeis et al., 2007, 2016). Garnet thermobarometry data 
from the Misty and Malaspina Plutons indicate <6.5 km of rock thick-
ness excised along the Doubtful Sound shear zone (Stowell et al., 2013, 
2014). Consequently, restoration of crust prior to the formation of this 
shear zone places the southern part of the Misty Pluton structurally above 
the northern part of the Malaspina Pluton, with a net effect of shrink-
ing the zone of focused magmatic younging around the Doubtful Sound 
region. Cenozoic normal faulting localized along fiords also resulted in 

vertical movement of plutonic blocks (Turnbull et al., 1993; Sutherland 
and Melhuish, 2000; King et al., 2008). Excision of rock is estimated to 
be <6.5 km of rock thickness; therefore, Cenozoic vertical fault motion 
is not expected to disrupt the overall age pattern.

With these considerations in mind, we interpret the distribution of igne-
ous zircon dates as preserving a pattern of arc-parallel magma focusing that 
was progressively concentrated toward the interior of the Western Fiord-
land Orthogneiss pluton belt, resulting in the emplacement of the three 
large, compositional and temporally zoned, plutons (Misty, Malaspina, and 
Worsley Plutons). At pluton scale, magma focusing in the Malaspina Pluton 
led to incremental pluton growth by repeated injections of sheets of dioritic 
magmas that were fed from a 6-km-wide zone of focused diking in its 
northwest sector (Klepeis et al., 2016). Similar patterns of inward magma 
focusing are observed in nested plutonic complexes in other Cordilleran 
orogenic belts (e.g., Tuolumne Batholith, North Cascades plutonic com-
plex). For example, in the Tuolumne Batholith, magma focusing involved 
repeated input of heat over time, leading to the creation of a focused 
magma plumbing system that was enhanced by convection, mixing, and 
fractional crystallization (e.g., Bateman and Chappell, 1979; Coleman et 
al., 2004; Matzel et al., 2006; Memeti et al., 2010; Paterson et al., 2011). 
The dimensions of the Tuolumne Batholith are nearly identical to each 
of three large individual plutons in the Western Fiordland Orthogneiss 
(Worsley, Misty, and Malaspina); thus the magnitude of magmatic focusing 
we observe is ~3× greater in length versus the Tuolumne Batholith when 
measured parallel to the paleoarc axis. Focusing over a broader area in 
the lower crust was likely enhanced by unusually high heat flow from the 
underlying mantle associated with a surge of mafic to intermediate magmas. 
Diking and vertical diapiric movements in channels and horizontal sheet-
ing were instrumental in transferred heat and mantle-derived melts during 
sustained high-flux magmatism from 128 to 114 Ma (Klepeis et al., 2016).

Zircon Inheritance and the Plutonic Architecture of Western 
Fiordland

Patterns of zircon inheritance also reveal information about the crustal 
structure beneath the Western Fiordland Orthogneiss and processes of 
batholith construction during the Separation Point Suite high-MAR event. 
Our zircon data show little evidence for pre-Cretaceous Mesozoic base-
ment beneath the Western Fiordland Orthogneiss. In general, zircon popu-
lations are remarkably homogeneous with few examples of overdispersion 
in dates (i.e., MSWD values are typically <2.0). Four samples from the 
Misty Pluton and one sample from the Malaspina Pluton contain minor 
xenocrystic zircons that give Western Fiordland Orthogneiss ages of 128 
Ma or younger, indicating recycling of older Western Fiordland Ortho-
gneiss plutonic rocks during batholith construction (see green stars in 
Fig. 10D). Sample 13NZ36b is the most complex of these Misty Pluton 
samples and contains possibly two xenocrystic populations with decon-
volved dates of ca. 119.7 and 127.9 Ma. The former dates are identical 
to those for xenocrystic zircons reported from the Misty Pluton sample 
in Stowell et al. (2014). The ca. 128 Ma date may indicate recycling of 
early Western Fiordland Orthogneiss plutons (e.g., Mount Edgar Plu-
ton, Supper Cove, and Omaki Orthogneisses, and portions of the eastern 
McKerr Intrusives; see Table 2 and references therein). We note that no 
Jurassic–Triassic zircons were observed in our data set, despite models 
that invoke underthrusting and melting of Darran Suite plutonic rocks 
to generate the Western Fiordland Orthogneiss (e.g., Muir et al., 1998).

Zircons from the raft of granitic orthogneiss enveloped within the 
eastern McKerr Intrusives (15NZ12) give a date of 128 Ma for the young-
est zircon population, similar to the age of other early Western Fiord-
land Orthogneiss plutons and xenocrystic zircons in the Misty Pluton. As 
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noted by Bradshaw and Kimbrough (1991), we also observe discordant 
Paleozoic zircons, in this case Permian or older xenocrysts, that do not 
occur in other Western Fiordland Orthogneiss samples. Decker (2016) 
reported that both Cretaceous and older zircons in this sample are charac-
terized by negative d18O (zircon) values unlike any other zircon analyzed 
from the Western Fiordland Orthogneiss (5.76 ± 0.04‰; n = 126). Light 
d18O (whole rock) values have been reported in Permian–Triassic rocks 
located ~25–30 km to the east of the head of George Sound (Blattner and 
Williams, 1991). One interpretation is that portions of these rocks may 
have been underthrusted beneath western Fiordland and incorporated 
into early Western Fiordland Orthogneiss magmas. The extent of these 
rocks beneath the Western Fiordland Orthogneiss is unknown, but they 
are likely minor, as Western Fiordland Orthogneiss plutonic rocks are 
distinct in d18O (zircon) values. We also note that large rafts of granitic 
orthogneiss that typify portions of the eastern McKerr Intrusives are not 
reported from other Western Fiordland Orthogneiss plutons (cf. Allibone 
et al., 2009b). An alternative interpretation is that older xenocrystic zircons 
represent assimilation of the nearby ca. 318 Ma plutons (Ramenzani and 
Tulloch, 2009); however, it is unknown whether zircons from these rocks 
also have negative d18O (zircon) values.

Episodicity and Feedbacks between Magmatism and 
Deformation in the Zealandia Cordillera

Our new zircon dates together with existing information indicate that 
construction of the Median Batholith involved a prolonged (~150 m.y.) 
period of episodic magmatism from 260 to 114 Ma that resulted in at 
least two surges of magmatism ca. 147–136 Ma and 128–114 Ma. (Figs. 
10A–10C). Both surges lasted 10–14 m.y., but differ in that they involved 
chemically distinct magmas consisting of low-Sr/Y and high-Sr/Y plutons, 
respectively. The latter surge of magmatism resulted in emplacement 
of the Separation Point Suite, including the Western Fiordland Ortho-
gneiss, shortly before termination of arc magmatism and the initiation 
of extensional orogenic collapse in this sector of the Median Batholith 
ca. 108–106 Ma. Like Cordilleran orogenic systems in North and South 
America (Ducea, 2001; Ducea and Barton, 2007; DeCelles et al., 2009), 
we also observe possible cyclical variations in magmatic fluxes, but in 
Zealandia high-MAR events are restricted to only 2 recognized pulses 
of chemically distinct magmas that are separated by an apparent 8 m.y. 
hiatus in magmatism (Tulloch et al., 2011). Although the timing between 
each high-MAR event gives an apparent ~20 m.y. periodicity similar to 
cycles in the Andean orogen (Pepper et al., 2016), it is not clear that the 
causal mechanisms are related and it is more likely that they are inde-
pendent. For example, the terminal pulse of magmatism in the Darran 
Suite from 147 to 136 Ma is not strongly linked to known deformational 
events, although previous studies have noted possible uplift ca. 140 Ma 
(Spell et al., 2000), and crustal thickening from ca. 150 to 120 Ma (Gray 
and Foster, 2004; Little et al., 1999). Tulloch et al. (2011) also observed 
widespread recrystallization of metamorphic zircon ca. 134 Ma associated 
with the initiation of granulite facies conditions in northern Fiordland. 
They speculate that high-temperature metamorphism, partial melting, and 
emplacement of A-type plutons at that time may have been triggered by a 
thermal event related to either a slab breakoff or rollback event.

In contrast, stronger links exist between magmatism and deformation 
during the surge of Separation Point Suite magmatism. This pulse was 
associated temporally with (1) transpression and regional thrusting from 
ca. 130 to 105 Ma (Daczko et al., 2001, 2002; Marcotte et al., 2005; Kle-
peis et al., 2004; Allibone and Tulloch, 2008), (2) crustal thickening and 
possibly loading of the Western Fiordland Orthogneiss from 128 to 116 
Ma (Brown, 1996; Scott et al., 2009, 2011), (3) initiation of voluminous, 

high-Sr/Y magmatism ca. 128 Ma (Muir et al., 1998; Tulloch and Kim-
brough, 2003; Bolhar et al., 2008; this study), and (4) continentward 
migration of arc magmatism in the Fiordland sector of Zealandia related 
to flattening of the slab or changes in subduction zone geometry. These 
data point to a major transition in subduction zone dynamics at this sector 
of the Median Batholith during the interval from 136 to 128 Ma; however, 
the cause of this transition remains uncertain.

Scott et al. (2011) postulated that contractional thickening from 128 to 
116 Ma resulted from closure of an outboard fringing arc during a period 
of slab advancement, although they noted that no ophiolitic fragments or 
mélange terranes have been observed at the putative arc-continent suture 
zone (Grebe mylonite zone). Alternatively, Tulloch and Kimbrough (2003) 
proposed that intra-arc contraction resulted from shallowing of the sub-
ducting slab producing (1) underthrusting of the outboard (Darran Suite) 
arc beneath the Western Fiordland Orthogneiss, (2) cessation of low-Sr/Y 
magmatism by continentward migration of the frontal arc axis, and (3) a 
single, voluminous burst of high-Sr/Y magmatism. Zircon data presented 
here are consistent with the Tulloch and Kimbrough (2003) model and the 
temporal migration of the frontal arc axis during the terminal high-MAR 
event. Similar patterns of magmatism and arc migration are observed in 
the northern Chilean segment of the Andean orogenic belt where pre-
Neogene and Neogene magmatic rocks show patterns of increasing La/
Yb and Sr and Nd isotopic enrichment, eastward-migration of magmatism 
toward the continental interior, and apparent gaps in arc magmatism last-
ing 5–10 m.y. (Haschke et al., 2002, 2006). These patterns are interpreted 
to reflect repeated cycles of slab shallowing, followed by slab breakoff 
or rollback with increasing incorporation of crustal material toward the 
end of each cycle (Haschke et al., 2002, 2006; Pepper et al., 2016). These 
observations support recognized trends in some segments of Andean 
orogenic belts toward more evolved isotopic values as a consequence of 
increased shortening and crustal thickening resulting in enhanced crustal 
melting (Haschke et al., 2002, 2006; Kay et al., 2005; DeCelles et al., 
2009; Ramos, 2009; Ramos et al., 2014; DeCelles and Graham, 2015).

A key difference between the Zealandia flare-up documented here 
and the internally forced models for the evolution of the Mesozoic North 
American and South American Cordilleras is the limited role of upper plate 
material in triggering the terminal flare-up event. Although data are limited, 
existing whole-rock and zircon oxygen isotopic data indicate that the surge 
of mafic to intermediate magmas in the Western Fiordland Orthogneiss 
originated from the mantle with little to no input from evolved crustal 
sources (Decker, 2016). More complete geochemical data are required to 
better understand the triggering mechanisms for the Zealandia high-MAR 
event; however, existing data indicate strongly point to dynamic mantle 
processes such as a ridge subduction or slab-breakoff event. An implica-
tion of this observation is that high-MAR events in arcs may ultimately 
be sourced from the underlying mantle, and that minor crustal recycling 
observed in some late-stage, deep crustal magmas in the Western Fiordland 
Orthogneiss (Milan et al., 2016) and strongly crustal signatures in shal-
lower level plutons in Cordilleran orogenic belts reflect intracrustal partial 
melting due to elevated geothermal gradients resulting from increasing 
mantle melt influx to the base of the crust, and/or assimilation of mantle-
derived and hybrid magmas during ascent through the crustal column.

CONCLUSIONS

Zircon chronology from the Fiordland sector of the Median Batholith 
document a surge of mafic to intermediate magmas that were emplaced 
into the lower crust during a 10 m.y. period from 124 to 114 Ma. This 
high-MAR event marks the termination of a prolonged period (~150 m.y.) 
of magmatism in the Median Batholith that lasted from ca. 260 to 114 Ma. 
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A major transition in magma chemistry and arc tempo occurred at 128 Ma, 
and was associated with a surge of high-Sr/Y magmatism at all crustal 
depths. Regional compilations of zircon dates show that the brief surge of 
magmatism immediately preceded extensional orogenic collapse at 108–
106 Ma and was linked to (1) transpression and regional thrusting from ca. 
130 to 105 Ma, (2) crustal thickening and possibly loading of the Western 
Fiordland Orthogneiss from 128 to 116 Ma, (3) initiation of voluminous, 
high-Sr/Y magmatism ca. 128 Ma, and (4) continentward migration of arc 
magmatism in the Fiordland sector of Zealandia. These features point to a 
major transition in subduction zone dynamics at this sector of the Median 
Batholith likely resulting from flattening of the slab and/or changes in sub-
duction zone geometry. Like Cordilleran orogenic systems in North Amer-
ica and South America (Ducea, 2001; Ducea and Barton, 2007; DeCelles 
et al., 2009), we also observe cyclical variations in magmatic fluxes with 
an ~20 m.y. periodicity between high-MAR events; however, links and 
causal relationships between magmatism and deformation are not clear in 
the Median Batholith and surges were likely independent. Our observations 
coupled with limited isotopic data strongly support an externally triggered, 
mantle-generated process leading to the surge of magmatism from 128 to 
114 Ma with only limited contributions from evolved lithospheric sources.
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