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Abstract Natural and anthropogenic disturbances influence ecological succession and i mpact the carbon
cycle. Understanding disturbance effects and ecosystem recovery is essential to carbon modeli ng. We
hypothesized that (1) species-specific disturbances impact the carbon cycle differently from nonspecific
disturbances.In particular, disturbances that target early-successional species will lead to higher carbon
uptake by the postrecovery, middle- and late-successional community and (2) disturbances that affect the
midsuccessional deciduous species have more intense and long-lasting impacts on carbon uptake than
disturbances of similar intensity that only affect the early-successional species. To test these hypotheses, we
employed a series of simulations cond ucted with the Ecosystem Demography model version 2 to evaluate
the sensitivity of a temperate mixed-decid uous forest to disturbance intensity and type. Our simu lation
scenarios included a control (undisturbed) case, a uniform disturbance case where we removed 30% of all
trees regard less of their successional status, five cases where only early-successional deciduous trees were
removed with increasing disturbance intensity (30%, 70%, 85%,and 100%), and four cases of midsuccessional
disturbances with increasing intensity (70%, 85%,and 100%).Our results indicate that disturbances affecting
the midsuccessional deciduous trees led to larger decreases in carbon uptake as well as longer recovery
times when compared to disturbances that exclusively targeted the early-successional decid uous trees at
comparable intensities. Moreover, disturbances affecting 30% to 100% of early-successional decid uous
trees resulted in an increased carbon uptake, begin ning 6 years after the disturbance and sustained
through the end of the 100yea r simulation.

1. Introduction

Natu ral and anthropogenic disturbances impact ecological succession, carbon dynamics, and hydrology.
Forest harvesting and wildfires that occurred in the early twentieth century in the upper G reat Lakes region
of North America were a primary determinant of the trajectory that led to the cu rrent composition of forest
stands in northern Lower Michigan, USA [Gough et al., 2007]. Large-sca le i ntensive logging and forest fires
throughout the upper Midwest a century ago led to the establishment of many even-aged aspen-dominated
forests in the region [Bergen and Dronova, 2007; Frelich and Reich, 1995]. However, as many of these stands
tra nsition from even to uneven aged with the gradual decline of early-successional aspen, less severe, non-
stand replacing disturbances are playi ng an increasingly important ecological role as these forests advance in
age [Frelich and Reich, 1999.

Each decade, up to half of the forested land in the United States is affected by disturbances including insect
defoliation, disease, fire, windthrow, and selective harvest [Birdsey et al., 2006]. These disturbances vary in
specificity, with some disturbances targeting individual species or genera and others acting as generalists,
and also in the extent to which they cause tree morality. For example, Gypsy moth (Lymantria dispar L)
defoliation affected mostly oak trees in the Silas Little Experimental Forest in New Jersey, USA [Renninger
et al., 2014 Schafer et al., 2010, Schafer et al., 2014], and beech bark disease targets Fagus grandifolia
(American beech) in the northeastern USA [Lovett et al., 2006].Other disturbances such as forest ground fires
and windth row are less selective. Yet specifyi ng which species are affected and the i ntensity of the distur-
bance may not be sufficient to predict the impact of disturbance on CO, flux, as stand age and disturbance
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history have been shown to be important factors controlling carbon cycli ng and storage [Pregitzer and
Euskirchen, 2004]. In addition , forested landscapes are a mosaic of ecosystems shaped by varyi ng levels of dis-
turbance intensity, with the extent of tree morality potentially affecting the rate at which ecosystems recover
from disturbance [Peters et al., 2013]. Understanding how disturbances varying in specificity and intensity
affect forest processes central to biogeochemical cycling is integral to predicti ng future carbon stocks and
fluxes [Knohl et al., 2002;Undroth et al., 2009;Luo and Weng,2011].

A combination of experimental studies and model simulations provide insight i nto how and why carbon
fluxes are affected by different types and intensities of forest disturbance. For example, Clark et al. [2010J used
eddy covariance measurements of CO, fluxes at oak dominated sites in New Jersey, USA, to show that annual
net C0, flux decreased by more than 40% following defoliation by Gypsy moth. In complementary work,
Medvigy et al. [2012] showed that accurate prediction of the effects of Gypsy moths on forest carbon
dynamics requi res the correct identification of the spatial and temporal patterns of defoliation. In contrast
to the decreased carbon uptake followi ng the distu rbances analyzed by these two studies, work at the
Forest Accelerated Succession Experiment (FASET) conducted at the University of Michigan Biological
Station (UMBS) has shown very strong short-term resilience to species-specific moderate-intensity distur-
bance [Gough et al.,2013;Matheny et al., 2014;Nave et al., 2011 ;Stuart-Haentjens et al., 2015].

In the present work, we aim to answer the following two questions:(1) What are the differences in the short-
(years) and long-term (decades) forest carbon dynamics following species-specific and nonspecific disturbances
of similar mag nitudes? and (2) How does distu rbance intensity, or extent of tree mortality, affect ecosystem
recovery time and postrecovery net ecosystem exchange? We leverage observations from the Forest
Accelerated Succession Experi ment (FASET)-a large-scale ecological manipulation where all early-successional
trees in a 34 ha plot were killed by stem gird ling, which provides the means to evaluate our carbon flux predic-
tions d uring and following our simulated disturbances. We used the Ecosystem Demog raphy model version 2
(ED2) [Medvigy et al., 2009] to simulate the impact of moderate disturbance on carbon fluxes from a temperate
mixed-deciduous forest. We produced a set of simulations differing in disturbance intensity and specificity to
assess their impact on recovery time and postdisturbance carbon dynamics. We compared the control simula-
tion results with observed site-level net ecosystem exchange at the unaltered AmeriF1 ux-affiliated US-UMB site
in northern Lower Michigan, USA (http://ameriflux.oml.gov/fu llsiteinfo.php?sid=S9), whereas we evaluate our
predictions of carbon flux d uring and after the simulated disturbances against data collected by the US-UMd
tower, which is nested within the FASET disturbance.

2. Materials and Methods
2.1. Ecosystem Demography Model 2

ED2 resolves energy, water, carbon, and nitrogen balances on representative individuals, belonging to biolo-
gically similar vegetation groups (defined here as Plant Functional Types, PFTs) [Medvigy etal.,2009; Medvigy
et al.,2013;Moorcroft et al.,2001]. The individuals within each PFT are further grouped into age/size cohorts.
Whi le the PFT defines the cohorts physiological parameters, which do not change with plant height or age,
the size class controls the cohorts access to resources.Cohorts belonging to the same resource envi ronment
("patch" in the model's internal terminology) compete for lig ht, n utrients, and water. The model tracks the
growth, reprod uction, and mortality by changing the stem density of each cohort. As the trees within a
cohort grow, they move to the next size class. Reprod uction increases stem density of the smaller size classes,
and mortality reduces the stem density of the correspondi ng cohort.

Cohort-level gross primary production , net primary prod uction, and heterotrophic respi ration are calculated
using parameterizations for radiative transfer, leaf biophysics, photosynthesis, and respiration [Medvigy et al.,
2012;Medvigy et al., 2009;Medvigy et al., 2013]. Cohort-level predictions of, for example, net ecosystem CO,
exchange (N EE) and latent and sensible heat fluxes are scaled to the patch level through the cohorts stem
density. Fi nally, patch-level predictions are scaled to the site-level by area-weighted integral averagi ng over
all resource environmental patches.

In order to eval uate the long-term (decades to a century) impact of disturbance scenarios on NEE, it was
necessary to create a disturbance algorithm that allowed for the decomposition of dead biomass affected
by the disturbance. The disturbance routi ne we developed allows the specification of one or more mortality
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events. During such events, mortality, which is specified as a fraction of the stem density of each cohort of a
specified PFT,occurs and the selected trees die instantly.The dead bomass is immediately returned to the
soil, including its nitrogen content. The returned biomass is free to decompose, providing a more realistic
representation of element cycling relevant to postdisturbance heterotrophic respiraton and long-term net
ecosystem exchange. Although mortality prescribed under our disturbance routine occurs instantaneously,
specification of successive small events can emulate gradual mortality. To simulate the gradual death of a
fraction, f, of the trees of a given PFT each monthduring over n years, the monthly mortality rate is given by

m=—"T I— ™)

where m;,is the fraction of current number oftrees of the PFT thatthe userintents to remove at monthiand
m1stands for the imposed mortality at a previous monthj.

After mortality events, affected patches may be splitifdisturbed areaisgreaterthanthe minimumarea allowed
fora patch.The vegetation contained in the original patchis redistibuted between the newly created patches.
One willreceive the undisturbed fractionofthevegetation, retaining the premortality stemdensity ofthe original
patch, whereas the second will receive the remaining surviving trees, resulting on asparser patch. Next, ED2
searches all patches for cohorts with negligible stem density,which are eliminated, orforsimiarcohorts, which
are combined. Two cohorts can be combined if they are ofthe same PFT and iftheir mean DBH is withinthe
model's preset tolerance. ED2 source code can be found in the supporting information {Software SI).
2.1.1. Meteorological Drivers

We forced ED2 with observations from the control plot adjacent to the FASET experimental site {available
through the AmeriFlux network, site id US-UMB). The FASET field site, located at the University of Michigan
Biological Station in northern Michigan, consists of two plotsthe experimental plot {Ameri Flux site id
US-UMd, 45°33'45"N, 84°4154"W) and the control plot {US-UMB, 45°33'35"N 84°4249"W). Approximately 35%
of the basal area of the forest in the site is dominated by early-successional,relatively evenaged Populus grand -
identata Michx.{bigtooth aspen), Populus tremuloides Michx.{trembling aspen), and Betula papyrifera Marsh.
{paper birch). Other species that comprise significant fractions of the canopy include Fagus grandifolia Ehrh.
{American beech),4cer saccharum Marsh.{sugar maple),Acer rubrum L {red maple), Pinus strobus L .{white pine)
and Quercus rubra {red oak). The early-successional aspen and birchspecies are currently beginning to senesce
and will continue to do so over the next 50years [Curtisef al., 2005; Gough et al., 2010,2013]. In spring 2008,all
early-successionalaspenand birchtreesina 34 ha plot were stem girdled, totaling approximately 64-00 trees. For
a detailed description of the experiment and an empirical analysis of the FASET disturbance effects and subse-
quent ecosystem recovery, refer to Gough et al. [2013]. The control plot remained undisturbed. Each plot &
located within the footprint of an eddy-covariance flux tower.

The observations we used to drive ED2 include air temperature (7, wind direction and speed, atmospheric
surface-kevel pressure, relatve humidity {rH), surface CO, concentration, photosynthetically active radiation
{PAR)separated intodirect-beam and diffuse fractions,and downward long and short wave radiation.Short-
term gaps in the data were filled by fitting a linear relationship between the measurements made at US-UMB
and the nearby measurements at US-UMd. We used 5 years of meteorological forcing (2007-2011), which we
recycled during the 6 years that preceded 2007 and the 89 past 2011. Parttioning between beam and diffuse
short-wave radiation was assumed identical to the partitioning of PAR into its beam and diffuse fractions.
The meteorological forcing can be found in Data Set Sl inthe supporting information.

2.1.2. Modellnitializationand Configuration

We initialized our simulations using tree species and diameter at breast height {DBH) recorded in 60
permanent plots of approximately 0.1 ha within the US-UMB flux footprint in 2001 {included inthe supporting
information Data Set S2). Tree diameters were measured repeatedly over time allowing the calculation of
individual tree growth rates and mortality {deaths per number of surveyed trees per year) [Gough et al, 2013].
According to the 2001 census, basal area {BA) per ground area of all surveyed trees totaled 246 m? ha-? ,
while in 2010, it reached 26.4 m?ha-%Table 1 shows the groupings of the different species according to
PFTand their contribution to the total BA.

The mineral fraction of the soil surrounding the US-UMB and US-UMd flux towers contains 9206 sand, 7% siltand
1% clay [Cutis et al, 2005; Nave et al., 2009], which ED2 uses to derive soil characteristics, eg.,permeability. Soil
depth and carbon content were derived from Nave et al. [2011], and nitrogen content from Nave et al. [2013].
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Table 1. Distribution of Species and Plant Functional Types According to Fraction of the Total Basal Area According to
the Censuses of 2001 and 2010 Conducted at UMBSa

Fraction of'the Total BA

Plant Functional Type Species 2001 2010
Early-successional hardwood Populus grandidentata Michx. 0.38 0.37
Populus tremu/oides Michx. 0.13 0.12

Betu/a papyrifera Marsh. 0.09 0.07

Midsuccessional hardwood Quercus rubral. 0.10 0.12
Acerrubrum L 0.16 0.18

Late-successional hardwood Fogus grandifo/ia Ehrh. 0.03 0.04
Acer saccharum Marsh. 0.01 0.01

Northern pine Pinus strobus L. 0.08 0.09

aThe total basal area per ground areain 2001 was 24.6 mZha-2 whilein 2010,itreached the value 0f26.4 mZ?ha-2

Initial soil temperature was assumed to be uniform at all depths and equal to the air temperature at
initialization, after whichitwas allowed to driftaccording to the model's estimation of heatflux throughout
soil layers. Initial soil moisture was assumed to be 0.18m’/m’ as measured at the US-UMB site on 01
January 2001.

We chose to prescribe phenology using the observed seasonal dynamics of leaf area index {LAIl) in order to
improve the realism of the simulations. We used measurements of LAl conducted in the UMBS from 1999
to 2011 using LAI-2000 Plant Canopy Analyzers {Li-Cor, Lincoln, NE, USA) to create a time series of LAl
throughout the growing season {for a summary of the LAl seasonal dynamics, refer to Curtis et al. [2005]
and Garrity et al. [2011]). We normalized the LAl by the peak LAl in the season and fitted a double sigmoidal
curve to the normalized LAl {supporting information Data Set S3). Using this fitted curve, we produced a time
series of daily fraction of total LAI, which ED2 used to control the growth and senescence of leaves in the

deciduous PFTs.

2.1.3. Model Optimization

A preliminary single-site, 6 year simulation using the northeastern North American parameterization of ED2
[Medvigy et al., 2009] showed an unrealistic and sharp decline of the basal area of all PFTs. This unexpected
behavior prompted us to search for parameter values estimated in areas dominated by early- and middle-

successional vegetation growing on predominantly sandy soils, as is the case of the UMBS forest. We therefore
adopted the values of the photosynthetic capacity per unitleaf area (Vemax as in Farquhar et al. [1980]), growth
respirationfraction {r9), and water availability parameter {Kw)from M edvigy etal.[2012].

Additionally, we decreased the specific leaf area {SLA) of the early-successional deciduous PFT from its default
value of 30m?’ kg-l to 255 m’ kg-1 and the SLA of the late-successional deciduous PFT from the default
value of 60 m? kg-1 to 30.6 m2kg-1 to reflect site values reported by Gaugh et al. [2010]. Finally, we used a
fine root turnover rate of 0.56yr-'for the middle- and late-successional PFTs from Gill and Jackson [2000],
based on measurements by Hendrick and Pregitzer [1993]for aforest located in northern lower Michigan.

We followed the approach used by M edvigy et al. [2013] for model optimization. Our optimization included
eight parameters: (1) a multiplier for the Vemax of the deciduous early-, middle-, and late -successional PFTs

{i.e,one single value that multiplied the Vemax of early-, middle-, and late-successional deciduous PFT,avoid-

ing their individual optimization), (2) the conifer Verna" (3) the allocation of fine roots relative to leaves for the
deciduous PFTs {same value for the three PFTs), (4) growth respiration factor {r9) for the deciduous PFTs, (5)
the stomata! response slope (M, assumed the same for the three deciduous PFTs), (6) the rainfall interception
capacity,(7) the water availability parameter {Kw), and (8) the fraction of positive carbon balance devoted to
reproduction {same value for the three deciduous PFTs).

We assumed independent gamma distributions as the prior distribution of each one of eight parameters. We
used the method of moments to find the shape and the scale parameters of each gamma distribution so that
the expected value of each prior matched the values listed in Table 2, and we assumed the standard
deviation of each prior to be 10 times the standard deviations of the posterior distributions reported by
Medvigy et al. [2009]. The exception was the Vemax multiplier for which we assigned an expected value of 1
and standard deviation of 08.
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Table 2. List of Parameters Used inour Simulations That Differ From ED2's Standard Parameterizationa
Parameter Value

Parameter Name Unit Symbol hitial Optimized

Photosynthetic capacity per unit leaf area, conifer pmolm—’zs-? Vemax 114 96
Photosynthetic capacity per unit leaf area, early hardwood pumolm-2s-2 Vemax 204 26.5
Photosynthetic capacity per unit leaf area, midhardwood pmolm-?s-? Vemax 75 227
Photosynthetic capacity per unit leaf area, late hardwood pmolm-2s-2 Vemax 70 91
Allocation of fine roots relative to leaves,hardwoods (kgroots) (kg Ieaves)—1 q 1.1 1.44
Growth respiration factor, hardwood dimensionless fg 012 017
Stomata! slope dimensionless M 4 3.68
hterception capacity kgm-? nter 0.33 046
Water availabity parameter, hardwood m2 yr—1 (kg root)-1 Kw 2500 2700
Fraction of positive carbon balance devoted to reproduction dimensionless repro 029 053

aVcemax hereb specified at 15°C.

Each iteration of the Markov chain Monte Carlo consisted of a 3year simulation (2007, 2008, and 2009). As
censuses of the UMBS vegetation were conducted in 2001 and repeated in 2010, we chose the 2010 data
set, which is the closest to the begi nni ng of the optimization runs (2007). We forced ED2 with half-hourly
measu rements of meteorological forcing from US-UMB in 2007 to 2009.The observed and model-predicted
values of monthly and yearly total N EE, nightti me respiration, and gapped latent and sensible heat fluxes
computed for the years of 2008 and 2009 (2007 was discarded for model spin-up) were used to evaluate
the log-likelihood at each iteration:

Natasers W} N

=5 (W3
= =1

where Nis the number riobservations in the data setj (24 for monthly variables and 2 for yearly variables), is

the weight rithe data setj, and slJ is the contribution of the element ifrom the data setj to the log-likelihood
function, which, assuming a normal distribution for the measurements errors for the data setj, has the form of

2
.1 (Xpred .ij — Xobsjj)
V= 3)
2 ()
where Xpredy is the value of the variable j as predicted by ED2 at the given iteration , Xobsy is the observed
value for the variable, and cri/is the standard deviation of the error associated with the data set. Details on
the flux data processi ng incl uding the estimation of the error standard deviation are included i n the

Appendix A.

Because we utilized gapped monthly and yearly measurements of latent heat and sensi ble heat fluxes in the
computation of the log-likeli hood , we disregarded model predictions duri ng these gaps. For this procedure,
we first aggregated ED2's prediction into half-hou rly bins, which were considered in the computation of the
yearly and monthly totals on ly if correspondi ng measurements were present. This proced ure was not neces-
sary when computi ng the monthly and yearly NEE totals, as we gap-filled NEE.NEE uncertainty was eval uated
by combining measurement errors evaluated according to Richardson and Hollinger [2005] with gap-fill
uncertai nty as detailed in the Appendix A.

We used the calculated log-likelihood to evaluate the acceptance probability of the current realization:

a =min(1,lIft-s _,-1)). (4)

where sk is the log-li kelihood function evaluated at iteration k, sk-7 is the log-likeli hood function evaluated at
iteration k-7, and sk'is the sum of the log-likelihoods associated with each parameter.

We ran 10separate chains with 10000 iterations each.Atthe end of the proced ure, we obtained a pool of 883
accepted iterations, from which, after burn-in, we computed the posterior distri bution of each parameter.The
parameter set that corresponded to the highest likelihood was selected for use in the simulations.

2.1.4. Model Evaluation

We ran two simulations to evaluate the control run's predictions and a third to eval uate our disturbance simu-
lations. The first run utilized preoptimization parameters {Table2, initial parameters) to provide a benchmark
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Table 3. List of Simulation Scenariosa

Simulation Scenario Parameter Set Disturbance Type

Preliminary run initial set none

Undisturbed optimized set none

UNIF optimized set 30% removal of PFTs

G100 optimized set gradual removal of 100% early successional deciduous PFT
E30 optimized set 30% removal of early-successional deciduous PFT
E70 optimized set 70% removal of early-successional deciduous PFT
E85 optimized set 85% removal of early-successional deciduous PFT
E100 optimized set 100% removal of early-successional deciduous PFT
M70 optimized set 70% removal of midsuccessional deciduous PFT
M85 optimized set 85% removal of midsuccessional deciduous PFT
M100 optimized set 100% removal of midsuccessional deciduous PFT

aWith the exception of the preliminary run, which ran from 1January 2008 to 31 December 2013 all other scenarios
ran from 1January 2001 to 31 December 2101.

for the evaluation of model optimization. The second and the third runs employed the optimized set of
parameters as listed in Table 2.We initialized all three simulations using the 2001 census data. For the third
run, we emulated the gradual mortality of the FASET experimental disturbance by spreading the mortality of
the early-successional deciduous trees across 2years {Gl 00). On the first day of each month, beginning on 1
January 2008 and ending 1 January 2010,the disturbance routine killed a fraction of the trees belonging to
the early-successional PFT.This resulted in 24 events with mortality rates calculated by equation (1), where
f=ln=2.

We compared the two {preoptimization and optimized) control cases' monthly and yearly predictions of NEE
tothe observations collectedduring2007,2010,2011,2012,2013,and 2014 atthe US-UMB control site. Since
we constrained the model using fluxes observed in 2008 and 2009, we excluded these years from the
computation of the model-fit statistics. We evaluated the two control simulations' predictions based on coef-
ficientofdetermination {r2) between monthly measurements and predictions of NEEand the 6year total NEE.
We used monthly rather than half-hourly aggregation for evaluation to avoid the effects of trivial correlations
due to strong diurnal cycles.

Measured and predicted monthly NEE used in the computation of r2 only included fluxes that occurred when
instruments were functional and when the measured friction velocity exceeded 035 ms-' [Gough et al,
2013;Maurer, 2013]. We evaluated biases in our model by comparing yearly NEE and the accumulated NEE
from 2007 to 2014 with gap-filled observations collected at the US-UMB tower. Since computation of yearly
carbon fluxes included gap-illed observations, we estimated yearly carbon flux uncertainties by combining
measurement and gap-filling uncertainties as detailed in the Appendix A. Additionally, we compared the
predicted NEE with observed yearly totals computed using two different gap-fill techniques: the marginal
distribution sampling {MDS) [Reichstein et al., 2005] and the Max Planck Institute for Biogeochemistry's eddy
covariance gap-filling and flux-partitioning tool {http://www.bgc-jena.mpg.de/-MDIlwork/eddyprocl). We
evaluated our third simulation, the FASET-like disturbance {GI 00), against site-level net ecosystem exchange
observed by the US-UMd disturbance tower from 2009 to 2014.

2.2. Simulation Scenarios of Disturbance Type and Severity

We ran 10scenarios (Table 3): a control {undisturbed) case and 9 disturbance cases where we tested the influ-
ence of the intensity and type {PFT specificity or which PFT was affected) of disturbance on carbon cycling
pools and fluxes. The 10 runs began on 01 January 2001, to allow for model spin-up before the prescription
of the disturbances, and ran for 100 years. This simulation length allows for 90 years after the prescription of
the simulations, which is approximately the time that it took for the forest in northern Lower Michigan to
develop to its current state since the large-scale disturbances that affected the area.

In the control case, we prescribed the initial conditions directly from the census observations of 2001 and did
not prescribe disturbances throughout the course of the simulation. In the uniform disturbance case {UNIF),
we killed 30% of individuals of each size class, regardless of PFT,on the first day of 2010. We ran four distur-
bance cases where only early-successional deciduous trees were killed on the first day of 2010, with varying
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Figure 1.0ptimized ED2 monthly NEE predictions (after calibration) during the model evaluation period. On the left panel,
the dotted line represents the monthly NEE measured at the US-UMB site,while the solid line represents ED2's predictions.
On the right panel, the solid line shows ED2's predictions of yearly NEE, while the shaded area represents the observed
yearly NEE with a 1-standard deviation uncertainty envelope. For a detailed explanation on the computation of C02 flux
uncertainty computations, refer to Appendix A.

intensities: 30% {E30), 70% {E70), 85% {E85),and 100% {EI00).We ran three disturbance cases where 70%,
85%,and 100% of midsuccessional deciduous trees were killed {M70,M85,and MIOO, respectively).

We tested an additional disturbance scenario emulating the mortality rate in the FASET experiment,where
we prescribed the mortality of all early-successional deciduous trees gradually, from January 2008 to
January 2010 {GI 00). Unlike the other abrupt disturbance scenarios,the mortality imposed under the GIOO
case was gradual, to better mimic the elongated period of mortality observed after stem girdling at the
FASET site. The GI 00 disturbance consisted of 24 monthly events, with mortality rates calculated with
equation (1).Each event occurred on the first day of each month,from January 2008 to January 2010.

3. Results and Discussion
3.1. Model Evaluation

Initial parameter corrections to the late-successional SLA,middle-and late-successional fine rootturnover rate,
Verna"'ry, and Kwfor the conifers and middle- and early-successional deciduous PFTs {Section2.1.3) ledtoan
improvement in 12 from 0.77 to 092 between model predictions and observations of monthly NEE and
prevented the unrealistic mortality observed in the preliminary run.After optimization, monthly 72 remained
equal to 092.However,the optimization reduced the differences between the observed and predicted accumu-
lated 6year carbon flux from -30%{preoptinized run) to 8ob {optinized run).Postoptimization differences were

mostly driven by larger {less negative) than observed NEE during the summers of 2007 and 2011 and larger
{more positive) than observed NEE during the winter of 2009 {Figure I, left panel).

The largest differences between ED25 predictions and the observed carbon flux at the US-UMB tower hap-
pened in 2009 and 2010 {Figure 1).The overestimation of NEE during the year of 2010 could be connected
to a forest tent caterpillar (Malacosoma disstria) infestation that happened that year and affected both the
control and FASET plots which would have likely decreased the observed carbon uptake [ Gough et al,
2013]. However, as it was beyond the scope of this experiment, we did not include the 2010’ infestation
in our simulations.

As we computed yearly carbon fluxes utilzing gapilled data,we tested two additional gap-fill techniques to
evaluate the impact of the chosen method on the model-data agreement. During the period of 2007-2014
{excluding the optimization years of 2008 and 2009), the total NEE gap-filled using the artificial neural
network {ANN) method {see Appendix A) amounted to approximately -14.1MgC ha-'. When gap-filled
following the MOS method, the corresponding carbon flux was approximately -169 MgC ha-' Use of the
Max Planck institute for Biogeochemistry's Eddy covariance gap-filling and flux-partitioning tool resulted in
carbon flux of -116MgC ha-' This quick comparison illustrates how the choice of gap-filling technique
can impact the computation of yearly carbon fluxes, as discussed in detail by Wang et al. [2015].
Differences were notso pronounced when we tested thethree gap-filltechniques onthe US-UMdsite,where
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Figure2. Left panel: time series of the modeled, monthly, plot-level NEE for the G100 disturbance (gradual 100% removal
of early-successional trees) from 2007 to 20 17. The solid green line shows modeled NEE, while the dotted black line shows
Syears of observations recorded at the US-UMd tower, which underwent a similar prescribed disturbance in 2008. Right

panel: solid line represents ED2's predictions of yearly NEE, while the shaded area represents the observed yearly NEE at the
US-UMd tower with a I-standard deviation uncertainty envelope.

the ANN, MOS, and the eddy covariance gap-filling and flux-partitioning tool approaches led to an accumulated
carbon flux of -188MgC ha-' -180MgC ha-' and -21.0 MgC ha-' respectively, for 2008-2014.

Comparing our gradual disturbance case (Gl 00), u nder which trees of the early-successional decid uous PFT
were killed from January 2008 to January 2010, with observed fluxes from the US-UMd tower (overlooking
the FASET experiment), we found that simulations overestimated the i mpact of this disturbance on carbon
uptake (Figure 2).Our simu lation showed a decrease in carbon uptake following the Gl 00 distu rbance com-
parable to what previous observational studies reported followi ng disturbances of comparable i ntensity, e.g.,
the review article published by Amiro et al. [2010J summarizi ng several disturbances caused by fire, harvest,
insect infestation, and hurricanes, the analysis of gypsy moth defoliation in New Jersey, USA published by
Clark et al. [2010J and Schiifer et al. [2010J in which oaks suffered complete defoliation, as well as in the sum-
mary of several insect and pathogen distu rbances affecting 18006 to 95% of the studied canopies throughout
the United States and Canada presented by Hicke et al. [2012]. Additionally, some studies showed carbon
uptake decreases strong enoug h to cause the stand to become a carbon source, e.g, the analysis of spruce
budworm (Choristoneura fumiferana Clem.) infestation of stands dominated by spruce (Picea sp.) and balsam
fir (Abies balsamea L.) in eastern Canada presented by Dymond et al. [20101J, insect defoliation and forest fires
located in central Canada published by Fleming et al. [2002], and the study of pi ne beetle (Dendrodonus
ponderosae Hopkins) infestations throug hout Canada presented by Kurz et al. [2008], with i ntensities ranging
from a few affected trees in some stands up to complete mortality i n other stands. [ nstead, fluxes at our site
displayed unexpected resilience following intermediate disturbance intensity [Gough et al, 2010, 2013J,
which ED2 could not reprod uce.

Our simulations overestimated the impact of the disturbance and the length of ecosystem recovery during
the first 4 years following the end of the imposed mortality. The simulated NEE began to show some recovery
in 2013 (2years after the end of mortality), when the predictions under the Gl OO case approached the
observed fluxes. The agreement between the simulation and observations was poor again in 2014, when
the summer was considerably more prod uctive in reality than i n our simulations (Figure 2). However, in
2015, carbon uptake increased and the NEE was again under -2.7Mg C ha-' yr-' which is comparable to
the fluxes in 2013 and 2014 (-2.5 and -2.7Mg C ha-' yr-'. respectively).The predicted NEE remained
consistently below the yearly flux of -2.7 Mg C ha-' yr-! observed in 2014 unti | 2024 (behavior similar to
the El 00 curve in Figu re 4), suggesting the end of the predicted postdisturbance period of low
ecosystem prod uctivity.

A delay in modeled recovery could be partially explai ned by the mechanism through which the simulated
forest recovered . The survivi ng middle- and late-successional trees at the FASET plot responded to the
2008's gird ling event by first i ncreasi ng the photosynthetic rates of leaves from undisturbed trees and then
by growi ng more leaves on undistu rbed trees in subseq uent years, replacing the lost early-successional leaf
area by 2011 [Gough et al, 2013J. However, the simulated recovery followi ng the GIOO disturbance occu rred
mostly by growing newly established middle- and late-successional trees.
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Another explanation for the overestimation of the recovery time by our simulation could be related to an
underestimation of the postdisturbance light-use efficiency {LUE). Gough et al. [2013J found that during
partial defoliation of the stem-girdled trees {peaking in 2010), increased LUE and rapid replacement of leaf
area by the unaffected trees were responsible forthe sustained carbon uptake observed atthe treatment site
following the disturbance. Indeed, the treatment sites canopy apparent quantum yield was higher than the
control site's following disturbance during all years except 2010,suggesting that rapid canopy physiological
shifts compensated for a temporary reduction inleaf area from disturbance.

In our simulations, the removal of LA, particularly that of the taller cohorts, increased light penetration in the
canopy. However, increased illumination of previously shaded cohorts n our simulations was insufficient to
reproduce the observed increase in LUE. This indicates that following the disturbance, the remaining vegetation
could have a larger light-driven physiological capacity,or in EDZ% terminology,the leaf-level quantum efficiency.
Experimental work conducted by Gough et al. [2013J and Cheng et al. [201SJ show that physiological traits con-
trolling the LUEcould vary over time as the vegetation recovers from a disturbance.However,the model assumes
that parameter values arefixed properties of the PFT.As a resutt, ED2 does notrepresent an essential mechanism
supporting NEE resilience at the FASET site. Nevertheless, using estimates of apparent quantum yield of the
canopy from the literature [eg.,Gough et al, 2013J, to estimate the leaf-level quantum efficiency of each PFT pre-
sents is challenging. For example, deeper light penetrationinto the canopy following disturbance also increases
the rate of leaf carbon fixation of formerly shaded vegetation and is difficult to distinguish from enhanced leaf
physiologicalcompetency since bothphenomena have similareffectsoncanopy LUE [Niinemets, 2010J.

The adoption of time dependent VemaX! with higher photosynthetic capacity immediately after a disturbance,
decreasing asymptotically to the original value of Vemax could increase the recovery speed and provide a
mean to better describe the observed results. Alternatively, one could assume that Vemax and quantum effi-
ciency of the leaves change with tree height,as sun and shade leaves have different responses to increased
light exposures. Both directions present their own challenges, as the parameterization of dynamic Vemax
would require measurements of carbon flux following disturbances of different intensities and affecting
different PFTs. The latter approach would require measurements of quantum efficiency and Vemax to be made
at different canopy levels and the scaling of the measured parameters from leaf-level to canopy level, which
is often not trivial.

3.2. Postdisturbance Recovery

In the control case, the model showed a continuous decline of the early-successional PFT aboveground
biomass {AGB), which was slowly replaced by the growing midsuccessional PFT AGB {Figure 3a). The gradual
replacement of early-successional by midsuccessional trees predicted by our simulations is consistent with
the behavior observed in the 2001 and 2010 censuses (Table 1) and previously reported for our site
[Gough et al., 2010J. According to the predicted distribution of AGB, the early- and middle-successional spe-

cies will compose a similar portion of the total AGB by 2023 and the late-successional AGB will remainstable.

The gradual death of the early-successional deciduous trees observed at the UMBS forest {decrease in basal
area shown under Table 1) and simulated in the control scenario {see Figure 3a) reallocated growth-limiting
resources to the midsuccessional deciduous PFT [Gough et al., 2013;Matheny et al., 2014;Nave et al., 2011J.
Upon accessing the newly available resources, the simulated midsuccessional PFT responded with a sharp
increase in AGB from 2011 to 2022 {Figure 3a). This period of simulated increases in AGB corresponds with
observed increases in CO, uptake from 2011 to 2013 {Figure 1). Eventually, the simulated increased produc-
tivity tapers off for two reasons: (1) increased heterotrophic respiration caused by the decomposition of the
dead organic matter and (2) the stagnation of the midsuccessional growth.

In the uniform disturbance case {Figure 3b),we found a similar decreasing trend in early-successional AGB
that persisted after the disturbance. The midsuccessional PFT grew rapidly after the disturbance event,
recovering 80% of the lost AGB over the course of 12years. The E70 and E85 cases showed similar behaviors
{E85 case shown in Figure 3e). In both E70 and E85, the midsuccessional PFT showed rapid aboveground
biomass growth for the 10 years following the disturbance.After this period, the growth of the midsuccessional
PFT slows to a rate similar to that of the control case.

The EIOO {instantaneous mortality of all early-successional deciduous trees pictured in Figure 3f) and G100
{gradual mortality of early-successional deciduous trees over 2years) showed similar results and differed only
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Figure 3. Modeled time series of the aboveground biomass in 3 PFrs, representing early-, middle-, and lateuccessional
deciduous trees in UMBS during the firstcentury of simulations: (a) Control case. (b) Uniform disturbance case (UNIF).The
sudden dropin the AGB of'the three PFrs represents the disturbance event, when 30% of all trees were killed. (¢) Disturbance
case (M85),where 85% ofthe midsuccessional trees were killed. (d) M 100 case where all midsuccessional trees were killed.
(e) Case E85,where 85% of all early-successional trees were killed. (f) Complete removal C:i early-succession al trees (case E100).
The vertical red line present in all panels designates the year of the disturbance.

during a short period immediately following the initial prescription of the disturbance. When compared to
EIOO, the gradual GIOO case showed increased loss of NEE but faster recovery in the S years following the
disturbance, and was closer to the gradual mortality of trees in FASET and the observed response of NEE
[Gough et al., 2013]. During the first 14 postdisturbance years, midsuccessional AGB sustained greatest
growth in the GIOO and EIOO scenarios relative to other simulated disturbance scenarios {Figure 3f). Unlike
the milder early-successional disturbances {E30, E70,and E85), after the end of GIOO and EI00 events, there
were no early-successional trees left,which prevented further recruitment of early-successional trees. For this
reason, there was no recovery of the lost early-successional AGB {Figure 3f).

Increasing disturbance intensities among the E-type {from 30% to 100%) disturbances was associated with more
rapid growth ri the midsuccessional AGB {Figures 3e and 3f). Within oursimulations, the mortality imposed by
the disturbance event resuted in increased resource availability to the surviving cohorts, which may explaintheir
increased postdisturbance growth rate.More intense disturbances result in higher resource availability among
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Figure4.nme series of modeled, monthly,plot-level NEE in the full 100years cisimulations, for cases of nodisturbance (control,
solidblack line),uniform disturbance (UNIF,dotted magenta line), EIOO disturbance, ( 100%removal of early-successional
deciduous PFT,solid green line),and M100 (100%removal of midsuccessional deciduous PFr,dotted red line). The Syear cycles
in NEE visible in this figure are a result of recycling Syears of meteorological forcing throughout the simulation.

the remaining trees both by reallocation of nutrients contained inthe dead trees and bydiminished competition,
as the disturbance decreases the number of trees competing for light water, carbon, and nitrogen.

Figures 3c and 3d show the impact of hypothetical disturbances affecting midsuccessional cohorts only. In
the scenario M85 (85% removal of midsuccessional deciduous trees, shown in Figure 3c), the remaining
midsuccessional trees show increased growth following the 2010's disturbance. However, this growth is
slower than observed under the E85 and EIOO cases and AGB lost to the M85 event is not fully recovered
by the end of the simulation. Under the MIOO case (100% removal of midsuccessional deciduous trees, pic-
tured Figure 3d), the removal of the midsuccessional trees reduces the mortality rate of the early-successional
deciduous cohorts and is followed by a growth of late-successional AGB. However, the growth of the
late-successional deciduous AGB is not enough to fully compensate for the loss in midsuccessional biomass.

Simulations targeting different successional cohorts, early or middle, suggest that the recovery time of NEE
depends on the PFT affected by disturbance. Under the UNIF and E30, E70, E85, and EIOO disturbance
simulation-scenarios and in our FASET observations, the initial disturbance period was followed by recovery
with higher CO, uptake {more negative NEE) than the predisturbance baseline {EI00, MI00,and UNIF shown
under Figure 4). However,disturbances exclusively affecting the midsuccessional PFT (70%,85%,and 100%
mortality rates under cases M70, M85, and MI00,respectively) never experienced higher CO, uptake than the
controlscenario {MI00shown underFigure4). Theannual NEE underthe E70,E85, EIO0, and UNIF scenarios
reached the same level as annual NEE predicted by the control simulation in2015. However,the EIOO and
UNIF disturbances of equivalent intensity {both scenarios affected 30% of the stand's LAIl) differed in their
impact on postrecovery carbon fluxes. While UNIF carbon uptake began to decrease after 2023, EIOO
sustained the elevated carbon uptake rates until past 2035. Interestingly but not surprisingly, since UNIF
did not change the forest relative composition, NEE under the UNIF disturbance converged to similar levels
as the control simulation and after 2062 became indistinguishable from the control scenario.

The lack of recovery observed of the M-type disturbances {disturbances affecting 70% to 100% of the
midsuccessional deciduous PFT) could be related to the current successional dynamics taking place in
northern Michigan [Gough et al., 2010J. In the E-type disturbances {disturbances exclusively affecting early-
successional deciduous PFTs), we removed only early-successional deciduous trees, which were already in
decline atthis site, consequently freeing resources tolonger-lived growing midsuccessional deciduous trees.
After aninitial period of less intense carbon uptake following the E-type disturbances,which lasted from 4
{E30, E70, and EB85) to 5years {HOO), the disturbed simulations showed stronger carbon uptake. Whereas
in the M-type cases, the prescribed disturbance affected the growing midsuccessional deciduous trees, which
are the primary successional cohort supporting forest growth as early-successional trees decline [Gough et al.,
2010J. Consequently, the period of increased carbon uptake was attenuated {M70) or did not occur {M85 and
MI0O0) following mortality of middle-successional trees.
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Figure 5. The effect of different levels of disturbance on the accumulated net ecosystem exchange. This effect was
measured as the relative deviation from the accumulated NEE in the control case, therefore,dimensionless. Negative
values represent times when the accumulated NEE since the beginning of the simulation for a particular scenario was less
than the accumulated NEE at the control case. The left panel compares four different intensities of disturbances affecting the
early-Successional deciduous PFT.The middle panel compares three different disturbance intensities affecting the midsuccessional
PFTonly. The panel on theright compares theuniform distribution (UNIF) with EIOO and M100O disturbances. The5year cycles
visible in this figureare a result of recycling Syears of meteorological forcing throughout the simulation.

The lengthoftime needed for the accumulated NEE from a particular scenario to equal theaccumulated NEE
in the control {undisturbed) scenario represents an integrative metric of ecosystem recovery. By analyzing
accumulated NEE sincedisturbance instead ofindividualyears, we canassess whetherlonger-termincreases

in carbon uptake following the E-type and UNIF disturbances can compensate for reduced carbon uptake
immediately after disturbance.

Focusing on the E-type disturbances {Figure 5, left panel), increasing disturbance intensity led to more
pronounced decreases incarbon uptake inthe first 3 {E30) or 5years {EIOO).Under the E30 case, the cumulative
differenceinNEE betweendisturbedand controlscenarioswaslowestin2013{-5%),afterwhichtheyearly NEE
of E30 surpassed that of the control. The short-term (0 to 5 years) cumulative reduction in NEE increased with
disturbance intensity, declining relative to the controls in 2013 by -12.7% and -156% in E70 and E85
scenarios, respectively; however, the EIO0 disturbance scenario did not reacha minimum until2015, amounting
to a reduction of -19.5% relative to the control scenario, indicating that the effects of the most intense
disturbance were stronger and lasted longer.

Among E-type disturbances, the time required to surpass the accumulated NEE of the simulated control
forest increased with disturbance intensity. For example, the accumulated NEE under the E30 case first
surpassed the accumulated control NEE in 2022,whereas this event happened for E70 in 2025, in 2026 for E85
2026, and 2029 under the EI 00 case. Additionally, increasing mortality of already declining early-successional
species led to increased long-term (30 to 100years) carbon uptake. EIOO and G100 both showed greater
accumulated carbon uptake of approximately 20% relative to the control at the end of the 100 year simulation,
while E70 and E85 showed increases of 14% and 15%, respectively {Figure 5, right paneO. Such longterm
increases in carbon uptake following disturbance are consistent with simulation results reported by Albani
et al. [2010J, who predicted an initial decrease in carbon uptake after a simulated hemlock woolly adelgid
(Adelges tsugae Annand) infestation, followed by an average postrecovery increase in carbon uptake of 12%
throughout the eastern United States.However, ecosystems subjected to repeated disturbance events of high
intensity,eg,recurrent insect defoliation events, may not have the chance to recover from each event [Medvigy
et al, 2012] and consequently not show the predicted longterm increase carbon uptake.

The initial negative impact on carbon uptake of disturbances affecting the midsuccessional deciduous PFT
was similar to early-successional disturbances. Higher disturbance intensities caused larger initial
decreases in carbon uptake {Figure 5, middle panel) and minimum NEE to occur later (2017 under M70,
2019 under M85, and 2025 under MIO0). However, the behavior of the middle- and early-successional dis-
turbances became quite different following the trough in NEE. Twenty-five to 30years after the occurrence
of early-successional and UNIF disturbances, the ecosystem carbon uptake surpassed that of the control
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scenario. Nevertheless , we never observed such increase in ecosystem prod uction when we distu rbed the
midsuccessional vegetation.

Greater long-term {decades after the disturbance) carbon uptake following the mortality of early- {E-type)
rather than middle- {M-type) successional trees may be associated with the first disturbance targeting short-
lived trees past peak growth and the second targeti ng longer-lived vigorously growing trees [Nave et al.,
2011]. Increasing cumulative productivity with increasing mortality of early-successional trees indicates that,
at the current ecological successional stage, communities of midsuccessional trees are more productive while
declining early-successional trees contribute proportionally less to ecosystem production. This is supported
by the smaller increase i n long-term carbon u ptake {6%) seen under the UNIF case, which removed a
smaller percentage of the less prod uctive early-successional trees and also removed an equal fraction of
midsuccessional trees, as well as by the decrease in both short- {few years to a decade) and long-term
{decades to a centu ry) carbon uptake under disturbances that affected the midsuccessional deciduous PFT.
Despite the lack of an experi mental study comparable to FASET that assesses the effects of the removal of
midsuccessional deciduous trees, our simulations, along with observations from the FASET site [Gough et al,
2013; Stuart-Haentjens et al., 2015, suggest that disturbances that hasten ecological succession can have
positive impacts on long-term carbon budgets and reinforce the importance of correctly prescribing which
PFTs are affected by simulated disturbances.

4. Conclusion

Our ED2 simulations demonstrated that under nonstand-replacing disturbances of moderate i ntensity, the
impacts on postdisturbance N EE and recovery time were substantially different depending on the successional
status of the affected trees and the level of disturbance intensity. While the mortality of 30% to 100% of the
early-successional deciduous trees led to a decrease in carbon uptake immediately after the disturbance, it
was followed by increased carbon uptake i n the followi ng decades.The same behavior was not observed under
the simulated midsuccessional mortality, nor u nder the nonspecific disturbance. The mortality of 70% to 100%
of the midsuccessional deciduous trees led to a decrease i n carbon uptake both immediately as well as decades
after the disturbance, with increasing mortality associated with a more pronounced decrease i n carbon uptake.
Moreover, the NEE under the tested nonspecific disturbance slowly recovered and became i ndistinguishable
from the control 52years after the treatment. Our findings stress the importance of correctly specifyi ng the suc-
cessional status of trees affected by a modeled disturbance. Additionally, our results suggest that ecosystems
may recover more quickly from disturbances that selectively affect tree populations or communities al ready
in decline, by reallocating resources to vigorously growing trees.

Appendix A:Flux Data Processing and Uncertainty Analysis

The optimization procedu re requi red knowledge of the monthly and yearly net ecosystem exchange {NEE)
and sensible (HJ and latent {Le) heat fluxes as well as an assessment of their u ncertainty. We used the 2010
fluxes measu red at the US-UMB tower for model optimization. We employed the US-UMB data from the years
of 2007, 2008, 2009, 2011,2012, 2013, and 20 14 for model evaluation.

We processed the data following AmeriFlux convention. The detailed data processing is described in Maurer [2013]
and Gough et al. [2013)]. Data were filtered using a friction velocity, u* threshold following Reichstein et al. [2003].
Specific seasonal threshold values used for our site are listed in Maurer et al. [2013]. We separated the year in three
seasons: dormant, early growth, and late growth. During the dormant season, we attributed all carbon flux to
respiration {f?), {i.c., no photosynthesis). During the early- and late-growth seasons, all nighttime carbon flux
was due to Re- As large gaps were present in the Re data series {both because no growing season daytime obser-
vations were possible and the fact that the u*filter tends toeliminate several adjacent flux values), we gap-filled Re
by modeling through the use of equation {A1), which was evaluated for oursite by Schmid et al. [2003]:

Re =a-exp(b-Tsoil)+c-SM+d-In(SM) {A1)

where a, b, ¢, and d were empirically fitted constants, T,n stands for the soil temperatu re at 20 mm, and SM
for the soil moisture. Equation {Al) was also used to model Re at known half hours for error calculation
purposes. The difference between the observed and modeled Re was used to estimate the gap-filling error.
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We subtracted the modeled daytime Re from the observed carbon flux to determine the observed gross pri-
mary prod uctivity { GPP). We used the artificial neu ral network { ANN) method to gap-fill GPP as descri bed in
Morin et al. [2014a], which is an expanded version of the approach developed by Papale and Valentini [2003].
The AN N method creates empirical models with user defined predictor variables as the parameters. We used
air temperature (T ; relative humidity {rH), total PAR, diffuse PAR,Albedo, SM, TSO“, and wind velocity as the
predictor variables.These variables are not dependent on turbulence and were measured by robust sensors
with only sparse data gaps.

We were therefore able to gap-fill the predictor variables prior to use in the ANN by using a linear periodic
method, which is suitable for short, sporadic gaps. The ANN first normalized all variables between 0 and 1.
It then took the predictor variables, assigned them random weights to each, and passed them through a
hyperbolic tangent sigmoid {tansig) transfer function to prod uce a 'hidden -layer" of 12 nodes. This layer
was passed through a second tansig transfer function to generate a hidden-layer with five nodes. This was
then passed through a final tansig transfer function to produce the output layer.

The AN N used a random 50% of the data to parameterize the training set, another nonoverlapping 25% to
validate the parameter estimates, and the remaini ng 25% to the test the model {i.e., calculate r).The mini-
mum permissi ble /- 2 set for the ANN model was 0.8.1f the output layer was able to meet or exceed this value,
we took the output layer as one modeled realization of G PP. If not, the process was repeated u ntil a suitable
model realization was found. The parameterization of the AN N models is done with a random nu mber gen-
erator and is allowed to converge to the observed val ues. Because of this, there are endless possible models it
may generate to replicate a given data stream. For our purposes, no one model is more valid than any other,
and to mitigate the possibility of an erroneous model, we generated 1000independent model realizations for
GPP and took the average of these realizations as the final modeled val ue. Specific information regarding the
ANN setup and approach can be found in Morin et al. [2014a] and Morin et al. [2014b].

We quantified the measurement uncertainty for GPP using theapproach described by Hollinger and Richardson
[2005], which considers the differences between observations that were separated by 24 h as an indication of
random measurement error, provided that the envi ronmental conditions under which they were taken were
similar. The criteria to establish the similarity of measurement conditions were as follows: PAR measurements
did not differ by more than 75pmol m->s-! the air temperature was within 3"C, and the average wind speeds
measured at both times were not more than 1 ms-' apart. To each half-hour with valid measurements we
added noise, which we consider to have a double-exponential distribution with zero mean and the scaling
parameter estimated from the variance of the measurement error estimates [Richardson etal.,2006].

We used the spread of all 1000 realizations of the AN N to characterize the variabi lity of the gap-filled G PP data
points. For each gap-filled half-hour, we picked one of the 1000 possible estimates for that half -hour, which
came from the different realizations of the AN N. We computed the monthly and yearly totals then repeated
the procedure 1000 times. At the end of the proced ure, we obtained 1000 estimates for each month's fluxes
and 1000 estimates for the yearly flux.

Following the completion of the Richardson and Hollinger [2007] proced ure, we used a Monte Carlo simu la-
tion to combine the uncertai nty due to measurement errors and the uncertainty from the gap-filling proce-
d ure. We averaged all estimates for each month as the observed flux for that month and the standard
deviation of the monthly estimates as the uncertainty for that specific month. Similarly, we calcu lated the
yearly flux as the average of the yearly flux estimates, whi le the u ncertainty was represented by the standard
deviation of the yearly flux estimates. Since latent and sensible heat fluxes were not gap-filled, their uncer-
tainty only reflects measurement errors.

For the eval uation of possible measurement biases introduced by the gap-fill method, we tested two
additional gap-filling methods, i.e., the marginal distribution sampling {MDS) by Reichstein et al. [2005] and
the Max Planck Institute for Biogeochemistrys eddy covariance gap-filling and flux-partitioning tool

fhttp//www.bgcejena.mpg.de /-MDlwork/eddyprocl). The MDS method consists of replacing missing NEE
values by the average NEE observed under similar meteorological conditions and contained in a time-wi ndow
of £ 7 days from the missi ng value. Meteorological similarity was defined as two half-hours when the average
net radiation , air temperature, and vapor pressure deficit did not deviate by more than 50Wm-2 25"C,
and 5.0hPa, respectively. The second additional gap-filling method is based on Falge et al. [2001] with the
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addition of the te mporalautocorrelation of fluxes and the conditioning of fluxes by meteorological variables as
describedin Reich5tein et al. [2005].

The eddy covariance gap-filling and flux-parttioning tool /Max Planck Institute for Biogeochemistry, 20 11] classffies
gaps into three groups.In the first group,NEE is missing {either due to instrument failure or insufficient turbulent
mixing), but all meteorological data are available.In this situation,meteorological similitude can be tested using

the same conditions as identified by ReichStein et al.[2005].Inthe second group,in addition to a missing NEE

value, meteorological variables {air temperature or vapor pressure deficit) are missing as well, but radiation is

available. In this case, meteorological simiitude is based solely on solar radiation. Under the third situation,
radiation is also missing. In the first and second scenarios, the algorithm searches for half-hours with similar

meteorological conditions contained within a 7 day window. If no NEE data are available inside this win-

dow, the searchis expanded firstto 14 days then28 or 56 days as needed, with the wider windows flagged

as less reliable. Under the third condition, the missing value is obtained by linear interpolation between
available adiacent information with an intial time window of 0.5 days, which can be extended to up to
2.5days inthe absence of data.
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