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Abstract Natura l and anthropogenic disturbances influence ecological succession and i mpact the carbon 
cycle. Understanding  disturbance effects and ecosystem recovery is essential to carbon modeli ng. We 
hypothesized that (1) species-specific disturbances impact the carbon cycle differently from nonspecific 
distu rba nces. I n particular, disturbances that target early-successional species will lead to higher carbon 
uptake by the postrecovery,  middle- and late-successional community and (2) disturbances that affect the 
midsuccessional  deciduous species have more intense and long-lasting impacts on carbon uptake than 
disturbances of similar intensity that only affect the early-successional species. To test these hypotheses, we 
employed a series of simulations cond ucted with the Ecosystem Demography model version 2 to eval uate 
the sensitivity of a temperate mixed-decid uous forest to distu rba nce i ntensity and type. Our simu lation 
scenarios included a control (undistu rbed) case, a uniform distu rbance case where we removed 30% of all 
trees regard less of their successional status, five cases where only early-successional deciduous trees were 
removed with increasing disturbance i ntensity (30%, 70%, 85%, and 100%), and four cases of midsuccessional 
distu rbances with increasing intensity (70%, 85%, and 100%). Our results indicate that disturbances affecting 
the midsuccessional  deciduous trees led to larger decreases in carbon  uptake as well as longer recovery 
ti mes when  compa red  to disturbances that excl usively targeted  the early-successional  decid uous trees at 
compa rable intensities. Moreover, disturbances affecti ng 30% to 100% of early-successional decid uous 
trees resulted  in an increased carbon  uptake, begin ni ng 6 years after the disturbance and sustained 
th rough  the end of the 100yea r simulation. 

 
 

 
1. Introduction 
Natu ral and anthropogenic disturbances impact ecological succession, carbon dynamics, and hydrology. 
Forest harvesting and wildfires that occurred in the early twentieth century in the upper G reat Lakes region 
of North America were a primary determinant of the trajectory that led to the cu rrent composition of forest 
stands i n northern Lower Michigan, USA [Gough et al., 2007]. Large-sca le i ntensive logging and forest fires 
throughout the upper Midwest a century ago led to the establishment of many even-aged aspen-dominated 
forests in the region [Bergen and Dronova, 2007; Frelich and Reich, 1995]. However, as many of these stands 
tra nsition from even to uneven aged with the gradual decline of early-successional aspen, less severe, non 
stand replacing disturbances are playi ng an increasingly important ecological role as these forests advance in 
age [Frelich and Reich, 1995]. 

Each decade, up to half of the forested land in the United States is affected by distu rba nces including insect 
defoliation, disease, fire, windthrow, and selective harvest [Birdsey et al., 2006]. These disturbances vary in 
specificity, with some disturbances targeting individual species or genera and others acting as generalists, 
and also i n the extent to which they cause tree morality. For example, Gypsy moth (Lymantria dispar L) 
defoliation affected mostly oak trees i n the Silas Little Experimental Forest in New Jersey, USA [Renninger 
et al., 2014; Schafer et al., 2010; Schafer et al., 2014], and beech bark disease targets Fagus grandifolia 
(American beech) i n the northeastern USA [Lovett et al., 2006].Other distu rba nces such as forest ground fires 
and windth row are less selective. Yet specifyi ng which species are affected and the i ntensity of the distur 
bance may not be sufficient to predict the impact of disturbance on C02 flux, as stand age and disturbance 
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history have been shown to be important factors controlling carbon cycli ng and  storage [Preg itzer and 
Euskirchen, 2004]. I n addition , forested landscapes are a mosaic of ecosystems shaped by varyi ng levels of dis 
turbance intensity, with the extent of tree morality potentially affecting the rate at which ecosystems recover 
from disturbance [Peters et al., 2013]. Understanding how disturbances varying i n specificity and intensity 
affect forest processes central to biogeochemical cycling is integral to predicti ng future carbon stocks and 
fluxes [Knohl et al., 2002;Undroth et al., 2009;Luo and Weng, 2011 ]. 

A combination of experimental studies and model simulations provide insight i nto how and why carbon 
fluxes are affected by different types and intensities of forest disturbance. For example, Clark et al. [201OJ used 
eddy covariance measurements of C02 fluxes at oak dominated sites in New Jersey, USA, to show that annual 
net C02 flux decreased by more than 40% following defoliation by Gypsy moth. In complementary work, 
Medvigy et al. [2012] showed that accurate prediction of the effects of Gypsy moths on  forest carbon 
dynamics requi res the correct identification of the spatial and temporal  patterns of defoliation. In contrast 
to the decreased carbon uptake followi ng the distu rbances analyzed by  these two studies, work at the 
Forest Accelerated Succession Experiment (FASET) conducted at the University of Michigan Biological 
Station (UMBS) has shown very strong short-term resilience to species-specific moderate-intensity distur 
bance [Gough et al., 2013;Matheny et al., 2014;Nave et al., 2011 ;Stuart-Haentjens et al., 2015]. 

In the present work, we aim to answer the following two questions:(1) What are the differences in the short 
(years) and long-term (decades) forest carbon dynamics following species-specific and nonspecific disturbances 
of similar mag nitudes? and (2) How does distu rbance intensity, or extent of tree mortality, affect ecosystem 
recovery time and postrecovery net ecosystem exchange? We leverage observations from the Forest 
Accelerated Succession Experi ment (FASET)-a large-scale ecological manipulation where all early-successional 
trees in a 34 ha plot were killed by stem gird ling, which provides the means to evaluate our carbon flux predic 
tions d uring and following our simulated disturbances. We used the Ecosystem Demog raphy model version 2 
(ED2) [Medvigy et al., 2009] to simulate the impact of moderate disturbance on carbon fluxes from a temperate 
mixed-deciduous forest. We produced a set of simulations differing in disturbance intensity and specificity to 
assess their impact on recovery time and postdisturbance carbon dynamics. We compared the control simula 
tion results with observed site-level net ecosystem exchange at the unaltered AmeriFl ux-affiliated US-UMB site 
in northern Lower Michigan, USA (http://ameriflux.oml.gov/fu llsiteinfo.php?sid=S9), whereas we evaluate our 
predictions of carbon flux d uring and after the simulated disturbances against data collected by the US-UMd 
tower, which is nested within the FASET distu rbance. 

 
 

2. Materials and Methods 
2.1. Ecosystem Demograph y Model 2 

ED2 resolves energy, water, carbon, and nitrogen balances on representative individuals, belonging to biolo 
gically similar vegetation groups (defined here as Plant Functional Types, PFTs) [Medvigy et al., 2009; Medvigy 
et al., 2013;Moorcroft et al., 2001]. The individuals within each PFT are further grouped into age/size cohorts. 
Whi le the PFT defines the cohort's physiological parameters, which do not change with plant height or age, 
the size class controls the cohort's access to resources.Cohorts belonging to the same resource envi ronment 
("patch" in the model's internal termi nology) compete for lig ht, n utrients, and water. The model tracks the 
growth, reprod uction, and mortality by changing the stem density of each cohort. As the trees within a 
cohort grow, they move to the next size class. Reprod uction increases stem density of the smaller size classes, 
and mortality reduces the stem density of the correspondi ng cohort. 

Cohort-level gross primary production , net primary prod uction, and heterotrophic respi ration are calculated 
using parameterizations for radiative transfer, leaf biophysics, photosynthesis, and respiration [Medvigy et al., 
2012;Medvigy et al., 2009;Medvigy et al., 2013]. Cohort-level predictions of, for example, net ecosystem C02 

exchange (N EE) and latent and sensi ble heat fluxes are scaled to the patch level through the cohort's stem 
density. Fi nally, patch-level predictions are scaled to the site-level by area-weighted integral averagi ng over 
all resource envi ronmental patches. 

In order to eval uate the long-term (decades to a century) impact of disturbance scenarios on NEE, it was 
necessary to create a disturbance algorithm that allowed for the decomposition of dead biomass affected 
by the disturbance. The disturbance routi ne we developed  allows the specification of one or more mortality 

http://ameriflux.ornl.gov/fullsiteinfo.php?sid=59
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events. During such events, mortality, which is specified as a fraction of the stem density of each cohort of a 
specified PFT,occurs and the selected trees die instantly.The dead biomass is immediately returned to the 
soil, including its nitrogen content. The returned biomass is free to decompose, providing a more realistic 
representation of element cycling relevant to postdisturbance heterotrophic respiration and long-term net 
ecosystem exchange. Although mortality prescribed under our disturbance routine occurs instantaneously, 
specification of successive small events can emulate gradual mortality. To simulate the gradual death of a 
fraction, f, of the trees of a given PFT each month during over n years, the monthly mortality rate is given by 

f   1-1  1 
m1 = -TI- 

12-nj=l -mi 
(1) 

where m1is the fraction of current number of trees of the PFT that the user intents to remove at month iand 
m1stands for the imposed mortality at a previous month j. 

After mortality events, affected patches may be split if disturbed area is greater than the minimum area allowed 
for a patch.The vegetation contained in the original patch is redistributed between the newly created patches. 
One will receive the undisturbed fractionof the vegetation, retaining the premortality stem density of the original 
patch, whereas the second will receive the remaining surviving trees, resulting on a sparser patch. Next, ED2 
searches all patches for cohorts with negligible stem density,which are eliminated, or for similar cohorts, which 
are combined. Two cohorts can be combined if they are of the same PFT and if their mean DBH is withinthe 
model's preset tolerance. ED2 source code can be found in the supporting information {Software Sl ). 
2.1.1. Meteorological Drivers 
We forced ED2 with observations from the control plot adjacent to the FASET experimental site {available 
through the AmeriFlux network, site id US-UMB). The FASET field site, located at the University of Michigan 
Biological Station in northern Michigan, consists of two plots-the experimental plot {Ameri Flux site id 
US-UMd, 45°33'45"N, 84°41'54"W) and the control plot {US-UMB, 45°33'35"N 84°42'49"W). Approximately 35% 
of the basal area of the forest in the site is dominated by early-successional,relatively even aged Populus grand  
identata Michx.{bigtooth aspen), Populus tremuloides Michx.{trembling aspen), and Betula papyrifera Marsh. 
{paper birch). Other species that comprise significant fractions of the canopy include Fagus grandifolia  Ehrh. 
{American beech),Acer saccharum Marsh.{sugar maple),Acer rubrum L {red maple), Pinus strobus L.{white pine) 
and Quercus rubra {red oak). The early-successional aspen and birch species are currently beginning to senesce 
and will continue to do so over the next 50years [Curtis et al., 2005; Gough et al., 2010,2013]. In spring 2008,all 
ear1y-successional aspen and birch trees ina 34 ha plot were stem girdled, totaling approximately 64-00 trees. For 
a detailed description of the experiment and an empirical analysis of the FASET disturbance effects and subse 
quent ecosystem recovery, refer to Gough et al. [2013]. The control plot remained undisturbed. Each plot is 
located within the footprint of an eddy-covariance flux tower. 

The observations we used to drive ED2 include air temperature (T0), wind direction and speed, atmospheric 
surface-level pressure, relative humidity {rH), surface C02 concentration, photosynthetically active radiation 
{PAR) separated into direct-beam and diffuse fractions, and downward long and short wave radiation.Short 
term gaps in the data were filled by fitting a linear relationship between the measurements made at US-UMB 
and the nearby measurements at US-UMd. We used 5 years of meteorological forcing (2007-2011), which we 
recycled during the 6 years that preceded 2007 and the 89 past 2011. Partitioning between beam and diffuse 
short-wave radiation was assumed identica l to the partitioning of PAR into its beam and diffuse fractions. 
The meteorological forcing can be found in Data Set Sl in the supporting information. 
2.1.2. Model Initialization and Configuration 
We initialized our simulations using tree species and diameter at breast height {DBH) recorded in 60 
permanent plots of approximately 0.1 ha within the US-UMB flux footprint in 2001 {included inthe supporting 
information Data Set S2). Tree diameters were measured repeatedly over time allowing the calculation of 
individual tree growth rates and mortality {deaths per number of surveyed trees per year) [Gough et al., 2013]. 
According to the 2001 census, basal area {BA) per ground area of all surveyed trees totaled 24.6 m2 ha-2 

while in 2010, it reached 26.4 m2 ha-2 Table 1 shows the groupings of the different species according to 
PFT and their contribution to the total BA. 

The mineral fraction of the soil surrounding the US-UMB and US-UMd flux towers contains 92o/o sand, 7% siltand 
1% clay [Curtis et al., 2005; Nave et al., 2009], which ED2 uses to derive soil characteristics, e.g.,permeability. Soil 
depth and carbon content were derived from Nave et al. [2011], and nitrogen content from Nave et al. [2013]. 
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Table 1. Distribution of Species and Plant Functional Types According to Fraction of the Total Basal Area According to 
the Censuses of 2001 and 2010 Conducted at UMBSa 

Fraction of the Total BA 
 

 

Plant Functional Type Species 2001 2010 

Early-successional hardwood Populus grandidentata Michx. 
Populus tremu/oides Michx. 

Betu/a papyrifera Marsh. 

 
0.38 
0.13 
0.09 

0.37 
0.12 
0.07 

Midsuccessional hardwood Quercus rubra L. 0.10 0.12 
Acerrubrum L 0.16 0.18 

Late-successional hardwood Fogus grandifo/ia Ehrh. 0.03 0.04 
Acer saccharum Marsh. 0.01 0.01 

Northern pine Pinus strobus L. 0.08 0.09 
aThe total basal area per ground area in 2001 was 24.6 m2 ha -2 while in 2010, it reached the value of 26.4 m2 ha -2 

, • 
 
 

Initial soil temperature was assumed to be uniform at all depths and equal to the air temperature at 
initialization, after which it was allowed to drift according to the model's estimation of heat flux throughout 
soil layers. Initial soil moisture was assumed to be 0.18 m3/m3 as measured at the US-UMB site on 01 
January 2001. 

We chose to prescribe phenology using the observed seasonal dynamics of leaf area index {LAI) in order to 
improve the realism of the simulations. We used measurements of LAI conducted in the UMBS from 1999 
to 2011 using LAl-2000 Plant Canopy Analyzers {Li-Cor, Lincoln, NE, USA) to create a time series of LAI 
throughout the growing season {for a summary of the LAI seasonal dynamics, refer to Curtis et al. [2005] 
and Garrity et al. [2011]). We normalized the LAI by the peak LAI in the season and fitted a double sigmoidal 
curve to the normalized LAI {supporting information Data Set S3). Using this fitted curve, we produced a time 
series of daily fraction of total LAI, which ED2 used to control the growth and senescence of leaves in the 
deciduous PFTs. 
2.1.3. Model Optimization 
A preliminary single-site, 6 year simulation using the northeastern North American parameterization of ED2 
[Medvigy et al., 2009] showed an unrealistic and sharp decline of the basal area of all PFTs. This unexpected 
behavior prompted us to search for parameter values estimated in areas dominated by early- and middle 
successional vegetation growing on predominantly sandy soils, as is the case of the UMBS forest. We therefore 
adopted the values of the photosynthetic capacity per unit leaf area (Vcmax as in Farquhar et al. [1980]), growth 
respiration fraction {r9), and water availability parameter {Kw) from M edvigy et al. [2012]. 

Additionally, we decreased the specific leaf area {SLA) of the early-successional deciduous PFT from its default 
value of 30m2 kg-1 to 255 m2 kg-1 and the SLA of the late-successional deciduous PFT from the default 
value of 60 m2 kg-1 to 30.6 m2kg-1 to reflect site values reported by Gaugh et al. [2010]. Finally, we used a 
fine root turnover rate of 0.56yr-1for the middle- and late-successional PFTs from Gill and Jackson [2000], 
based on measurements by Hendrick and Pregitzer [1993] for a forest located in northern lower Michigan. 

We followed the approach used by M edvigy et al. [2013] for model optimization. Our optimization included 
eight parameters: (1) a multiplier for the Vcmax of the deciduous early-, middle-, and late -successional PFTs 
{i.e.,one single value that multiplied the Vcmax of early-, middle-, and late-successional deciduous PFT,avoid 
ing their individual optimization), (2) the conifer Verna"' (3) the allocation of fine roots relative to leaves for the 
deciduous PFTs {same value for the three PFTs), (4) growth respiration factor {r9) for the deciduous PFTs, (5) 
the stomata! response slope (M, assumed the same for the three deciduous PFTs), (6) the rainfall interception 
capacity,(7) the water availability parameter {Kw), and (8) the fraction of positive carbon balance devoted to 
reproduction {same value for the three deciduous PFTs). 

We assumed independent gamma distributions as the prior distribution of each one of eight parameters. We 
used the method of moments to find the shape and the scale parameters of each gamma distribution so that 
the expected value of each prior matched the values listed in Table 2, and we assumed the standard 
deviation of each prior to be 10 times the standard deviations of the posterior distributions reported by 
Medvigy et al. [2009]. The exception was the Vcmax multiplier for which we assigned an expected value of 1 
and standard deviation of 0.8. 
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Table 2.  List of Parameters Used in our Simulations That Differ From ED2's Standard Parameterizationa 

Parameter Value 
 

Parameter Name Unit Symbol Initial Optimized 
Photosynthetic capacity per unit leaf area, conifer µmolm-2s-2 Vcmax 11.4 9.6 
Photosynthetic capacity per unit leaf area, early hardwood µmolm-2s-2 Vcmax 20.4 26.5 
Photosynthetic capacity per unit leaf area, midhardwood µmolm-2s-2 Vcmax 17.5 22.7 
Photosynthetic capacity per unit leaf area, late hardwood µmolm-2s-2 Vcmax 7.0 9.1 
Allocation of fine roots relative to leaves,hardwoods (kg roots) (kg leaves) -1 q 1.1 1.44 
Growth respiration factor, hardwood dimensionless fg 0.12 0.17 
Stomata! slope dimensionless M 4 3.68 
Interception capacity kgm-2 inter 0.33 0.46 
Water availability parameter, hardwood m2 yr -1 (kg root)-1 Kw 2500 2700 
Fraction of positive carbon balance devoted to reproduction dimensionless repro 0.29 0.53 

aVcmax here is specified at 15°C. 
 

Each iteration of the Markov chain Monte Carlo consisted of a 3year simulation (2007, 2008, and 2009). As 
censuses of the UMBS vegetation were conducted in 2001 and repeated in 2010, we chose the 2010 data 
set, which is the closest to the begi nni ng of the optimization runs (2007). We forced ED2 with half-hourly 
measu rements of meteorological forcing from US-UMB in 2007 to 2009.The observed and model-predicted 
values of monthly and yearly total N EE, nightti me respiration, and gapped latent and sensible heat fluxes 
computed for the years of 2008 and 2009 (2007 was discarded for model spin-up) were used to evaluate 
the log-likeli hood at each iteration: 

                                                           (2) 

where N1is the number riobservations in the data setj (24 for monthly variables and 2 for yearly variables), is 
the weight rithe data set j, and slJ is the contribution of the element ifrom the data set j to the log-likelihood 
function, which, assuming a normal distribution for the measurements errors for the data setj, has the form of 

2 
S/j _ - 1 (X pred .ij - Xobsjj ) 
- -· 

2 CTJj 
(3) 

where Xpred)J is the value of the variable j as predicted by ED2 at the given iteration , Xobs)J is the observed 
value for the variable, and CTIJ is the standard deviation of the error associated with the data set. Details on 
the flux data processi ng incl uding the estimation of the error standard deviation are included i n the 
Appendix A. 

Because we utilized gapped monthly and yearly measurements of latent heat and sensi ble heat fluxes in the 
computation of the log-likeli hood , we disregarded model predictions duri ng these gaps. For this procedure, 
we first aggregated ED2's prediction into half-hou rly bins, which were considered in the computation of the 
yearly and monthly totals on ly if correspondi ng measurements were present. This proced ure was not neces 
sary when computi ng the monthly and yearly NEE totals, as we gap-filled NEE.NEE uncertainty was eval uated 
by combining measurement errors  evaluated according to Richardson and Hollinger [2005] with gap-fill 
uncertai nty as detai led in the Appendix A. 

We used the calculated log-likelihood to evaluate the acceptance probability of the current realization: 

a = mi n(1 , lft-s,_ ,-i,)) . 
 

(4) 
 

where sk is the log-li kelihood function evaluated at iteration k, sk-1 is the log-likeli hood function evaluated at 
iteration k-1, and sk' is the sum of the log-li kelihoods associated with each parameter. 

We ran 10separate chains with 10000 iterations each.Atthe end of the proced ure, we obtained a pool of 883 
accepted iterations, from which, after burn-in, we computed the posterior distri bution of each parameter.The 
parameter set that corresponded to the highest likelihood was selected for use in the simulations. 
2.1.4. Model Evaluation 
We ran two simulations to evaluate the control run's predictions and a third to eval uate our disturbance simu 
lations. The first run utilized preoptimization parameters {Table 2, initial parameters) to provide a benchmark 
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Table 3.  List of Simulation Scenariosa 
Simulation Scenario Parameter Set Disturbance Type 
Preliminary run initial set none 
Undisturbed 
UNIF 

optimized set 
optimized set 

none 
30% removal of PFTs 

Gl 00 
E30 

optimized set 
optimized set 

gradual removal of 100% early successional deciduous PFT 
30% removal of early-successional deciduous PFT 

E70 optimized set 70% removal of early-successional deciduous PFT 
E85 optimized set 85% removal of early-successional deciduous PFT 
E 100 optimized set 100% removal of early-successional deciduous PFT 
M70 optimized set 70% removal of midsuccessional deciduous PFT 
M85 optimized set 85% removal of midsuccessional deciduous PFT 
M 100 optimized set 100% removal of midsuccessional deciduous PFT 

aWith the exception of the preliminary run, which ran from 1January 2008 to 31 December 2013, all other scenarios 
ran from 1 January 2001 to 31 December 2101. 

 
 
 

for the evaluation of model optimization. The second and the third runs employed the optimized set of 
parameters as listed in Table 2.We initialized all three simulations using the 2001 census data. For the third 
run, we emulated the gradual mortality of the FASET experimental disturbance by spreading the mortality of 
the early-successional deciduous trees across 2years {Gl 00). On the first day of each month, beginning on 1 
January 2008 and ending 1 January 2010,the disturbance routine killed a fraction of the trees belonging to 
the early-successional PFT.This resulted in 24 events with mortality rates calculated by equation (1), where 
f=l,n=2. 

We compared the two {preoptimization and optimized) control cases' monthly and yearly predictions of NEE 
to the observations collected during 2007, 2010,2011, 2012, 2013, and 2014 at the US-UMB control site. Since 
we constrained the model using fluxes observed in 2008 and 2009, we excluded these years from the 
computation of the model-fit statistics. We evaluated the two control simulations' predictions based on coef 
ficient of determination {r2) between monthly measurements and predictions of NEEand the 6year total NEE. 
We used monthly rather than half-hourly aggregation for evaluation to avoid the effects of trivial correlations 
due to strong diurnal cycles. 

Measured and predicted monthly NEE used in the computation of r2 only included fluxes that occurred when 
instruments were functional and when the measured friction velocity exceeded 0.35 ms-1 [Gough et al., 
2013;Maurer, 2013]. We evaluated biases in our model by comparing yearly NEE and the accumulated NEE 
from 2007 to 2014 with gap-filled observations collected at the US-UMB tower. Since computation of yearly 
carbon fluxes included gap-filled observations, we estimated yearly carbon flux uncertainties by combining 
measurement  and gap-filling uncertainties as detailed in the Appendix  A. Additionally, we compared the 
predicted NEE with observed yearly totals computed using two different gap-fill techniques: the marginal 
distribution sampling {MDS) [Reichstein et al., 2005] and the Max Planck Institute for Biogeochemistry's eddy 
covariance  gap-filling   and  flux-partitioning  tool  {http://www.bgc-jena.mpg.de/-MDlwork/eddyprocl).   We 
evaluated our third simulation, the FASET-like disturbance {Gl 00), against site-level net ecosystem exchange 
observed by the US-UMd disturbance tower from 2009 to 2014. 

 
2.2. Simulation Scenarios of Disturbance Type and Severity 

We ran 10scenarios (Table 3): a control {undisturbed) case and 9 disturbance cases where we tested the influ 
ence of the intensity and type {PFT specificity or which PFT was affected) of disturbance on carbon cycling 
pools and fluxes. The 10 runs began on 01 January 2001, to allow for model spin-up before the prescription 
of the disturbances, and ran for 1OO years. This simulation length allows for 90 years after the prescription of 
the simulations, which is approximately the time that it took for the forest in northern Lower Michigan to 
develop to its current state since the large-scale disturbances that affected the area. 

In the control case, we prescribed the initial conditions directly from the census observations of 2001 and did 
not prescribe disturbances throughout the course of the simulation. In the uniform disturbance case {UNIF), 
we killed 30% of individuals of each size class, regardless of PFT,on the first day of 2010. We ran four distur 
bance cases where only early-successional deciduous trees were killed on the first day of 2010,with varying 

http://www.bgc-jena.mpg.de/%7EMDIwork/eddyproc/
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Figure 1.Optimized ED2 monthly NEE predictions (after calibration) during the model evaluation period. On the left panel, 
the dotted line represents the monthly NEE measured at the US-UMB site,while the solid line represents ED2's predictions. 
On the right panel, the solid line shows ED2's predictions of yearly NEE, while the shaded area represents the observed 
yearly NEE with a 1-standard deviation uncertainty envelope. For a detailed explanation on the computation of C02 flux 
uncertainty computations, refer to Appendix A. 

 
 

intensities: 30% {E30), 70% {E70), 85% {E85), and 100% {El00).We ran three disturbance cases where 70%, 
85%,and 100% of midsuccessional deciduous trees were killed {M70,M85,and MlOO, respectively). 

We tested an additional disturbance scenario emulating the mortality rate in the FASET experiment,where 
we prescribed the mortality of all early-successional deciduous trees gradually, from January 2008 to 
January 2010 {Gl 00). Unlike the other abrupt disturbance scenarios,the mortality imposed under the GlOO 
case was gradual, to better mimic the elongated period of mortality observed after stem girdling at the 
FASET site. The Gl 00 disturbance consisted of 24 monthly events, with mortality rates calculated with 
equation (1). Each event occurred on the first day of each month,from January 2008 to January 2010. 

 
3. Results and Discussion 
3.1. Model Evaluation 

Initial parameter corrections to the late-successional SLA,middle- and late-successional fine root turnover rate, 
Verna"' r9, and Kw for the conifers and middle- and early-successional deciduous PFTs {Section 2.1.3) led to an 
improvement in r2 from 0.77 to 0.92 between model predictions and observations of monthly NEE and 
prevented the unrealistic mortality observed in the preliminary run.After optimization, monthly r2 remained 
equal to 0.92.However,the optimization reduced the differences between the observed and predicted accumu 
lated 6year carbon flux from -30%{preoptimized run) to 8o/o {optimized run).Postoptimization differences were 
mostly driven by larger {less negative) than observed NEE during the summers of 2007 and 2011 and larger 
{more positive) than observed NEE during the winter of 2009 {Figure l, left panel). 

The largest differences between ED2's predictions and the observed carbon flux at the US-UMB tower hap 
pened in 2009 and 2010 {Figure 1).The overestimation of NEE during the year of 2010 could be connected 
to a forest tent caterpillar (Malacosoma disstria) infestation that happened that year and affected both the 
control and FASET plots which would have likely decreased the observed carbon uptake [ Gough et al., 
2013]. However, as it was beyond the scope of this experiment, we did not include the 201O's infestation 
in our simulations. 

As we computed yearly carbon fluxes utilizing gap-filled data,we tested two additional gap-fill techniques to 
evaluate the impact of the chosen method on the model-data agreement. During the period of 2007-2014 
{excluding the optimization years of 2008 and 2009), the total NEE gap-filled  using the artificial neural 
network {ANN) method {see Appendix A) amounted to approximately -14.1MgC ha-1

 When gap-filled 
following the MOS method,the corresponding carbon flux was approximately -16.9 MgC ha-1 Use of the 
Max Planck institute for Biogeochemistry's Eddy covariance gap-filling and flux-partitioning tool resulted in 
carbon flux of -11.6 MgC ha-1 This quick comparison illustrates how the choice of gap-filling technique 
can impact the computation of yearly carbon fluxes, as discussed in detail by Wang et al. [2015]. 
Differences were not so pronounced when we tested the three gap-fill techniques on the US-UMd site,where 
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Figure 2. Left panel: time series of the modeled, monthly, plot-level NEE for the Gl 00 disturbance (gradual 100% removal 
of early-successional trees) from 2007 to 2017.The solid green line shows modeled NEE, while the dotted black line shows 
5 years of observations recorded at the US-UMd tower, which underwent a similar prescribed disturbance in 2008. Right 
panel: solid line represents ED2's predictions of yearly NEE, while the shaded area represents the observed yearly NEE at the 
US-UMd tower with a 1-standard deviation uncertainty envelope. 

 
the ANN, MOS, and the eddy covariance gap-filling and flux-partitioning tool approaches led to an accumulated 
carbon flux of  -18.8MgC  ha -1    -18.0MgC  ha -1 and  -21.0 MgC ha-1   respectively, for 2008-2014. 

, , 

Comparing our gradual disturbance case (Gl 00), u nder which trees of the early-successional decid uous PFT 
were killed from January 2008 to January 2010, with observed fluxes from the US-UMd tower (overlooking 
the FASET experiment), we found that simulations overestimated the i mpact of this disturbance on carbon 
uptake (Figure 2).Our simu lation showed a decrease in carbon uptake following the Gl 00 distu rbance com 
parable to what previous observational studies reported followi ng disturbances of comparable i ntensity, e.g., 
the review article published by Amiro et al. [201OJ summarizi ng several disturbances caused by fire, harvest, 
insect infestation, and hurricanes, the analysis of gypsy moth defoliation in New Jersey, USA published by 
Clark et al. [201OJ and Schiifer et al. [201OJ in which oaks suffered complete defoliation, as well as in the sum 
mary of several insect and pathogen distu rbances affecting 18o/o to 95% of the studied canopies throughout 
the United States and Canada presented by Hicke et al. [2012J. Additionally, some studies showed carbon 
uptake decreases strong enoug h to cause the stand to become a carbon source, e.g., the analysis of spruce 
budworm (Choristoneura fumiferana Clem.) infestation of stands dominated by spruce (Picea sp.) and balsam 
fir (Abies balsamea L.) in eastern Canada presented by Dymond et al. [201OJ, insect defoliation and forest fires 
located i n central Canada published by Fleming et al. [2002J, and the study of pi ne beetle (Dendrodonus 
ponderosae Hopkins) infestations throug hout Canada presented by Kurz et al. [2008J, with i ntensities ranging 
from a few affected trees in some stands up to complete mortality i n other stands. I nstead, fluxes at our site 
displayed unexpected resilience following intermediate  disturbance intensity [Gough et al., 2010, 2013J, 
which ED2 could not reprod uce. 

Our simulations overestimated the impact of the disturbance and the length of ecosystem  recovery during 
the first 4 years following the end of the imposed mortality.The simulated NEE began to show some recovery 
in 2013 (2years after the end of mortality), when the predictions under the Gl OO case approached the 
observed fluxes. The agreement  between the simulation and observations was poor again in 2014, when 
the summer was considerably more prod uctive in reality than i n our simulations (Figure 2). However, in 
2015, carbon uptake increased  and the NEE was agai n under -2.7 Mg C ha-1 yr-1   which is comparable to 
the fluxes in 2013 and 2014 (-2.5 and -2.7 Mg C ha-1 yr-1

 respectively) . The predicted N EE remained 
consistently below the yearly flux of -2.7 Mg C ha-1 yr-1 observed in 2014 unti l 2024 (behavior similar to 
the El 00 curve in Figu re 4), suggesting the end of the predicted postdisturbance period of low 
ecosystem prod uctivity. 

A delay in modeled recovery could be partially explai ned by the mechanism through which the simulated 
forest recovered . The survivi ng middle- and late-successional trees at the FASET plot responded to the 
2008's gird ling event by first i ncreasi ng the photosynthetic rates of leaves from undisturbed trees and then 
by growi ng more leaves on undistu rbed trees in subseq uent years, replacing the lost early-successional leaf 
area by 2011 [Gough et al., 2013J. However, the simulated recovery followi ng the GlOO disturbance occu rred 
mostly by growing newly established middle- and late-successional trees. 

 
 

Yearly NEE 

.. v u , ; .; 
I :: ·· ··· · g-dNOO I I' 

.2L -...'.::;:=== - _:_ - _J 
2008     2009     2010     2011    2012    2013    2014     2015     2016     2017     2008 2009 2010 2011 2012 2013 2014 2015 2016 20 17 

I 
Year Year 



AGU Journal of Geophysical Research: Biogeosciences 10.1002/201SJG003035 

FRASSON ET AL. MODELI NG POSIDISTURBANCE CARBON CYCLE 2186 

 

 

 
 

Another explanation for the overestimation of the recovery time by our simulation could be related to an 
underestimation of the postdisturbance light-use efficiency {LUE). Gough et al. [2013J found that during 
partial defoliation of the stem-girdled trees {peaking in 2010), increased LUE and rapid replacement of leaf 
area by the unaffected trees were responsible for the sustained carbon uptake observed at the treatment site 
following the disturbance. Indeed, the treatment site's canopy apparent quantum yield was higher than the 
control site's following disturbance during all years except 2010,suggesting that rapid canopy physiological 
shifts compensated for a temporary reduction in leaf area from disturbance. 

In our simulations, the removal of LAI, particularly that of the taller cohorts, increased light penetration in the 
canopy. However, increased illumination of previously shaded cohorts in our simulations was insufficient to 
reproduce the observed increase in LUE. This indicates that following the disturbance, the remaining vegetation 
could have a larger light-driven physiological capacity,or in ED2's terminology,the leaf-level quantum efficiency. 
Experimental work conducted by Gough et al. [2013J and Cheng et al. [201SJ show that physiological traits con 
trolling the LUEcould vary over time as the vegetation recovers from a disturbance.However,the model assumes 
that parameter values are fixed properties of the PFT.As a result, ED2 does not represent an essential mechanism 
supporting NEE resilience at the FASET site. Nevertheless, using estimates of apparent quantum yield of the 
canopy from the literature [e.g.,Gough et al., 2013J, to estimate the leaf-level quantum efficiency of each PFT pre 
sents is challenging. For example, deeper light penetration into the canopy following disturbance also increases 
the rate of leaf carbon fixation of formerly shaded vegetation and is difficult to distinguish from enhanced leaf 
physiological competency since both phenomena have similar effects on canopy LUE [Niinemets, 201OJ. 

The adoption of time dependent VcmaX! with higher photosynthetic capacity immediately after a disturbance, 
decreasing asymptotically to the original value of Vcmax could increase the recovery speed and provide a 
mean to better describe the observed results. Alternatively, one could assume that Vcmax and quantum effi 
ciency of the leaves change with tree height,as sun and shade leaves have different responses to increased 
light exposures. Both directions present their own challenges, as the parameterization of dynamic Vcmax 
would require measurements of carbon flux following disturbances of different intensities and affecting 
different PFTs. The latter approach would require measurements of quantum efficiency and Vcmax to be made 
at different canopy levels and the scaling of the measured parameters from leaf-level to canopy level, which 
is often not trivial. 

3.2. Postdisturbance Recovery 

In the control case, the model showed a continuous decline of the early-successional PFT aboveground 
biomass {AGB), which was slowly replaced by the growing midsuccessional PFT AGB {Figure 3a). The gradual 
replacement of early-successional by midsuccessional trees predicted by our simulations is consistent with 
the  behavior observed  in the 2001 and 2010 censuses  (Table 1) and  previously  reported for our site 
[Gough et al., 201OJ. According to the predicted distribution of AGB, the early- and middle-successional spe 
cies will compose a similar portion of the total AGB by 2023 and the late-successional AGB will remainstable. 

 
The gradual death of the early-successional deciduous trees observed at the UMBS forest {decrease in basal 
area shown under Table 1) and simulated in the control scenario {see Figure 3a) reallocated growth-limiting 
resources to the midsuccessional deciduous PFT [Gough et al., 2013;Matheny et al., 2014;Nave et al., 2011J. 
Upon accessing the newly available resources, the simulated midsuccessional PFT responded with a sharp 
increase in AGB from 2011 to 2022 {Figure 3a). This period of simulated increases in AGB corresponds with 
observed increases in C02 uptake from 2011 to 2013 {Figure 1). Eventually, the simulated increased produc 
tivity tapers off for two reasons: (1) increased heterotrophic respiration caused by the decomposition of the 
dead organic matter and (2) the stagnation of the midsuccessional growth. 

In the uniform disturbance case {Figure 3b),we found a similar decreasing trend in early-successional AGB 
that persisted after the disturbance. The midsuccessional PFT grew rapidly after the disturbance event, 
recovering 80% of the lost AGB over the course of 12years. The E70 and E85 cases showed similar behaviors 
{E85 case shown in Figure 3e). In both E70 and E85, the midsuccessional PFT showed rapid aboveground 
biomass growth for the 10 years following the disturbance.After this period, the growth of the midsuccessional 
PFT slows to a rate similar to that of the control case. 

The El00 {instantaneous mortality of all early-successional deciduous trees pictured in Figure 3f) and Gl 00 
{gradual mortality of early-successional deciduous trees over 2years) showed similar results and differed only 
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Figure 3. Modeled time series of the aboveground biomass in 3 PFrs, representing early-, middle-, and lateuccessional 
deciduous trees in UMBS during the first century of simulations: (a) Control case. (b) Uniform disturbance case (UNIF).The 
sudden drop in the AGB of the three PFrs represents the disturbance event, when 30% of all trees were killed. (c) Disturbance 
case (M85),where 85% of the midsuccessional trees were killed. (d) M 100 case where all midsuccessional trees were killed. 
(e) Case E85,where 85% of all early-successional trees were killed. (f) Complete removal c:i early-succession al trees (case El00). 
The vertical red line present in all panels designates the year of the disturbance. 

 
 

during a short period immediately following the initial prescription of the disturbance. When compared to 
ElOO, the gradual GlOO case showed increased loss of NEE but faster recovery in the S years following the 
disturbance, and was closer to the gradual mortality of trees in FASET and the observed response of NEE 
[Gough et al., 2013]. During the first 14 postdisturbance years, midsuccessional AGB sustained greatest 
growth in the GlOO and ElOO scenarios relative to other simulated disturbance scenarios {Figure 3f). Unlike 
the milder early-successional disturbances {E30, E70,and E85), after the end of GlOO and El00 events, there 
were no early-successional trees left,which prevented further recruitment of early-successional trees. For this 
reason, there was no recovery of the lost early-successional AGB {Figure 3f). 

Increasing disturbance intensities among the E-type {from 30% to 100%) disturbances was associated with more 
rapid growth ri the midsuccessional AGB {Figures 3e and 3f). Within our simulations, the mortality imposed by 
the disturbance event resulted in increased resource availability to the surviving cohorts, which may explaintheir 
increased postdisturbance growth rate.More intense disturbances result in higher resource availability among 

4 



AGU Journal of Geophysical Research: Biogeosciences 10.1002/201SJG003035 

FRASSON ET AL. MODELI NG POSIDISTURBANCE CARBON CYCLE 2188 

 

 

 
 

 
 

Figure 4. nme series of modeled,monthly,plot-level NEE in the full 100 years ci simulations, for cases of no disturbance (control, 
solid black line), uniform disturbance (UNIF, dotted magenta line), ElOO disturbance,(100% removal of early-successional 
deciduous PFT,solid green line),and Ml00 (100% removal of midsuccessional deciduous PFr,dotted red line). The 5year cycles 
in NEE visible in this figure are a result of recycling 5years of meteorological forcing throughout the simulation. 

 
the remaining trees both by reallocation of nutrients contained inthe dead trees and bydiminished competition, 
as the disturbance decreases the number of trees competing for light water, carbon, and nitrogen. 

Figures 3c and 3d show the impact of hypothetical disturbances affecting midsuccessional cohorts only. In 
the scenario M85 (85% removal of midsuccessional deciduous trees, shown in Figure 3c), the remaining 
midsuccessional trees show increased growth following the 201O's disturbance. However, this growth is 
slower than observed under the E85 and El00 cases and AGB lost to the M85 event is not fully recovered 
by the end of the simulation. Under the MlOO case (100% removal of midsuccessional deciduous trees, pic 
tured Figure 3d), the removal of the midsuccessional trees reduces the mortality rate of the early-successional 
deciduous cohorts and is followed by a growth of late-successional AGB. However, the growth of the 
late-successional deciduous AGB is not enough to fully compensate for the loss in midsuccessional biomass. 

Simulations targeting different successional cohorts, early or middle, suggest that the recovery time of NEE 
depends on the PFT affected by disturbance. Under the UNIF and E30, E70, E85, and El00 disturbance 
simulation-scenarios and in our FASET observations, the initial disturbance period was followed by recovery 
with higher C02 uptake {more negative NEE) than the predisturbance baseline {El00, Ml00,and UNIF shown 
under Figure 4). However,disturbances exclusively affecting the midsuccessional PFT (70%,85%,and 100% 
mortality rates under cases M70, M85, and Ml00,respectively) never experienced higher C02 uptake than the 
control scenario {Ml00 shown under Figure 4). The annual NEE under the E70, E85, El00, and UNIF scenarios 
reached the same level as annual NEE predicted by the control simulation in 2015. However,the ElOO and 
UNIF disturbances of equivalent intensity {both scenarios affected 30% of the stand's LAI) differed in their 
impact on postrecovery carbon fluxes. While UNIF carbon uptake began to decrease after 2023, ElOO 
sustained the elevated carbon uptake rates until past 2035. Interestingly but not surprisingly, since UNIF 
did not change the forest relative composition, NEE under the UNIF disturbance converged to similar levels 
as the control simulation and after 2062 became indistinguishable from the control scenario. 

The lack of recovery observed  of the M-type disturbances {disturbances  affecting 70% to  100% of the 
midsuccessional deciduous PFT) could  be related to the current successional dynamics taking place in 
northern Michigan [Gough et al., 201OJ. In the E-type disturbances {disturbances exclusively affecting early 
successional deciduous PFTs), we removed only early-successional deciduous trees, which were already in 
decline at this site, consequently freeing resources to longer-lived growing midsuccessional deciduous trees. 
After an initial period of less intense carbon uptake following the E-type disturbances,which lasted from 4 
{E30, E70, and E85) to 5years {ElOO), the disturbed simulations showed stronger carbon uptake. Whereas 
in the M-type cases, the prescribed disturbance affected the growing midsuccessional deciduous trees, which 
are the primary successional cohort supporting forest growth as early-successional trees decline [Gough et al., 
201OJ. Consequently, the period of increased carbon uptake was attenuated {M70) or did not occur {M85 and 
Ml00) following mortality of middle-successional trees. 
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Figure 5. The effect of different levels of disturbance on the accumulated net ecosystem exchange. This effect was 
measured as the relative deviation from the accumulated NEE in the control case, therefore,dimensionless. Negative 
values represent times when the accumulated NEE since the beginning of the simulation for a particular scenario was less 
than the accumulated NEE at the control case. The left panel compares four different intensities of disturbances affecting the 
early-5uccessional deciduous PFT.The middle panel compares three different disturbance intensities affecting the midsuccessional 
PFT only. The panel on the right compares the uniform distribution (UNIF) with ElOO and MlOO disturbances. The 5 year cycles 
visible in this figure are a result of recycling 5years of meteorological forcing throughout the simulation. 

 
 

The lengthoftime needed for the accumulated NEE from a particular scenario to equal the accumulated NEE 
in the control {undisturbed) scenario represents an integrative metric of ecosystem recovery. By analyzing 
accumulated NEE since disturbance instead of individual years, we can assess whether longer-term increases 
in carbon uptake following the E-type and UNIF disturbances can compensate for reduced carbon uptake 
immediately after disturbance. 

Focusing on the E-type disturbances {Figure 5, left panel), increasing disturbance intensity led to more 
pronounced decreases incarbon uptake inthe first 3 {E30) or 5years {El OO).Under the E30 case, the cumulative 
difference in NEE betweendisturbed and control scenarioswas lowest in 2013 {-5%), after which the yearly NEE 
of E30 surpassed that of the control. The short-term (0 to 5 years) cumulative reduction in NEE increased with 
disturbance intensity, declining relative to the controls in 2013 by -12.7% and -15.6% in E70 and E85 
scenarios, respectively; however, the El00 disturbance scenario did not reacha minimum until2015, amounting 
to a reduction of -19.5% relative to the control scenario, indicating that the effects of the most intense 
disturbance were stronger and lasted longer. 

Among E-type disturbances, the time required to surpass the accumulated NEE of the simulated control 
forest increased with disturbance intensity. For example, the accumulated NEE under the E30 case first 
surpassed the accumulated control NEE in 2022,whereas this event happened for E70 in 2025, in 2026 for E85 
2026, and 2029 under the El 00 case. Additionally, increasing mortality of already declining early-successional 
species led to increased long-term (30 to 100years) carbon uptake. ElOO and G100 both showed greater 
accumulated carbon uptake of approximately 20% relative to the control at the end of the 1OO year simulation, 
while E70 and E85 showed increases of 14% and 15%, respectively {Figure 5, right paneO. Such long-term 
increases in carbon uptake following disturbance are consistent with simulation results reported by Albani 
et al. [201OJ, who predicted an initial decrease in carbon uptake after a simulated hemlock woolly adelgid 
(Adelges tsugae Annand) infestation, followed by an average postrecovery increase in carbon uptake of 12% 
throughout the eastern United States.However, ecosystems subjected to repeated disturbance events of high 
intensity,e.g.,recurrent insect defoliation events, may not have the chance to recover from each event [Medvigy 
et al., 2012] and consequently not show the predicted long-term increase carbon uptake. 

The initial negative impact on carbon uptake of disturbances affecting the midsuccessional deciduous PFT 
was similar to early-successional disturbances. Higher disturbance intensities caused larger initial 
decreases in carbon uptake {Figure 5, middle panel) and minimum NEE to occur later (2017 under M70, 
2019 under M85, and 2025 under Ml00). However, the behavior of the middle- and early-successional dis 
turbances became quite different following the trough in NEE. Twenty-five to 30years after the occurrence 
of early-successional and UNIF disturbances, the ecosystem carbon uptake surpassed that of the control 
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scenario. Nevertheless , we never observed such increase in ecosystem prod uction when we distu rbed the 
midsuccessional   vegetation. 

Greater long-term {decades after the disturbance) carbon uptake following the mortality of early- {E-type) 
rather than middle- {M-type) successional trees may be associated with the first disturbance targeting short-
lived trees past peak growth and the second targeti ng longer-lived vigorously growing trees [Nave et al., 
2011]. Increasing cumulative productivity with increasing mortality of early-successional trees indicates that, 
at the current ecological successional stage, communities of midsuccessional trees are more productive while 
declining early-successional trees contribute proportionally less to ecosystem production. This is supported 
by the smaller increase i n long-term carbon u ptake {6%) seen under the UNIF case, which removed a 
smaller percentage of the less prod uctive early-successional trees and also removed an equal fraction of 
midsuccessional trees, as well as by the decrease in both short- {few years to a decade) and long-term 
{decades to a centu ry) carbon uptake under disturbances that affected the midsuccessional deciduous PFT. 
Despite the lack of an experi mental study comparable to FASET that assesses the effects of the removal of 
midsuccessional deciduous trees, our simulations, along with observations from the FASET site [Gough et al., 
2013; Stuart-Haentjens et al., 2015], suggest that disturbances that hasten ecological succession can have 
positive impacts on long-term carbon budgets and reinforce the importance of correctly prescribing which 
PFTs are affected by simulated disturbances. 

 
4. Conclusion 

Our ED2 simulations demonstrated that under nonstand-replacing disturbances of moderate i ntensity, the 
impacts on postdisturbance N EE and recovery time were substantially different depending on the successional 
status of the affected trees and the level of disturbance intensity. While the mortality of 30% to 100% of the 
early-successional deciduous trees led to a decrease in carbon uptake immediately after the disturbance, it 
was followed by increased carbon uptake i n the followi ng decades.The same behavior was not observed under 
the simulated midsuccessional mortality, nor u nder the nonspecific disturbance. The mortality of 70% to 100% 
of the midsuccessional deciduous trees led to a decrease i n carbon uptake both immediately as well as decades 
after the disturbance, with increasing mortality associated with a more pronounced decrease i n carbon uptake. 
Moreover, the NEE under the tested nonspecific disturbance slowly recovered and became i ndistinguishable 
from the control 52years after the treatment. Our findings stress the importance of correctly specifyi ng the suc 
cessional status of trees affected by a modeled disturbance. Additionally, our results suggest that ecosystems 
may recover more quickly from disturbances that selectively affect tree populations or communities al ready 
in decline, by reallocating resources to vigorously growi ng trees. 

 
Appendix A: Flux Data Processing and Uncertainty Analysis 

 
The optimization procedu re requi red knowledge of the monthly and yearly net ecosystem exchange {NEE) 
and sensible (HJ and latent {Le) heat fluxes as well as an assessment of their u ncertainty. We used the 2010 
fluxes measu red at the US-UMB tower for model optimization. We employed the US-UMB data from the years 
of 2007, 2008, 2009, 2011, 2012, 2013, and 2014 for model evaluation. 

We processed the data following AmeriFlux convention. The detailed data processing is described in Maurer [2013] 
and Gough et al. [2013]. Data were filtered using a friction velocity, u*, threshold following Reichstein et al. [2005]. 
Specific seasonal threshold values used for our site are listed in Maurer et al. [2013]. We separated the year in three 
seasons: dormant, early growth, and late growth. During the dormant season, we attributed all carbon flux to 
respiration {f?e), {i.e., no photosynthesis). During the early- and late-growth seasons, all nighttime carbon flux 
was due to Re· As large gaps were present in the Re data series {both because no growing season daytime obser 
vations were possible and the fact that the u* filter tends to eliminate several adjacent flux values), we gap-filled Re 
by modeling through the use of equation {A1), which was evaluated for our site by Schmid et al. [2003]: 

 
Re = a·exp(b·Tsoil) + c·SM + d·l n(SM) {A 1) 

where a, b, c, and d were empirically fitted constants, T50n stands for the soil temperatu re at 20 mm, and SM 
for the soil moisture. Equation {A1) was also used to model Re at known half hours for error calculation 
purposes. The difference between  the observed and  modeled  Re was used to estimate the gap-filling error. 
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We subtracted the modeled daytime Re from the observed carbon flux to determine the observed gross pri 
mary prod uctivity {GPP). We used the artificial neu ral network {ANN) method to gap-fill GPP as descri bed in 
Morin et al. [2014a], which is an expanded version of the approach developed by Papale and Valentini [2003]. 
The AN N method creates empirical models with user defined predictor variables as the parameters. We used 
air temperatu re (T ) , relative humidity {rH), total PAR, diffuse PAR, Albedo, SM, T , and wi nd velocity as the 

0 5011 

predictor variables.These variables are not dependent on turbulence and were measured by robust sensors 
with only sparse data gaps. 

We were therefore able to gap-fill the predictor variables prior to use in the ANN by using a linear periodic 
method, which is suitable for short, sporadic gaps. The ANN first normalized all variables between 0 and 1. 
It then took the predictor variables, assigned them random  weights to each, and passed them through a 
hyperbolic tangent sigmoid {tansig) transfer function to prod uce a "hidden -layer" of 12 nodes. This layer 
was passed through a second tansig transfer function to generate a hidden-layer with five nodes. This was 
then passed th roug h a final tansig transfer function to produce the output layer. 

The AN N used a random 50% of the data to parameterize the training set, another nonoverlapping 25% to 
validate the parameter estimates, and the remaini ng 25% to the test the model {i.e., calculate r).The mini 
mum permissi ble r2 set for the ANN model was 0.8. lf the output layer was able to meet or exceed this value, 
we took the output layer as one modeled realization of G PP. If not, the process was repeated u ntil a suitable 
model realization was found. The parameterization of the AN N models is done with a random nu mber gen 
erator and is allowed to converge to the observed val ues. Because of this, there are endless possible models it 
may generate to replicate a given data stream. For our purposes, no one model is more valid than any other, 
and to mitigate the possibility of an erroneous model, we generated 1000independent model realizations for 
GPP and took the average of these realizations as the final modeled val ue. Specific information regarding the 
AN N setup and approach can be found in Morin et al. [2014a] and Morin et al. [2014b]. 

We quantified the measurement uncertai nty for GPP using the approach described by Hollinger and Richardson 
[2005], which considers the differences between observations that were separated by 24 h as an indication of 
random measurement error, provided that the envi ronmental conditions under which they were taken were 
similar. The criteria to establish the simi larity of measurement conditions were as follows: PAR measurements 
did not differ by more than 75µmol m-2 s-1 the air temperature was within 3"C, and the average wind speeds 
measured at both times were not more than 1 ms-1 apart. To each half-hour with valid measurements we 
added noise, which we consider to have a double-exponential distribution with zero mean and the scaling 
parameter estimated from the variance of the measurement error estimates [Richardson et al., 2006]. 

We used the spread of all 1000 realizations of the AN N to characterize the variabi lity of the gap-filled G PP data 
points. For each gap-filled half-hour, we picked one of the 1000 possible estimates for that half -hour, which 
came from the different realizations of the AN N. We computed the monthly and yearly totals then repeated 
the procedure 1000 times. At the end of the proced ure, we obtained 1000 estimates for each month's fluxes 
and 1000 estimates for the yearly flux. 

Following the completion of the Richardson and Hollinger [2007] proced ure, we used a Monte Carlo simu la 
tion to combine the uncertai nty due to measurement errors and the uncertainty from the gap-filling proce 
d ure. We averaged all estimates for each month as the observed flux for that month and the standard 
deviation of the monthly estimates as the uncertainty for that specific month. Similarly, we calcu lated the 
yearly flux as the average of the yearly flux estimates, whi le the u ncertainty was represented by the standard 
deviation of the yearly flux estimates. Since latent and sensible heat fluxes were not gap-filled, their uncer 
tainty only reflects measurement errors. 

For the eval uation of possible measurement biases introduced by the gap-fill method, we tested two 
additional gap-filling methods, i.e., the marginal distribution sampling {MDS) by Reichstein et al. [2005] and 
the  Max  Planck I nstitute  for  Biogeochemistry's eddy  covariance  gap-filling  and  flux-partitioni ng  tool 
{http://www.bgc-jena.mpg.de /-MDlwork/eddyprocl). The MDS method consists of replacing missing NEE 
values by the average NEE observed under similar meteorological conditions and contained i n a time-wi ndow 
of ± 7 days from the missi ng value. Meteorological similarity was defined as two half-hours when the average 
net radiation , air temperature, and vapor  pressure  deficit did  not deviate by  more than  50Wm-2  25"C, 
and 5.0 hPa, respectively. The second additional gap-filli ng method is based on Falge et al. [2001] with the 

http://www.bgc-jena.mpg.de/%7EMDIwork/eddyproc/
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addition of the temporalautocorrelation of fluxes and the conditioning of fluxes by meteorological variables as 
described in Reich5tein et al. [2005]. 

The eddy covariance gap-filling and flux-partitioning tool [Max Planck Institute for Biogeochemistry, 2011] classifies 
gaps into three groups.In the first group,NEE is missing {either due to instrument failure or insufficient turbulent 
mixing), but all meteorological data  are available.In this situation,meteorological similitude can be tested using 
the same conditions as identified by Reich5tein et al. [2005]. In the second group,in addition to a missing NEE 
value, meteorological variables {air temperature or vapor pressure deficit) are missing as well, but radiation is 
available. In this case, meteorological similitude is based solely on solar radiation. Under the third situation, 
radiation is also missing. In the first and second scenarios, the algorithm searches for half-hours with similar 
meteorologica l conditions contained within a 7 day window. If no NEE data are available inside this win 
dow, the searchis expa nded first to 14 days then 28 or 56 days as needed, with the wider windows flagged 
as less reliable. Under the third condition, the missing value is obtained by linear interpolation between 
available adjacent information with an initial time window of 0.5 days, which can be extended to up to 
2.5 days in the absence of data. 
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