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Lugworm irrigation and nitrogen cycling

Abstract

Benthic infauna in marine sediments have well-documented effects on
biogeochemical cycling, from individual to ecosystem scales, including stimulation of
nitrification and nitrogen removal via denitrification. However, the effects of
burrowing depth and irrigation patterns on nitrogen cycling have not been as well
described. Here we examine the effects of lugworm behavior on sediment nitrogen
cycling using a reaction-transport model parameterized with literature and
laboratory data. Feeding pocket depth and pumping characteristics (flow rate and
pattern) were varied, and rates of nitrification, denitrification, and benthic exchange
fluxes were computed. As expected, more intense burrow irrigation stimulates
denitrification and coupled nitrification-denitrification. At high pumping rates and
low sediment oxygen consumption rates (~10-¢ mol m-3 s-1), simulation results show
a decrease in rates of nitrification and denitrification with decreasing burrow depth
due to incomplete consumption of injected oxidants. Model results also suggest that
discontinuous irrigation leads to temporal variability in sediment nitrogen cycling,
but that the time-averaged rates do not depend on the irrigation pattern. We identify
1) the poorly constrained chemical composition of lumen fluid injected into
sediments and 2) the response of microbial activity/distribution to oscillating redox

conditions as critical knowledge gaps affecting estimates of sediment N removal.

Keywords: Arenicolid, bioirrigation, benthic-pelagic coupling, denitrification
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Lugworm irrigation and nitrogen cycling

Introduction

Nitrogen is an essential nutrient in marine systems that can control
productivity and - in excess - lead to coastal eutrophication and hypoxia (Diaz &
Rosenberg 2008, Pearl & Piehler 2008, Canfield et al. 2010). Eutrophication and the
subsequent advent of coastal ocean hypoxia can have severe negative effects on the
marine community, with pronounced impacts on benthic macrofaunal diversity and
composition (Levin et al. 2009, Zhang et al. 2010) as well as individual behavior
(Riedel et al. 2014). These impacts in turn compromise the ecosystem services that
the benthos provides, including organic matter recycling and nitrogen removal
(Cloern 2001, Diaz & Rosenberg 2008). The loss of these essential ecosystem
functions can have wide-ranging ecological consequences, even exacerbating the
hypoxia problem by enhancing nitrogen recycling rather than removal (Kemp et al.
2005).

One of the most significant nitrogen sinks in coastal environments is
denitrification, whereby nitrate is reduced to molecular nitrogen gas and thus
becomes biologically unavailable. Denitrification is inhibited by oxygen, and is
typically confined to sediments where the aerobic degradation of organic material
exhausts dissolved oxygen. Nitrogen is supplied to the sediment both via transport
from the overlying water, and from organic matter degradation, which supplies
ammonium that undergoes nitrification to nitrate and subsequently can be
consumed through denitrification by coupled nitrification-denitrification (Seitzinger
1988, Galloway et al. 2004). Efficiently coupled nitrification-denitrification is reliant

on the close proximity of oxic and anoxic zones in sediments, and so the fate of
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Lugworm irrigation and nitrogen cycling

nitrogen is affected heavily by sediment oxygen distribution (Kristensen et al. 1987),
which in many coastal sediments is substantially influenced by macrofauna (e.g.
Volkenborn et al. 2012).

Benthic infauna can significantly enhance rates of elemental cycling
(Henriksen et al. 1983, Huettel 1990, Aller & Aller 1998, Banta et al. 1999) and alter
the distribution and cycling of nitrogen through a variety of means. At the most basic
level, the formation of burrow structures enhances benthic-pelagic coupling by
creating a larger surface area for diffusive exchange (Aller 2001). Burrowing also
accelerates the dispersion of solid particles - including organic matter - in the
sediment (Fornes et al. 1999, Berg et al. 2001), and in large-scale Arenicola exclusion
experiments, Volkenborn et al. (2007a) observed significant changes to both
sediment structure and composition as a result of the presence or absence of adult
arenicolid polychaetes. These changes directly affect the permeability of sediments,
enhancing the transport of solutes caused by advective flow. At the burrow scale,
irrigation in permeable sediments results in the injection of oxic seawater into
otherwise reducing sediment (D’Andrea et al. 2002, Waldbusser & Marinelli 2006,
Volkenborn et al. 2010), which powers a cascade of redox reactions. However,
although the individual time-averaged effects of bioirrigation have been extensively
studied and modeled, ecosystem function of complex communities (as measured by
e.g. remineralization rates) is often poorly estimated by summation of the known
individual effects (Waldbusser et al. 2004).

One of the key challenges in predicting the function of complex ecosystems is

the delineation of relationships between community characteristics and ecosystem
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function. Several studies have documented statistically significant relationships
between ecosystem function and biogeochemical settings, macrofaunal diversity or
density (Emmerson et al. 2001, Marinelli et al. 2003, Waldbusser et al. 2004, Norling
et al. 2007, D’Andrea et al. 2009, Michaud et al. 2009, Waldbusser & Marinelli 2009),
but these correlations tend to be unable to entirely predict ecosystem function
(Waldbusser et al. 2004, Norling et al. 2007). This may be due in part to variations in
organism behavior affecting burrow spacing - which can alter benthic oxygen fluxes
(Dornhoffer et al. 2012) and rates of nitrification and denitrification (Gilbert et al.
2003) - or burrowing depth, which could potentially impact oxygen distribution
(Michaud et al. 2009) and fluid residence times (e.g. Santos et al. 2012).

Our limited knowledge of the importance of variations in organism behavior
is related at least in part to the scarcity of measured reaction rates at the spatial and
temporal resolution necessary to capture redox oscillations in the vicinity of burrows
(Marinelli & Boudreau 1996, Volkenborn et al. 2010, Volkenborn et al. 2012).
Numerical reaction transport models of multiple chemical species can help fill this
gap by providing high-resolution calculated concentration fields and reaction rates.
In this paper we present a modeling study parameterized with laboratory and
literature data to determine the effects of a common lugworm, Abarenicola pacifica,
on sediment nitrogen cycling. Lugworms (Family Arenicolidae) are a group of
polychaete annelid commonly found in sandy coastal areas across a worldwide
distribution. These head-down deposit feeders are considered ecosystem engineers
because their presence and actions have a formative effect on their ecosystems,

influencing the physical, chemical, and ecological makeup of their communities
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(Volkenborn et al. 2007a, Volkenborn 2007b). Specifically, we investigate 1) to what
extent increasing burrow irrigation rates increase rates of nitrogen cycling, 2) the
extent to which changes in burrow depth alter the rates of nitrification and
denitrification, and 3) the implications of different irrigation patterns, particularly
the importance of continuous vs. discontinuous irrigation. We use the model results
to yield insight into the major controls of benthic nitrogen cycling and highlight

important areas for future investigation.

Methods
Microcosm Methods

In order to determine the impacts Abarenicola pacifica has on solute
exchange, five microcosms (15 cm radius by 45 cm deep) were established and filled
with homogenized sediments to a depth of 30 cm, which was allowed to settle for 2
weeks. Sediment and organisms were collected from tide-flats in Yaquina Bay, OR,
USA, and microcosms were maintained in a flow-through seawater tank at the
Hatfield Marine Science Center, Newport, OR. Salinity and temperature of incubation
tanks were subjected to variations in source water from Yaquina Bay and were 28-30
and 8-12°C, respectively. After 2 months acclimation, fluxes of oxygen, ammonium
and nitrate were measured in closed incubations with magnetic stirrers attached to a
fishing wire inside the microcosm to agitate overlying water without creating radial
pressure gradients. Incubations were run on December 20 and 30, 2009, and January
6 and 20, 2010. During each incubation, overlying water samples (~5 ml) were taken

every 1-1.5 hours until either oxygen levels dropped to 50% of the starting value or 4
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samples were taken. In all cases, at least 3 data points were collected, and the change
in overlying water concentration was used to compute benthic fluxes. Oxygen
samples were measured with an oxygen optode (PSt1, PreSens), and nutrient
samples were 0.2 um filtered then frozen in sterile sample vials. Nutrient samples
were analyzed colorimetrically following the protocols of Waldbusser & Marinelli
(2006).

Sediment reaction rates were determined at the termination of the
microscosm study (Feb 1, 2010). Approximately 2 ml sediment samples were
collected at depth intervals of 0-2, 2-5, 5-10, 10-15, 15-20, 20-25 cm and incubated
as a slurry with 2 ml of filtered seawater on a shaker table. Oxygen concentrations
were measured every 2-3 hours and oxygen consumption rates were computed from
the linear decrease in dissolved oxygen over time. Oz consumption rates were then
used to estimate the rate constant for organic matter mineralization (kpom, see

below).

Model Description

A cylindrical model domain with a radius of 10 cm was established, containing
a single lugworm injection pocket located on the central symmetry axis. These
dimensions were chosen to represent typical organism densities (Volkenborn et al.
2007b). The domain encompasses 2 cm of water overlying 20 cm sediment with a
constant porosity of 0.6, and a constant permeability (k=1 x 10-12 m?, after
Volkenborn et al. 2010) except for a feeding column of radius 0.025 m located above

the spherical injection pocket (Huettel 1990, Retraubun et al. 1996), with a
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permeability an order of magnitude greater than the surrounding sediment (k =1 x
10-11 m?) as a first-order approximation. The porosity used is slightly higher than the
laboratory-measured porosity, which has negligible impacts on volume-integrated
reaction rates. The tailshaft was not explicitly modeled because its presence has been
shown to have negligible effects on sediment flow fields (Meysman et al. 2006).

In conjunction with an incompressibility condition (Eq. 1c), fluid flow was
simulated using the Navier-Stokes equation in the overlying water (Eq. 1a). Flow in
the sediment was modeled using the Stokes-Brinkman equation (Eq. 1b), which
neglects the inertial term in the porous medium but accounts for the exchange of

stress between the fluid and the sediment matrix (Bars & Worster 2006):

pZ—I: +pu-Vu=V-[-pl+ terr(Vu + (V)] (1a)
%Z—’t‘ =V. [—pl + £ (ut (V") - 32»_5, (V- u)l] - (%) u (1b)
pV-u=20 (1c)

where o is the fluid density, u is the flow velocity (in the sediment, eq. 1b, this is the

Darcy velocity), p is the pressure, | is the identity tensor, k is the permeability, ¢ is
the porosity, u is the dynamic viscosity of 0.001 Pa-s, and uesis the depth-dependent
effective dynamic viscosity term in the overlying water composed of the dynamic
viscosity plus the eddy viscosity E(z), as determined by the Reichardt equation (Eq.

2), times the fluid density:

E(2) = kzu.[1 — (11/(%)) tanh (22)] (2)

11u
where k is the Karman constant of 0.4, z is the height above the sediment-water

interface in meters and u- is the shear velocity, set to 0.1 cm s'1 (Boudreau 2001). The
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bottom and side of the cylindrical domain were set as no flow boundaries, while at
the upper boundary, atmospheric pressure was imposed, allowing for the flow of
water. The boundaries of the feeding pocket served as the porewater injection site,
with a pumping rate imposed (as an input velocity for a given feeding pocket size). In
simulations with discontinuous irrigation, a 5-minute period of pumping at a
constant rate followed by 5 minutes of resting was imposed, following the general
pumping pattern reported by Volkenborn et al. (2010). In the case of continuous
irrigation, the input velocity was halved relative to that in the corresponding
discontinuously irrigated model, so that the time-integrated flow rate was the same.

The distributions of nine dissolved chemicals were computed as
aC
¢a—=V-(D¢VC)—V-(uC)+R (3)
t

where D is the effective diffusion coefficient, C is the concentration, and R is the net
reaction rate, reflecting the reactions listed in Table 1 within the sediment and set to
0 in the overlying water. In the sediment, the effective diffusion coefficient for solutes
reflected molecular diffusion corrected for tortuosity (D = D,,,;/(1 — In(¢?))), while
in the overlying water, the effective diffusion coefficient also accounted for eddy
diffusion, D = D,,,,; + E(2), using the Reichardt equation (Eq. 2) in order to simulate
well-mixed overlying water above the diffusive boundary layer. This approach was
necessary because advective flow induced by infauna can influence solute
concentrations at the SWI (Volkenborn et al. 2010), and therefore the concentrations
must be imposed sufficiently high above the SWI to avoid interference with this

effect. A reaction network describing the breakdown of organic matter was
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implemented, consisting of 9 reactions (Table 1), following the general approach of
Van Cappellen & Wang (1996) and Porubsky et al. (2011). Nitrate is removed via
denitrification; not included are dissimilatory nitrate reduction to ammonium
(DNRA) and anaerobic ammonium oxidation (anammox). DNRA has been shown to
be responsible for a large portion of nitrate reduction (Christensen et al. 2000, An et
al. 2002, Gardner et al. 2006, Lam et al. 2011), but typically is most prevalent under
sulfidic conditions (Koop-Jakobsen et al. 2010) that are not present in the irrigated
scenarios considered here. Anammox tends to be important under anoxic conditions
with relatively low sediment organic material loading (Engstrom et al. 2005), but in
shallow water coastal environments with plentiful organic matter such as those
modeled here, it generally accounts for a small percentage of total N2 production
(Thamdrup & Dalsgaard 2002, Dalsgaard et al. 2005, Engstrom et al. 2005,
Thamdrup 2012). Finally, assimilation of nitrogen into new biomass could account
for a significant portion of remineralized nitrogen sequestration (Sundbaeck et al.
2004). However, this amount is poorly constrained, and so was not included in the
model formulation.

Rate constants for sediment reactions and their sources are presented in
Table 2. Most were obtained from the literature, though the rate constant of the
organic matter degradation kpon was based on incubation experiments in which the
consumption of Oz was observed over time. Using an assumed reactive dissolved
organic carbon (DOM) porewater concentration of 115 pM, in line with measured
total porewater DOC (Alperin et al. 1999), the average oxygen consumption rate (R)

measured in slurries was used to approximate kpowm, such that kponw = R/DOM and kpom
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= R/POM (POM determined from loss on ignition of sediment). This assumes that
DOM consumption and production from POM are balanced during the slurry
incubation. Although we cannot entirely rule out oxygen consumption by reoxidation
of metabolites, we assume that oxygen consumption directly reflects OM degradation
because lugworm irrigation leads to depletion of reduced metabolites (e.g.
Volkenborn et al. 2007a).

For solutes, domain sides and bottom were impermeable, and a fixed
concentration was imposed at the top and at the injection pocket based on laboratory
data; reduced substances were assumed to have a concentration of 0 at the upper
boundary and in the burrow lumen. The model was implemented in COMSOL
Multiphysics 4.4. The 2D axisymmetric domain was discretized into approximately
50,000 finite elements. Models were run to steady state using generalized-alpha
time-stepping (Chung et al. 1993); in the case of discontinuous models a maximum
time step of 50 s was imposed in order to properly capture temporal variability over
a pumping cycle.

To document the effects of burrow depth, feeding pockets were established in
the models at 5, 10 or 15 cm depth. Additionally, in order to examine the importance
of environmental context, the rate constants of organic matter mineralization and
nitrification, and the concentrations of NO3z and DOM in the injected porewater were

varied.

Results

Microcosm
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Ventilation of burrows by A. pacifica led to the formation of deep oxic pockets
in otherwise anoxic sediments. The typical Oz penetration depth (as indicated by the
redox color discontinuity) was 1 - 2 mm below the sediment-water interface, except
around the feeding pocket, where sediments were oxidized more uniformly in the
microcosm around the feeding pocket. Oz consumption rates measured in slurry
incubations of microcosm sediment were 1.17 * 0.49 (1 SD) umol m-3s-1, giving
values 0of 1.017 x 10-5 s’ and 7.9 x 10-9 s'1 for kpom and kpom, respectively (using a POM
concentration of 150 mol m-3 based on loss on ignition). Nitrate and oxygen fluxes
measured in the microcosm experiments were on the order of 1 and 50 mmol m-2 d-1,

respectively (Table 3).

Model simulations

Pressure imposed by lugworm irrigation leads to significant fluid flow in the
sediment, with majority of the velocity being in the vertical (z) direction, particularly
in the feeding column. There is also significant downward and horizontal velocity in
the immediate vicinity of the feeding pocket, but these components of the velocity
decrease quickly with increasing distance from the feeding pocket (for a visualization
of such flow fields see Meysman et al. 2005). The injection of oxic overlying water
into otherwise anoxic sediment porewater results in the formation of a volume of
oxygenated sediment around the feeding pocket. Due to the higher permeability of
the feeding column, the simulations show sediments directly above the feeding
pocket that are more oxidized than the surrounding sediment (Fig. 1A). The upward

advection caused oxygen penetration depths at the sediment-water interface (SWI)
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to be very small (less than 1 mm) and when high advection velocities are imposed,
the oxic porewater from the burrow is ejected from the sediment to the overlying
water. When oxygen is consumed rapidly relative to advection, lugworm-induced
advective flow leads to the ejection of anoxic porewater (cf. results in Volkenborn et
al. 2010). The input of nitrate at the injection pocket also stimulates denitrification,

which extends from areas with low oxygen levels out into the anoxic zone (Fig. 1B).

Effects of burrowing and irrigation behavior

The model simulations show a clear impact of the amount of fluid pumped on
depth-integrated rates of denitrification (Fig. 2). Higher flow rates, typically
corresponding to larger organisms, lead to increased areal rates of denitrification;
additionally, a decrease in the flow rate through the sediment diminishes the effect of
feeding pocket depth on denitrification, especially in the case of slow rates of organic
matter oxidation (kpom = 1 x 10-> s71). In the case of environments with faster rates of
organic matter oxidation, all nitrate injected into the sediment is consumed, so that
denitrification increases linearly above rates of 1 mL min-! up to the maximum
irrigation rates reported for arenicolid polychates. Irrigation intensity also tends to
increase rates of nitrification (Fig. 3), but because this coincides with a large increase
in nitrate supply through the injection of burrow water, an increase in irrigation
intensity lowers the proportion of denitrification coupled to nitrification (Fig. 4).
When ammonium produced by actively respiring and excreting organisms is present
in the burrow water (Kristensen et al. 1991), the initial dip in nitrification with

increased pumping (Fig. 3) is not seen, as the oxidation of injected ammonium offsets
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the decrease in nitrification due to flushing of surficial sediments. Irrigation also
alters the partitioning of oxygen consumption: increasing irrigation rates lead to a
decrease in the overall proportion of oxygen consumed in oxidation of reduced
metabolites as opposed to aerobic respiration, though there is a stimulation of the
absolute rates of secondary metabolite oxidation. In the absence of irrigation (Q =0
mL min-1) oxidation of secondary metabolites can account for more than 50% of
oxygen consumption. This percentage drops very quickly with increasing irrigation
to ~20% at Q = 0.6 mL min-! and ~11% at Q = 1.8 mL min-1in our simulations. This is
because irrigation introduces reactive DOM in addition to oxygen, and the precise
partitioning of oxygen consumption is dependent on the ratio of oxygen to carbon in
the burrow lumen fluid, even though the overall pattern of partitioning remains the
same.

In addition to showing strong effects of irrigation intensity, reactive transport
modeling reveals a substantial impact of burrow depth on sediment nitrogen cycling
(Fig. 2). The effect of burrow depth depends on sediment organic matter reactivity,
with faster organic matter breakdown diminishing the impact of feeding pocket
depth on sediment denitrification. At low to intermediate oxygen consumption,
indicative of sediments with relatively low organic matter content, deeper burrows
lead to a higher predicted nitrification (and by extension, coupled denitrification)
when compared to shallow burrows. However, faster rates of OM degradation lead to
complete consumption of injected solutes regardless of burrow location, negating the

effects of burrow depth seen in less reactive sediments (Figs. 2 and 3).
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Importance of continuous versus discontinuous burrow irrigation

In simulations with slow organic matter mineralization, kpox = 10-> 571, the
volume of oxygenated sediment - here defined as [0z] > 10 uM - is near-constant
regardless of irrigation type (ranging from 244 cm3 to 152 cm3, depending on burrow
depth), as the drawdown of oxygen is very slow relative to the time scale of pumping.
However, faster rates of organic matter decomposition lead to pronounced
oscillations of the oxygenated sediment volume. When the DOM oxidation rate
constant is increased to 10-3 s-1, the volume of sediment subject to oxic oscillation
(defined as sediment that experiences [0z] greater and smaller than 10 pM within a
flushing cycle) is roughly 30 cm3, which represents approximately 30% of the
maximum oxic volume observed over a pumping cycle for the higher reactivity
setting. This oxic oscillation due to intermittent pumping leads to temporally variable
rates of nitrogen cycling and transport; however, the modeled time-integrated rates
of nitrogen cycling for constant and intermittent pumping are indistinguishable
under the conditions simulated, due to the complete consumption of injected solutes

over the period of a pumping cycle.

Uncertainties in model formulation

Increasing the nitrification rate constant from kyys ~5 uM-1yr1to ~500 uM-1yr1
(after the sensitivity analysis in Na et al. 2008) results in a roughly three-fold
intensification in the areal rates of nitrification (from 0.2 to 0.62 mmol N m-2d-1) in
models with high organic matter loading, and up to a five-fold increase in models

with low OM (from 0.31 to1.52 mmol m~2d-1). The enhanced nitrification in turn
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stimulates denitrification, from 1.6 to 2.0 mmol N m-2d-1in models with high organic
matter reactivity.

The depth distribution of particulate organic matter (POM) has a small effect on
sediment nitrogen cycling, on the order of a 5% reduction in sediment denitrification
when POM is uniform across depth as opposed to an exponential decay with
increasing depth in the sediment: 1.65 mmol m-2d-! denitrification vs. 1.75 mmol m-2
d-1for an irrigation rate of 1.5 mL min-1l. Uniform distribution of reactive POM,
representative of heavily bioturbated sediments, increases the availability of POM at
depth. However, this decreases the depth-integrated rates of both nitrification and
denitrification because more O is used for aerobic respiration rather than

nitrification that fuels coupled denitrification.

Discussion
Model Validation

Model results show that pumping by a lugworm leads to distinct spatial
structuring of concentration distributions, with injected solutes concentrated around
a central feeding pocket (Fig. 1A). Calculated oxygen penetration depths at both the
sediment-water interface and feeding pocket agree well with penetration depths
measured using planar optodes in laboratory aquaria containing Arenicola marina - a
species with similar behavior and irrigation patterns as A. pacifica (Woodin &
Wethey, 2009) - and homogenized organic matter-rich (organic content = 1.5%)
sediment (Timmermann et al. 2006, Volkenborn et al. 2010). Additionally, the

computed horizontal pressure decay of p(r) ~ r112 for a single organism in an
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infinite domain is similar to the peak pressure decay observed in the field following a
defecation event (Wethey et al. 2008), indicating that the modeled physics are
consistent with observations.

In the simulations using the laboratory-derived organic matter degradation
constant (kpom = 10->s1, based on sediment slurry incubations), advective transport
is fast relative to the rate of oxygen and nitrate consumption, which leads to ejection
of Oz-containing porewater from the sediment into the overlying water. However,
faster rates of organic matter oxidation result in the ejection of net reduced
porewater; the modeled ejection of porewater at the SWI compares favorably to
oxygen optode data from Volkenborn et al. (2010) that also show ejection of anoxic
porewater into the overlying water during phases of burrow irrigation (average
irrigation rate = 0.2 - 2.6 mL min-1). This flushing of porewater could serve as an
important source of reduced substances - especially ammonium - for the overlying
water and autotrophic communities at the sediment surface (Marinelli 1992).

Modeled nitrate fluxes are in good agreement with the microcosm data, though
the model consistently underestimates total oxygen consumption and ammonium
efflux compared to the microcosms (Table 3). Modeled fluxes also compare well with
a study by Na et al. (2008), who reported ammonium fluxes out of the sediment of
1.1+£3.2t04.7 £ 7.9 mmol m2d! for acclimated Arenicola marina and mechanical
mimics, respectively. Our modeled nitrate uptake also falls within their measured
range (3.9 £ 4.6 and -3.2 + 4.0 mmol m-2d-! for live worms and mimics, respectively).
The mismatch between our measured and modeled oxygen and ammonium fluxes

likely reflects processes at the sediment-water interface that are not fully reflected in
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the model. CT scans of the laboratory microcosms revealed a significant population
of small meiofauna in the upper layers of the cores, which was not replicated in the
model simulations. Consumption of oxygen and secretion of ammonium by
meiofauna, as well as the bioirrigation caused by their shallow burrowing in the
topmost sediment layer, can increase both the benthic oxygen uptake and efflux of
ammonium. When these potential faunal effects are included as an enhanced
diffusion coefficient (Dennanced = D X 10) and elevated aerobic respiration in the
surface 1 cm layer (a ten-fold increase reflecting meiofauna respiration that was not
captured in our slurry incubation), models predict higher oxygen consumption, ~30
mmol m-2d-1. Notably, because nitrate penetration depths exceed the depth of the
zone inhabited by the meiofauna in the microcosms, the enhanced transport in the
upper layer of sediment has relatively small impacts on the modeled nitrate supply,

leading to a closer match between modeled and measured nitrate fluxes (Table 3).

Energetics of pumping

Although models are able to accurately recreate observed pressure signals
with single organisms, pressure fields computed in multi-organism settings at a
burrow density of 10 ind. m-2 exhibit a significantly smaller horizontal decay of the
pressure signal (p(r) ~ r94) than burrows without nearby neighbors (p(r) ~ r-1.12),
due to the influence of nearby pumping organisms. Despite this impact on pressure
fields, the pumping power equation from Riisgard et al. (1996) - B,(Q) = p * g *
AH,(Q) = Q, where P, is the energetic cost of pumping in Watts, Q is the volumetric

flow rate, and AH, (Q) is the sum of the pressure over the pump system and the
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404 imposed back pressure - shows that these variations result in minimal energetic
405  costs to arenicolids (less than 1% of the total metabolism of a typical arenicolid;
406 Riisgard etal. (1996)). The minimal metabolic effect of interacting pressure fields
407  suggests that interactions between neighboring arenicolids are mediated by factors
408  other than the energetic costs directly associated with burrow irrigation, such as
409 increased food availability from increased downward surface deposit movement or
410 localized depletion of food deposits due to the competitive feeding of multiple

411  arenicolids (Longbottom 1970, Boldina & Beninger 2014).

412

413  The impacts of burrowing and irrigation behavior on nitrogen cycling

414 Burrowing depth and volumetric irrigation rate had major impacts on

415  calculated nitrogen cycling (Figs. 2 and 3). Increases in the irrigation rate Q enhance
416  denitrification (Fig. 2), especially in the case of deeper burrows; shallow burrows can
417  offset the effects of increasing flow rate due to the ejection of reactive solutes. The
418 impacts of irrigation intensity are also dependent on environmental context: at

419  higher rates of organic matter breakdown (Fig. 2, diamonds, representing all

420  simulated burrow depths between 5 and 15 cm), the increase in denitrification is
421 linear above moderate flushing rates (1 mL min-1) regardless of burrow depth. This
422  linear relationship between denitrification and Q is because in highly reactive

423  sediments with excess labile organic matter, denitrification is limited by the supply
424  of nitrate from the overlying water (see e.g. Seitzinger et al. 2006). Furthermore, in
425  highly reactive sediments, our model shows that nitrification tends to decrease with

426  irrigation (Fig. 3), as oxygen is preferentially consumed via aerobic respiration of the
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injected DOM, rather than being used in nitrification, which is kinetically slower than
aerobic respiration.

Burrow irrigation leads to a shift from SWI-dominated to deep feeding
pocket-dominated denitrification. When Q is low, diffusive transport across the SWI
is the dominant process supplying nitrate compared to advective supply from the
feeding pocket, so the steeper concentration gradient in highly reactive sediments
supports higher rates of denitrification relative to sediments with lower organic
matter loading. Thus in poorly-irrigated, SWI-dominated sediments, organic matter
availability and reactivity is a primary control on nitrogen cycling (Fig. 2), which
agrees with previous empirical and modeling studies of denitrification (Berg et al.
2003, Lee et al. 2006). After an initial decline in nitrification related to flushing of
surficial ammonium, both nitrification and denitrification increase with irrigation
rates (Figs. 2 and 3). This represents a switch from a diffusion-dominated
environment, where the SWI accounts for 75% of total denitrification, to one
dominated by advective supply and nitrogen cycling associated with the feeding
pocket. In the latter case, consumption associated with the feeding pocket accounts
for more than 90% of denitrification at high irrigation rates. This is because
irrigation introduces not only nitrate, but also oxygen and dissolved organic matter
(Gardner et al. 1993), which is broken down into ammonium that supplies
nitrification. Our modeled effects of irrigation intensity agree well with findings by
Na et al. (2008) that similarly show an increase in both Nz production as a function of
Q, and a higher rate of nitrification in intensely irrigated microcosms relative to

controls.
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The model results suggest that system responses to changes in burrow depth
are governed by changes in the time scales of competing processes within the
domain, especially the residence time of the injected fluid (Fig. 5). In cases with rapid
consumption of organic matter and corresponding complete consumption of oxygen
and nitrate, feeding pocket depth has minimal effect on nitrogen cycling due to the
complete consumption of nitrate before ejection across the SWI is possible. However,
cases with incomplete consumption of nitrogen due to lower sediment reactivity lead
to pronounced decreases in sediment denitrification for shallow relative to deep
burrows (compare 5, 10, and 15cm depths in Fig. 2; dashed lines in Fig. 5). When
nitrate produced through nitrification - as opposed to injected nitrate - is the
dominant source for denitrification, feeding pocket depth is unimportant (Figs. 3 and
4 at low values of @), because nitrogen produced in situ is rapidly consumed in
denitrification regardless of burrow location.

Our results, particularly uncertainties in the model parameterization,
highlight important knowledge gaps. The oxygen to DOM ratio in injected burrow
water plays a critical part in determining the redox oscillation of the sediment and in
turn the potential for nitrification and denitrification. When levels of oxygen exceed
the available reactive reducing equivalent, the sediment around a feeding pocket
remains oxidized, and denitrification rates are low due to a lack of reactive organic
matter for use in denitrification. Alternatively, injected porewater with a DOM to O
ratio greater than 1 (an excess of DOM) creates oxygen distribution patterns that are
more in line with observations that show areas of oxidized sediment closely

associated with the feeding pocket but extending no more than 2-3 cm into the
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surrounding sediment (e.g., Volkenborn et al. 2010). Although oxygen levels in the
burrow lumen and injected water are fairly well constrained (Volkenborn et al.
2010), there is scant information on the levels of labile organic material or nitrogen
compounds in the burrow lumen. The assumed value of 115 uM C in the burrow
water leads to modeled oxygen concentrations that closely match measured optode
data, but the concentration of DOM nonetheless represents an important area of
uncertainty. Our model results show that system responses to irrigation intensity are
highly dependent on burrow water composition, so knowledge on the chemical
makeup of burrow lumen water, which may differ from the overlying water due to
microbial processes associated with the burrow lining, is critical to accurately

predict infaunal effects on nitrogen cycling.

Benthic Context and Controls on Nitrogen Cycling

Extrapolating our predicted denitrification rates for individual organisms to
the field scale using an organism density of 32 ind. m-2, which is typical for a sand flat
dominated by A. marina (Volkenborn et al. 2007b), leads to a maximum integrated
denitrification potential of 25 mmol N m-2 d-1. This is very high compared to
commonly reported rates of <1 - 6 mmol N m-2 d-! (Seitzinger 1988), suggesting that
limits on nitrate supply to the anoxic sediment may prevent this maximum from
being reached. This discrepancy may alternatively be due to the fact that some
nitrogen flux measurements may not capture the effects of larger infauna due to the
use of undisturbed cores for measurements (Cowan & Boynton 1996, Eyre &

Ferguson 2002), even though the irrigation rates that are modeled here have



496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

Lugworm irrigation and nitrogen cycling

pronounced effects on nitrogen cycling. Additionally, if larger infauna such as those
modeled here produce relatively low-density burrow openings, their effect may not
be captured if the size of the benthic flux chambers is small relative to inter-burrow
distance; in this case, chambers with a diameter less than 10 cm would potentially
miss burrow openings, especially if burrows are not distributed evenly (Dornhoffer
et al. 2012). Individual variability in irrigation rate and - to a lesser extent — burrow
depth may also explain at least in part the large variabilities in maximum
denitrification rates that have been documented empirically (Stief 2013), further
solidifying the importance of considering infauna when measuring and predicting
system-wide rates of nitrogen reduction.

In most coastal environments with high organic matter loading, our results
suggest that denitrification is controlled by irrigation intensity, which determines the
availability of nitrate. On an areal basis, spatially integrated volumetric rates of
biologically driven fluid exchange between sediment and the overlying water reflect
both organisms’ intrinsic irrigation rate and organism density. Our results suggest
that increasing organism density will enhance sediment denitrification rates by
increasing the areal irrigation rate. This is a possible mechanism leading both to
observed density effects (Marinelli et al. 2003, Waldbusser & Marinelli 2009) and to
species-specific effects (Norling et al. 2007), as irrigation behaviors are largely
characteristic for given arenicolid species (Riisgard et al. 1996). Furthermore,
changes in areal irrigation rate due to a species interaction response can be a
potential mechanism underlying the effects of functional diversity on ecosystem

function (Waldbusser & Marinelli 2006, Norling et al. 2007, Michaud et al. 2009).
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[rrigation intensity and burrowing depth are commonly related to organism
size and thus age (Riisgard et al. 1996) suggesting that aging and subsequent changes
in irrigation behavior can increase sediment denitrification substantially, up to 4 - 5
fold over non-irrigated sediments (Fig. 2). Our findings on the importance of burrow
irrigation suggest that an environment being initially recolonized by infauna after a
hypoxic event - represented in our models by an increase in the overall irrigation
rate — may initially experience enhanced ammonium effluxes, followed by increased
rates of nitrification (and thus a decreased efflux of ammonium). This change in
nitrogen cycling is because opportunistic pioneer organisms both increase in number
and increase in age, creating deeper, more intensely irrigated burrows. The enhanced
supply of nitrate from the overlying water via irrigation will rapidly increase
denitrification, decreasing the proportion of coupled nitrification-denitrification (Fig.
4). This is precisely the pattern seen by Bartoli et al. (2000) in a microcosm

simulation of the initial stages of such a recolonization event.

The importance of discontinuous irrigation

When sediment reactivity is low, the slow consumption of oxygen relative to
the frequency of irrigation periods leads to minimal oscillation in oxic volume.
However, as the reactivity of organic matter is increased, model simulations exhibit
pronounced redox oscillation in sediment surrounding the feeding pocket (not
shown), consistent with the analysis of Volkenborn et al. (2012) and the oxygen
dynamics caused by the pumping of Arenicola marina documented in Volkenborn et

al. (2010). Our results expand on these findings and show that the redox oscillation
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unsurprisingly leads to oscillations in nitrogen fluxes and instantaneous nitrification
and denitrification rates, reflecting the redox-sensitive nature of these reactions and
movement of the oxic-anoxic interfaces.

Despite the observed temporal variability, the time-averaged areal nitrogen
cycling rates appear to be largely independent of irrigation pattern. In the model,
these rates are independent of irrigation pattern because in the models that produce
significant fluctuations in redox conditions (k = 10-3 s1), all injected nitrate and
oxygen is consumed. This contrasts with findings documenting a distinct change in
porewater ammonium concentrations and organic matter degradation rates due to
redox oscillation (Aller et al. 1994, Sun et al. 2002), but that effect has been observed
as a result of days-scale oscillations, rather than the minute-scale considered here. In
our model, the microbial community is assumed to be at a steady state in terms of
size and composition, and rate constants used to parameterize the reaction network
reflect a (uniform) reaction potential, wherein process rates are modulated only by
the distribution of substrates. However, redox oscillation likely causes shifts in
microbial community composition and activity that are not considered in our
approach. It is also possible that environmental conditions at the minute scale are
too fast to elicit a strong microbial response, such that high frequency redox
oscillations cease to be an important consideration. We are not aware of published
data that addresses this potentially important issue impacting benthic nitrogen

fluxes.

Conclusions
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Variations in the feeding pocket depth and burrow irrigation rate of lugworms
can have substantial effects on nitrogen cycling in the vicinity of individual burrows.
Increasing the amount of nitrate provided through irrigation activity stimulates
denitrification, yet shallow feeding pockets can lead to ejection of burrow lumen fluid
out of the sediment before consumption of reactive solutes is complete. Although
discontinuous irrigation leads to distinct temporal variability within the sediment,
the time-averaged rates of nitrogen cycling differ minimally from a case of
continuous irrigation. However, this model finding does not take into consideration
the response of the microbial community to redox oscillations, a feedback which
could account for changes in nitrogen cycling rates that have been observed in
empirical studies at the individual scale. Finally, our results suggest that variations in
organism behavior such as burrow irrigation are an additional aspect of the benthic
community that must be taken into account to predict ecosystem function, as well as
possibly being one mechanism to explain the observed relationships between species

diversity and system function.
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Figure Legends

Figure 1: Radial cross section of modeled distribution of oxygen concentrations (A)
and rate of denitrification (B) within the sediment around a 15-cm deep feeding
pocket in low reactivity sediment (kpom = 10-5s1) and under continuous irrigation.
The top 2 cm is the water overlying the sediment, and contour lines are the oxygen
concentration (in mol m-3) and the logio of denitrification rates, respectively.

Figure 2: Depth-integrated denitrification rates as a function of irrigation rate, Q
(continuous irrigation). In models with high organic matter lability (kpow =1x 103 s
1), denitrification is independent of burrow depth, so diamonds with solid lines
indicate all burrow depths; Triangles, circles and squares with dashed lines
represent feeding pockets at 15, 10 and 5 cm depth, respectively, for an organic
matter degradation rate constant value of kpon = 1 x 10-> s'1 Filled symbols indicate
SWI-dominated systems (the percentage of denitrification in the upper 1 cm > 50%
of total denitrification), and open symbols indicate models dominated by the burrow
feeding pocket.

Figure 3: Calculated nitrification rates as a function of burrow irrigation intensity.
Dashed lines represent kpom = 10-> s'1 and solid lines indicate k= 10-3 s-1. Triangles
indicate 15 cm burrow depth, circles indicate 10 cm, and squares indicate 5 cm. Note
that diamonds represent all depths for kpom = 10-3 s'1 because all burrow depths
generate identical results. Filled symbols indicate conditions in which surface
sediments dominate nitrification (the percentage of nitrification in the top 1 cm >
50% of total nitrification), and open symbols indicate a burrow-dominated
environment.

Figure 4: Percentage of total denitrification that is supported by coupled nitrification
(defined as nitrate produced in nitrification divided by the amount consumed in
denitrification) as a function of irrigation intensity Q. Dashed lines indicate
sediments with low organic matter reactivity, with squares, circles, and triangles
representing 5 cm, 10 cm, and 15 cm deep feeding pockets, respectively. The solid
black diamonds indicate all burrow depths in sediments with high organic matter
reactivity.

Figure 5: Calculated denitrification as a function of transport time (defined as the
burrow depth times the microcosm area, divided by the volumetric flow rate).
Dashed lines indicate kpom =1 x 10-5 st solid lines indicate kpom =1 x 10-3 s°1,
triangles indicate a 15 cm burrow depth, circles indicate 10 cm, and squares
represent burrows at 5 cm depth. Note that in low-kpox sediments, predicted
denitrification rates are lower for vigorously irrigated shallow burrows (dashed line
with squares) relative to deeper burrows, indicative of ejection of reactive nitrogen
into the overlying water.
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859 Table 1: Reactions and rate laws; subscripts x and y describe the composition of the

860 organic matter and are set to 106 and 16, respectively.

861

862
863

Reaction Equation Expression

Aerobic DOM (CHzO)X(NH3)y +x02 + yH* kDOM*DOM*Oz/(Oz+Km02)
degradation (R1) = xCO2 + yNH4* + xH20

Denitrification (CH20)x(NH3), + Z(NO3) +  (kpou*DOM-R1)*NOs/(NOs-
(RZ) 5 +KmNo3)

Iron Reduction
(R3)

Sulfate Reduction

Nitrification

Sulfide Oxidation

Iron Oxidation

Iron Precipitation

POM degradation

(Z + y)H* D xCOz + yNH4* +
Z?XNZ + 7?xH20

(CH20)x(NH3), +4xFe(OH)s +
(8x+y)H* =» xCO2 + yNH4* +
4x Fe*?2 + 11x H,0
(CHz0)x(NHs), + 5042 +

(G + y)H* D xCOz + yNH4" +
“HS" + xH20

NH4* + 202 =» NO3- + 2H* +
H.0
H2S + 202 = S042- + 2H+

Fe2++i02+§H20 ->
Fe(OH)3 + 2H*

Fe2++HS-=>» FeS + H*
POM = DOM

((kpom*DOM-R1-R2)*
Fe(OH)z3)/(Fe(OH)3 +Kmre(on)3)

(kpow*DOM-R1-R2-R3)*S0,2
/(5042 +Kmso4)
knua*NH4**02

kHs*HS'*Oz
kre*Fe2**0;

kprecip* (Fe2+ * HS-/(KFeS*H+)'1)
kpom * POM
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Table 2: Parameters used in the reactive transport model and their respective

sources.

Parameter Description Value Units Source

020 Oxygen in the 0.22 mol m-3  This Study
overlying water

024y Oxygen injected 0.088 mol m3  Volkenborn et al.
across the feeding 2010
pocket

NO3o Nitrate in the 0-0.02 mol m3  This Study
overlying water

DOMinj DOM injected 0-0.115 mol m3  Alperin et al.
across feeding 1999
pocket

kpom Rate constant for 1x10->5_ s This Study
DOM degradation 1x103

kpom Rate constant for 1x108 s This Study
POM degradation
to DOM

knna Rate constant for 1.59x104- (molm=3)- Naetal 2008
nitrification 1.59x 102 Ist

kus Rate constant for 51x10° (molm-3)- Van Cappellen
sulfide oxidation Igl and Wang 1996

Kre Rate constant for 3.17x10#* (molm3)- Van Cappellen
iron oxidation Igl and Wang 1996

KmO2 Half-saturation for 0.02 mol m3  Van Cappellen
oxygen and Wang 1996

KmNO3 Half-saturation for 0.005 mol m3  Van Cappellen
nitrate and Wang 1996

KmFe(OH)3z Half-saturation for 8.75x 102 mol m3  Van Cappellen
iron oxides* and Wang, 1996

KmS04?- Half-saturation for 0.03 mol m3  Kuhl and
sulfate Jorgensen 1992

Kres Solubility constant 10-2.95 mol m3  Van Cappellen
for FeS and Wang 1996

Kprecip Precipitation 1.9x10° s Van Cappellen

constant for FeS

and Wang, 1996

* This half-saturation constant is more than two orders of magnitude lower
than the iron oxide concentration estimated for our site, resulting in 0 order
kinetics for dissimilatory iron reduction.
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871 Table 3: Laboratory and model fluxes of nitrate, ammonium, and oxygen (mean and
872  standard deviation). Positive fluxes are into the sediment.

873
Oxygen Nitrate Ammonium
(mmol m2d-1) (mmol m2d-1) (mmol m2 d-1)

Measured* 52.62 * 3.29 1.46 £ 0.15 -3.40 £ 0.51
Modeled

Q@ =1.6 mL min! 16.11 1.45 -1.57

Q@ =1.6 mL min’, 31.26 1.62 -2.60

with meiofauna™*

Q@ =1.0 mL min-! 10.67 0.90 -1.26

Q@ =2.0 mL min-! 19.66 1.77 -1.73

874  * Experimental microcosms contained meiofauna whose presence potentially
875 impacted measured oxygen and nitrogen fluxes but were not included in model
876  simulations.

877  **See text for details

878
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