Intermittent bioirrigation and oxygen dynamics in permeable sediments:

An experimental and modeling study of three tellinid bivalves

Nils Volkenborn^{1,7}, Christof Meile², Lubos Polerecky³, Conrad A. Pilditch⁴, Alf Norkko⁵, Joanna Norkko⁵, Judi E. Hewitt⁶, Simon F. Thrush⁶, David S. Wethey¹ and Sarah A. Woodin¹

¹ Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA

² Department of Marine Sciences, University of Georgia, Athens, Georgia 30602, USA

³ Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany

⁴ Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand

⁵ Tvärminne Zoological Station, University of Helsinki, 10900 Hanko, Finland

⁶ National Institute of Water and Atmospheric Research, Hamilton 2005, New Zealand

⁷ corresponding author: nils@biol.sc.edu

1 Abstract

To explore the dynamic nature of geochemical conditions in bioirrigated marine permeable sediments, we studied the hydraulic activity of 3 tellinacean bivalve molluscs (the Pacific species Macoma nasuta and Macomona liliana, and the northern Atlantic and Pacific species Macoma balthica). We combined porewater pressure sensing, time-lapse photography and oxygen imaging to quantify the durations and frequencies of tellinid irrigation activity and the associated oxygen dynamics in the sediment. Porewater pressure records of all tellinids were dominated by intermittent porewater pressurization, induced by periodic water injection into the sediment through their excurrent siphons, which resulted in intermittent oxygen supply to subsurface sediments. The durations of irrigation (2-12 min long) and intervals between subsequent irrigation bouts (1.5–13 min) varied among tellinid species and individual sizes. For large M. liliana and M. nasuta, the average durations of intervals between irrigation bouts were sufficiently long (10 min and 4 min, respectively) to allow complete oxygen consumption in between irrigation bouts in all tested sediment types. Irrigation patterns of smaller conspecifics 14 and the smaller species M. balthica were characterized by significantly shorter separation of irrigation bouts, which resulted in more continuous oxygenation of the sediment. Transportreaction modeling confirmed these species- and size-specific geochemical signatures and 17 18 indicated that the geochemical character of the sediment is largely conditioned by the interplay between temporal irrigation patterns and sedimentary oxygen consumption rates. For large 19 tellinids, model simulations indicated that oscillatory rather than stationary geochemical 21 conditions are prevalent in a wide range of sediment types, with oxic pockets collapsing completely between periods of active irrigation. Based on the model results we developed analytical approximations that allow estimation of spatio-temporal characteristics of sediment

24 oxygenation for a wide range of sediment types and infaunal activity patterns. Our results 25 emphasize the need to consider the intermittent nature of bioirrigation when studying the 26 geochemical impact of infauna in permeable sediments.

27

28 1. Introduction

Bioturbation by infaunal organisms has diverse impacts on the functioning and ecology of 29 benthic systems. It alters the sediment characteristics and the distribution of porewater 30 constituents (Aller, 1980; Boudreau and Marinelli, 1994; Berg et al., 2001; Volkenborn et al., 32 2007), affects microbial diversity and rates of microbially mediated processes (Aller and Yingst, 1985; Kristensen, 1988; Na et al., 2008), and influences the structure of micro-, meio- and 34 macrofaunal benthic communities (Reise, 1981; Meyers et al., 1987; Woodin et al., 1998; Marinelli et al., 2002; Volkenborn and Reise, 2006; Engel et al., 2012). The significant impact of single or multiple species on benthic-pelagic exchange fluxes is well documented (Vopel et al., 36 2003; Lohrer et al., 2004; Karlson et al., 2007; D'Andrea and DeWitt, 2009, Michaud et al., 37 2009), but time-integrated approaches such as benthic chamber incubations are likely to average 38 over the dynamic nature of sediment reworking (Solan et al., 2004) and porewater bio-advection 39 (Wethey et al., 2008; Volkenborn et al., 2010). Bioturbation is the product of infaunal activities, 40 e.g. burrowing, pumping, feeding, or defecating, and consequently the rates and direction of 41 42 particle movement and fluid flow depend on the frequencies, durations, and the sequence of behaviors. A number of experimental studies have shown that infaunal organisms irrigate their 43 burrows in a discontinuous fashion on a timescale of minutes (e.g. Kristensen et al., 1991) to 45 hours (e.g., in intertidal areas where the ventilation by infaunal organisms ceases during ebb tide; Aller and Yingst, 1978; Aller et al., 1983), implying that bioturbated sediments are subject to

dynamic geochemical conditions on this time scale (Timmermann *et al.*, 2006; Volkenborn *et al.*, 48 2010, 2012). Typically, irrigation activity patterns are governed by endogenous pacemakers, but for many organisms they are also altered in response to changes in environmental conditions

50 (e.g., O₂ concentration in the irrigated water; Dales et al., 1970).

51

For a better mechanistic understanding of how infaunal organisms affect biogeochemical processes, it is essential to perform measurements and modeling on temporal and spatial scales 53 that reflect the activities of individual organisms. The need to implement discontinuous irrigation 54 into bioirrigation models was first addressed by Boudreau and Marinelli (1994), who developed a derivative of the cylinder microenvironment model introduced by Aller (1980) to estimate the time dependence of solute fluxes. In diffusion-dominated systems intermittent flushing of 57 burrows causes strong temporal variations in the instantaneous solute fluxes (Boudreau and Marinelli, 1994). In advection-dominated systems the role of intermittent irrigation is less well 59 understood, though larger sediment volumes are supplied with reactive chemical species. The pocket injection model developed by Meysman et al. (2005) captures the main spatial features of 61 porewater advection when water is forced into and through permeable sediments continuously 62 63 and at a constant rate, but its implementation under intermittent irrigation conditions is lacking. As recently shown for some important bioirrigating organisms such as arenicolid polychaetes 64 and thalassinid crustaceans, bioadvective porewater transport is driven by species- and behavior-65 66 specific porewater pressure dynamics (Wethey et al., 2008; Woodin et al., 2010; Volkenborn et al., 2010, 2012). These pressure gradients can be detected tens of centimeters away from the 67 68 organisms and result in unsteady and bidirectional porewater transport (Wethey and Woodin, 2005; Wethey et al., 2008; Volkenborn et al., 2010). As a consequence, substantial sediment

70 volumes surrounding infaunal organisms and their burrows experience intermittent oxygen

71 supply and frequent oscillations between oxic and anoxic conditions (Volkenborn et al., 2012).

72

This study provides experimental evidence that links hydraulic activities of bioirrigating infauna 73 with oscillation of geochemical conditions in sediments, using three tellinid bivalve mollusc 74 75 species as model organisms. Tellinids are cosmopolitan nearshore bivalves with separate inhalant and excurrent siphons. They are facultative deposit- and suspension feeders (Levinton, 1991). 76 While the inhalant siphon is used for the uptake of surface particles and overlying water, the 77 78 excurrent siphon remains several cm deep in the sediment. During feeding, water passes through the bivalves and is injected into the sediment at a depth of 2-10 cm, resulting in intermittent 79 sediment pressurization (Woodin et al., 2010, 2012). Here we have investigated temporal 80 81 patterns of bioirrigation associated with deposit-feeding by tellinid bivalves and their impact on

83

82

oxygen dynamics in different sediment types.

Our focus is on the dynamics of O₂ as the energetically most favorable electron acceptor in biogeochemical reactions and as a widely used proxy for organic matter mineralization (see 85 86 review by Glud, 2008). Specifically, we explore the volume of sediment that is characterized by either permanently oxic or intermittently oxic conditions, which can be regarded as 87 geochemically distinct environments (Aller, 1994). Sediments experimentally exposed to oxic-88 89 anoxic oscillatory conditions – at least on the scale of days to weeks (we are not aware of studies at minute to hour timescales) – have been shown to exhibit higher mineralization rates of organic 90 matter, including pollutants, than those with stable redox conditions (Sun et al., 1993; Aller, 91 92 1994; Sun et al., 2002; Caradec et al., 2004; Cravo-Laureau et al., 2011; Bennett et al., 2012). Given these changes in mineralization rates, quantification of the frequencies of redox oscillation and time scales of the behaviors driving these rates is critical. Focusing on redox oscillations and using empirical data, we parameterized a transport-reaction model to estimate the relationship between temporal irrigation patterns and (intermittently) oxic sediment volumes in a wide range of sediment types inhabited by these bivalves and by other important bioturbating organisms.

98

99 2. Methods

Hydraulic activities of tellinid species were investigated in laboratory containers and narrow aquaria using isolated individuals. Porewater pressure sensing was combined with time-lapse 101 photography to identify porewater pressure waveforms associated with specific tellinid behaviors 102 103 (as previously described in Volkenborn et al., 2010; for pressure sensor specifications see Wethey and Woodin, 2005; Volkenborn et al., 2012). Time synchronized planar optode imaging 104 of oxygen was used to investigate the related oxygen dynamics in the porewater (for details see Matsui et al., 2011; Volkenborn et al., 2012). The experimental set-up differed among species, and the detailed information on aquarium sizes, overlying water exchange rates, sediment 107 108 characteristics, temperature, light, salinity and experimental replication and duration are given below. In all experiments, sediments were sieved through a coarse mesh (5-10 mm) to remove 109 larger organisms. In parallel to the aquaria setup, sediment cores (10 cm² area) were filled with 111 10-15 cm of sediment for the measurement of sediment permeability by the constant head method (Klute and Dirksen, 1986). Sub-samples were taken with 5 mL cut-off syringes and used for the determination of porosity (weight loss by drying). Sediment reactivity, approximated by 113 the rate of oxygen consumption, was determined by injecting oxygenated water into the sediment 115 at locations close to the optode but far from the organisms and subsequently measuring porewater oxygen concentrations in 10 s intervals until all oxygen was consumed (which took 1-117 5 min, depending on the sediment type). The volumetric rate of sedimentary oxygen consumption, K_{OX} , expressed in micromoles of O_2 per volume of sediment (L_s) and time (µmol O_2 L_s -1 min⁻¹), was then estimated as the initial rate of decrease in the measured porewater O_2 concentrations multiplied by sediment porosity (Polerecky *et al.*, 2005; Volkenborn *et al.*, 2010).

121

a. Study species and experimental setup

Macomona liliana is a common bivalve in New Zealand intertidal sandflats (Roper et al., 1992), 124 where it lives up to 10 cm below the sediment surface (Powell, 1979). Twenty large individuals (shell length of 4.1–5.0 cm) were collected in February 2010 from an intertidal sandflat near the 125 northern entrance of Tauranga Harbour, North Island, New Zealand (37°27.77'S 175°57.90'E) 126 and four small individuals (shell length of 2.3-2.4 cm) were collected nearby, west of Tuapiro Point (37°29.37'S 175°57.0'E). For porewater pressure measurements, circular containers (11.1 128 cm diameter and 10.5 cm deep for large individuals; 17.5 cm diameter and 11 cm deep for small 129 individuals) were filled with sediment and immersed in running artificial seawater (Red Sea Salt, 130 Red Sea Aquatics Ltd, Eilat, Israel) (31–34 % salinity). For measurements with large individuals 131 132 eight containers were filled with either muddy sand or sandy sediment. For measurements with small individuals we only used muddy sand sediment. Each container was equipped with a 133 pressure sensor at approx. 8 cm depth. Time-lapse photographs (every 15 s) were taken from 134 135 above with SLR cameras with flash (Nikon D200 and D300). Experiments were done at a temperature of 17-19°C under ambient light and lasted for 6 days. Oxygen imaging was done on four *M. liliana* individuals, incubated in narrow aquaria (20 cm × 4.5 cm surface, 20 cm deep). 137 Two of these aguaria were filled to a depth of approximately 15 cm with muddy sand and sandy sediment, respectively. Overlying water was exchanged at a rate of 100 mL min⁻¹, resulting in complete exchange every 5 min. Each aquarium was equipped with a pressure sensor that was inserted from above to about 8 cm depth, and with oxygen sensitive foils (20 cm × 20 cm) that were glued to the inside of both large walls. Incubations were done in the dark for 7 days at 20–23°C. Oxygen images were taken simultaneously from 2 aquaria every 15 s and time-lapse photographs were taken from above 5 s after each optode image. The aquaria were exchanged and rotated opportunistically in order to capture periods with tellinids irrigating close to the optode.

147

Macoma nasuta is abundant in intertidal flats in the eastern North Pacific Ocean, where it burrows 10-20 cm deep into the sediment (Levinton, 1991; Meyerhöfer, 1985). Six specimens 149 with a shell length of 4.7-5.2 cm were collected in April 2010 from the mid to high intertidal of False Bay, Washington, USA (48°29.35'N, 123°4.03'W). Individuals were incubated in six 151 square aquaria (10 × 10 cm surface, 20 cm deep), filled to approximately 15 cm with either 152 153 muddy sand or sandy sediment. One wall of each aquarium was equipped with an oxygen sensitive foil (10 cm × 20 cm) and pressure sensors were deployed from above at approx. 8 cm 154 depth. Overlying water (from Friday Harbor Laboratories seawater system) was exchanged at 155 100 mL min⁻¹, resulting in a complete exchange approx. every 5 min. Oxygen images from the 156 side were taken simultaneously from the six aquaria and top-down time-lapse flash-illuminated 157 158 photographs were taken with a 5 s delay. Measurements were done over a period of 4 days in the dark at a temperature of 12–14°C and a salinity of 34 ‰.

161 Macoma balthica is a cosmopolitan nearshore bivalve abundant in intertidal areas of the northern parts of the Atlantic and Pacific Oceans. Porewater pressure measurements and time-lapse 162 photography were done in Germany in May 2007 and August 2011. Four individuals with shell 163 lengths between 1.8-2.0 cm were collected from a mid-intertidal sandflat in Königshafen, Sylt, Germany (55°02.21'N, 8°24.53'E) and individuals were held in sediment-filled 1 L beakers (in 165 166 2007) or 5 L buckets (in 2011) immersed in running seawater from the Wadden Sea Station seawater system. Measurements were done over 6 days at a temperature of 15-18°C and a 167 salinity of 33–35 %. Oxygen imaging was done in Finland in August 2011. Six individuals of M. 169 balthica (~1.6 cm shell length) were collected from a subtidal location near the Tvärminne Zoological Station (59°50.60'N, 23°15.71'E). The set-up was the same as in the M. nasuta experiments (see above). Measurements were done in the dark at 12–15°C and a salinity of 6 %... 171

172

73 b. Porewater pressure analysis

Porewater pressure data were analyzed with respect to time allocation to feeding activity, burrowing, and inactivity for each individual. Intervals of inactivity were defined as periods 175 without porewater pressure dynamics for >30 min. Burrowing episodes were defined as time intervals with high magnitude pressure oscillations with intermittent sediment pressurization, where there were < 20 min between subsequent intervals of high magnitude pressure oscillations. 178 The first and last high magnitude pressure pulses were used as start and end points to define a 180 burrowing episode. For periods of deposit-feeding the average durations of pressurized (T_{PUMP}) and non-pressurized (T_{REST}) intervals and the average frequencies of feeding bouts were 181 182 determined for each individual. Feeding bouts were defined as distinct if separated by a > 20 s 183 gap. Effects of the sediment type on these measures of hydraulic activity were tested for each species by one-way factorial ANOVA. For *Macomona liliana* the effect of tellinid size on the temporal patterns in hydraulic activity was additionally tested by a one-way factorial ANOVA.

186

187 c. Transport-reaction modeling

To study the spatial and temporal dynamics of O₂ in an intermittently bioirrigated sediment, a 188 transport-reaction model was set up in COMSOL 4.3, a finite-element modeling environment. 189 The 2D axisymmetric model domain consisted of a cylinder (radius 20 cm, sufficiently large to 190 minimize boundary effects) with the top 2 cm filled with water and the bottom 20 cm with 191 192 sediment. The mesh consisted of approximately 5500 finite elements with side lengths between <1 mm near the injection pocket and the sediment water interface and 6 mm in regions with low flow and small concentration gradients. A spherical injection pocket with a radius of 0.2 cm was 194 positioned on the central symmetry axis 5.75 cm below the sediment surface. The transport of the overlying water and porewater was modeled using COMSOL's implementation of Navier-196 Stokes and Brinkman equations describing free flow in an isotropic porous media (Le Bars and 197 Grae Worster, 2006), accounting for pressure gradients and viscous forces but neglecting inertial 198 199 terms. As a solver we used the sparse direct solver MUMPS (http://graal.ens-lyon.fr/MUMPS). 200 The top of the domain was set as open (zero normal stress), and the normal flow at the bottom and vertical domain boundaries was set to zero. Intermittent irrigation was modeled by imposing 201 the fluid velocity at the injection boundary to values that varied between zero (during the resting 202 interval T_{REST}) and the ratio of the instantaneous volumetric pumping rate and the surface area of 203 the injection pocket (during the pumping interval T_{PUMP}). Permeability of $5\times10^{-12}~\text{m}^2$ and 204 porosity 0.45 were used in all simulations. Because irrigation was implemented by imposing 205

206 flow velocity rather than pressure at the inlet boundary, the flow velocity field and the results 207 derived from it were not affected by this choice of sediment permeability.

208

Pumping rates of tellinid bivalves for model parameterization were derived from the literature. For *Macoma nasuta* of comparable sizes to those used in our experiments (5.0 cm shell length), Meyerhöfer (1985) measured instantaneous pumping rates of 1.8 mL min⁻¹ with thermistor 211 probes. Based on this instantaneous pumping rate, and given the proportional time of active irrigation by M. nasuta measured in this study (7 irrigation bouts h⁻¹, 5 min duration; see Results), time-integrated pumping rates would be around 1.1 mL min⁻¹, which is in the range of pumping rates estimated with the "clambox" when averaged over 12 min intervals (Specht and Lee, 1989). Assuming the *Macoma nasuta* dry weight versus instantaneous pumping rate relationship estimated by Meyerhöfer (1985), and the size versus dry weight relationship found by Gallucci and Hylleberg (1976), we estimated the instantaneous pumping rates for the size 218 classes used in our experiments to be 1.8, 1.6, 0.43, and 0.35 mL min⁻¹ for *M. nasuta*, large and small M. liliana, and M. balthica, respectively. In additional simulations exploring the 220 221 relationship between pumping rates and oxic sediment volumes, instantaneous pumping rates

223

222

224 O₂ concentrations in the porewater, denoted as C, were computed using

were varied between 0.1 and 3 mL min⁻¹.

225
$$\phi \frac{\partial C}{\partial t} = \nabla \cdot (D\nabla C) - \vec{u} \cdot \nabla C + R \tag{1}$$

where \vec{u} is the advection velocity field (m s⁻¹), ϕ is porosity, and D (in m² s⁻¹) parameterizes diffusion when in the sediment ($D = \phi/(1-2\times\ln(\phi))\times D_{mol}$, with $D_{mol} = 1.9\cdot10^{-9}$ m² s⁻¹; Schulz, 2000) and dispersion when in the overlying water ($D = D_{mol} + 0.4 \cdot v/363 \cdot (z \cdot u^*/v)^3$, where v is the

kinematic viscosity (10⁻⁶ m² s⁻¹), u* is shear velocity and z is the distance from the sedimentwater interface; Boudreau, 2001). The shear velocity was set to 10⁻⁵ m s⁻¹, which was sufficient to establish a homogeneous O₂ concentration distribution in the overlying water; its value did not significantly affect the burrow-associated oxic sediment volume discussed below. Hydrodynamic 232 dispersion in the sediment was neglected because it plays only a minor role at low flow velocities 233 234 (Meysman et al., 2006). The net O₂ consumption rate R was set to 0 in the overlying water and was modeled as $-K_{OX} \times C / (K_M + C)$ in the sediment, where K_{OX} is the maximum sedimentary oxygen consumption rate (see above) and K_M is the half-saturation constant. In muddy sands, $K_{\rm OX}$ values are typically in the range of 5-30 μ mol $L_{\rm s}^{-1}$ min⁻¹ (Glud et al. 2003; Volkenborn et al., 2010). In more muddy sediments, they may exceed 50 μmol L_s⁻¹ min⁻¹ (e.g., Volkenborn et al., 2012), and are typically <5 μmol L_s⁻¹ min⁻¹ in highly permeable sands (Billerbeck et al., 239 2006; Werner et al., 2006; Volkenborn et al., 2012). Model simulations used K_{OX} values in the range from 2.25 to 45 μ mol L_s^{-1} min⁻¹, thus covering the range found in natural sediments. The 241 half-saturation constant K_M was set to 1 µM, with comparable results achieved when setting it to 10 μM (not shown) which is in the range of K_M values used in previous studies (e.g., Van 243 244 Cappellen and Wang, 1995). In all simulations, a no flux condition was imposed at the bottom and side of the domain, and O₂ concentration of 220 µM was imposed at the top of the domain, whereas in the injected water it was set to 88 µM, consistent with the maximal porewater O₂ 246 247 concentrations detected at the aquarium wall in our experiments (typically around 40% air saturation). This reduction in O2 can be mostly attributed to the respiratory O2 uptake by the 248 pumping organisms. 249

251 3. Laboratory results

a. Tellinid behaviors and related porewater pressure waveforms. All three tellinid species 252 engaged in a range of hydraulic activities that caused behavior-specific porewater pressure waveforms. An exemplary pressure record from *Macomona liliana* is shown in Figure 1. Most of 254 the time, all 3 species were surface-deposit-feeding (videos 1-3 in the appendix). Episodes of 255 deposit-feeding lasted from several hours to a few days and were characterized by intermittent 256 257 irrigation as indicated by frequent alternations of pressurized and non-pressurized intervals (Fig. 1). From time to time tellinids relocated their excurrent siphons, which could be seen in time-258 lapse images as a change in the location of particle movement and accumulation of fecal pellets 259 at the sediment surface. Movements of the excurrent siphon occurred while the sediment was pressurized and caused short positive pressure pulses at typical frequencies of 2 pulses min⁻¹ 261 (Fig. 1C). Movements of the incurrent siphon were associated with short positive or negative 262 pressure pulses around the hydrostatic pressure baseline. Deposit-feeding was accompanied by frequent sediment blow-outs through the incurrent and excurrent siphons, i.e. pseudofeces 264 265 expulsions and defecations, respectively, both causing very similar short negative or positive pressure pulses (<4 s decreasing pressure, followed by an active recovery or sediment-dependent 266 pressure recovery over 2-7 s). Burrowing caused substantial sediment movement, and was 268 characterized by large positive and negative pressure pulses (Fig. 1B). The frequencies and durations of hydraulic activities varied among species (Figs. 2 and 3; Table 1). However, for all of them, the time-integrated pressures (pressure amplitude × duration) during the pulses 270 associated with feces or pseudofeces expulsions were typically <5 % of the pressures integrated 272 over one irrigation bout. Thus, though large in amplitude, the short duration of the pressure

pulses associated with feces and pseudofeces expulsions suggests little contribution of these behaviors to the transport of porewater by the bivalves, which is consistent with findings for arenicolids (Wethey *et al.*, 2008). Thus, we have focused the analysis on the intermittent porewater pressurization during deposit–feeding, since this behavior was the most important in terms of time allocation (Table 1) and porewater advection.

278

b. Species-specific irrigation patterns. Analysis of the pressure records revealed that the average durations of pumping (T_{PUMP}) and resting (T_{REST}) differed among tellinid species and size classes (Fig. 2, Table 1) The temporal irrigation patterns of individuals were characterized by a substantial variation around the individual means. On average, the standard deviation of T_{PUMP} and T_{REST} of individuals was 40% of the mean duration (Fig. 3).

284

The large Macomona liliana specimens were hydraulically active 94% of the time (n=16) individuals, 8 in mud, 8 in sand over 5 days). 88 (\pm 4) % of the time these individuals were 286 deposit-feeding. Feeding episodes were characterized by intermittent porewater pressurization, 287 with 8.3 (\pm 2.5) min of pressurization separated by 10.0 (\pm 1.8) min intervals of no hydraulic activity (mean and SD of 16 individuals with 50-317 bouts analyzed per individual). This 289 corresponded to 3.3 (\pm 0.5) feeding bouts h⁻¹ and pressurization of the sediment during 45 (\pm 10) 290 % of the time while feeding. Sediment type had no significant effect on the durations of 291 pressurized ($F_{1.14}$ =0.94; p=0.35) and non-pressurized ($F_{1.14}$ =1.14; p=0.30) intervals or feeding bout frequencies (F_{1,14}=0.11; p=0.74). Feeding activity by the small M. liliana specimens (n=4, 293 all in muddy sand, 82 to 122 bouts analyzed per individual) was characterized by barely 294 significantly shorter pressurized (4.4 \pm 1.0 min, $F_{1,10}$ =4.8; p=0.051), significantly shorter non-295 pressurized (6.7 \pm 1.8 min; F_{1.10}=12.9; p=0.005) intervals, and significantly higher feeding bout

frequencies (5.6 \pm 1.2 min; $F_{1,10}$ =18.6; p=0.002) when compared to the larger conspecifics feeding in the same muddy sediment type.

299

Macoma nasuta was hydraulically active 93% of the time (n=5 individuals over 3-4 days). After 300 the initial burrowing, they were actively deposit-feeding 83 (\pm 20) % of the time (mean and SD 301 of 5 individuals), with 2 individuals allocating a significant portion of the time to suspension 302 feeding (28% and 19%). While deposit-feeding, the incurrent siphon was continuously moving 303 around, ingesting surface sediment. Deposit-feeding was characterized by 5.0 (± 1.0) min of 304 305 pressurization separated by intervals of 3.7 (± 1.1) min (n=5 individuals, with 94–167 feeding bouts analyzed per individual). The average frequency of feeding bouts was 7.1 (\pm 1.4) h⁻¹. 306 Burrowing accounted for 2.4 (\pm 3) % of the time budget and burrowing episodes lasted 68 (\pm 20) 307 min. 3 of 6 individuals did not burrow at all after the episode of initial burrowing.

309

310 *Macoma balthica* individuals were small compared to the other tellinid species and the 311 magnitude of porewater pressurization was very small most of the time. Time allocation of 312 deposit-feeding was therefore determined from time-lapse photography. Over the 6-7 days of 313 observation the two individuals were actively feeding during 57% and 45% of the time. Feeding 314 occurred in bouts of 2.3 (\pm 0.2) min duration separated by intervals of 1.7 (\pm 0.2) min (78–197 315 bouts of 3 individuals analyzed). The feeding bout frequency was 15.1 (\pm 0.2) h⁻¹. Burrowing 316 occurred 0.62 (\pm 0.25) times per 24 h and lasted 12.9 (\pm 7.6) min.

317

318 *c. Linking tellinid behaviors and oxygen dynamics.* Over the course of the measurements, seven 319 of the 28 tellinid individuals positioned their excurrent siphons for some hours close to the

oxygen sensitive foil. While feeding, the sediment was intermittently supplied with oxygen.

Oxygen dynamics were directly related to porewater pressurization, with oxygen concentrations increasing during pressurized and decreasing during non-pressurized intervals (Fig. 4). Oxic and anoxic intervals typically alternated on the scale of minutes in synchrony with the pressure records, and maximal oxygen concentrations were typically around 40% air saturation. Sometimes, as a result of water injection occurring at some distance from the optode, the detection of oxygen by the optode was delayed relative to the onset of porewater pressurization (Fig. 4A).

328

The differences in feeding bout frequencies and interval durations (Table 1; Fig. 2) caused species-specific oxygen dynamics in the sediment (Figs. 4, 5; Appendix video 4). For *M. liliana*, the oxygen delivered during feeding bouts was typically entirely consumed during the resting periods, and oscillations from oxic to anoxic and back to oxic conditions occurred at frequencies of < 3 times per hour, with oxic and anoxic periods typically lasting around 10 min (Figs. 4, 5). With *M. nasuta* oscillations between oxic and anoxic conditions occurred more frequently (up to 6 h⁻¹), congruent with the higher feeding bout frequencies documented by porewater pressure sensing for this species (Table 1). In the one occasion when a *M. balthica* specimen irrigated close to the optode, oxygen was present almost continuously, reflecting incomplete oxygen depletion during the short resting period between irrigation bouts.

339

4. Modeling intermittent bioadvection and O₂ dynamics

341 Based on the irrigation patterns determined with porewater pressure sensing, the size–specific instantaneous pumping rates from the literature and the oxygen concentrations of the injected

water determined with planar optode imaging, we modeled the dynamics of the oxic sediment volume (V_{O2} , defined as the volume of sediment with porewater O_2 concentrations >2 μ M and depths >1 cm, i.e., below the depth to which O_2 penetrates by diffusion from the overlying water in our conditions) for the three species at 3 different sediment reactivities (Fig. 6). These reactivities correspond approximately to the range of sediments types that tellinids inhabit - from permeable clean sands to low permeability muddy sands.

349

a. Intermittent irrigation by tellinids. There was an increase in V_{O2} during each irrigation bout 350 351 and a decrease after the irrigation stopped. Because of the long time intervals between irrigation bouts, the injection pocket of Macomona liliana experienced oxic to fully anoxic oscillations 352 353 regardless of their oxygen consumption rates (Fig. 6A). For *Macoma nasuta*, model simulations predicted oxic-anoxic oscillatory conditions only for sediment with high and intermediate reactivity (Fig. 6B). For Macoma balthica oxygen was entirely consumed between subsequent 355 irrigation bouts only in highly reactive sediments, while in sediments of intermediate and low reactivity portions of the irrigated pocket remained oxic due to the short intervals between 357 358 subsequent irrigation intervals (Fig. 6C). Thus, the spatio-temporal patterns of oxygen 359 distributions largely depend on the species- and size-specific irrigation patterns in relation to the sedimentary oxygen consumption rates. 360

361

362 **b. Spatial extent of oxygenation.** Model simulations showed that the maximal volume of the 363 oxic sphere, V_{O2max} , depends on both the instantaneous pumping rate, Q, and the sediment 364 reactivity, K_{OX} (Fig. 7). A relationship between these quantities derived from the model 365 simulations was $V_{O2max} = m \times Q / K_{OX}$, where the proportionality constant $m = 81.5 \mu M$ (Fig. 8).

This relationship is consistent with the idea that, at steady state, the amount of oxygen injected into the sediment per unit time ($Q \times O_2^{injected}$, where $O_2^{injected}$ is the oxygen concentration in the injected water) is equal to the rate at which O_2 is consumed in the oxic sediment volume. For a low K_M value (1 μ M), the rate of O_2 consumption in the sediment is approximately constant and equal to K_{OX} for a wide range of relevant O_2 concentrations. Therefore, the consumption rate can be approximated by $V_{O2max} \times K_{OX}$, resulting in

$$V_{O2max} \approx (Q \times O_2^{\text{injected}}) / K_{OX}. \tag{2}$$

Indeed, O_2^{injected} = 88 μ M in this expression closely approximates the proportionality constant m 374 = 81.5 μ M derived from the model results. The small difference, attributed to the combined effects of neglecting diffusive transport, neglecting reaction kinetics at low O_2 concentrations, and the use of a 2 μ M threshold for defining oxic sediment, indicates that the role of these effects is minor.

378

Our experimental data support this estimate for the oxic sediment volume. For $O_2^{injected} = 88 \mu M$, $K_{OX} = 16 \mu mol L_s^{-1} min^{-1}$, and $Q = 1.6 mL min^{-1}$, Eq. 2 predicts a V_{O2max} of 8.8 cm³. Under these conditions we detected an intermittently oxic area of 4 cm² when *M. liliana* was injecting water into the sediment close to the O_2 sensitive foil (Fig. 5). The ratio of the predicted (intermittently) oxic volume and the measured oxic area suggests that the detected area extended roughly 2.2 cm into the sediment away from the oxygen sensitive foil, which seems reasonable, given the uncertainties with respect to the shape of the oxic pocket (e.g. we do not know if we are seeing a cross–section through the center or through the outer part of the oxic pocket).

c. Temporal dynamics of oxygenation. Given the intermittent irrigation activity of tellinids, the questions arise as to whether V_{O2max} is reached over a single irrigation bout and whether the oxic pocket becomes fully anoxic between subsequent irrigation bouts.

391

The metric of interest for redox oscillation is the fraction of V_{O2max} that is reached after a given duration of pumping and not the size of V_{O2max} . The size of V_{O2max} depends on the instantaneous pumping rate (Fig. 8; Eq. 2); however, the fraction of V_{O2max} reached after a given duration of pumping does not (Fig. 9 A and B). The fraction of V_{O2max} that is reached after a given duration of pumping does depend on K_{OX} (Fig. 9A). Furthermore, as shown by the solid lines in Fig. 9A, the increase of V_{O2} towards V_{O2max} is well approximated by

$$V_{O2} / V_{O2max} \approx A \times \{1 - exp[(-K_{OX} \times T_{PUMP}) / (O_2^{injected} \times \phi)]\} + B,$$
 (3a)

399 where T_{PUMP} is the time since the start of the pumping activity. The fitting parameters A and B depend on K_{OX} approximately as

401
$$A \approx a_0 + a_1 K_{OX} + a_2 K_{OX}^2$$
, (3b)

402
$$B \approx b_0 + b_1 K_{OX}$$
, (3c)

where $a_0 = 1.444$, $a_1 = -3.985 \times 10^{-3} L_s \min \mu mol^{-1}$, $a_2 = 5.16 \times 10^{-5} L_s^2 \min^2 \mu mol^{-2}$, $b_0 = -0.01$, $404 \ b_1 = 1.06 \times 10^{-3} L_s \min \mu mol^{-1}$. The regression coefficient R^2 for equation 3b is 0.98 and 0.99 for equation 3c. Model simulations also show that the time required for the volume of oxic sediment to increase from zero to 95% of V_{O2max} , denoted as T_{O2max} , is also independent of the instantaneous pumping rate but increases with decreasing values of K_{OX} (Fig. 9C). This relationship is well approximated by

$$T_{\rm O2max} \approx O_2^{\rm injected} \times \phi / K_{\rm OX}. \tag{4}$$

411 Based on the average durations of T_{PUMP} for the tellinids used in our experiments (Table 1), equation 4 allows prediction of the K_{OX} value above which a specific tellinid species and size class will establish 95% of V_{O2max} over the course of a single irrigation bout (see dotted horizontal lines in Fig. 9C). For example, at $K_{OX} > 20 \mu mol L_s^{-1} min^{-1}$ even the short pumping 414 intervals of Macoma balthica will establish 95% of V_{O2max} , while at K_{OX} <5 μ mol L_s^{-1} min $^{-1}$ none of the tellinids in our experiments would be, on average, pumping sufficiently long to reach 416 95% of V_{O2max}. Similarly, equations 3a-c allow prediction of the fraction of V_{O2max} reached by 417 pumping water with oxygen concentration O₂ injected into permeable sediment of a given reactivity K_{OX} for a given interval T_{PUMP}, provided that the injection pocket at the start of pumping is fully anoxic. For example, for $O_2^{\text{injected}} = 88 \mu\text{M}$, the volume of the oxic sediment induced by pumping 420 for 2 min would be 50% of V_{O2max} for K_{OX} =9 μ mol L_s^{-1} min but 80% of V_{O2max} for K_{OX} =18 421 μ mol L_s^{-1} min⁻¹ (Fig. 9A). It should be noted that these approximations are valid only for such combinations of values of K_{OX} , T_{PUMP} and $O_2^{injected}$ that the predicted ratio V_{O2} / V_{O2max} falls 423 within the range 1% to 95%. 424

425

Model simulations show that the fraction of V_{O2max} that is still oxic after a given duration of no irrigation (T_{REST}) does not depend on the instantaneous pumping rate but only on K_{OX} (Fig. 9B), and that it is well approximated by

$$V_{O2} / V_{O2max} \approx A \times \left\{ 1 - \left(T_{REST} \times K_{OX} \right) / \left(O_2^{\text{injected}} \times \phi \right) \right\} + B$$
 (5)

430 The fitting parameters A and B depend on K_{OX} approximately as Eq 3b and Eq 3c, where $a_0 = 431 - 1.005$, $a_1 = 1.573 \times 10^{-4} L_s \text{ min } \mu \text{mol}^{-1}$, $a_2 = 2.62 \times 10^{-5} L_s^2 \text{ min}^2 \mu \text{mol}^{-2}$, $b_0 = 0.012$, $b_1 = -2.93 \times 10^{-2} L_s^2 \text{ min}^2 \mu \text{mol}^{-2}$

 $10^{-3} L_s \min \mu mol^{-1}$. The regression coefficient R^2 is 0.99 for both.

Likewise, the time it takes for the oxic sediment to decrease from V_{O2max} to a volume < 1 % of V_{O2maxs} , denoted as T_{O2zero} , is independent of V_{O2max} , depends only on K_{OX} (Fig. 9D), and is well approximated by (Fig. 9D)

437
$$T_{O2zero} \approx O_2^{\text{injected}} \times \phi / K_{OX}.$$
 (6)

438

Thus, based on the average durations of T_{REST} for the tellinids used in the experiments (Table 1), 440 equation 6 allows prediction of the K_{OX} value above which oxygen is completely consumed in 441 the course of an average resting interval for any of the tellinid species and size classes (see dotted lines in Fig. 9D). For example, at $K_{OX} > 23 \mu \text{mol } L_s^{-1} \text{ min}^{-1}$ even the short resting interval 442 of Macoma balthica is sufficiently long to allow complete oxygen depletion, while at $K_{OX} < 3.7$ 443 μmol L_s⁻¹ min⁻¹ none of the tellinids in our experiments would be, on average, resting sufficiently 444 long to allow complete oxygen depletion in the injection pocket. Similarly, equation 5 allows 445 prediction of the fraction of V_{O2max} reached in a sediment of a given reactivity K_{OX} after resting 446 for a given interval T_{REST} , provided that $V_{O2} = V_{O2max}$ at the start of resting. For example, after 2 447 min of resting the fraction would be about 55% for $K_{OX} = 9 \mu mol L_s^{-1} min^{-1}$ but only about 10 % 448 for $K_{OX} = 18 \mu mol L_s^{-1} min^{-1}$ (Fig. 9B). 449

450

451 5. Discussion

452 *a. Intermittent irrigation and redox oscillations in permeable sediments.* Bioturbation creates 453 heterogeneous and dynamic geochemical conditions in sediments (Aller, 1994), but our ability to 454 quantify and predict the spatio-temporal dynamics is still limited, especially in advection-455 dominated systems. In these environments infaunal activities can be a predominant driver of 456 porewater transport (Meysman *et al.*, 2005; Volkenborn *et al.*, 2007; Wethey *et al.*, 2008) that

brings oxygenated fluids into contact with suboxic or anoxic sediment. Models of continuous bioirrigation adequately predict gradients in porewater solutes (Aller, 1980; Na et al., 2008), but 458 they do not allow characterization of the temporal dynamics of the geochemical conditions 459 460 associated with infaunal activity. Intermittent irrigation is not unique to tellinids, but is characteristic for many different types of infauna, such as arenicolid polychaetes (Kristensen, 461 2001; Timmermann et al., 2006; Volkenborn et al., 2010), nereid polychaetes (Foster-Smith, 462 1978; Kristensen, 2001; Pischedda et al., 2012), terebellid polychaetes (Aller and Yingst 1987), 463 thalassinid crustaceans (Forster and Graf, 1995; Volkenborn et al., 2012) or chironomid insect 464 465 larvae (Polerecky et al., 2006; see also review by Riisgård and Larsen, 2005). Thus, periodic oxygen supply is the rule rather than the exception in bioturbated sediments. The resulting 466 spatial-temporal patterns in redox conditions are largely driven by (i) durations and frequencies 467 468 of active irrigation intervals, (ii) instantaneous pumping rates, and (iii) sediment reactivity, e.g., sedimentary oxygen consumptions rates. Given the potential effects of redox oscillations on 469 organic matter mineralization as well as the probable interruption of anoxic or oxic pathways as 470 the oscillation occurs, it is critical to explore the factors constraining stable or oscillatory redox conditions. 472

473

The instantaneous pumping rates of individuals constrain the maximal sediment volumes (V_{O2max}) that are supplied with oxygen (Figs. 7B and 8A), but they do not affect the temporal dynamics of the intermittently oxic pockets. Model simulations indicate that the wax and wane of the oxic pockets are solely governed by the temporal irrigation patterns (T_{PUMP} and T_{REST}), the sedimentary oxygen consumption rates K_{OX} , and the oxygen concentrations in the irrigation water (Fig. 7A). The model results (Figs. 8 and 9) and the analytical approximations (equations

2-6) allow predictions of the volumes of sediment that are supplied with oxygen as well as of the relative proportion of sediment that experiences oscillatory or continuously oxic conditions for a wide range of sediment types and temporal irrigation patterns.

483

Overall, model simulations suggest that over a wide range of sediment types (i.e., with $K_{OX} > 23$ 485 µmol L_s^{-1} min⁻¹) the volumes of subsurface sediment pockets that become oxic as a result of intermittent irrigation activity by the studied tellinids are similar to those derived from continuous irrigation models, and that the entire pockets switch between oxic and anoxic conditions during an average T_{PUMP} - T_{REST} cycle. In a typical muddy sand sediment ($\phi = 0.45$; $K_{OX} = 25$ µmol L_s^{-1} min⁻¹; Volkenborn *et al.*, 2010) with 50 tellinids m⁻², the intermittent injection of water with an instantaneous pumping rate of 1.6 mL min⁻¹ ind. (Meyerhöfer, 1985) with an oxygen concentration of 88 µM will result in a sediment volume of approximately 280 cm³ m⁻² that oscillates between oxic and anoxic conditions several times per hour.

493

However, short durations of T_{PUMP} and T_{REST} in combination with low reactivities of the sediment make it more likely that at the end of T_{PUMP} the oxic sediment pocket is not in steady-state and that oxygen is not fully consumed at the end of T_{REST} (Figs. 9 A and B). Under these conditions, different irrigation patterns with similar time-integrated pumping rates may have very different geochemical consequences. For example, in a sediment with $K_{OX} = 18 \,\mu\text{mol} \,\,\text{L}_{\text{s}}^{-1} \,\,\text{min}^{-1}$, irrigation patterns of $T_{PUMP} = 3 \,\,\text{min}$ and $T_{REST} = 3 \,\,\text{min}$ will result in an oscillating sediment volume of V_{O2max} , whereas for $T_{PUMP} = 1 \,\,\text{min}$ and $T_{REST} = 1 \,\,\text{min}$ the maximal volume of oxygenated sediment will be about 50% smaller and < 50% of this volume will be oscillating (Fig. 9A and B).

Given the variability of T_{PUMP} for the studied tellinid individuals (Fig. 3), the maximum volume 504 of oxygenated sediment (V_{O2max}; see Eq. 2) will not be established during some of the shorter 505 irrigation bouts (compare Figs. 3 and 9), which is congruent with our observation that oxic-506 anoxic oscillations are less frequent in the outer region of the oxygenated pockets (see images of 507 508 F_{REDOX} for M. nasuta and M. liliana in Fig. 5). Similarly, given the temporal variability of T_{REST} 509 (Fig. 3), some intervals of resting will be too short for the sediment to become fully anoxic before the onset of the next pressurization interval. This is apparent in the optode imagery for M. nasuta during minute 20 to 35, when T_{REST} intervals were short, in contrast to minute 45 to 60 min, when T_{REST} intervals were longer and there was an anoxic interval between the subsequent feeding bouts (Fig. 4). 513

514

The tellinids were all engaged in the same suite of hydraulic behaviors, but the temporal patterns of these activities and, consequently, their geochemical impact varied among species and size classes. Besides species-specific aspects it was the size of the tellinids that constrained the 517 duration of T_{PUMP} and T_{REST}. Very likely, the smaller gills provide less space to accumulate 518 particles during deposit-feeding, which forces smaller individuals to expel particles more 519 frequently. Given that the geochemical dynamics are directly linked to the durations of pumping 520 and resting intervals, the geochemical signature of an individual is likely to change also as a 521 522 result of behavioral response to the environmental conditions. In our experiments, tellinids were deposit-feeding most of the time (Table 1), but tellinid behavior is known to vary depending on 523 the environmental conditions. Deposit-feeding dominates in fine sediments (Olafson, 1986) and 524 525 at low water flow velocities (Levinton, 1991), while the time spent suspension feeding increases

at high population densities (Marinelli and Williams, 2003) and high food availability in the water column (Hummel, 1985; Lin and Hines, 1994). Macoma balthica shows reversible 527 morphological changes in response to changes in food conditions, with smaller gill (particle 528 529 collection) to palp (particle sorting) ratios in finer sediments (Drent et al., 2004). The location of subsurface water injection can also change with environmental conditions. The burrowing depth 530 of tellinids is affected by animal size, length of the incurrent siphon, sediment type, season, and 531 the presence of predators (Zwarts and Wanink, 1989; Tallqvist, 2001). In our narrow aquaria the 532 excurrent siphons were often located in the upper 4 cm of sediment, and it may well be that the 533 534 constrained conditions in ant-farm and container settings as well as the relatively short duration of experiments may have limited burrowing depth.

536

We did not find a significant difference in hydraulic activity in response to sediment type, but for some individuals we occasionally observed periods of irrigation without obvious uptake of 538 sediment particles. The duration of sediment pressurization increased during such periods. For 539 example, for one *M. nasuta* individual that was pumping without particle uptake, the durations of 540 irrigation and resting intervals increased from 5.2 min and 4.9 min while deposit-feeding (Table 541 1) to 20 min and 10 min, respectively (mean of 26 bouts over a 5 hour period). Model 542 simulations predict that at, e.g., $K_{OX} = 4.5 \mu mol L_s^{-1} min^{-1}$ such a change in the irrigation pattern 543 will result in a 1.7 fold larger oxic pocket (Fig. 9A), and instead of continuously oxic conditions 544 within 40 % of the pocket, the entire volume will switch between oxic and anoxic conditions 545 (Fig. 9B). Thus, environmental factors that are known to affect temporal infaunal activity patterns, such as temperature (Stief et al., 2010), oxygen concentrations (Dales et al., 1970; 547 Mangum and Burnett, 1975), organism densities (Marinelli and Williams, 2003), flow velocities

549 (Levinton, 1991), food availability in the water column (Hummel, 1985; Lin and Hines, 1994), the presence of predators and injury (Kamermans and Huitema, 1994), or a combination of these 550 factors (e.g., Kolar and Rahel, 1993), are also likely to influence the magnitude and dynamics of 551 sediment oxygenation. The relatively low variability in the means of T_{PUMP} and T_{REST} in tellinids 552 553 of the same species and size class (Fig. 3, Table 1) suggests that the observed irrigation patterns were robust representatives of species- and size class- specific activity patterns in our 554 experimental settings. However, given the responsiveness of tellinids to a wide range of 555 556 environmental variables, such external factors may, via their impact on infaunal behavior, ultimately also impact the geochemical dynamics in the sediment.

558

b. Simplifying model assumptions. Model simulations enabled us to show that the interplay 559 between biological parameters (instantaneous pumping rates, temporal patterns of irrigation, efficiency of respiratory O₂ uptake by the animal) and the sediment characteristics (sedimentary 561 oxygen consumption rates, sediment porosity) result in specific oxic-anoxic oscillatory conditions in the sediment. It should be noted that O2 concentrations in the irrigated water as 563 564 well as porosity of the sediment lie within a relatively narrow range compared to instantaneous 565 pumping rates and sedimentary oxygen consumption rates, which both may vary over 2 orders of 566 magnitude and more. Thus, it is the volumetric instantaneous pumping rate (related to organism size and species), the O2 consumption rate of the sediment and the duration of irrigation and 567 568 resting intervals that constrain the oxygenated sediment volume (Figs. 8 and 9). In model simulations we did not account for the spatial – and maybe even more importantly the temporal – 569 variability of K_{OX}. From repeated injections of oxygenated water close to the planar optode and measurements of subsequent decays of oxygen in time, we know that over the first few injections

572 K_{OX} typically decreases, which can be attributed to the initially rapid oxidation of a highly reactive pool of reduced compounds (Polerecky et al., 2005). With repeated injections of oxic water over the course of hours to days, K_{OX} is expected to change as a result of changes in microbial activity and abundance, as well as changes in sediment porosity and organic matter 575 content. Organic rich fecal pellets, for example, accumulate around the injection pocket and are 576 577 characterized by high nitrifying activity (Henriksen et al., 1983), which will alter oxygen consumption rates and may relate to the repositioning of the bivalve on timescales of days. 578 Dynamic changes of K_{OX} around the injection pockets may have been responsible for some of 579 580 the mismatches between planar optode measurements and model output data. For example, for very comparable values of K_{OX} the steady-state oxic volume (V_{O2max}) was established for shorter 581 time intervals in one of our measurements (Fig. 4a: M. liliana at K_{OX} = 16 μ mol L_s^{-1} min⁻¹) than 582 predicted from model simulations (Fig. 6A: M. liliana at $K_{OX} = 18 \mu mol L_s^{-1} min^{-1}$). Estimates of K_{OX} from the oxygen decrease after this tellinid had stopped pumping during the time interval 584 shown in Fig. 4a varied between 8-10 μ mol L_s^{-1} min⁻¹. Thus, K_{OX} was lower than our estimate 585 based on water injections in distant anoxic sediment and the model indeed predicted shorter 586 intervals of steady-state oxic sediment volumes at lower values of K_{OX} (Fig. 6). 587

588

K_{OX} varies also seasonally due to changes in temperature, organic content and microbial activity (Glud *et al.*, 2003; Billerbeck *et al.*, 2006; Werner *et al.*, 2006). For example, Werner *et al.* (2006) documented a 20-fold change in sedimentary oxygen consumption rates between summer ($K_{OX} \approx 14 \, \mu mol \, L_s^{-1} \, min^{-1}$) and winter ($K_{OX} \approx 0.7 \, \mu mol \, L_s^{-1} \, min^{-1}$). As a consequence of such variation in sediment reactivity, the geochemical signature of a species with a specific irrigation pattern may change, e.g., from a mostly continuously oxic pocket at lower K_{OX} (i.e., in winter) to

a mostly oscillatory pocket at higher K_{OX} (i.e., in summer). Thus, due to the dynamic and heterogeneous nature of oxygen consumption rates predictions of (intermittently) oxic sediment volumes based on the (average) reactivity of the bulk sediment will only be as accurate as estimates of K_{OX} within this sediment volume.

599

600 Another crucial assumption in our model was homogenous sediment permeability. This resulted in close to spherical oxic pockets in the model. However, the optode data suggest that the 601 tellinids frequently created rather vertical cylinders (Figs. 4, 5), suggesting locally enhanced 602 603 upward movement of injected water. Visual observations as well as the porewater pressure data (Fig. 1) suggest that tellinids are capable of injecting water at much higher flow rates, e.g., 604 during defecations. These "jets" can induce sedimentary cracks to the surface (Matsui et al., 605 2011). Furthermore, fecal pellets accumulate over time around the injection pockets, which further alter not only the reactivity but also the physical characteristics of the sediment. 607 Occasionally, we observed suboxic water exiting the sediment, especially when injection occurred at a relatively shallow depth. In concert, these phenomena are likely to impact the shape 609 610 and size of the oxygenated pockets beyond the factors assessed in the numerical model and 611 analytical expressions presented here.

612

3 6. Conclusions and perspectives

Intermittent irrigation by infaunal organisms has been shown to create geochemically dynamic zones in the sediment where oxic and anoxic conditions alternate on the scale of minutes (Volkenborn *et al.*, 2012). This study is a first attempt to integrate the intermittent nature of bioirrigation into a numerical transport-reaction model that allows an exploration of the related

redox dynamics. Model simulations as well as the simple analytical approximations derived from these simulations indicate that temporal irrigation patterns in concert with sedimentary oxygen consumption rates play an important role in constraining the intermittently or continuously oxic sediment volumes. Furthermore, the simulations predict that oscillatory rather than stationary redox conditions are prevalent in a wide range of sediments inhabited by tellinid bivalves.

623

We expect that the transient availability of oxygen in the sediment has significant implications 624 for biogeochemical processes. Oxic-anoxic oscillations on the scale of days to weeks have been 625 626 found to increase rates of organic degradation when compared to continuous oxic or continuous anoxic conditions (Aller, 1994; Sun et al., 1993). Though insights into how microbial 627 assemblages respond to fluctuating conditions are limited (Cravo-Laureau et al., 2011), the 628 629 higher efficiency in organic mineralization is thought to result from the activation of different microbial assemblages during oxic and anoxic conditions (Sun et al., 1993). Here, we have 630 shown that oxic-anoxic oscillations not only occur on the scale of hours to days, e.g., due to 631 632 repositioning of excurrent siphons, but also on much shorter time scales, with oxic and anoxic conditions alternating up to six times per hour within these ephemeral oxic pockets (Figs. 4, 5). 633 634 How microbial assemblages deal with these rapid changes is largely unexplored. For example, oxic-anoxic fluctuations on comparable short time-scales occur when oxic surface sediment is 635 ingested by deposit-feeding infauna and is exposed to anoxic conditions within the digestive 637 tract (Stief et al., 2009). The residence time of the sediment in the gut is typically in the range of 30 min. It was found that this duration is not sufficient to allow complete denitrification, which resulted in significant release of nitrous oxides. Thus, rapid oscillations between oxic and anoxic 639 conditions not only reduce the time during which aerobic mineralization can take place, they

may also affect rates and benthic fluxes. Quantifying the spatial-temporal dynamics in redox conditions is critical for understanding early diagenesis and argues for the use of 2D optical 642 sensors that allow high resolution measurements of chemical species, such as pH (Hulth et al., 643 2002; Zhu et al., 2006, Larsen et al., 2012), ammonia (Strömberg and Hulth, 2005) carbon 644 dioxide (Zhu et al., 2006; Schröder et al., 2007), ferrous iron (Zhu and Aller, 2012) and other 645 646 porewater trace metals (Stahl et al., 2012). The combination of measurements and transportreaction models on appropriate spatial-temporal scales that account for the intermittency of 647 infaunal activity are needed to better understand biogeochemical processes in biologically active 648 649 sediments.

650

51 Acknowledgments and author contributions

This publication was supported by the National Science Foundation (OCE 0928002 to SAW and 652 DSW, and OCE 0751882 to CM), the Office of Naval Research (N00014-0310352 to SAW and DSW), National Oceanic and Atmospheric Administration (NA04NOS4780264 to DSW and 654 SAW), National Aeronautics and Space Administration (NNX11AP77 to DSW and SAW) and 655 656 the Max Planck Society (LP). The Friday Harbor Laboratories of the University of Washington and Wadden Sea Station Sylt of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association provided laboratory and living space as well as access to field sites. 658 659 Writing of the manuscript was led by NV, CM and LP, and all authors contributed intellectually to this project, which originated with NV, DSW and SAW. Data collection was done by NV, SAW and DSW; data analysis was led by NV; transport-reaction modeling was led by CM, NV 661 and LP; optode data capture and optode and pressure data analysis software were written by LP and DSW; CP, JEH and SFT in New Zealand and AN, JN and CP in Finland (supported by the 664 EU BONUS+ project HYPER to AN) hosted and supported the laboratory work and specimen collection in the field. We thank Robert C. Aller and two anonymous reviewers for valuable comments on this manuscript.

667

668 Appendix

Videos 1-3: Time-lapse movies of the tellinid bivalves *Macomona liliana*, *Macoma nasuta* and *Macoma balthica* (72 hour real-time in 27 s; 9600-fold speed). Particle reworking is related to deposit-feeding activity. Occasionally the approximate position of the subsurface excurrent siphon can be deduced from the locations of ongoing particle displacement.

673

Video 4: Oxygen dynamics (450-fold speed) induced by intermittent irrigation by the tellinid bivalves *Macomona liliana*, *Macoma nasuta* and *Macoma balthica*, as revealed by planar optode imaging of oxygen.

- 677 References
- 678 Aller, R. C. 1980. Quantifying solute distributions in the bioturbated zone of marine sediments
- 679 by defining an average microenvironment. Geochim. Cosmochim. Acta, 44, 1955–1965.

- 681 Aller, R. C. 1994. Bioturbation and remineralization of sedimentary organic matter: effects of
- 682 redox oscillation. Chem. Geol., 114, 331–345.

683

- Aller, R. C. and J. Y. Yingst. 1985. Effects of the marine deposit-feeders *Heteromastus filiformis*
- 685 (Polychaeta), Macoma balthica (Bivalvia) and Tellina texana (Bivalvia) on averaged
- 686 sedimentary solute transport, reaction rates, and microbial distributions. J. Mar. Res., 43, 615–
- 687 645.

688

- 689 Aller, R. C. and J. Y. Yingst. 1978. Biogeochemistry of tube-dwellings: A study of the sedentary
- 690 polychaete *Amphitrite ornata* (Leidy). J. Mar. Res., 36, 201–254.

691

- 692 Aller, R. C., J. Y. Yingst and W. J. Ullman. 1983. Comparative biogeochemistry of water in
- 693 intertidal *Onuphis* (Polychaeta) and *Upogebia* (Crustacea) burrows: temporal pattern and causes.
- 694 J. Mar. Res., 41, 571–704.

695

- 696 Berg, P., S. Rysgaard, P. Funch and M. K. Sejr. 2001. Effects of bioturbation on solutes and
- 697 solids in marine sediments. Aquat. Microb. Ecol., 26, 81–94.

- 699 Bennett, W. W., P. R. Teasdale, J. G. Panther, D. T. Welsh, H. Zhao, D. F. Jolley. 2012.
- 700 Investigating arsenic speciation and mobilization in sediments with DGT and DET: a mesocosm
- 701 evaluation of oxic–anoxic transitions. Environ. Sci. Technol., 46, 3981–3989.

- 703 Billerbeck, M., U. Werner, L. Polerecky, E. Walpersdorf, D. de Beer and M. Huettel. 2006.
- 704 Surficial and deep pore water circulation governs spatial and temporal scales of nutrient
- 705 recycling in intertidal sand flat sediment. Mar. Ecol. Prog. Ser., 326, 61–76.

706

- 707 Boudreau, B. P. 2001. Solute transport above the sediment–water interface, in The Benthic
- 708 Boundary Layer, Boudreau, B.P. and B. B. Jørgensen, eds., Oxford University Press, New York,
- 709 104-126.

710

- 711 Boudreau, B. P. and R. L. Marinelli. 1994. A modeling study of discontinuous biological
- 712 irrigation. J. Mar. Res., *52*, 947–968.

713

- 714 Caradec, S., V. Grossi, F. Gilbert, C. Guigue and M. Goutx. 2004. Influence of various redox
- 715 conditions on the degradation of microalgal triacylglycerols and fatty acids in marine sediments.
- 716 Org. Geochem., 35, 277–287.

717

- 718 Cravo-Laureau, C., G. Hernadez-Raquet, I. Vitte, R. Jézéquel, V. Bellet, J. J. Godon, P.
- 719 Caumette, P. Balaguer and R. Duran. 2011. Role of environmental fluctuations and microbial
- 720 diversity in degradation of hydrocarbons in contaminated sludge. Res. Microbiol., 162, 888–895.

- 722 Dales, R. P., C. P. Mangum and J. C. Tichy. 1970. Effects of changes in oxygen and carbon
- 723 dioxide concentrations on ventilation rhythms in onuphid polychaetes. J. Mar. Biol. Ass. U.K.,
- 724 50, 365–380.

- 726 D'Andrea, A. F. and T. H. DeWitt. 2009. Geochemical ecosystem engineering by the mud
- 727 shrimp *Upogebia pugettensis* (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: density-
- 728 dependent effects on organic matter remineralization and nutrient cycling. Limnol. Oceanogr.,
- 729 *54*, 1911–1932.

730

- 731 Drent, J., P. C. Luttikhuizen and T. Piersma. 2004. Morphological dynamics in the foraging
- 732 apparatus of a deposit feeding marine bivalve: phenotypic plasticity. Funct. Ecol., 18, 349–356.

733

- 734 Engel, M., A. Behnke, J. Klier, C. Buschbaum, N. Volkenborn and T. Stoeck. 2012. Effects of
- 735 the bioturbating lugworm *Arenicola marina* on the structure of benthic protistan communities.
- 736 Mar. Ecol. Prog. Ser., 471, 87-99.

737

- 738 Forster, S. and G. Graf. 1995. Impact of irrigation on oxygen flux into the sediment: intermittent
- 739 pumping by Callianassa subterranea and "piston-pumping" by Lanice conchilega. Mar. Biol.,
- 740 *123*, 335–346.

741

- 742 Foster-Smith, R. L. 1978. An analysis of water flow in tube-living animals. J. Exp. Mar. Biol.
- 743 Ecol., 34, 73–95.

- 745 Gallucci, V. F. and J. Hylleberg. 1976. A quantification of some aspects of growth in the bottom-
- 746 feeding bivalve *Macoma nasuta*. Veliger, 19, 59–67.

748 Glud, R. N. 2008. Oxygen dynamics in marine sediments. Mar. Biol. Res., 4, 243–289.

749

- 750 Glud, R. N., J. K. Gundersen, H. Røy and B. B. Jørgensen. 2003. Seasonal dynamics of benthic
- 751 O₂ uptake in a semi-enclosed bay: importance of diffusion and fauna activity. Limnol.
- 752 Oceanogr., 48, 1265–1276.

753

- 754 Henriksen, K., M. B. Rasmussen and A. Jensen. 1983. Effect of bioturbation on microbial
- 755 nitrogen transformations in the sediment and fluxes of ammonium and nitrate to the overlying
- 756 water. Ecol. Bull., 35, 193–205.

757

- Hulth, S., R. C. Aller, P. Engstrom, and E. Selander. 2002. A pH plate fluorosensor (optode) for
- 759 early diagenetic studies of marine sediments. Limnol. Oceanogr., 47, 212–220.

760

- 761 Hummel, H. 1985. Food intake of *Macoma balthica* (Mollusca) in relation to seasonal changes in
- 762 its potential food on a tidal flat in the Dutch Wadden Sea. Neth. J. Sea Res., 19, 52–76

- 764 Kamermans, P. and H. J. Huitema. 1994. Shrimp (Crangon crangon L.) browsing upon siphon
- 765 tips inhibits feeding and growth in the bivalve *Macoma balthica* (L.). J. Exp. Mar. Biol. Ecol.,
- 766 175, 59–75.

- 767 Karlson, K., E. Bonsdorff and R. Rosenberg. 2007. The impact of benthic macrofauna for
- 768 nutrient fluxes from Baltic Sea sediments. Ambio, 36, 161–167.

- 770 Klute, A. and C. Dirksen. 1986. Hydraulic conductivity and diffusivity: laboratory methods, in
- 771 Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, A. Klute, ed., American
- 772 Society of Agronomy, Madison, WI, 687–700.

773

- 774 Kolar, C. S. and F. J. Rahel. 1993. Interaction of a biotic factor (predator presence) and an
- abiotic factor (low oxygen) as an influence on benthic invertebrate communities. Oecologia, 95,
- 776 210-219.

777

- 778 Kristensen, E. 1988. Benthic fauna and biogeochemical processes in marine sediments:
- 779 microbial activities and flux, in Nitrogen Cycling in Coastal Marine Environments, Blackburn,
- 780 T.H. and J. Sørensen, eds., Wiley, New York, 275–299.

781

- 782 Kristensen, E. 2001. Impact of polychaetes (*Nereis* spp. and *Arenicola marina*) on carbon
- 783 biogeochemistry in coastal marine sediments. Geochem. Trans., 2, 92–103.

784

- 785 Kristensen E., M. H. Jensen and R. C. Aller. 1991. Direct measurement of dissolved inorganic
- 786 nitrogen exchange anddenitrification in individual polychaete (*Nereis virens*) burrows. J. Mar.
- 787 Res., 49, 355–377.

- 789 Larsen, M., S. M. Borisov, B. Grunwald, I. Klimant and R. N. Glud. 2012. A simple and
- 790 inexpensive high resolution color ratiometric planar optode imaging approach: application to
- 791 oxygen and pH sensing. Limnol. Oceanogr.: Methods, 9, 348–360.

- 793 Le Bars, M. and M. Grae Worster. 2006. Interfacial conditions between a pure fluid and a porous
- 794 medium: implications for binary alloy solidification. J. Fluid Mech., 550, 149–173.

795

- 796 Levinton, J. S. 1991. Variable feeding behavior in three species of *Macoma* (Bivalvia:
- 797 Tellinacea) as a response to water flow and sediment transport. Mar. Biol., 110, 375–383.

798

- 799 Lin, J. and A. H. Hines. 1994. Effects of suspended food availability on the feeding mode and
- 800 burial depth of the Baltic clam, *Macoma balthica*. Oikos, 69, 28–36.

801

- 802 Lohrer, A. M., S. F. Thrush, M. M. Gibbs. 2004. Bioturbators enhance ecosystem function
- 803 through complex biogeochemical interactions. Nature, 431, 1092–1095.

804

- 805 Mangum, C. P. and L. E. Burnett. 1975. The extraction of oxygen by estuarine invertebrates, in
- 806 Physiological Ecology of Estuarine Organisms, F. J. Vernberg, ed., University of South Carolina
- 807 Press, Columbia, SC, 147–163.

- 809 Marinelli, R. L., C. R. Lovell, S. G. Wakeham, D. B. Ringelberg and D. C. White. 2002.
- 810 Experimental investigation of the control of bacterial community composition in macrofaunal
- 811 burrows. Mar. Ecol. Prog. Ser., *235*, 1–13.

- 813 Marinelli, R.L. and T. J. Williams. 2003. Evidence for density dependent effects of infauna on
- 814 sediment biogeochemistry and benthic-pelagic coupling in nearshore systems. Estuar. Coast.
- 815 Shelf Sci., 57, 179–192.

816

- Matsui, G.Y., N. Volkenborn, L. Polerecky, U. Henne, D. S. Wethey, C. R. Lovell and S. A.
- 818 Woodin. 2011. Mechanical imitation of bidirectional bioadvection in aquatic sediments. Limnol.
- 819 Oceanogr.: Methods, *9*, 84–96.

820

- 821 Meyerhöfer, E. 1985. Comparative pumping rates in suspension-feeding bivalves. Mar. Biol., 85,
- 822 137-142.

823

- 824 Meyers, M. B., H. Fossing and E. N. Powell. 1987. Microdistribution of interstitial meiofauna,
- 825 oxygen and sulfide gradients, and the tubes of macro-infauna. Mar. Ecol. Prog. Ser., 35, 223-
- 826 241.

827

- 828 Meysman F. J. R., O. S. Galaktionov, B. Gribsholt and J. J. Middelburg. 2006. Bio-irrigation in
- 829 permeable sediments: An assessment of model complexity. J. Mar. Res., 64, 589–627.

830

- 831 Meysman, F. J. R., E. S. Galaktionov and J. J. Middelburg. 2005. Irrigation patterns in permeable
- 832 sediments induced by burrow ventilation: a case study of *Arenicola marina*. Mar. Ecol. Prog.
- 833 Ser., 303, 195-212.

- 835 Michaud, E., G. Desrosiers, R. C. Aller., F. Mermillod-Blondin, B. Sundby and G. Stora. 2009.
- 836 Spatial interactions in the *Macoma balthica* community control biogeochemical fluxes at the
- 837 sediment-water interface and microbial abundances. J. Mar. Res., 67, 43–70.

- 839 Na, T., B. Gribsholt, O. S. Galaktionov, T. Lee and F. J. R. Meysman. 2008. Influence of
- 840 advective bio-irrigation on carbon and nitrogen cycling in sandy sediments. J. Mar. Res., 66,
- 841 691-722.

842

- 843 Olafsson, E. B. 1986. Density dependence in suspension–feeding and deposit–feeding
- 844 populations of the bivalve *Macoma balthica*: A field experiment. J. Anim. Ecol., 55, 517–526.

845

- 846 Pischedda, L., P. Cuny, J. L. Esteves, J.-C. Poggiale and F. Gilbert. 2012. Spatial oxygen
- 847 heterogeneity in a *Hediste diversicolor* irrigated burrow. Hydrobiologia, 680, 109–124.

848

- 849 Polerecky, L., U. Franke, U. Werner, B. Grunwald and D. de Beer. 2005. High spatial resolution
- 850 measurement of oxygen consumption rates in permeable sediments. Limnol. Oceanogr.:
- 851 Methods, 3, 75–85.

852

- 853 Polerecky, L., N. Volkenborn and P. Stief. 2006. High temporal resolution oxygen imaging in
- 854 bioirrigated sediments. Environ. Sci. Technol., 40, 5763–5769.

- 856 Powell, A. W. B. 1979. New Zealand Mollusca: marine, land and freshwater shells. Auckland,
- 857 Collins, 500 pp.

- 859 Reise, K. 1981. High abundance of small zoobenthos around biogenic structures in tidal
- sediments of the Wadden Sea. Helgol. Meeresunters., 34, 413–425.

- 862 Riisgård, H. U. and P. S. Larsen. 2005. Water pumping and analysis of flow in burrowing
- 863 zoobenthos-an overview. Aquat. Ecol., 39, 237–258.

864

- 865 Roper, D. S., R. D. Pridmore and S. F. Thrush. 1992. Recruitment to the macrobenthos of
- 866 Macomona liliana (Bivalvia: Tellinidae) in Manukau Harbour, New Zealand. N. Z. J. Mar.
- 867 Freshwater Res., 26, 385–392.

868

- 869 Schröder, C. R., L. Polerecky and I. Klimant. 2007. Time-resolved pH/pO₂ mapping with
- 870 luminescent hybrid sensors. Anal. Chem., 79, 60–70.

871

- 872 Schulz, H. D. 2000. Quantification of early diagenesis: Dissolved constituents in marine pore
- water, in Marine geochemistry, Schulz, H. D. and M. Zabel, eds., Springer, New York, 87–128.

874

- 875 Solan, M., B. D. Wigham, I. R. Hudson, R. Kennedy, C.H. Coulon, K. Norling, H.C. Nilsson and
- 876 R. Rosenberg. 2004. In situ quantification of bioturbation using time-lapse fluorescent sediment
- 877 profile imaging (f-SPI), luminophore tracers and model simulation. Mar. Ecol. Prog. Ser., 271,
- 878 1–12.

- 880 Specht, D.T. and H. Lee II. 1989. Direct measurement technique for determining ventilation rate
- 881 in the deposit feeding clam *Macoma nasuta* (Bivalvia, Tellinaceae). Mar. Biol., 101, 211–218.

- 883 Stahl, H., K. W. Warnken, L. Sochaczewski, R. N. Glud, W. Davison and H. Zhang. 2012. A
- 884 combined sensor for simultaneous high resolution 2–D imaging of oxygen and trace metals
- 885 fluxes. Limnol. Oceanogr.: Methods, 10, 389–401.

886

- 887 Stief, P., L. Polerecky, M. Poulsen and A. Schramm. 2010. Control of nitrous oxide emission
- 888 from *Chironomus plumosus* larvae by nitrate and temperature. Limnol. Oceanogr., 55, 872–884.

889

- 890 Stief, P., M. Poulsen, L. P. Nielsen, H. Brix and A. Schramm. 2009. Nitrous oxide emission by
- 891 aquatic macrofauna. PNAS, 106, 4296-4300.

892

- 893 Strömberg, N. and S. Hulth. 2005. Assessing an imaging ammonium sensor using time correlated
- 894 pixel-by-pixel calibration. Anal. Chim. Acta., 550, 61-68.

895

- 896 Sun, M. Y., R. C. Aller, C. Lee and S. G. Wakeham. 2002. Effects of oxygen and redox
- 897 oscillation on degradation of cell associated lipids in surficial marine sediments. Geochim.
- 898 Cosmochim. Acta, 66, 2003–2012.

899

- 900 Sun, M. Y., C. Lee and R. C. Aller. 1993. Laboratory studies of oxic and anoxic degradation of
- 901 chlorophyll–a in Long Island Sound sediments. Geochim. Cosmochim. Acta, 57, 147–157.

- 903 Tallqvist, M. 2001. Burrowing behaviour of the baltic clam Macoma balthica: effects of
- 904 sediment type, hypoxia and predator presence. Mar. Ecol. Prog. Ser., 212, 183–191.

- 906 Timmermann, K., G. T. Banta and R. N. Glud. 2006. Linking Arenicola marina irrigation
- 907 behavior to oxygen transport and dynamics in sandy sediment. J. Mar. Res., 64, 915–938.

908

- 909 Volkenborn, N. and K. Reise. 2006. Lugworm exclusion experiment: responses by deposit
- 910 feeding worms to biogenic habitat transformations. J. Exp. Mar. Biol. Ecol., 330, 169–179.

911

- 912 Volkenborn, N., S. I. C. Hedtkamp, J. E. E. van Beusekom and K. Reise. 2007. Effects of
- 913 bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical
- 914 sediment properties and implications for intertidal habitat succession. Estuar. Coast. Shelf Sci.,
- 915 *74*, 331–343.

916

- 917 Volkenborn, N., L. Polerecky, D. S. Wethey and S. A. Woodin. 2010. Oscillatory porewater
- 918 bioadvection in marine sediments induced by hydraulic activities of *Arenicola marina*. Limnol.
- 919 Oceanogr., 55, 1231–1247.

920

- 921 Volkenborn, N., L. Polerecky, D. S. Wethey, T. H. DeWitt and S. A. Woodin. 2012. Hydraulic
- 922 activities by ghost shrimp *Neotrypaea californiensis* induce oxic-anoxic oscillations in
- 923 sediments. Mar. Ecol. Prog. Ser., 455, 141–156.

- 925 Vopel, K., D. Thistle and R. Rosenberg. 2003. Effect of the brittle star Amphiura filiformis
- 926 (Amphiuridae, Echinodermata) on oxygen flux into the sediment. Limnol. Oceanogr., 48, 2034–
- 927 2045.

- 929 Wang, Y. and P. Van Cappellen. 1996. A multicomponent reactive transport model of early
- 930 diagenesis: Application to redox cycling in coastal marine sediments. Geochim. Cosmochim.
- 931 Acta, 60, 2993-3014.

932

- Werner, U., M. Billerbeck, L. Polerecky, U. Franke, M. Huettel, J. E. E. van Beusekom and D.
- 934 de Beer. 2006. Spatial and temporal patterns of mineralization rates and oxygen distribution in a
- 935 permeable intertidal sand flat (Sylt, Germany). Limnol. Oceanogr., 51, 2549–2563.

936

- 937 Wethey, D. and S. A. Woodin. 2005. Infaunal hydraulics generate porewater pressure signals.
- 938 Biol. Bull., 209, 139-145.

939

- 940 Wethey, D. S., S. A. Woodin, N. Volkenborn and K. Reise. 2008. Porewater advection by
- 941 hydraulic activities of lugworms, Arenicola marina: a field, laboratory and modeling study. J.
- 942 Mar. Res., 66, 255–273.

943

- 944 Woodin, S.A., R.L. Marinelli and S.M. Lindsay. 1998. Process-specific cues for recruitment in
- 945 sedimentary environments: Geochemical signals? J. Mar. Res., 56, 535–558.

- 947 Woodin, S. A., D. S. Wethey, J. E. Hewitt and S. F. Thrush. 2012. Small scale terrestrial clay
- 948 deposits on intertidal sandflats: behavioral changes and productivity reduction. J. Exp. Mar. Biol.
- 949 Ecol., 413, 184-191.

- 951 Woodin, S. A., D. S. Wethey and N. Volkenborn. 2010. Infaunal hydraulic ecosystem engineers:
- 952 cast of characters and impacts. Integr. Comp. Biol., 50, 176–187.

953

- 954 Zhu, Q. and R. C. Aller. 2012. Two-dimensional dissolved ferrous iron distributions in marine
- 955 sediments as revealed by a novel planar optical sensor. Mar. Chem., 136–137, 14–23.

956

- 957 Zhu, Q., R. C. Aller and Y. Fan. 2006.. Two-dimensional pH distributions and dynamics in
- 958 bioturbated marine sediments. Geochim. Cosmochim. Acta, 70, 4933-4949.

- 960 Zwarts, L. and J. Wanink. 1989. Siphon size and burying depth in deposit- and suspension-
- 961 feeding benthic bivalves. Mar. Biol., 100, 227-24.

962 Figure legends

963 **Figure 1:** Porewater pressure dynamics associated with hydraulic activities of the tellinid bivalve 964 *Macomona liliana* (shell length 5.0 cm, sediment permeability 4.3×10⁻¹² m²). The 22 hour 965 sequence starts and ends with burrowing episodes. In between, this individual was deposit–966 feeding, characterized by intermittent pressurization and positive and negative hydraulic pulses 967 associated with feces and pseudofeces expulsions and siphon movements. B and C are 968 enlargements of the pressure data as indicated by the dashed boxes in A.

969

Figure 2: Intermittent porewater pressurization associated with deposit–feeding by *Macomona* liliana (shell length 4.9 cm, permeability 4.3×10⁻¹² m²), *Macoma nasuta* (shell length 4.9 cm, permeability 2.3×10⁻¹² m²) and *Macoma balthica* (shell length 2.3 cm, unknown permeability). Dotted lines indicate baseline hydrostatic pressure (p=0).

974

Figure 3: Temporal characteristics of intermittent porewater pressurization during deposit-976 feeding by tellinid bivalves. Shown are irrigation characteristics of individuals that belong to 977 different species and size classes in sediment types with different sedimentary oxygen 978 consumption rates (K_{OX} in μmol L_s⁻¹ min⁻¹; 'na' not available). Durations of pressurized (T_{PUMP}) 979 and non-pressurized intervals (T_{REST}) are displayed as box-and-whisker plots. Boxes correspond 980 to the 25th and 75th percentiles, vertical lines span the 5th and 95th percentiles and the horizontal 981 lines within the boxes correspond to the median durations. Maximal and minimal durations are 982 indicated by small horizontal bars. Numbers in the middle correspond to the average frequencies 983 of irrigation bouts per hour calculated as 60/(T_{PUMP}+T_{REST}). 984 **Figure 4:** Dynamics of porewater oxygen concentrations and pressure recorded simultaneously during deposit–feeding by two tellinid species in sediments with volumetric oxygen consumption rates of 16 μmol L_s⁻¹ min⁻¹. The left images are O₂ snapshots while the right images are the vertically orientated time–series of the horizontal profile indicated by dotted lines in the O₂ snapshots (a and b). The white lines in the O₂ profile time–series are the time–synchronous porewater pressure records. Pressure plateaus above the hydrostatic baseline pressure (horizontal dotted line) correspond to feeding bouts and result in oxygenation of subsurface sediment.

991

Figure 5: Representative spatial-temporal patterns of sediment oxygenation during 2–4 hours of deposit-feeding by 3 tellinid species. The images show (from top to bottom) the probability of oxygen being present over the analyzed period (P_{O2}), the average oxygen concentration over the oxic intervals (c_{O2}), the frequency of alterations from oxic to anoxic and back to oxic conditions per hour (F_{REDOX}), and the average durations of the oxic (T_{OX}) and anoxic (T_{ANOX}) periods. Sediment reactivity for *M. liliana* and *M. nasuta* was 16 µmol L_s^{-1} min⁻¹.

998

Figure 6: Modeled variations of the oxic sediment volumes (V_{O2} , defined as the volume of sediment with porewater O_2 concentrations >2 μM and below a sediment depth of 1 cm) with intermittent irrigation by tellinids. Simulations were run for 3 different sediment reactivities (K_{OX}) that approximately correspond to the range of sediment types that these bivalves inhabit – from permeable clean sand ($K_{OX} = 4.5 \, \mu \text{mol L}_{\text{s}}^{-1} \, \text{min}^{-1}$) to low permeability fine sand ($K_{OX} = 40 \, \mu \text{mol L}_{\text{s}}^{-1} \, \text{min}^{-1}$). Simulations are based on the means of the species–specific irrigation patterns derived from porewater pressure analysis and instantaneous pumping rates from the literature ($M. \, liliana$: $Q = 1.6 \, \text{mL min}^{-1}$; $T_{PUMP} = 8.1 \, \text{min}$; $T_{REST} = 10 \, \text{min}$; $M. \, nasuta$: $Q = 1.8 \, \text{mL min}^{-1}$;

1007 $T_{PUMP} = 4.8 \text{ min}$; $T_{REST} = 3.7 \text{ min}$; M. balthica: $Q = 0.35 \text{ mL min}^{-1}$; $T_{PUMP} = 2.3 \text{ min}$; $T_{REST} = 1.7 \text{ mi$ 1008 min). Bars below species names depict the type of activity (white = rest; black = pumping).

1009

1010 Figure 7: Modeled variations of the oxic sediment volume, V_{O2}, around the injection pocket 1011 over a 40 min long period of constant irrigation followed by a resting period sufficiently long to 1012 reach anoxic conditions. A: Variation of V₀₂ for a specific instantaneous pumping rate (1.5 mL min⁻¹) at various sediment reactivities. B: Variation of V_{O2} for a specific sediment reactivity (18 $\mu mol \ L_s^{\text{--}1} \ min^{\text{--}1})$ and various instantaneous pumping rates. The time required to reach 95% of a 1015 steady state oxic volume (T_{O2max}) as well as the time required for a complete consumption of 1016 oxygen within the volume V_{O2max} (T_{O2zero}) are independent of the pumping rate and are governed 1017 by the reactivity of the sediment only.

1018

1021

1022

1023

Figure 8: Modeled relationships between the instantaneous pumping rates (Q) and the maximal oxic volumes (V_{O2max}) established with continuous water injection into sediments of different reactivities (K_{OX}). K_{OX} values are indicated at the distal end of the lines (A). The slope of the linear regression V_{O2max} versus Q, denoted as m, depends on K_{OX} and can be described by a hyperbolic function (B). Symbols correspond to values derived from model simulations, while solid lines correspond to the analytical approximations shown. 1024

1025

Figure 9: Spatio-temporal dynamics of oxygenated pockets induced by intermittent water injection into sediments of different reactivity. A and B show the fraction of V_{O2max} that is 1028 reached after a given duration of pumping and resting, assuming the initial conditions of V_{O2}=0 1029 and V_{O2}=V_{O2max}, respectively. Symbols correspond to means obtained by modeling of the

1030 fraction of V_{O2max} established after certain T_{PUMP} and T_{REST} for 6 different pumping rates ranging from 0.1 mL min⁻¹ to 3 mL min⁻¹; the error bars, if shown, would be the size of the symbol and values were not different as a function of pumping rate. Solid lines correspond to analytical approximations of V_{O2}/V_{O2max} (Eqs. 3 and 5). Panels C and D show the durations of pumping and 1033 resting that are necessary to reach 95 % and 1 % of V_{O2max} (T_{O2max} and T_{O2zero}), respectively. Filled symbols depict the means of T_{O2max} and T_{O2zero} derived from simulations with the same 6 1035 pumping rates (0.1 mL min⁻¹ to 3 mL min⁻¹), while the solid lines correspond to the analytical approximations of T_{O2max} and T_{O2zero} (Eqs. 4 and 6). Open squares with error bars on the right 1037 side of C and D depict mean durations and standard deviations of tellinid irrigation bouts (T_{PUMP}) and resting intervals (T_{REST}) measured with porewater pressure sensors for different tellinid 1040 species and sizes. Shown are the means of n individuals of large M. liliana (n=16), small M. liliana (n=7), large M. nasuta (n=5), and M. balthica (n=3). The horizontal dotted lines through the means of T_{PUMP} and T_{REST} and the vertical dotted lines from their intersections with the 1042 hyperbolic curves were added for orientation. All simulation results shown used $O_2^{\text{injected}} = 88$ 1044 μM.

Table 1: Tellinids and sediment characteristics during porewater pressure measurements and derived behavioral time allocation to behaviors (deposit-feeding, burrowing, inactive) and temporal characteristics of intermittent irrigation during deposit-feeding. 'N' is number of individuals; 'k' is sediment permeability; ' K_{OX} ' is sedimentary volumetric oxygen consumption rate; 'na' not available, *derived from time-lapse photography of 2 individuals.

Table 1 Volkenborn et al.

spe	cime	en	sediment characteristics				behavioral time allocation			irrigation patterns during deposit-feeding			
species	N	shell length	k	porosity			deposit feeding		inactive	bout frequency	$T_{\scriptscriptstyle{PUMP}}$	T _{REST}	bouts analyzed per ind.
		cm	10 ⁻¹² m ²	vol %			% of time			h-1	min	min	n
		mean			mean	sd					mean sd	mean sd	
M. liliana	8	4.7	4.3	0.49	16	2	86.2	6.3	7.5	3.4	7.7 2.3	10.5 1.9	179
M. liliana	8	4.7	0.24	0.56	43	11	89.5	6.7	3.7	3.3	8.9 2.7	9.5 1.8	139
M. liliana	4	2.4	0.10	0.56	43	11	95.8	0.9	3.2	5.6	4.4 1.0	6.7 1.8	99
M. nasuta	2	5.0	7.3	0.43	16	4	93.2	2.5	4.4	6.1	5.2 1.2	4.9 0.7	99
M. nasuta	3	5.0	2.3	0.51	31	6	85.8	3.2	11.0	8.0	4.6 0.8	2.9 0.2	129
M. balthica	3	2.1	na	na	na	na	*50.4	*0.5	*49.1	15.1	2.3 0.2	1.7 0.2	127

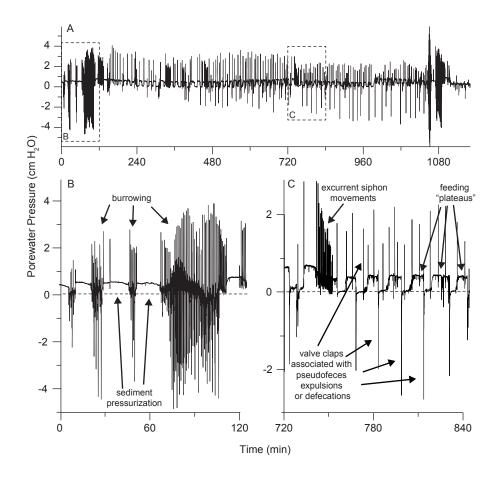
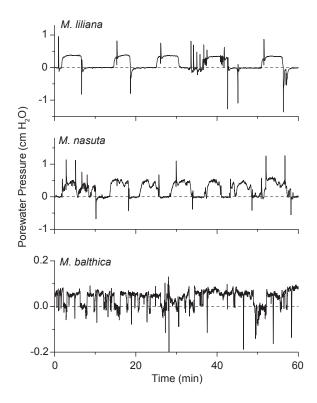



Figure 1 Volkenborn et al.

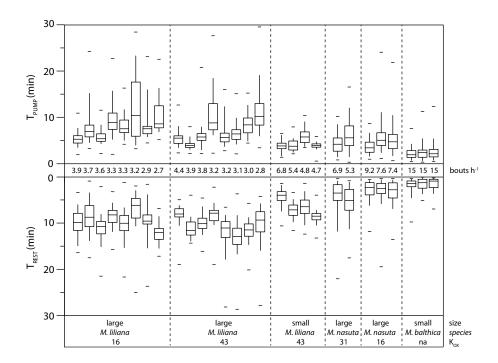
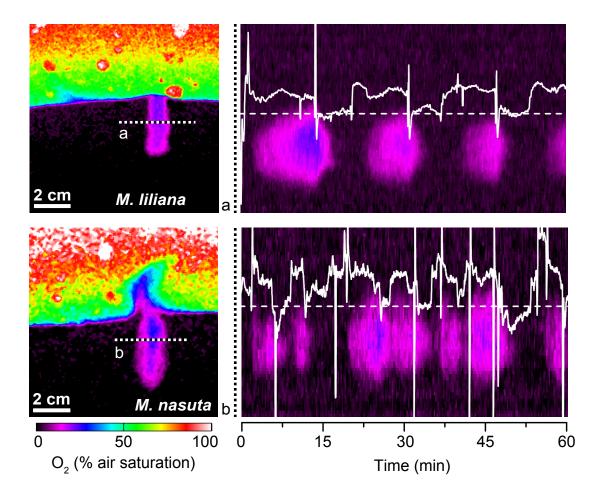
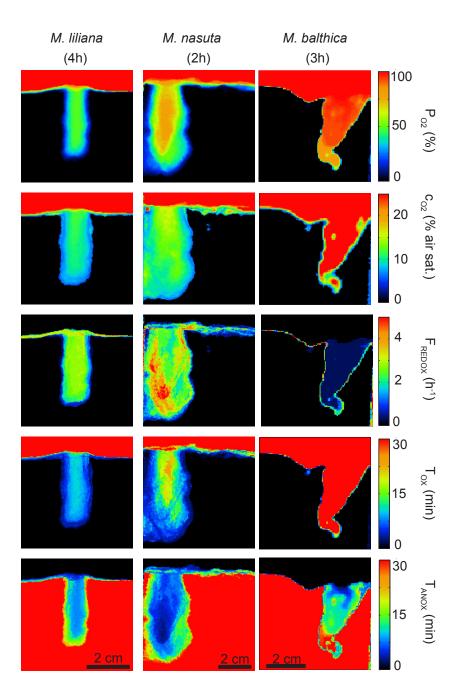
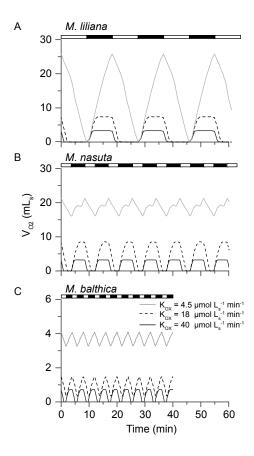
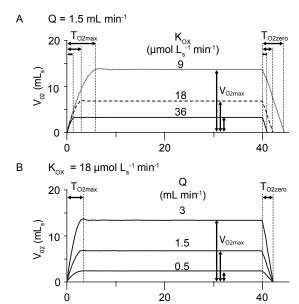
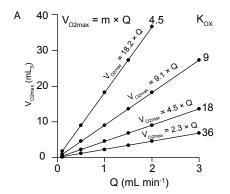
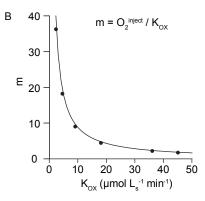



Figure 3 Volkenborn et al.


Figure 5 Volkenborn et al.

Time (min)

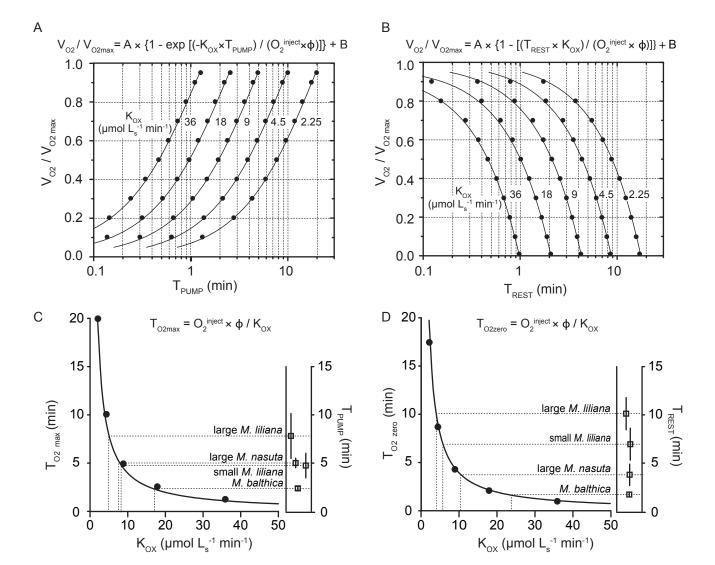


Figure 9 Volkenborn et al.