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In URu2Si2 two types of staggered long range order compete at low tempera-

ture when a critical parameter x is tuned, where x can be chemical substituent

concentration, pressure or magnetic field. Upon cooling and below the critical

xc, the non-magnetic ‘hidden order’ (HO) phase breaks local chiral symmetry,

whereas above xc, unconventional antiferromagnetic (AF) phases arise. The

‘Janus faces’ nature of the HO and AF phases has been theorized before, but

the experimental signatures of the interplay between them are still lacking.

Here, we use polarized Raman scattering to study the dynamical fluctuations

between the two competing ground states as a function of x through Fe sub-

stitution at Ru sites. We detect a resonance in the Raman response, which

provides evidence for a unified order parameter for the phase diagram.
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URu2Si2 holds long-standing interest in the strongly correlated electron community due to

several emergent types of long range order it exhibits. Below the second order phase transition

temperature TDW (x), two density-wave-like orders emerge (1): the enigmatic ‘hidden order’

(HO) phase below about 17.5 K (2–4), and the onset of an unconventional large moment antifer-

romagnetic (LMAF) phase with the application of hydrostatic pressure (5) or uniaxial stress (6).

Below 1.5 K, a superconducting state, which likely breaks time reversal symmetry (7), emerges

from the HO phase. Recently, much effort has been dedicated towards unraveling the order

parameter of the HO phase through several newly developed experimental and theoretical tech-

niques (7–12). In particular, the symmetry analysis of the low temperature Raman scattering

data implies that the reflection symmetries of tetragonal D4h point group (No. 139 I4/mmm)

associated with the paramagnetic (PM) state are broken, and a chirality density wave emerges

as the HO ground state (13).

The HO and LMAF phases are known to exhibit ‘adiabatic continuity’ (14), i.e., both phases

possess similar transport and thermodynamic properties (15,16), and Fermi surfaces practically

show no change across the phase boundary (17). Furthermore, inelastic neutron scattering ob-

served a dispersive exciton in the HO phase (6, 18) and recently in the LMAF phase of pres-

surized URu2Si2 (19). This raises the intriguing question of the symmetry relation between

the two phases. However, experimental progress is hindered due to inherent constraints of low

temperature pressurized experiments.

The availability of URu2−xFexSi2 crystals (16,20) made it possible to perform high-resolution

spectroscopic experiments at low temperature and ambient pressure in both the HO and LMAF

phases. Iron substitution mimics the effect of applying small pressure or in-plane stress on

the URu2Si2 lattice, and the iron concentration, x, can be approximately treated as an effec-

tive ‘chemical pressure’ (16). Recently, the phase digram of URu2−xFexSi2 single crystals

have been determined (1, 20–23), which resembles the low pressure phase diagram of pristine

URu2Si2 (5, 12) (Fig. 1a). The inelastic neutron scattering measurements again illustrate the

analogies of the LMAF phase to the HO phase (23), albeit differences remain relating to the ex-
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istence of the resonance in the LMAF state of pressurized (19) or Fe-substituted crystals (23).

Figure 1h shows the temperature dependence of the Raman response in the eminent A2g

symmetry channel of theD4h group, which transforms as a pseudo-vector, i.e., odd under all ver-

tical and diagonal reflections of the square lattice (26). The upper panels show the intensity plots

of the low energy Raman response, χ′′A2g(ω, T ), below 30 K. Above TDW (x), a quasi-elastic

peak (QEP) comprises most of the spectral weight for all samples, narrowing towards the tran-

sition. The observed QEP originates from overdamped excitations between quasi-degenerate

crystal field states (13, 24), and the narrowing of the QEP with cooling is due to the increase of

excitation lifetime, related to the development of a hybridization gap and formation of a heavy

Fermi liquid (27, 28).

Below TDW (x), the most significant feature in the A2g channel is a sharp collective-mode.

The sharpness of this resonance suggests the lack of relaxation channels due to the opening of an

energy gap (1,27,29). In order to see the mode’s line-shape more clearly, we plot χ′′A2g(ω, T ) for

each iron concentration x in the lower panels, with T ≈ TDW (x)/2. The line-shapes broaden

with increasing x owing to the inhomogeneity of the local stress field, or unsuppressed relax-

ation channels introduced by doping that interact with the collective mode, which may also be

related to the increasing continuum in the x = 0.15 and 0.2 spectra. In contrast to the mono-

tonic broadening of the line-shape width, the collective mode frequency shows non-monotonic

behavior as function of x. The lower panel of Fig. 1a plots the mode energy against iron con-

centration. The energy decreases with increasing x in the HO phase, till vanishes below the

instrumental resolution at iron concentration x = 0.10, which is close to the HO and LMAF

phase boundary determined by elastic neutron scattering (22) and thermal expansion measure-

ments (20). The resonance reappears in the LMAF phase, where the energy increases with

increasing x. The resonance in the LMAF state appears in the same A2g symmetry channel as

the collective mode in the HO phase.

The similarity of the Raman response in the HO and LMAF phases encourages us to com-
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h 

Figure 1: The phase diagram of URu2−xFexSi2 and temperature dependence of the A2g

Raman susceptibility. a, The upper panels show the phase diagram of URu2Si2 system,
where the black lines show the phase boundaries. The measurements on the iron substituted
URu2−xFexSi2 crystals from neutron diffraction (22) (blue triangle), electrical resistivity (16)
(green square), magnetic susceptibility (16) (purple triangle) and heat capacity (20) (yellow
diamond), are overlaid with the neutron diffraction results for URu2Si2 under hydrostatic pres-
sure (5) (open square) to show the similarity between the two tuning parameters. The lower
panel shows the dependence of the A2g collective mode energy on the iron concentration, x. At
the critical concentration, x = 0.1, the mode maximum is below the accessible energy cutoff.
Therefore, the data point is placed at zero energy, with the error bar reflecting the instrumental
cutoff.
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Figure 1: (Previous page.) b-g, Schematics of the Ginzburg-Landau free energy (Eq. 1) at
various special points in the phase diagram (solid gray circles in a). ψHO and ψAF are the
real and imaginary part of the hexadecapole order parameter, respectively (24, 25). h, The low
temperature Raman response in the A2g symmetry channel, χ′′A2g(ω, T ). The upper panels show
intensity plots, where the intensities are color coded in logarithmic scale. The lower panels show
the spectra at about half the transition temperature to emphasize the collective mode, where the
error bars represent one standard deviation. The red solid lines are guides to the eye.

pare our results with the magnetic susceptibility. Figure 2 shows the temperature dependence of

the real part of the static A2g Raman susceptibility χ′A2g(0, T ), compared with the c-axis mag-

netic susceptibility χmc (T ) (20). While there are discrepancies around the maxima at about 50–

100 K, both quantities follow the same Curie-Weiss-like temperature dependence above 100 K,

followed by a suppression approaching the second order phase transition.

The comparison between χ′A2g(0, T ) and χmc (T ) has been studied within the frame work

of a phenomenological minimal model (13, 24). This is composed of two low-laying singlet

orbital levels on uranium sites, separated by an energy scale of ω0 = 35 K. These states with

pseudo-vector-like A2g and full-symmetric A1g symmetries are denoted by |A2g〉 and |A1g〉,

respectively. At high temperatures, the crystal field states are quasi-degenerate in energy and

localized at the uranium f-shells in space. The Curie-Weiss-like behavior above 100 K in static

magnetic- (20) and Raman-susceptibilities (13,31,32) suggest A2g pseudo-vector-like instabili-

ties at low temperature. Below about 50 K, the Kondo screening begins setting in (12,27,29,33)

and the correlation length of the HO (34) or LMAF (5, 35) phase builds at ordering vector

Q0 = (0, 0, 1), and therefore both the magnetic and Raman uniform susceptibilities start to de-

crease (Fig. 2). Close to the transition temperature, both the HO and LMAF order parameters

fluctuates regardless of the low temperature ordering (Fig. 1b-d). However, the static magnetic

susceptibility at Q0 only diverges across the PM–LMAF phase transition (5, 22), whereas it

becomes ‘near critical’ from PM–HO phase (34). Thus, HO is a non-magnetic transition, but

there is the ‘ghost’ of LMAF present as shown in Fig. 1b. Here, we find that the temperature

dependencies of the static A2g Raman susceptibility χ′A2g(0, T ) are similar and track χmc (T )

in all measured samples, suggesting that the minimal model is applicable for the studied iron
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substituted crystals.

We now discuss the origin and the observed doping dependence of the collective mode in

the ordered phases within a phenomenological Ginzburg-Landau approach. Within the minimal

model, the two order parameters can be constructed from |A2g〉 and |A1g〉 (24). The HO phase

was explained as the state in which the two levels mix, resulting in a lower symmetry point

group on uranium site, which breaks all vertical and diagonal reflection symmetry planes, and

thus acquires left- and right-handedness. (13, 24) The staggering of left and right handedness

solutions on the lattice gives rise to the chirality density wave (13) (see Fig. 3a). In the HO

phase, the staggered condensate can be approximated by a form |ψHO〉 =
∏

r=A site

|HO+
r 〉 ×∏

r=B site

|HO−r 〉. Note that |HO±r 〉 at uranium site r is dominantly |A2g〉, with small admixture of

|A1g〉, i.e., |HO±〉 = cos θ |A2g〉 ± sin θ |A1g〉.

In the HO the orbital mixing is purely real. If, however the mixing is purely imaginary,

the charge distribution on the uranium site does not break any spatial symmetry, instead; it

acquires non-zero out-of-plane magnetic moments, and thereby breaks time reversal symmetry.

The Néel-type condensate (see Fig. 3b) takes the form |ψAF 〉 =
∏

r=A site

|AF+
r 〉×

∏
r=B site

|AF−r 〉,

where |AF±〉 = cos θ |A1g〉 ± i sin θ |A2g〉 (24). The two apparently competing orders, the

chirality density wave and the antiferromagnetic state, are both constructed by mixing the two

orbital states on uranium sites with a real or an imaginary phase, thus unifying the two order

parameters.

The Ginzburg-Landau free energy can then be constructed from the two component order

parameter ΨT ≡
(
ψHO ψAF

)
, where the order parameters correspond to the two conden-

sates |ψHO〉 and |ψAF 〉 defined above. The free energy takes the form

F [Ψ] = ΨT ÂΨ + β
(
ΨTΨ

)2
+ γ

(
ΨT σ̂1Ψ

)2
(1)

where Â ≡
(
αHO 0

0 αAF

)
, with αHO and αAF vanish at the critical temperature. σ̂1 ≡

(
0 1
1 0

)
is the Pauli matrix. γ controls a finite barrier between the two minima in Fig.1e-g, hence

ensures phase separation between the HO and LMAF phases (35). The free energy parameters
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b 

The “hidden order” phase 

The antiferromagnetic phase 

Figure 3: Crystal structure and ground states of the HO and LMAF phases. The crys-
tal structure of URu2−xFexSi2 in a, the HO and b, the LMAF phases. Illustrations captur-
ing the symmetries of the charge distributions of the ground state wave functions are placed
at the uranium atomic sites. On the right of the crystal lattices are illustrations showing the
in-plane structures of the wave functions. In the HO phase, the crystal field state with the
lowest energy has A2g symmetry with 8 nodal lines, |A2g〉, which mixes with the first excited
state with A1g symmetry, |A1g〉, to form the local wave functions in the HO phase, |HO±〉 ≈
cos θ |A2g〉 ± sin θ |A1g〉. In the LMAF phase, the ordering of the crystal field states switches,
and the new wave functions in the LMAF phase are, |AF±〉 ≈ cos θ |A1g〉 ± i sin θ |A2g〉. Here,
θ ≡ arcsin(V/ω0) and θ′ ≡ arcsin(V ′/ω0), respectively. ω0 is the splitting between the lowest
lying crystal field states in the minimal model. V and V ′ are the order parameter strength in the
HO and LMAF phases, respectively. |A2g〉 and |A1g〉 are the A2g and A1g symmetrized crystal
field states in the minimal model, respectively. In the figure, we let sin θ ≈ V and sin θ′ ≈ V′ to
simplify the representation.
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are introduced following the recipes given in Haule and Kotliar (25, 36) with adjustments to

match the phase diagram in Fig. 1a (Materials and Methods).

Figure 1b-g plots the Ginzburg-Landau free energy in two dimensional space of ψHO and

ψAF . Below the second-order phase transition, two global and two local minima develop on

ψHO and ψAF axes due to spontaneous discrete symmetry breaking, where the minima charac-

terize the ground states in the HO and LMAF phases, respectively.

At the critical doping (Fig. 1f), the four minima are degenerate, but the barrier between the

minima remains finite due to a γ term in Ginzburg-Landau functional. Therefore the transition

between HO and LMAF phases is of the first order, and the coexistence of both phases is

allowed, explaining the LMAF puddles that have been observed in the HO phase (37, 38).

The energy separation between the dominant long range order (e.g., |ψHO〉) and the sub-

dominant order (e.g., |ψAF 〉) is vanishingly small at the critical Fe concentration, and even away

from this point can be smaller than the size of the gap. The exciton of subdominant symmetry

(e.g., |ψAF 〉) can form in the gap, which then propagates through the order of the dominant

symmetry (e.g., |ψHO〉). Likewise, when the ground state is of |ψAF 〉, the propagating exciton

is of |ψHO〉 symmetry. The symmetry difference between the two condensates isA2g-like, hence

such exciton can be detected by Raman in the A2g channel, and explains the sharp resonance

shown in Fig.1 h. It is clear from this discussion that the energy of the resonance vanishes

at the critical iron concentration, and is linearly increasing away from the critical point. For

superconductors, such an excitation is known as the Bardasis-Schrieffer mode, characterizing

the transition between two competing Cooper pairing channels (39).

More generally, the uranium 5f orbitals in solids can arrange in surprising types of orders,

including orders with broken chirality or time reversal symmetry. While such orders are com-

peting for the same phase space in URu2Si2, they are also subtly connected and were here

unified into a common order parameter, which can be switched with small energy cost. The low

energy excitations are usually Goldstone modes, but here we detected a new type of excitation,

which connects two types of long range order, and is observed as a resonance by light scattering.

9



References and Notes

1. J. S. Hall, et al., Phys. Rev. B 92, 195111 (2015).

2. T. T. M. Palstra, et al., Phys. Rev. Lett. 55, 2727 (1985).

3. M. B. Maple, et al., Phys. Rev. Lett. 56, 185 (1986).

4. W. Schlabitz, et al., Z. Phys. B 62, 171 (1986).

5. N. P. Butch, et al., Phys. Rev. B 82, 060408 (2010).

6. F. Bourdarot, et al., Phys. Rev. B 84, 184430 (2011).

7. E. R. Schemm, et al., Phys. Rev. B 91, 140506 (2015).

8. P. Aynajian, et al., Proc. Nat. Acad. Sci. USA 107, 10383 (2010).

9. A. R. Schmidt, et al., Nature (London) 465, 570 (2010).

10. R. Okazaki, et al., Science 331, 439 (2011).

11. S. C. Riggs, et al., Nat Commun 6 (2015).

12. J. A. Mydosh, P. M. Oppeneer, Rev. Mod. Phys. 83, 1301 (2011). And references therein.

13. H.-H. Kung, et al., Science 347, 1339 (2015).

14. Y. J. Jo, et al., Phys. Rev. Lett. 98, 166404 (2007).

15. E. Hassinger, et al., Phys. Rev. B 77, 115117 (2008).

16. N. Kanchanavatee, et al., Phys. Rev. B 84, 245122 (2011).

17. E. Hassinger, et al., Phys. Rev. Lett. 105, 216409 (2010).

18. C. Broholm, et al., Phys. Rev. Lett. 58, 1467 (1987).

10



19. T. J. Williams, et al., arXiv:1607.00967 (2016).

20. S. Ran, et al., arXiv:1604.00983 (2016).

21. M. N. Wilson, et al., Phys. Rev. B 93, 064402 (2016).

22. P. Das, et al., Phys. Rev. B 91, 085122 (2015).

23. N. P. Butch, et al., arXiv:1607.02136 (2016).

24. K. Haule, G. Kotliar, Nature Phys. 5, 796 (2009).

25. K. Haule, G. Kotliar, Europhys. Lett. 89, 57006 (2010).

26. D. V. Khveshchenko, P. B. Wiegmann, Phys. Rev. Lett. 73, 500 (1994).

27. W. T. Guo, et al., Phys. Rev. B 85, 195105 (2012).

28. R. P. S. M. Lobo, et al., Phys. Rev. B 92, 045129 (2015).

29. J. S. Hall, et al., Phys. Rev. B 86, 035132 (2012).

30. C. Pfleiderer, J. A. Mydosh, M. Vojta, Phys. Rev. B 74, 104412 (2006).

31. S. L. Cooper, M. V. Klein, M. B. Maple, M. S. Torikachvili, Phys. Rev. B 36, 5743 (1987).

32. J. Buhot, et al., Phys. Rev. Lett. 113, 266405 (2014).

33. J. Levallois, et al., Phys. Rev. B 84, 184420 (2011).

34. P. G. Niklowitz, et al., Phys. Rev. B 92, 115116 (2015).

35. P. G. Niklowitz, et al., Phys. Rev. Lett. 104, 106406 (2010).

36. L. Boyer, V. Yakovenko, APS March Meeting Baltimore Abstracts R22, 4 (2016).

37. K. Matsuda, Y. Kohori, T. Kohara, K. Kuwahara, H. Amitsuka, Phys. Rev. Lett. 87, 087203

(2001).

11



38. M. Yokoyama, et al., Phys. Rev. B 72, 214419 (2005).

39. A. Bardasis, J. R. Schrieffer, Phys. Rev. 121, 1050 (1961).

Acknowledgments

We are grateful for discussions with C. Broholm, P. Coleman, I.R. Fisher, P.B. Wiegmann

and V.M. Yakovenko. G.B. and H.-H.K. acknowledge support from DOE BES Award DE-

SC0005463. A.L. and V.K. acknowledge NSF Award DMR-1104884. K.H. acknowledges

NSF Award DMR-1405303. M.B.M., S.R. and N.K. acknowledge DOE BES Award DE-

FG02-04ER46105 (crystal growth) and NSF Award DMR-1206553 (materials characteriza-

tion).

Author Contributions

G.B. and M.B.M. designed and supervised the experiments. K.H., G.B. and H.-H.K. devel-

oped the G.-L. theory. H.-H.K., V.K. and A.L. acquired and analyzed the Raman scattering

data. S.R., N.K. and M.B.M. prepared the single crystals and acquired the magnetic suscep-

tibility data. All authors contributed to the discussion and writing of the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Supplementary Materials

www.sciencemag.org

Material and Methods

12


