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Validation of imaging contrast agents, such as fluorescently labeled imaging antibodies, has been
recognized as a critical challenge in clinical and preclinical studies. As the number of applications
forimaging antibodies grows, these materials are increasingly being subjected to careful scrutiny.
Antibody fluorescent brightness is one of the key parameters that is of critical importance. Direct
measurements of the brightness with common spectroscopy methods are challenging, because the
fluorescent properties of the imaging antibodies are highly sensitive to the methods of conjugation,
degree of labeling, and contamination with free dyes. Traditional methods rely on cell-based assays
that lack reproducibility and accuracy. In this manuscript, we present a novel and general approach for
measuring the brightness using antibody-avid polystyrene beads and flow cytometry. As compared
to a cell-based method, the described technique is rapid, quantitative, and highly reproducible. The
proposed method requires less than ten microgram of sample and is applicable for optimizing synthetic
conjugation procedures, testing commercial imaging antibodies, and performing high-throughput
validation of conjugation procedures.

Validation of antibodies has been recognized as a critical challenge in clinical and preclinical studies'* The difficulty
in antibody validation stems from the large variability of antibody hosts, methods of purification, and quality
controls. Rigorous validation techniques include chromatography?®, Western blotting*, overexpression of the anti-
gen in cell lines with isotype control®, protein and tissue microarrays®, confocal microscopy to verify tissue and
subcellular distribution’, knock-down phenotypes®, as well as surface plasmon resonance®, Raman spectroscopy®
and X-ray crystallization'®. While these methods can adequately measure the affinity of the antibody to the target,
they cannot assess its fluorescent properties independently from the target.

Quantification of the fluorescence brightness of the labelled antibody is important for the following reasons: i)
it enables optimization of the conjugation protocol and selection of the fluorescent label to achieve the highest
brightness, ii) provides quality control of the conjugates, leading to the consistency of the imaging results, iii)
defines and minimizes the necessary dosage, lowering the toxicity of the imaging procedure while maintaining a
sufficient signal-to-noise ratio.

The majority of fluorescent antibody applications in biochemical assays are based on a two-component assay,
where a secondary antibody is labelled with a fluorescent tag'!, such as a fluorescent dye, quantum dot, or an
upconverting nanocrystal'>!>. Relatively recently, a different class of imaging antibodies (ImAbs) carrying flu-
orescent tags for in vivo assays of small animals', with potential use in humans'®, has emerged. ImAbs are flu-
orescently labelled antibodies that identify an antigen of interest in live organisms primarily for imaging and
diagnostic applications. ImAbs combine the specificity of the primary antibody with the reporting function of a
secondary antibody.

Although ImAbs have relatively slow pharmacokinetics and low tissue permeability compared to smaller mol-
ecules, they have in many cases unmatched specificity. The wide variety of secondary and ImAbs requires their
fluorescence measurements to be standardized and reported, but this information is rarely available. Instead it is
often assumed that fluorescence brightness of the labelled antibody is equivalent to the brightness of the free dye,
which is often incorrect!®.
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Figure 1. (a) Bright field (DIC) image of a drop of positive and negative beads treated with a fluorescently
labelled antibody (Obj. 40X). (b) Fluorescent image of the same drop reveals two populations, with
approximately half of the beads labelled, (c) overlap (see also Figure S1, Supplementary Information showing ca.
50% beads positive (labelled)).

The major quantitative parameter describing fluorescence activity of a labelled antibody, and therefore its sen-
sitivity, is the brightness (B), which is defined as the product of molar absorptivity of the dye (¢) at the wavelength
of excitation (\), quantum yield (Q) and the number of fluorescent tags (N;) per antibody, also known as degree
of labelling, (DOL) according to eq. 1:

B:SAXQXNJ: (1)

Direct measurement of brightness requires extensive optical characterization and relatively large amounts
of sample that are generally unavailable or expensive. Knowing molar absorptivity factors of free dyes and their
quantum yields is insufficient, as the change in the absorption and emission spectra due to H-type aggregation and
quenching effects from nearby residues distorts the results by up to 90%, such as in quenchbodies. In quenchbodies,
a single chain variable region of antibody labelled at the N-terminal region shows significant fluorescence
quenching due to nearby tryptophan residues. Binding of the quenchbody to an antigen leads to the disruption of
the quenching effect and fluorescence enhancement'”. Calculations of DOL that rely on absorption properties are
prone to large errors due to uncertainty about the molar absorptivity of the label on the conjugate. Finally, con-
tamination of the conjugate with free dye occurs occasionally. The free dye has minimal effects on imaging results
due to washing procedures or faster clearance, especially if the dye is hydrophilic, but might substantially mask
optical characterization of the labelled antibody. Thus, quantitative evaluation of fluorescent antibodies remains
a challenge and standardized methods have not yet been established.

Herein, we have developed an approach that enables rapid quantitative relative assessment of the fluorescence
brightness of imaging antibodies. The primary innovation in our method is the use of beads instead of cells in
combination with flow cytometry. The beads are in general uniform, not subject to the irregularities present in cell
populations and cell-related artefacts and can be standardized.

Results and Discussion
We propose a rapid method to assess the fluorescence activity of labelled antibodies using a mix of polystyrene
microspheres that are coated for high affinity to kappa chains (positive beads) and uncoated beads that do not
bind antibodies (negative beads), but provide a measure of background fluorescence. These beads could be ana-
lysed by standard flow cytometry techniques, in which the signal intensity from individual beads is proportional
to the fluorescent brightness of the antibody. This method is similar to calculating a Stain Index for assessing
the brightness of a fluorophore via the relationship between the positive and the negative (background) signals
using cells'®!. In the Stain Index (SI) measurements, the fluorophore conjugated to an antibody is tested in a
cell culture. Flow cytometry results from analysing a mixture of stained (positive) and non-stained (negative)
cells are used to calculate the SI. This index provides a good functional definition of reagent brightness and ena-
bles side-by-side comparison of the dye-antibody conjugates. However, a (article) cell-based approach requires
standardized cells and identical clones of antibodies for each measurement that are not always possible to pro-
vide. In our method, a one-to-one mixture of positive and negative beads is added to a test tube containing the
dye-antibody conjugates, after which the mixture is analysed by flow cytometry. The two components provide
distinct positive and negative populations, which can be seen with a microscope (Fig. 1) or on a flow cytometry
histogram (Figure S1, Supplementary Information).

The fluorescence intensity of the positive beads relative to that of the negative beads provides a quantitative
but relative basis for antibody assessment. The separation between the populations at the beads’ saturation (I,)
can be used as a measurable parameter directly related to fluorescence brightness (B o I;) of the labelled antibody.
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Figure 2. Fluorescent dyes used in this study for IgG labelling and flow cytometry testing.

We envisioned that bimodal distribution of the histogram, in which the pixel intensities clustered around two
reasonably separated values, might serve as a benchmark for brightness evaluation and a quantitative approach
for antibody validation. Highly overlapped modes (such as monomodal distributions) suggest low bright-
ness, while well-separated modes indicate strongly fluorescent probes. Thus, we first fitted a histogram with a
two-member Gaussian model to obtain two populations. Identified parameters were then used to calculate the
gap between the two peaks to provide what we called Peak Mean Distance (I). Other metrics, such as Stain Index
(SI) and Bhattacharyya distance (Dp) that takes into account standard deviations were also used. All metrics can
be calculated using our developed in-house software, Label-It, based on MATLAB.

The commercial dye IR650-NHS and one prepared in our lab, LS822-NHS, were selected for this study because
of their high hydrophilicity (featuring four and three sulfonates, correspondingly) (Fig. 2). A hydrophobic dye
with no sulfonate groups, Cyanine 5-NHS, was used to test the limitation of this method. All of the selected dyes
absorbed and emitted in the same spectral range, allowing us to use identical settings on the flow cytometer (spec-
tra of LS822 are in Figure S2, Supplementary Information). The dyes were conjugated to the antibody IgG through
lysine residues using standard NHS chemistry?.

The physical stability of the beads upon treatment was confirmed by comparison of their scattering patterns
(Figure S3, Supplementary Information). Scattering is quite sensitive to size of the particles and is commonly used
in flow cytometry to determine the type of cells as well as the change in the cells’ morphology. To determine the
percentage of beads that changed their physical shape upon treatment, we used the Overton cumulative subtrac-
tion algorithm?! available in FlowJo. Each sample was compared against control not-treated beads. We found the
fractions of beads that changed their shape (judged by the changes in front scattering (FSC) and site scattering
(SCS) distributions) were consistently less than 6%, with most cases less than 1%. This high similarity between
two populations of beads, treated and non-treated, suggests the physical and chemical stability of the beads.

In this work, we postulated that the fluorescence of the bead is proportional to the number of fluorophores,
and that the maximum fluorescence comes from the saturation of the beads surface. For that we incubated a
standard number of beads with varied quantities of labelled antibodies for each of the studied dyes. To assess the
sensitivity of the method and identify the range of concentrations that can be measured, we utilized a blocking
method in which the surface of the bead was blocked by a progressively larger concentration of non-labelled anti-
body, after which it was treated with an excess of a single concentration of fluorescently tagged antibody. The flow
cytometry histogram in the corresponding fluorescence channel presents two peaks (Fig. 3). The peaks overlap
at high concentrations of unlabelled antibody and become more separated when concentrations are low or no
unlabelled antibody are used.

The attempts to reach the full blockade, however, were not successful apparently due to non-covalent
attachment of the antibodies to the bead and equilibrium between the competing species (i.e. antibody and
dye-antibody conjugate). The shift in the fluorescence negative population observed in this and other experiments
is due to some non-specific affinity of the negative beads to antibodies.

This blocking approach enables us to evaluate the span of concentrations to be used for the measurements of
the fluorescent brightness. Analysis of the histograms revealed a typical sigmoid curve of the gap between means
vs. concentration of the unlabelled IgG (Fig. 3). The 50% inhibitory concentration (ICs,) was calculated from the
nonlinear regression model of log(inhibitor) vs. response - variable slope, and was found to be 0.18 uM. Given that
the range of concentration typically covers two log units (100-fold change in pM concentration) times the ICs,
the range of useful concentrations for the given number of beads lies within 0.02-2 pM. It should be noted that
the span of concentrations can be different for the beads of different origin, size, or coating.

The application of our method for fluorescent assessment of IR650-IgG conjugate is illustrated in Fig. 4. Based
on the blocking assay and further assay optimization, the concentration of the conjugate varied from 0.03 to 3.0 pM.
Increasing the concentration of the dye-conjugate while keeping the quantities of beads fixed predictably
increased fluorescence intensity of the beads (Fig. 4a).

The plateau of the fluorescence of beads at higher concentration was due to saturation of the affinity sites on
the beads. Fluorescence intensity at the saturation point (I,) (Fig. 4b) corresponds to the fluorescence brightness
of the antibody under the excitation/emission conditions specified in the Methods section. Given that 10,000
beads is sufficient for statistical analysis, only 2 pL of beads and less than 10 ug of the dye-antibody are required,
making the method highly sensitive.

The reliability and consistency of the measurements were first assessed using a single batch of labelled anti-
body bound to compensation beads at different concentrations of the conjugates and the fixed amount of the
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Figure 3. Blocking assay. (a) Histograms of beads incubated with unlabelled IgG at shown concentrations and
subsequently treated with the fluorescently labelled antibody IR650-IgG (2.5 uM). (b) Fluorescence of the beads
(I) calculated as the Peak Mean Distance (eq. 3) from the histogram analysis: IC5y=0.18 pM for 25 pL of beads,
R2=0.982.
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Figure 4. Flow cytometry of beads treated with the IR650-IgG. (a) Histograms of beads incubated with
IR650-1gG at different concentrations. (b) Fluorescence of the beads (I) calculated as the Peak Mean Distance
(eq. S1-S2, Supplementary Information). The trendline corresponds to the average values of I, dashed line
shows the saturation level (I,) (averaged, n =4, error bars represent standard deviation).

beads. High reproducibility of the results (low standard deviation) is demonstrated in Fig. 4b and suggests low
instrumentation error. The reproducibility of the labelling procedure was predictably lower as evidenced by larger
standard deviations of the measured I value (Figure S4, Supplementary Information).

The presence of multiple fluorophores (DOL > 3) in close proximity can decrease fluorescence brightness of
the labelled antibody??. Self-aggregation, mostly from 7-stacking, leads to efficient energy transfer between the
dyes, resulting in severe quenching and lowered brightness of the targeted probe?. On the other hand, a very
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Figure 5. Comparison of the brightness of the beads with LS822-IgG conjugate at different DOL.
(a) DOL=1.81. (b) DOL =3.15. Arrows show an increase in dye-conjugate concentration (c) Peak mean
distance (I) comparison between two DOLs.

low DOL (<0.5) negatively affects fluorescence intensity and may create a significant proportion of unlabelled
antibodies?*. These two factors pose a considerable challenge in preparing sufficiently bright molecular probes.

Many fluorescent dyes are prone to self-quenching when many of them are attached to a protein, an antibody
or a nanoparticle?. For this reason, having low DOL is a common practice to minimize quenching. However,
even at low dye-to-protein ratios, the self-aggregation of the dye becomes substantial due to preferential labelling
of the neighbouring residues caused by a self-assembly of the dyes at the surface of the substrate. This results in
a clustering of the dye molecules, significant quenching of the fluorescence, and low brightness of the imaging
probe. To address this issue, several groups*2® proposed modified dyes to decrease the dye-to-dye interactions
and increase the brightness of the conjugate. For example, asymmetrical charge prevents the chromophores from
m-stacking®, thus minimizing energy transfer and fluorescence quenching, as well as allowing more fluorophores
to be placed on the antibody without sacrificing the brightness.

We used the proposed method to test how the DOL levels affect the brightness. LS822 has an asymmet-
ric charge distribution and is highly hydrophilic. Its hydrophilicity is guaranteed by the three sulfonate groups
and ensures the absence of non-specific binding to the beads. The more fluorescently labelled antibody, with a
DOL 3.15 (Fig. 5b) vs. 1.81 (Fig. 5a), showed proportionately higher intensity values at equal concentrations of
conjugate (as shown in Fig. 5¢), suggesting minimal to weak quenching. In contrast, higher DOL in IR650-IgG
conjugates did not lead to the additional brightness of the conjugate as judged by the decreased level of the beads
fluorescence per DOL (Figure S5, Supplementary Information).

Dye-antibody conjugates are frequently contaminated with free unreacted dye. It is expected that free dyes
will have negligible affinity to the beads, and therefore no fluorescence will occur in any of the bead populations
when incubated with free dye alone. Indeed, when IR-650 and LS822 were incubated with the beads at two con-
centrations, the histogram showed only a single peak with near zero fluorescence intensity (Fig. 6a) because of the
inability of the beads to capture these highly hydrophilic dyes. In contrast, a hydrophobic dye, such as Cyanine 5,
showed non-specific and dose-dependent binding to both bead populations (Fig. 6b). This experiment outlines
the limitation of the presented method to mostly hydrophilic dyes and their conjugates.

Conclusions and Considerations

Quantitative measurement of the fluorescent properties of labelled antibodies is necessary for reproducibility in
a variety of laboratory assays. It is critical for in vivo imaging studies in which low fluorescence demands higher
doses of the antibody in order to reach the desired signal-to-noise ratio. We developed a rapid method for meas-
uring the brightness-related parameter of fluorescently-tagged antibodies using a mixture of antibody-capturing
positive and negative beads as an internal reference and flow cytometry.

Overall, the procedure requires less than 10 pg of antibody and takes only a few minutes of mixing the fluo-
rescent antibodies with the beads, and then analysing the resulting mixture with a standard flow cytometer. The
method is highly reproducible and is applicable for optimizing synthetic conjugation procedures, testing com-
mercial antibodies, and performing high-throughput validation of labelling.

Several considerations have to be taken into account. Different clones of monoclonal antibodies (mAbs) may
have different affinity for their corresponding native antigen on the cell surface. Therefore, the brightness of dif-
ferent mAb clones captured on the beads may not be the same as the brightness of the cells stained with the same
clones. For brightness comparison of commercially available conjugates directed to the same antigen but of a
different clone, Stain Index obtained directly from the cell staining is the valid methodology. Special care should
be taken interpreting of conjugate brightness based on beads derived data. Selection of conjugates takes place
through the interaction of the kappa light chain of the antibody with the anti-kappa antibody on the surface of
the bead. The same conjugate, however, interacts with cell antigen through the antigen-binding domain, which is
different from a kappa-light chain of an antibody. Given that flow cytometry measurements depend on a number
of instrumentation-related parameters, the presented method only provides the relative brightness and cannot
determine DOL directly. Absolute values of the brightness will require a set of recognized standards, for example,
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Figure 6. Effect of dye hydrophilicity on binding to beads. (a) Free dye IR650, the beads remain unstained,
(b) Free dye Cyanine 5, shows strong staining of beads including negative population.

beads with known fluorescent brightness. The second consideration is that the imaging optics for in vivo studies
are, in general, different from standard flow cytometry configurations (excitation lines, emission filters). Thus,
care has to be taken for direct comparison of conjugates with respect to their performance under imaging con-
ditions. Flow cytometers with dedicated “imaging-like” channels should be preferred for the best translatability
between the techniques. Finally, the beads with lower non-specific affinity and beads covered with specific antigen
instead of broad-spectrum activity would allow for more universal applicability of the method.

NHS ester conjugation, so far the most popular method for antibody labelling, leads to variability in the
degree of labelling and therefore, to the broad distribution of brightness among fluorescently tagged antibodies.
The proposed method can potentially address this question and characterize the variability of labelling by calcu-
lating the standard deviation (o,) of the signal from the positive beads. For that, the beads should have relatively
low coverage to minimize the averaging. Although we do not present this analysis, the described approach can
be used to optimize the conjugation process and establish uniformly labelled conjugates. The method can be
also applied to compare alternative labelling techniques, such as utilizing maleimide coupling to sulthydryls, or
through conjugation to the carbohydrate via reductive amination.

Methods
Materials. Polystyrene beads (OneComp eBeads, known as compensation beads) were purchased from eBi-
oscience. Each sample of beads contains a positive and negative population. The positive population is coated to
have high affinity for kappa chains of antibodies and captures mouse, rat, and hamster antibodies. The negative
uncoated population of beads is unreactive, with no sites to capture antibodies. This negative population was
expected not to show fluorescence after treatment with the dye-antibody conjugate and hence was used an inter-
nal reference. The concentration of beads is 2.5 x 10° per drop (50 pL) in 0.1% BSA/PBS buffer stabilized with
0.09% sodium azide. IRDye 650 NHS Ester was obtained from LI-COR, Cyanine5-NHS ester was purchased
from Lumiprobe. Immunoglobulin G (IgG) from rat serum, reagent grade, lyophilized powder, cat. 14131 was
purchased from Sigma-Aldrich.

A dye LS822 and the conjugates of IR650-IgG and LS822-IgG were synthesized, purified, and characterized
as specified in the Supplementary Information. The structures of the NHS activatable dyes used in this study are
shown in Fig. 2.

Dye-to-antibody (D/P) ratio.  The molar absorptivity coefficient of the antibodies at 280 nm (g,,4) Was set
t0 190,000 M~'cm™"! for IgG according to the manufacturer. The molar absorptivities for the dyes in water were
determined to be 130,000 M ~cm ™! for LS822 using Beckman Coulter DU-640 UV-vis spectrophotometer, and
230,000M~'cm ™! for IR650 as reported by the manufacturer. The D/P ratio of the bioconjugates was calculated
according to a known eq. 2237,

DIP — Cp _ €p.280 X Ap6s0

Cp  eplAy — k X Apgg) (2)

Where A, is the absorbance of the IgG-dye conjugate at 280 nm and Ay, 4 is the absorbance of the conjugate at
680 nm. The absorbance of the dye at 280 nm was corrected by the factor k= A, 550/ Ap 650-

Beads-sample preparation. Purified dye-antibody conjugates or free dyes in PBS buffer (0.5, 1, 2, 4, 8,
16 and 32 pL) were mixed with 25 uL of compensation beads at 4 °C for 30 minutes. Samples were centrifuged
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Figure 7. Example of fitting the bimodal Gaussian distribution model to the flow cytometry histogram
from beads treated with fluorescent antibodies. R>=0.983. I=b,-b,, 0, and o, - standard deviations of
negative and positive peaks, calculated as o = ¢/~/2.

at 3,000 rpm for 5 min at 4 °C. Supernatant was removed and the beads were washed once, resuspended in 50 pL
PBS, and diluted to 500 uL PBS.

Blocking assay. Varyingamounts (0.01,0.1,0.5, 1,2, 4, and 8 uL) of unlabelled 20 1M IgG were added to 25uL
compensation beads, and incubated at 4 °C for 30 min. Beads were then isolated by centrifugation, washed once
with PBS, and resuspended in an excess (30 pL) of IgG-IR650 conjugate, with the final concentration at 2.5 M.
Beads were further resuspended in 50 pL PBS and diluted to 500 pL PBS prior to analysis by flow cytometry. IC,
was calculated from the resulting I values according to the eq. 3 implemented in Prizm 5.0 (GraphPad Software,
Inc.).

Top — Bottom
1+ 1010g1C507[C]><HillSlope (3)

I = Bottom +

Where I is the gap between peaks, Top and Bottom are plateaus in arbitrary units, [C] is the concentration of
unlabeled IgG in nM, ICs, is the concentration of unlabeled antibody in nM, and HillSlope is the steepness of the
curve.

Treatment of beads with free dyes. A solution (3 pL) of either IR650 (0.175mM) or Cyanine 5 (0.6 mM)
in DMF were mixed with 75 pL of PBS buffer. The resulting solutions (0.1 pL and 1.0 pL) were mixed with 25
L beads each. Final concentrations were 0.026 uM and 0.26 pM for IR650, 0.092 and 0.92 pM for Cyanine 5.
The beads were separated from the solution by centrifugation, the supernatant removed and beads further
re-suspended in 50 pL PBS diluted to 500 pL PBS prior to the analysis by flow cytometry.

Microscopy of beads. For microscopy studies, beads were incubated with a solution of 10pL of the conju-
gate in 250 uL of PBS. Before and after the treatment, the beads (1 L) were placed on a glass slide, covered with
a coverslip, and sealed with a nail polisher. Differential image contrast (DIC) and fluorescent images of the beads
were recorded with a BX51 Olympus Microscope equipped with Nomarski optics for objective 40X and a Cy5.5
filtercube (Semrok). Images were captured with a Lumenera 3 camera using Infinity Analyze 6.0 software.

Flow Cytometry. Flow cytometry experiments were performed using a multichannel flow cytom-
eter (Beckman Coulter). The results were processed with FlowJo X software package and custom made
MATLAB-based software Label_It developed in our lab. The background fluorescence was eliminated by adjust-
ing the gain of the corresponding photomultiplier tubes (PMTs) in the flow cytometer. The scale was set by
adjusting the position of the maximum of non-treated beads to zero. Samples of the unconjugated (unlabelled)
and saturated beads were run to set the gain of the PMT at the relevant channel. An argon ion laser (637 nm) and
a 660/20-nm bandpass filter were used for fluorescence measurements.

Histogram analysis. The brightness-related parameters of the antibodies were calculated using
Label_It software by fitting a histogram (Fig. 7) with a two-member Gaussian distribution model, (eq. SI,
Supplementary Information).

The goodness of fit was judged by visual observations, residual plots, R-square value, which typically exceeded
0.96, and RMSE. The output provided the heights, means, and widths for each peak: where the parameter a is the
height of the curve’s peak, b is the position of the centre of the peak (mean), and c is the width of the peak. We
used established metrics for evaluation of bimodal histograms based on fitting of the histogram distribution. This
include Peak Mean Distance (I), defined as a gap between two peaks, Stain Index (SI)'%, and Bhattacharya distance
(Dy)*8 (Calculated using the equations eq. S2-S4, Supplementary Information).

The limits of fluorescence (usually within —200 to 1200) and bins width (usually 20) were set automatically.
The two parameters can be also adjusted to obtain the best fit as judged by R-square or RSME values. Figure S6,
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Supplementary Information, illustrates the effect of the bins width on the RMSE, I, ST and Dp. We found that for a
typical 10,000 events, the value 5 <N < 20 provides the best fit across a variety of dye-conjugates. We also found
that I provides a more stable and predictable metric compared to SI or D (Figure S7, Supplementary Information).

We compared I, SI, Dg and found I is preferable. The difference between I and other metrics such as ST and Dy,
is that the latter take into account standard deviations. These standard deviations are calculated from fitting of
the flow cytometry histogram with a bimodal Gaussian-type distribution. Although this fitting provides appro-
priate R-square values (>0.9), it is not very accurate at highly overlapped or well separated peaks. Parameter I is
less dependent from standard deviation and appears to be more robust with lower variability (such as shown in
Fig. 4b).
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