Bayesian optimization for automated model selection

Gustavo Malkomes, Chip Schaff,! Roman Garnett
Department of Computer Science and Engineering
Washington University in St. Louis
St. Louis, MO 63130
{luizgustavo, cbschaff, garnett}@wustl.edu

Abstract

Despite the success of kernel-based nonparametric methods, kernel selection still
requires considerable expertise, and is often described as a “black art.” We present a
sophisticated method for automatically searching for an appropriate kernel from an
infinite space of potential choices. Previous efforts in this direction have focused on
traversing a kernel grammar, only examining the data via computation of marginal
likelihood. Our proposed search method is based on Bayesian optimization in
model space, where we reason about model evidence as a function to be maximized.
We explicitly reason about the data distribution and how it induces similarity
between potential model choices in terms of the explanations they can offer for
observed data. In this light, we construct a novel kernel between models to explain
a given dataset. Our method is capable of finding a model that explains a given
dataset well without any human assistance, often with fewer computations of model
evidence than previous approaches, a claim we demonstrate empirically.

1 Introduction

Over the past decades, enormous human effort has been devoted to machine learning; preprocessing
data, model selection, and hyperparameter optimization are some examples of critical and often
expert-dependent tasks. The complexity of these tasks has in some cases relegated them to the realm
of “black art.” In kernel methods in particular, the selection of an appropriate kernel to explain
a given dataset is critical to success in terms of the fidelity of predictions, but the vast space of
potential kernels renders the problem nontrivial. We consider the problem of automatically finding
an appropriate probabilistic model to explain a given dataset. Although our proposed algorithm is
general, we will focus on the case where a model can be completely specified by a kernel, as is the
case for example for centered Gaussian processes (GPS).

Recent work has begun to tackle the kernel-selection problem in a systematic way. Duvenaud et al.
[1] and Grosse et al. [2] described generative grammars for enumerating a countably infinite space of
arbitrarily complex kernels via exploiting the closure of kernels under additive and multiplicative
composition. We adopt this kernel grammar in this work as well. Given a dataset, Duvenaud et al.
[1] proposed searching this infinite space of models using a greedy search mechanism. Beginning
at the root of the grammar, we traverse the tree greedily attempting to maximize the (approximate)
evidence for the data given by a GP model incorporating the kernel.

In this work, we develop a more sophisticated mechanism for searching through this space. The
greedy search described above only considers a given dataset by querying a model’s evidence. Our
search performs a metalearning procedure, which, conditional on a dataset, establishes similarities
among the models in terms of the space of explanations they can offer for the data. With this
viewpoint, we construct a novel kernel between models (a “kernel kernel”). We then approach

TThese authors contributed equally to this work

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

the model-search problem via Bayesian optimization, treating the model evidence as an expensive
black-box function to be optimized as a function of the kernel. The dependence of our kernel between
models on the distribution of the data is critical; depending on a given dataset, the kernels generated
by a compositional grammar could be especially rich or deceptively so.

We develop an automatic framework for exploring a set of potential models, seeking the model that
best explains a given dataset. Although we focus on Gaussian process models defined by a grammar,
our method could be easily extended to any probabilistic model with a parametric or structured model
space. Our search appears to perform competitively with other baselines across a variety of datasets,
including the greedy method from [1], especially in terms of the number of models for which we
must compute the (expensive) evidence, which typically scales cubically for kernel methods.

2 Related work

There are several works attempting to create more expressive kernels, either by combining kernels or
designing custom ones. Multiple kernel learning approaches, for instance, construct a kernel for a
given dataset through a weighted sum of predefined and fixed set of kernels, adjusting the weights to
best explain the observed data. Besides limiting the space of kernels considered, the hyperparameters
of component kernels also need to be specified in advance [3, 4]. Another approach to is to design
flexible kernel families [5—7]. These methods often use Bochner’s theorem to reason in spectral space,
and can approximate any arbitrary stationary kernel function. In contrast, our method does not depend
on stationarity. Other work has developed expressive kernels by combining Gaussian processes with
deep belief networks; see, for example, [8—10]. Unfortunately, there is no free lunch; these methods
require complicated inference techniques that are much more costly than using standard kernels.

The goal of automated machine learning (autoML) is to automate complex machine-learning proce-
dures using insights and techniques from other areas of machine learning. Our work falls into this
broad category of research. By applying machine learning methods throughout the entire modeling
process, it is possible to create more automated and, eventually, better systems. Bergstra et al. [11]
and Snoek et al. [12], for instance, have shown how to use modern optimization tools such as Bayesian
optimization to set the hyperparameters of machine learning methods (e.g., deep neural networks
and structured SVMs). Our approach to model search is also based on Bayesian optimization, and its
success in similar settings is encouraging for our adoption here. Gardner et al. [13] also considered
the automated model selection problem, but in an active leaning framework with a fixed set of models.
We note that our method could be adopted to their Bayesian active model selection framework with
minor changes, but we focus on the classical supervised learning case with a fixed training set.

3 Bayesian optimization for model search

Suppose we face a classical supervised learning problem defined on an input space X and output
space). We are given a set of training observations D = (X,y), where X represents the design
matrix of explanatory variables x; € X, and y; €) is the respective value or label to be predicted.
Ultimately, we want to use D to predict the value y, associated with an unseen point x,. Given a
probabilistic model M, we may accomplish this via formation of the predictive distribution.

Suppose, however, that we are given a collection of probabilistic models M that could have plausibly
generated the data. Ideally, finding the source of D would let us solve our prediction task with the
highest fidelity. Let M € M be a probabilistic model, and let © o4 be the corresponding parameter
space. These models are typically parametric families of distributions, each of which encodes a
structural assumption about the data, for example, that the data can be described by a linear, quadratic,
or periodic trend. Further, the member distributions (My € M, 8 € © () of M differ from each
other by a particular value of some properties—represented by the hyperprameters 6—related to the
data such as amplitude, characteristic length scales, etc.

We wish to select one model from this collection of models M to explain D. From a Bayesian
perspective, the principle approach for solving this problem is Bayesian model selection.” The critical

2“Model selection” is unfortunately sometimes also used in GP literature for the process of hyperparameter
learning (selecting some My € M), rather than selecting a model class M, the focus of our work.

value is model evidence, the probability of generating the observed data given a model M:

P | X M) = [ply | X,6.00)p(6 | M) . 1)
Om

The evidence (also called marginal likelihood) integrates over 6 to account for all possible explana-
tions of the data offered by the model, under a prior p(6 | M) associated with that model.

Our goal is to automatically explore a space of models M to select a model® M* € M that explains a
given dataset D as well as possible, according to the model evidence. The essence of our method,
which we call Bayesian optimization for model search (BOMS), is viewing the evidence as a function
g: M — R to be optimized. We note two important aspects of g. First, for large datasets and/or
complex models, g is an expensive function, for example growing cubically with |D| for GP models.
Further, gradient information about g is impossible to compute due to the discrete nature of M. We
can, however, query a model’s evidence as a black-box function. For these reasons, we propose
to optimize evidence over M using Bayesian optimization, a technique well-suited for optimizing
expensive, gradient-free, black-box objectives [14]. In this framework, we seek an optimal model
M* = argmax g(M; D), (2)
MeM

where g(M; D) is the (log) model evidence:
g(M;D) =logp(y | X, M). 3)
We begin by placing a Gaussian process (GP) prior on g,

p(9) = GP(g; pg, Ky),

where y,: M — R is a mean function and K,: M? — R is a covariance function appropriately
defined over the model space M. This is a nontrivial task due to the discrete and potentially complex
nature of Ml. We will suggest useful choices for p4, and K; when M is a space of Gaussian process
models below. Now, given observations of the evidence of a selected set of models,

Dy = { (M, g(Mi; D)) }, 4)

we may compute the posterior distribution on g conditioned on D, which will be an updated Gaussian
process [15]. Bayesian optimization uses this probabilistic belief about g to induce an inexpensive
acquisition function to select which model we should select to evaluate next. Here we use the
classical expected improvement (E1) [16] acquisition function, or a slight variation described below,
because it naturally considers the trade off between exploration and exploitation. The exact choice
of acquisition function, however, is not critical to our proposal. In each round of our model search,
we will evaluate the acquisition function in the optimal model evidence for a number of candidate
models C(D,) = {M,}, and compute the evidence of the candidate where this is maximized:

M = arg max ag (M; D).
Mec

We then incorporate the chosen model M’ and the observed model evidence g(M’; D) into our
model evidence training set D, update the posterior on g, select a new set of candidates, and continue.
We repeat this iterative procedure until a budget is expended, typically measured in terms of the
number of models considered.

We have observed that expected improvement [16] works well especially for small and/or low-
dimensional problems. When the dataset is large and/or high-dimensional, training costs can be
considerable and variable, especially for complex models. To give better anytime performance on
such datasets, we use expected improvement per second, where we divide the expected improvement
by an estimate of the time required to compute the evidence. In our experiments, this estimation was
performed by fitting a linear regression model to the log time to compute g(M; D) as a function of
the number of hyperparameters (the dimension of ©) that we train on the models available in D,,.

The acquisition function allows us to quickly determine which models are more promising than
others, given the evidence we have observed so far. Since M is an infinite set of models, we cannot
consider every model in every round. Instead, we will define a heuristic to evaluate the acquisition
function at a smaller set of active candidate models below.

3We could also select a set of models but, for simplicity, we assume that there is one model that best explains
that data with overwhelming probability, which would imply that there is not benefit in considering more than
one model, e.g., via Bayesian model averaging.

4 Bayesian optimization for Gaussian process kernel search

We introduced above a general framework for searching over a space of probabilistic models M
to explain a dataset D without making further assumptions about the nature of the models. In the
following, we will provide specific suggestions in the case that all members of M are Gaussian
process priors on a latent function.

We assume that our observations y were generated according to an unknown function f: X — R
via a fixed probabilistic observation mechanism p(y | f), where f; = f(x;). In our experiments
here, we will consider regression with additive Gaussian observation noise, but this is not integral
to our approach. We further assume a GP prior distribution on f, p(f) = GP(f; s, K¢), where
pr: X — Ris a mean function and Ky: X? — R is a positive-definite covariance function or
kernel. For simplicity, we will assume that the prior on f is centered, 11 7(x) = 0, which lets us fully
define the prior on f by the kernel function K r. We assume that the kernel function is parameterized
by hyperparameters that we concatenate into a vector . In this restricted context, a model M is
completely determined by the choice of kernel function and an associated hyperparameter prior
p(6 | M). Below we briefly review a previously suggested method for constructing an infinite space
of potential kernels to model the latent function f, and thus an infinite family of models M. We will
the discuss the standardized and automated construction of associated hyperparameter priors.

4.1 Space of compositional Gaussian processes kernels

We adopt the same space of kernels defined by Duvenaud et al. [1], which we briefly summarize here.
We refer the reader to the original paper for more details. Given a set of simple, so-called base kernels,
such as the common squared exponential (SE), periodic (PER), linear (LIN), and rational quadratic
(RQ) kernels, we create new and potentially complex kernels by summation and multiplication of
these base units. The entire kernel space can be describe by the following grammar rules:

1. Any subexpression S can be replaced with S + B, where B is a base kernel.
2. Any subexpression S can be replaced with S x 3, where B is a base kernel.
3. Any base kernel B may be replaced with another base kernel 5.

4.2 Creating hyperparameter priors

The base kernels we will use are well understood, as are their hyperparameters, which have simple
interpretations that can be thematically grouped together. We take advantage of the Bayesian
framework to encode prior knowledge over hyperparameters, i.e., p(f | M). Conveniently, these
priors can also potentially mitigate numerical problems during the training of the GPs. Here we derive
a consistent method to construct such priors for arbitrary kernels and datasets in regression problems.

We first standardize the dataset, i.e., we subtract the mean and divide by the standard deviation of
both the predictive features {x;} and the outputs y. This gives each dataset a consistent scale. Now
we can reason about what real-world datasets usually look like in this scale. For example, we do
not typically expect to see datasets spanning 10000 length scales. Here we encode what we judge
to be reasonable priors for groups of thematically related hyperparameters for most datasets. These
include three types of hyperparameters common to virtually any problem: length scales ¢ (including,
for example, the period parameter of a periodic covariance), signal variance o, and observation noise
on,. We also consider separately three other parameters specific to particular covariances we use here:
the o parameter of the rational quadratic covariance [15, (4.19)], the “length scale” of the periodic
covariance ¢, [15, £ in (4.31)], and the offset oy in the linear covariance. We define the following:

p(log?) = N(0.1,0.7%) p(logo) = N(0.4,0.7%) p(logo,) = N(0.1,1%)
p(log a) = N(0.05,0.7%) p(log £,) = N(2,0.7%) p(og) = N(0,2%)

Given these, each model was given an independent prior over each of its hyperparameters, using the
appropriate selection from the above for each.

4.3 Approximating the model evidence

The model evidence p(y | X, M) is in general intractable for Gps [17, 15]. Alternatively we use a
Laplace approximation to approximately compute the model evidence. This approximation works by

making a second-order Taylor expansion of log p(6 | D, M) around its mode 0 and approximates the
model evidence as follows:

logp(y | X, M) =~ logp(y | X,é,/\/l) + logp(é | M) — %logdet >4 glog 2w, (5)

where d is the dimension of # and ¥~! = —V2logp(d | D, M)’ _¢ 118, 19]. We can view (5) as
rewarding model fit while penalizing model complexity. Note that tf\E Bayesian information criterion
(BIC), commonly used for model selection and also used by Duvenaud et al. [1], can be seen as an
approximation to the Laplace approximation [20, 21].

4.4 Creating a “kernel kernel”

In §4.1, §4.2, and §4.3, we focused on modeling a latent function f with a GP, creating an infinite
space of models M to explain f (along with associated hyperparameter priors), and approximating
the log model evidence function g(M; D). The evidence function g is the objective function we are
trying to optimize via Bayesian optimization. We described in §3 how this search progresses in the
general case, described in terms of an arbitrary Gaussian process prior on g. Here we will provide
specific suggestions for the modeling of g in the case that the model family M comprises Gaussian
process priors on a latent function f, as discussed here and considered in our experiments.

Our prior belief about g is given by a GP prior p(g) = GP(g; tg, I{4), which is fully specified by
the mean 4, and covariance functions K,. We define the former as a simple constant mean function
tg(M) =6, where 6, is a hyperparameter to be learned through a regular GP training procedure
given a set of observations. The latter we will construct as follows.

The basic idea in our construction is that is that we will consider the distribution of the observation
locations in our dataset D, X (the design matrix of the underlying problem). We note that selecting a
model class M induces a prior distribution over the latent function values at X, p(f | X, M):

P8 1X M) = [plE]X.M.0)p(6 | M) db.

This prior distribution is an infinite mixture of multivariate Gaussian prior distributions, each condi-
tioned on specific hyperparameters 6. We consider these prior distributions as different explanations
of the latent function f, restricted to the observed locations, offered by the model M. We will
compare two models in M according to how different the explanations they offer for f are, a priori.

The Hellinger distance is a probability metric that we adopt as a basic measure of similarity between
two distributions. Although this quantity is defined between arbitrary probability distributions (and
thus could be used with non-GP model spaces), we focus on the multivariate normal case. Suppose
that M, M’ € M are two models that we wish to compare, in the context of explaining a fixed dataset
D. For now, suppose that we have conditioned each of these models on arbitrary hyperparameters
(that is, we select a particular prior for f from each of these two families), giving My and My, with
0 € O and ' € O . Now, we define the two distributions

P = p(f | XvMa0> :N(f;,u'P7EP) Q :p(f | X’M/,Q/) :N(f;,u'Qng)'
The squared Hellinger distance between P and (@) is

-1
2 ettt 1 v (Zept e _
dy(P,Q) =1 |ZP;ZQ|I/Q expy —g (kP — pq) 3 (mp —pq) ¢- (6)

The Hellinger distance will be small when P and () are highly overlapping, and thus M, and Mj,
provide similar explanations for this dataset. The distance will be larger, conversely, when My and

% provide divergent explanations. Critically, we note that this distance depends on the dataset
under consideration in addition to the GP priors.

Observe that the distance above is not sufficient to compare the similarity of two models M, M’
due to the fixing of hyperparameters above. To properly account for the different hyperparameters
of different models, and the priors associated with them, we define the expected squared Hellinger
distance of two models M, M’ € M as

dy(M, M X) = E[di (Mo, Mp)| = //dﬁ(Me,M'e/;X)p(G | M)p(0" | M) dode’, (7)

PER SE RQ PER SE+

PER

Do MWW

RQ

RQ SE+PER

SE+
e —~— PER

Figure 1: A demonstration of our model kernel K, (8) based on expected Hellinger distance of
induced latent priors. Left: four simple model classes on a 1d domain, showing samples from the
prior p(f | M) « p(f | 6, M)p(6 | M). Right: our Hellinger squared exponential covariance
evaluated for the grid domains on the left. Increasing intensity indicates stronger covariance. The
sets {SE, RQ} and {SE, PER, SE+PER} show strong mutual correlation.

where the distance is understood to be evaluated between the priors provided on f induced at X.
Finally, we construct the Hellinger squared exponential covariance between models as

®)

S)
Ky(M, M'305,X) = o exp(l%(MM),

2 02

where 8, = (o, £) specifies output and length scale hyperparameters in this kernel/evidence space.
This covariance is illustrated in Figure 1 for a few simple kernels on a fictitious domain.

We make two notes before continuing. The first observation is that computing (6) scales cubically
with |X], so it might appear that we might as well compute the evidence instead. This is misleading
for two reasons. First, the (approximate) computation of a given model’s evidence via either a Laplace
approximation or the BIC requires optimizing its hyperparameters. Especially for complex models
this can require hundreds-to-thousands of computations that each require cubic time. Further, as
a result of our investigations, we have concluded that in practice we may approximate (6) and (7)
by considering only a small subset of the observation locations X and that this usually sufficient to
capture the similarity between models in terms of explaining a given dataset. In our experiments, we
choose 20 points uniformly at random from those available in each dataset, fixed once for the entire
procedure and for all kernels under consideration in the search. We then used these points to compute
distances (6-8), significantly reducing the overall time to compute K.

Second, we note that the expectation in (7) is intractable. Here we approximate the expectation
via quasi-Monte Carlo, using a low-discrepancy sequence (a Sobol sequence) of the appropriate
dimension, and inverse transform sampling, to give consistent, representative samples from the
hyperparameter space of each model. Here we used 100 (6, 6') samples with good results.

4.5 Active set of candidate models

Another challenging of exploring an infinite set of models is how we advance the search. Each
round, we only compute the acquisition function on a set of candidate models C. Here we discuss
our policy for creating and maintaining this set. From the kernel grammar (§4.1), we can define a
model graph where two models are connected if we can apply one rule to produce the other. We seek
to traverse this graph, balancing exploration (diversity) against exploitation (models likely to have
higher evidence). We begin each round with a set of already chosen candidates C. To encourage
exploitation, we add to C all neighbors of the best model seen thus far. To encourage exploration, we
perform random walks to create diverse models, which we also add to C. We start each random walk
from the empty kernel and repeatedly apply a random number of grammatical transformations. The
number of such steps is sampled from a geometric distribution with termination probability % We
find that 15 random walks works well. To constrain the number of candidates, we discard the models
with the lowest EI values at the end of each round, keeping |C| no larger than 600.

Table 1: Root mean square error for model-evidence regression experiment.

Dataset Train % Mean E-NN (sp) E-NN (dy) GP (dy)

20 0.109 (0.000) 0.200 (0.020) 0.233 (0.008) 0.107 (0.001)

CONCRETE 40 0.107 (0.000) 0.260 (0.025) 0.221 (0.007) 0.102 (0.001)
60 0.107 (0.000) 0.266 (0.007) 0.215 (0.005) 0.097 (0.001)

80 0.106 (0.000) 0.339 (0.015) 0.200 (0.003) 0.093 (0.002)

20 0.210 (0.001) 0.226 (0.002) 0.347 (0.004) 0.175 (0.002)

HOUSING 40 0.207 (0.001) 0.235(0.004) 0.348 (0.004) 0.140 (0.002)
60 0.206 (0.000) 0.235 (0.004) 0.348 (0.004) 0.123 (0.002)

80 0.206 (0.000) 0.257 (0.004) 0.344 (0.004) 0.114 (0.002)

20 0.543 (0.002) 0.736 (0.051) 0.685(0.010) 0.513 (0.003)

MAUNA LOA 40 0.537 (0.001) 0.878 (0.062) 0.667 (0.005) 0.499 (0.003)
60 0.535(0.001) 1.051 (0.058) 0.686 (0.010) 0.487 (0.004)

80 0.534 (0.001) 1.207 (0.048) 0.707 (0.005) 0.474 (0.004)

S Experiments

Here we evaluate our proposed algorithm. We split our evaluation into two parts: first, we show that
our GP model for predicting a model’s evidence is suitable; we then demonstrate that our model search
method quickly finds a good model for a range of regression datasets. The datasets we consider are
publicly available* and were used in previous related work [1, 3]. AIRLINE, MAUNA LOA, METHANE,
and SOLAR are 1d time series, and CONCRETE and HOUSING have, respectively, 8 and 13 dimensions.
To facilitate comparison of evidence across datasets, we report log evidence divided by dataset size,
redefining

g(M; D) = log(p(y | X, M))/|D|.)

We use the aforementioned base kernels {SE, RQ, LIN, PER} when the dataset is one-dimensional.
For multi-dimensional datasets, we consider the set {SE; } U {RQ; }, where the subscript indicates that
the kernel is applied only to the sth dimension. This setup is the same as in [1].

5.1 Predicting a model’s evidence

We first demonstrate that our proposed regression model in model space (i.e., the GPon g: Ml — R) is
sound. We set up a simple prediction task where we predict model evidence on a set of models given
training data. We construct a dataset D, (4) of 1 000 models as follows. We initialize a set Ml with the
set of base kernels, which varies for each dataset (see above). Then, we select one model uniformly
at random from M and add its neighbors in the model grammar to M. We repeat this procedure until
M| = 1000 and computed g(M; D) for the entire set generated. We train several baselines on a
subset of D, and test their ability to predict the evidence of the remaining models, as measured by
the root mean squared error (RMSE). To achieve reliable results we repeat this experiment ten times.
We considered a subset of the datasets (including both high-dimensional problems), because training
1 000 models demands considerable time. We compare with several alternatives:

1. Mean prediction. Predicts the mean evidence on the training models.

2. k-nearest neighbors. We perform k-NN regression with two distances: shortest-path
distance in the directed model graph described in §4.5 (SP), and the expected squared
Hellinger distance (7). Inverse distance was used as weights.

We select k for both £-NN algorithms through cross-validation, trying all values of k£ from 1 to 10.
We show the average RMSE along with standard error in Table 1. The GP with our Hellinger distance
model covariance universally achieves the lowest error. Both k-NN methods are outperformed by the
simple mean prediction. We note that in these experiments, many models perform similarly in terms
of evidence (usually, this is because many models are “bad” in the same way, e.g., explaining the
dataset away entirely as independent noise). We note, however, that the GP model is able to exploit
correlations in deviations from the mean, for example in “good pockets” of model space, to achieve

*https://archive.ics.uci.edu/ml/datasets.html

AIRLINE METHANE HOUSING

—0.2 o —0.6 o
0.5
—0.8
—0.3 —1 -
0 —— CKS
—1.2
—— BOMS
T T —0.4 T T —1.4 T T
0 20 40 0 20 40 0 20 40
iteration iteration iteration
SOLAR MAUNA LOA CONCRETE
—0.2 —0.8
2.5
—1 -
—0.3 4
2 —1.2
—0.4 4
T T 1.5 T T —1.4 T T
0 20 40 0 20 40 0 20 40
iteration iteration iteration

Figure 2: A plot of the best model evidence found (normalized by |D|, (9)) as a function of the
number of models evaluated, g(M*; D), for six of the datasets considered (identical vertical axis
labels omitted for greater horizontal resolution).

better performance. We also note that both the £-NN and GP models have decreasing error with the
number of training models, suggesting our novel model distance is also useful in itself.

5.2 Model search

We also evaluate our method’s ability to quickly find a suitable model to explain a given dataset. We
compare our approach with the greedy compositional kernel search (CKS) of [1]. Both algorithms
used the same kernel grammar (§4.1), hyperparameter priors (§4.2), and evidence approximation
(84.3, (5)). We used L-BFGS to optimize model hyperparameters, using multiple restarts to avoid bad
local maxima; each restart begins from a sample from p(6 | M).

For BOMS, we always began our search evaluating SE first. The active set of models C (§4.5)
was initialized with all models that are at most two edges distant from the base kernels. To avoid
unnecessary re-training over g, we optimized the hyperparameters of 1, and K every 10 iterations.
This also allows us to perform rank-one updates for fast inference during the intervening iterations.
Results are depicted in Figure 2 for a budget of 50 evaluations of the model evidence. In four of
the six datasets we substantially outperform CKS. Note the vertical axis is in the log domain. The
overhead for computing the kernel K, and performing the inference about g was approximately 10%
of the total running time. On MAUNA LOA our method is competitive since we find a model with
similar quality, but earlier. The results for METHANE, on the other hand, indicate that our search
initially focused on a suboptimal region of the graph, but we eventually do catch up.

6 Conclusion

We introduced a novel automated search for an appropriate kernel to explain a given dataset. Our
mechanism explores a space of infinite candidate kernels and quickly and effectively selects a
promising model. Focusing on the case where the models represent structural assumptions in GPs, we
introduced a novel “kernel kernel” to capture the similarity in prior explanations that two models
ascribe to a given dataset. We have empirically demonstrated that our choice of modeling the evidence
(or marginal likelihood) with a GP in model space is capable of predicting the evidence value of
unseen models with enough fidelity to effectively explore model space via Bayesian optimization.

Acknowledgments

This material is based upon work supported by the National Science Foundation (NSF) under award
number 11A-1355406. Additionally, GM acknowledges support from the Brazilian Federal Agency
for Support and Evaluation of Graduate Education (CAPES).

References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(91

(10]

(11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]
(21]

D. Duvenaud, J. R. Lloyd, R. Grosse, J. B. Tenenbaum, and Z. Ghahramani. Structure Discovery in
Nonparametric Regression through Compositional Kernel Search. In International Conference on Machine
Learning (ICML), 2013.

R. Grosse, R. Salakhutdinov, W. Freeman, and J. Tenenbaum. Exploiting compositionality to explore a
large space of model structures. In Conference on Uncertainty in Artificial Intelligence (UAI), 2012.

F. R. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Conference on
Neural Information Processing Systems (NIPS), 2008.

M. Gonen and E. Alpaydin. Multiple kernel learning algorithms. Journal of Machine Learning Research,
12:2211-2268, 2011.

M. Lézaro-Gredilla, J. Q. Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal. Sparse Spectrum Gaussian
Process Regression. Journal of Machine Learning Research, 11:1865-1881, 2010.

A. G. Wilson and R. P. Adams. Gaussian Process Kernels for Pattern Discovery and Extrapolation. In
International Conference on Machine Learning (ICML), 2013.

A. Wilson, E. Gilboa, J. P. Cunningham, and A. Nehorai. Fast kernel learning for multidimensional pattern
extrapolation. In Conference on Neural Information Processing Systems (NIPS), 2014.

A. G. Wilson, D. A. Knowles, and Z. Ghahramani. Gaussian process regression networks. In International
Conference on Machine Learning (ICML), 2012.

G. E. Hinton and R. R. Salakhutdinov. Using Deep Belief Nets to Learn Covariance Kernels for Gaussian
Processes. In Conference on Neural Information Processing Systems (NIPS). 2008.

A. C. Damianou and N. D. Lawrence. Deep Gaussian Processes. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2013.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In
Conference on Neural Information Processing Systems (NIPS). 2011.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning algorithms.
In Conference on Neural Information Processing Systems, 2012.

J. Gardner, G. Malkomes, R. Garnett, K. Q. Weinberger, D. Barbour, and J. P. Cunningham. Bayesian
active model selection with an application to automated audiometry. In Conference on Neural Information
Processing Systems (NIPS). 2015.

E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box functions.
Journal of Global optimization, 13(4):455-492, 1998.

D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, editor, Neural Networks and
Machine Learning, pages 133—165. Springer, Berlin, 1998.

A. E. Raftery. Approximate Bayes Factors and Accounting for Model Uncertainty in Generalised Linear
Models. Biometrika, 83(2):251-266, 1996.

J. Kuha. AIC and BIC: Comparisons of Assumptions and Performance. Sociological Methods and
Research, 33(2):188-229, 2004.

G. Schwarz. Estimating the Dimension of a Model. Annals of Statistics, 6(2):461-464, 1978.
K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

