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Abstract

Despite the success of kernel-based nonparametric methods, kernel selection still requires
considerable expertise, and is often described as a “black art.” We present a sophisticated
method for automatically searching for an appropriate kernel from an infinite space of
potential choices. Previous efforts in this direction have focused on traversing a kernel
grammar, only examining the data via computation of marginal likelihood. Our proposed
search method is based on Bayesian optimization in model space, where we reason about
model evidence as a function to be maximized. We explicitly reason about the data
distribution and how it induces similarity between potential model choices in terms of the
explanations they can offer for observed data. In this light, we construct a novel kernel
between models to explain a given dataset. Our method is capable of finding a model that
explains a given dataset well without any human assistance, often with fewer computations
of model evidence than previous approaches, a claim we demonstrate empirically.

1. Introduction

Over the past decades, enormous human effort has been devoted to machine learning;
preprocessing data, model selection, and hyperparameter optimization are some examples of
critical and often expert-dependent tasks. The complexity of these tasks has in some cases
relegated them to the realm of “black art.” In kernel methods in particular, the selection of
an appropriate kernel to explain a given dataset is critical to success in terms of the fidelity
of predictions, but the vast space of potential kernels renders the problem nontrivial.

Recent work has begun to tackle the kernel-selection problem in a systematic way.
Duvenaud et al. (2013) described generative grammars for enumerating a countably infinite
space of arbitrarily complex kernels via exploiting the closure of kernels under additive and
multiplicative composition. We adopt this kernel grammar in this work as well. Given
a dataset, those authors proposed searching this infinite space of models using a greedy
search mechanism. Beginning at the root of the grammar, their approach traverse the tree
greedily attempting to maximize the (approximate) evidence for the data given by a GP
model incorporating the kernel.

In this work, we develop a more sophisticated mechanism for searching through this space.
The greedy search described above only considers a given dataset by querying a model’s
evidence. Our search performs a metalearning procedure, which, conditional on a dataset,

* An extended version of this paper will appear at Neural Information Processing Systems (NIPS), 2016.
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establishes similarities among the models in terms of the space of explanations they can offer
for the data. With this viewpoint, we construct a novel kernel between models (a “kernel
kernel”). We then approach the model-search problem via Bayesian optimization, treating
the model evidence as an expensive black-box function to be optimized as a function of the
kernel. The dependence of our kernel between models on the distribution of the data is
critical; depending on a given dataset, the kernels generated by a compositional grammar
could be especially rich or deceptively so.

We propose an automatic framework for exploring a set of potential models, seeking the
model that best explains a given dataset. Although we focus on Gaussian process models
defined by a grammar, our method could be easily extended to any probabilistic model with
a parametric or structured model space. Our search appears to perform competitively with
other baselines across a variety of datasets, including the greedy method from Duvenaud
et al. (2013), especially in terms of the number of models for which we must compute the
(expensive) evidence, which typically scales cubically for kernel methods.

2. Bayesian optimization for model search

Consider a supervised learning problem defined on an input space X and output space )
accompanied by a set of training observations D = (X,y), where X represents the design
matrix x; € X, and y; € ) is the respective value or label to be predicted. Ultimately,
we want to use D to predict the value y, associated with an unseen point x,.. Given a
probabilistic model M, we may accomplish this via formation of the predictive distribution.

Suppose, however, that we are given a collection of probabilistic models M that could
have plausibly generated the data. Ideally, finding the source of D would let us solve our
prediction task with the highest fidelity. Let M € M be a probabilistic model, and let © x4
be the corresponding parameter space. These models are typically parametric families of
distributions, each of which encodes a structural assumption about the data, for example,
that the data can be described by a linear, quadratic, or periodic trend. Further, the member
distributions (Mg € M, 8 € O ) of M differ from each other by a particular value of some
properties—represented by the hyperprameters §—related to the data such as amplitude,
characteristic length scales, etc.

We wish to select one model from this collection of models M to explain D. From a
Bayesian perspective, the principled approach for solving this problem is Bayesian model
selection.' The critical value is model evidence, the probability of generating the observed
data given a model M:

py | X 0) = [ ply | X.0.M)p(0 | M) 00 (1)
M

The evidence integrates over 8 to account for all possible explanations of the data offered
by the model, under a prior p(f | M) associated with that model.

Our goal is to automatically explore a space of models M to select a model> M* € M
that explains a given dataset D as well as possible, according to the model evidence. The
essence of our method, which we call Bayesian optimization for model search (BOMS), is

1. “Model selection” is unfortunately sometimes also used in GP literature for the process of hyperparameter
learning (selecting some My € M), rather than selecting a model class M, the focus of our work.

2. We could also select a set of models but, for simplicity, we assume that there is one model that best explains
that data with overwhelming probability, which would imply that there is not benefit in considering more
than one model, e.g., via Bayesian model averaging.
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viewing the evidence as a function g: M — R to be optimized. We note two important
aspects of g. First, for large datasets and/or complex models, g is an expensive function, for
example growing cubically with |D| for GP models. Further, gradient information about ¢ is
impossible to compute due to the discrete nature of M. We can, however, query a model’s
evidence as a black-box function. For these reasons, we propose to optimize evidence over M
using Bayesian optimization, a technique well-suited for optimizing expensive, gradient-free,
black-box objectives (Brochu et al., 2010). In this framework, we seek an optimal model M*
that maximizes the (log) model evidence: g(M; D) = logp(y | X, M).

We begin by placing a Gaussian process (GP) prior on g, p(g9) = GP(g; ptg, K4), where
fg: M — R is a mean function and K,: M? — R is a covariance function appropriately
defined over the model space M. This is a nontrivial task due to the discrete and potentially
complex nature of M. We will suggest useful choices for p, and K, when M is a space
of Gaussian process models below. Now, given observations of the evidence of a selected
set of models, D, = {(/\/ll-,g(/\/l,;; D))}, we may compute the posterior distribution on g
conditioned on D, which will be an updated Gaussian process (Rasmussen and Williams,
2006). Bayesian optimization uses this probabilistic belief about g to induce an inexpensive
acquisition function to select which model we should select to evaluate next. Here we use
the classical expected improvement (EI) (Jones et al., 1998) acquisition function, or a slight
variation described in (Snoek et al., 2012), because it naturally considers the trade off between
exploration and exploitation. The exact choice of acquisition function, however, is not critical
to our proposal. In each round of our model search, we will evaluate the acquisition function
in the optimal model evidence for a number of candidate models C(Dy) = {M;}, and compute
the evidence of the candidate where this is maximized:

M = arg max ag (M; Dy).
MeC

We then incorporate the chosen model M’ and the observed model evidence g(M’; D)
into our model evidence training set Dy, update the posterior on g, select a new set of
candidates, and continue. We repeat this iterative procedure until a budget is expended,
typically measured in terms of the number of models considered.

The acquisition function allows us to quickly determine which models are more promising
than others, given the evidence we have observed so far. Since M is an infinite set of models,
we cannot consider every model in every round. Instead, we define a heuristic to evaluate
the acquisition function at a smaller set of active candidate models C . We construct and
maintain this set by balancing exploration (diversity) against exploitation (models likely to
have higher evidence). We begin each round with a set of already chosen candidates C. Then,
to encourage exploitation, we add to C all “neighbors” of the best model seen thus far. To
encourage exploration, we perform random walks to create diverse models, which we also
add to C. To constrain the number of candidates, we discard the models with the lowest EI
values at the end of each round, keeping |C| no larger than 600.

3. Bayesian optimization for Gaussian process kernel search

We introduced above a general framework for searching over a space of probabilistic models
M to explain a dataset D without making further assumptions about the nature of the
models. In the following, we will provide specific suggestions in the case that all members of
M are Gaussian process priors on a latent function.
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We assume that our observations y were generated according to an unknown function
f: X — R via a fixed probabilistic observation mechanism p(y | ), where f; = f(x;). In
our experiments here, we will consider regression with additive Gaussian observation noise,
but this is not integral to our approach. We further assume a GP prior distribution on
I, p(f) = GP(f;up, Ky), where pg: X — R is a mean function and K;: X? — R is a
positive-definite covariance function or kernel. For simplicity, we will assume that the prior
on f is centered, pi(x) = 0, which lets us fully define the prior on f by the kernel function
Ky. The kernel function is parameterized by hyperparameters that we concatenate into
a vector 6. In this restricted context, a model M is completely determined by the choice
of kernel function and an associated hyperparameter prior p(6 | M). We use the kernel
grammar proposed by Duvenaud et al. (2013) for constructing an infinite space of potential
kernels to model the latent function f, and thus an infinite family of models M.

Creating a “kernel kernel”. The evidence function g is the objective function we are
trying to optimize via Bayesian optimization. Our prior belief about g is given by a Gp
prior p(g) = GP(g; pg, Ky), which is fully specified by the mean p, and covariance functions
K4. We define the former as a simple constant mean function py(M) = 6, where 6, is
a hyperparameter to be learned through a regular GP training procedure given a set of
observations. The latter we will construct as follows.

The basic idea in our construction is that is that we will consider the distribution of the
observation locations in our dataset D, X (the design matrix of the underlying problem).
We note that selecting a model class M induces a prior distribution over the latent function
values at X, p(f | X, M). This prior distribution is an infinite mixture of multivariate
Gaussian prior distributions, each conditioned on specific hyperparameters 6. We consider
these prior distributions as different explanations of the latent function f, restricted to the
observed locations, offered by the model M. We will compare two models in M according to
how different the explanations they offer for f are, a priori.

The Hellinger distance is a probability metric that we adopt as a basic measure of
similarity between two distributions. Although this quantity is defined between arbitrary
probability distributions (and thus could be used with non-GP model spaces), we focus on
the multivariate normal case. Suppose that M, M’ € M are two models that we wish to
compare, in the context of explaining a fixed dataset D. For now, suppose that we have
conditioned each of these models on arbitrary hyperparameters (that is, we select a particular
prior for f from each of these two families), giving My and Mj,, with 6 € © ¢ and 0" € O .
Now, we define the two distributions

P=p(f| X, M,0) =N(f;up,Xp)  Q=pf|X,M,0)=N(f;ug,2q).

The squared Hellinger distance between P and Q) is

’EP‘IM‘E ‘1/4 1 Sp+ 3 -1
di(P,Q) =1~ IEPJFZQ‘?/QGJXP —é(ﬂP —ng)’ TQ (kP — pQ) ¢ (2)
2

The Hellinger distance will be small when P and @ are highly overlapping, and thus My and
My, provide similar explanations for this dataset. The distance will be larger, conversely,
when My and Mj, provide divergent explanations. Critically, we note that this distance
depends on the dataset under consideration in addition to the GP priors.

Observe that the distance above is not sufficient to compare the similarity of two models
M, M’ due to the fixing of hyperparameters above. To properly account for the different
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Figure 1: A demonstration of our model kernel K, (4) based on expected Hellinger distance
of induced latent priors. Left: four simple model classes on a 1d domain, showing samples
from the prior p(f | M) o p(f | 0, M) p(0 | M). Right: our Hellinger squared exponential
covariance evaluated for the grid domains on the left. Increasing intensity indicates stronger
covariance. The sets {SE,RQ} and {SE, PER, SE+PER} show strong mutual correlation.

hyperparameters of different models, and the priors associated with them, we define the
expected squared Hellinger distance of two models M, M’ € M as

(M, M';X) = E[d2 (Mg, M})] = / / 02 (Mg, My X) p(0 | M) p(6' | M')d0d6/, (3)

where the distance is understood to be evaluated between the priors provided on f induced
at X. Finally, we construct the Hellinger squared exponential covariance between models as

72 /.
1dH(M,M,X)>7 n

Ky(M,M';0,,X) = UZexp(—2 7

where 6, = (o, /) specifies output and length scale hyperparameters in this kernel/evidence
space. This covariance is illustrated in Figure 1.

We make two notes before continuing. The first observation is that computing (2)
scales cubically with |X], so it might appear that we might as well compute the evidence
instead. This is misleading for two reasons. First, the (approximate) computation of a
given model’s evidence via either a Laplace approximation or the BIC requires optimizing
its hyperparameters. Especially for complex models this can require hundreds-to-thousands
of computations that each require cubic time. Further, as a result of our investigations, we
have concluded that in practice we may approximate (2) and (3) by considering only a small
subset of the observation locations X and that this usually sufficient to capture the similarity
between models in terms of explaining a given dataset. In our experiments, we choose 20
points uniformly at random from those available in each dataset, fixed once for the entire
procedure and for all kernels under consideration in the search. We then used these points
to compute distances (2-4), significantly reducing the overall time to compute K.

Second, we note that the expectation in (3) is intractable. We approximate the expectation
via quasi-Monte Carlo, using a low-discrepancy sequence (a Sobol sequence) of the appropriate
dimension, and inverse transform sampling, to give consistent, representative samples from
the hyperparameter space of each model. We used 100 (6, 8") samples with good results.
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Figure 2: A plot of the best model evidence found (normalized by |D|) as a function of the
number of models evaluated, g(M™*; D), for six of the datasets considered (identical vertical
axis labels omitted for greater horizontal resolution).

4. Experiments

Here, we evaluate our method’s ability to quickly find a suitable model to explain a given
dataset. The datasets we consider are publicly available® and were used in previous related
work (Duvenaud et al., 2013; Bach, 2008). AIRLINE, MAUNA LOA are 1ld time series, and
CONCRETE and HOUSING have, respectively, 8 and 13 dimensions. To facilitate comparison
of evidence across datasets, we report log evidence divided by dataset size, redefining
g(M; D) =log(p(y | X, M))/|D|. Our setup for the base kernels is the same as in (Duvenaud
et al., 2013). We compare our approach with the greedy compositional kernel search (CKS)
of Duvenaud et al. (2013). Both algorithms used the same kernel grammar, hyperparameter
priors, and evidence approximation (Laplace approximation). We used L-BFGS to optimize
model hyperparameters, using multiple restarts to avoid bad local maxima; each restart
begins from a sample from p(6 | M). For Boms, we always began our search evaluating SE
first. We also initialized the set of active models with all models that are at most two edges
distant from the base kernels. To avoid unnecessary re-training over g, we optimized the
hyperparameters of ug, and K, every 10 iterations. This also allows us to perform rank-one
updates for fast inference during the intervening iterations.

Results are depicted in Figure 2 for a budget of 40 evaluations of the model evidence.
In three of the four datasets we substantially outperform CKs. Note the vertical axis is in
the log domain. The overhead for computing the kernel K, and performing the inference
about g was approximately 10% of the total running time. On MAUNA LOA our method is
competitive since we find a model with similar quality, but earlier.

5. Conclusion

We introduced a novel automated search for an appropriate kernel to explain a given dataset.
Our mechanism explores a space of infinite candidate kernels and quickly and effectively
selects a promising model. Focusing on the case where the models represent structural
assumptions in GPs, we introduced a novel “kernel kernel” to capture the similarity in prior
explanations that two models ascribe to a given dataset. We have empirically demonstrated
that our choice of modeling the evidence (or marginal likelihood) with a GP in model space is
capable of predicting the evidence value of unseen models with enough fidelity to effectively
explore model space via Bayesian optimization.

3. https://archive.ics.uci.edu/ml/datasets.html
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