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ABSTRACT. The presence of water-filled crevasses is known to increase the penetration depth of cre-
vasses and this has been hypothesized to play an important role controlling iceberg calving rate.
Here, we develop a continuum-damage-based poro-mechanics formulation that enables the simulation
of water-filled basal and surface crevasse propagation. The formulation incorporates a scalar isotropic
damage variable into a Maxwell-type viscoelastic constitutive model for glacial ice, and the effect of
the water pressure on fracture propagation using the concept of effective solid stress. We illustrate
the model by simulating quasi-static hydrofracture in idealized rectangular slabs of ice in contact with
the ocean. Our results indicate that water-filled basal crevasses only propagate when the water pressure
is sufficiently large, and that the interaction between simultaneously propagating water-filled surface
and basal crevasses can have a mutually positive influence leading to deeper crevasse propagation,
which can critically affect glacial stability. Therefore, this study supports the hypothesis that hydraulic
fracture is a plausible mechanism for the accelerated breakdown of glaciers.

KEYWORDS: calving, crevasses, ice rheology, ice shelves, ice-shelf break-up

1. INTRODUCTION
Iceberg calving from marine-terminating glaciers accounts for
nearly 50% of the mass lost from both the Greenland and
Antarctic ice sheets (Jacobs and others, 1992; Bigg, 1999;
Rignot and others, 2008, 2013; Liu and others, 2015).
However, the mechanical failure of glacier ice is a complex
process owing to the multiscale and multiphysics nature, in-
volving a bewildering variety of deformation and damage
mechanisms at various length scales ranging from localized
microscale (or milliscale) failure to rifts that exceed hundreds
of kilometers. Moreover, because ice can exhibit brittle
failure up to themelting point, it is necessary to simultaneously
model the slow ductile flow (creep deformation) and fast brittle
fracture of glacier ice. A consequence of this complexity is that
researchers have not yet agreed on a versatile mathematical
model that can be universally implemented in large-scale
ice sheet and glacier models to describe fracture and eventual
calving behavior (Van der Veen, 2002; Bassis and others,
2005; Benn and others, 2007; Bassis, 2011; Bassis and
Walker, 2012; Bassis and Ma, 2015). An efficient and applic-
able mathematical model should be able to reproduce the
observed glacier behavior, and easily amalgamate into trad-
itional continuum ice flow models used to simulate decadal
to millennial-scale variations in ice dynamics. With this in
mind, we develop a continuum-damage-mechanics-based
constitutive model for describing the iceberg calving process.

Historically, researchers first sought empirical relations
that parameterized the iceberg calving process in terms of a
spectrum of internal and external variables that included
water depth (Brown and others, 1982; Meier and Post,
1987; Hanson and Hooke, 2000), ice front thickness

(Pfeffer and others, 1997), lateral stretching (Alley and
others, 2007, 2008) or a critical height-above-buoyancy
(Vieli and others, 2001; Van der Veen, 2002). The validity
and applicability of these models are limited to a few specific
cases. For instance, the water-depth and height-above-buoy-
ancy models are limited to grounded termini only (e.g. Nick
and others, 2007, 2009). Moreover, these parameterizations
ignore the physical factors that contribute to the calving
process, such as mechanical strain rate and hydrofracture.

It is also possible to attempt to predict the penetration depth
(height) of surface (basal) crevasses using various formulations
of fracture mechanics (Weertman, 1980; Van der Veen,
1998a, b; Benn and others, 2007; Plate and others, 2012).
Alternatively, the Nye zero-stress model (Nye, 1957; Jezek,
1984; Nick and others, 2010) may be used to predict crevasse
penetration depths based on the assumption that a crevasse
penetrates to the point where horizontal stress vanishes.
Calving in these crevasse depth or height-based models is
then assumed to occur when the combination of surface and
basal crevasses exceeds a critical threshold (e.g. Benn and
others, 2007; Nick and others, 2010; Bassis and Walker,
2012). However, these models ignore the viscoelastic effects
on failure and assume that introducing fractures, no matter
how large, has a negligible effect on the macroscale strain
rate or stress field within the glacier or ice sheet. Humbert and
others (2015) used a viscoelastic Maxwell model to compute
surface displacements in the Jelbart Ice Shelf in Antarctica
and the results matched reasonably well with observations,
which emphasizes the need to include viscoelastic effects.

In the recent years, researchers have begun to incorporate
the bulk effect of fractures on the deformation of ice using
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continuum creep damage mechanics, which describes
the gradual time dependent failure of the material around
pre-existing defects, rather than an abrupt failure described
by fracture mechanics approaches. Pralong and others
(2003) and Pralong and Funk (2005) proposed creep
damage-based models and used them to analyze the detach-
ment of a hanging glacier, assuming that ice behaves as an
incompressible viscous fluid. Duddu and Waisman (2012,
2013) and Duddu and others (2013) extended these models
to include viscoelastic effects and to ensure thermodynamic
consistency using the nonlocal damage formulation in a
Lagrangian finite element framework. Krug and others
(2014) sought to combine damage and fracture mechanics
approaches to model the calving behavior of ice sheets
using damage mechanics to predict the ‘starter crack’ depth
needed to initiate brittle failure.

Studies have also attempted to apply the formalism of
damage mechanics to simplified thin-film formulations of
ice-shelf dynamics. For example, Albrecht and Levermann
(2014) proposed a two-dimensional (2-D) ‘fracture density
field’ that is in the same spirit as damage mechanics, but
uses a phenomenological/empirical parameterization of
rifts and fractures in ice shelves. Similarly, Keller and
Hutter (2014a) introduced a conceptual model of damage
in ice shelves, pointing out that even in thin film approxima-
tions, damage remains 3-D. These so-called ‘forward’
approaches sought to predict the evolution of damage
using numerical models. Following an inverse approach,
Borstad and others (2012) used satellite observed surface vel-
ocities to estimate damage in ice shelves. Because this study
was diagnostic, Borstad and others (2013) were unable to de-
scribe the physical mechanisms behind damage evolution,
but they found that, in contrast to the assumptions of frac-
ture-mechanics-based studies, the flow of ice was substan-
tially influenced by the presence of damaged regions of ice.

A key advantage of damage mechanics is its compatibility
with the finite-element method (FEM) for simulating fracture
propagation in 3-D without having to explicitly track the frac-
ture surface. However, a key challenge of this approach is
that it is not possible to specify water pressure as a boundary
condition on the fracture surface to incorporate the effects of
hydrofracture, an effect that observations indicate is crucial.
Several studies have hypothesized surface runoff or melt-
water in crevasses as driving force in iceberg calving (e.g.
Weertman, 1973; Van der Veen, 1998a, b) and ocean
water intrusion as an important mechanism for basal crevasse
propagation (Weertman, 1980). With the exception of Keller
and Hutter (2014a), who recently attempted to formulate a
damage evolution law for 2-D ice-shelf dynamics that heur-
istically incorporated the effect of water pressure within basal
crevasses, few studies have sought to develop damage-based
models that incorporate hydrofracture.

In this study, we propose a formulation to incorporate the
effects of water pressure in crevasses, based on the principles
of continuum damage mechanics and poromechanics. This
new approach considers the effect of water pressure inside
damaged ice in the crevassed zones as an additional
damage effect, which we call ‘hydrostatic damage’. For the
sake of proof of concept, we use the viscoelastic constitutive
damage evolution model for polycrystalline ice previously
proposed (Duddu and Waisman, 2012; Duddu and others,
2013), but we note that the formulation we propose can be
used in conjunction with other constitutive damage models.
The constitutivemodel is based on the small strain assumption

and the additive decomposition of strain into its elastic and
viscous components, which is valid in this context because
the total simulation time is relatively small (hours to days)
and the accumulated elastic and viscous strain components
are reasonably small. The proposed formulation is used to
model the propagation of surface crevasses and the simultan-
eous propagation of surface and basal crevasses in grounded
glaciers. The rest of the paper is organized as follows: first, the
viscoelastic damage model incorporating the hydrostatic
damage effect is presented; second, the physical geometry
and boundary conditions are described along with the
results from benchmark studies and several representative nu-
merical examples. In the Appendices, we present a simpler,
uniaxial derivation of the model unencumbered by the
tensor notation that clouds the more general derivation and
we show how the model can be applied to the simpler,
purely viscous rheologiesmore commonly used in glaciology.

2. MODEL FORMULATION
In this section, we review the viscoelastic constitutive
damage model for polycrystalline ice under dry conditions,
previously presented by Duddu and Waisman (2012), and
then extend it for wet (saturated) conditions within the frame-
work of Biot’s poroelastic theory (Biot, 1941, 1955). We refer
the readers to the Appendices for a simpler derivation based
on idealized stress states.

2.1. Viscoelastic rheology of undamaged ice
Assuming small elastic deformations, we additively decompose
the total strain tensor e into elastic and viscous components

ekl ¼ eekl þ evkl; ð1Þ

where eekl is the elastic strain (time independent and recover-
able) component and evkl is the viscous (time dependent and
irrecoverable) component. Making the usual assumption that
glacier ice is isotropic, owing to its random polycrystalline
microstructure, the elastic stress/strain relationship (multi-
axial Hooke’s law) is given by

eekl ¼
1
E
½σkl � nðσ iiδkl � σklÞ�; ð2Þ

where σkl denote components of the Cauchy stress tensor, E is
Young’s modulus, ν is Poisson’s ratio, δkl is the Kronecker
delta and repeated indices imply summation. The above
equation can be rewritten in the form

σ ij ¼ Cijkle
e
kl; ð3Þ

where the fourth-order elasticity tensor Cijkl is defined as

Cijkl ¼
E

2ð1þ nÞ ðδ ilδjk þ δ ikδjlÞ

þ En
ð1þ nÞð1� 2nÞ δijδkl:

ð4Þ

Denoting the deviatoric stress, σdev
kl ¼ σkl � σ iiδkl=3, the

viscous rheology can be expressed using the power-law
creep relationship

_evkl ¼ Aτn�1
e σdev

kl ; ð5Þ
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where A is the temperature dependent viscosity coefficient,
n is the flow law exponent, the dot decoration over a variable
represents the material derivative and τ2e ¼ ð3=2Þσdev

ij σdev
ij is

the (von Mises) stress invariant. Because in a Maxwell visco-
elastic model the stress felt by the viscous and elastic elements
is the same, provided that the elasticity tensor does not vanish,
the stress can be computed from Eqn (3) and then used directly
in Eqn (5) to compute the viscous strain rate.

2.2. Viscoelastic rheology of damaged ice
We assume isotropic damage of ice under tension to simplify
the formulation. We introduce a scalar internal state variable
D, such that its evolution from D= 0 to 1 represents the de-
terioration of ice from the fully intact undamaged state to the
completely damaged state. For 0<D< 1, we can define an
effective stress �σ ij in the material that is larger than the
average stress σij defined by

�σ ij ¼
σ ij

1�D
: ð6Þ

Following the hypothesis of equivalent strain (Lemaitre,
1992), the stress/strain relationship for damaged ice, in
terms of the effective stress, can be expressed as

�σ ij ¼ Cijkle
e
kl: ð7Þ

The damage modified viscous strain rate tensor is now
defined in terms of the effective stress as

_evkl ¼ A�τðn�1Þ
e �σdev

kl ; ð8Þ

with the effective deviatoric stress �σdev
kl ¼ �σkl � �σ iiδkl=3 and

�τ2e ¼ ð3=2Þ�σdev
ij �σdev

ij . Substituting these definitions into Eqn
(8), the damage magnified viscous strain rate is

_evkl ¼
A

ð1�DÞn τ
ðn�1Þ
e σdev

kl : ð9Þ

Thus, the presence of damage leads to a nonlinear strain rate
enhancement factor of (1−D)−n.

2.3. Effect of pore pressure on the rheology of
damaged ice
The previous sections described a constitutive creep damage
model for polycrystalline ice, analogous to those developed
by Pralong and Funk (2005), Duddu and Waisman (2012)
and with the exception of the damage production law Krug

and others (2014). In this section, we extend the continuum
damage model to incorporate hydraulic fracture under wet
(saturated) conditions where water can penetrate into micro-
fractures (Fig. 1). Recalling Biot’s theory of poroelasticity
(Biot, 1941, 1955), the relationship between the homoge-
nized Cauchy stress σij and macroscopic solid effective
stress ~σ ij under saturated conditions can be defined as

σ ij ¼ ð1� fÞ~σ ij � fPhδij; ð10Þ

where Ph represents the pressure of water filling the pores of a
permeable medium, and ϕ is the average porosity of the
medium. Assuming that damage and porosity are equivalent
in isotropically damaged ice as a first approximation, we can
extend the definition of the effective stress �σ ij (defined in Eqns
(6) and (7)) to express the homogenized Cauchy stress as

σ ij ¼ ð1�DÞ�σ ij �DPhδ ij: ð11Þ

Note that in the dry case Ph= 0 and Eqn (11) reduces to
the original definition of effective stress defined in Eqn (6).
For simplicity, we further assume that water flow into pores
is sufficiently rapid so that the water pressure Ph in the micro-
voids and microcracks in damaged ice is hydrostatic. This
implies

Ph ¼ ρfg〈z〉; ð12Þ

where ρf is the fluid density, g is the gravitational acceler-
ation, 〈〉 denote Macaulay brackets defined such that
〈χ〉= χ when χ> 0 and 〈χ〉= 0 when χ< 0, and the hy-
draulic head z is the vertical distance between the water
surface level z0 and the level of the material point z1 (i.e.
z= z0− z1).

Combining Eqns (12) and (11), we can now write the
macroscopic stress/strain relationship as

σ ij ¼ ð1�DÞCijkle
e
kl � ρfg〈z〉Dδ ij: ð13Þ

When D= 0 the above equation for Cauchy stress reduces to
that of the undamaged material and when 〈z〉= 0, that is,
when the hydraulic head is below the material point, the
equation reduces to that of the damaged material under dry
conditions. Note that the effective solid stress �σ ij increases
under saturated conditions, as given by

�σ ij ¼ Cijkle
e
kl ¼

σ ij

1�D
þ D
1�D

Phδij: ð14Þ

The damage modified viscous strain rate tensor under wet
conditions is given by

_evkl ¼ A�τðn�1Þ
e �σdev

kl ; ð15Þ

with the effective deviatoric stress �σdev
kl ¼ �σkl � �σ iiδkl=3 and

�τ2e ¼ ð3=2Þ�σdev
ij �σdev

ij . Recalling that neither the von Mises

stress, �τe, nor the deviatoric stress, σdev
kl , depend on pore pres-

sure, Eqn (15) shows that unlike the elastic rheology, the
viscous component of the rheology is invariant to the inclu-
sion of pore pressure. This is illustrated more explicitly for
the uniaxial example in Appendices A and B.

Fig. 1. Schematic showing the main features of the model. Surface
and basal crevasses are present in the grounded ice.
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2.4. Damage evolution law
To complete the constitutive damage model description, we
need to specify the damage evolution law. There is large un-
certainty in the appropriate specification of a damage evolu-
tion law, but our formulation in theory is more general and
does not depend on the particular choice of evolution law.
Nonetheless, for definiteness we adopt a power-law isotropic
damage rate function analogous to that was previously intro-
duced by Pralong and Funk (2005) and Duddu andWaisman
(2012, 2013):

_D ¼ B〈χ〉r

ð1�DÞkσ
; ð16Þ

where the damage rate coefficient B is a (possibly tempera-
ture dependent) model parameter, the exponent r is a
chosen constant, the exponent kσ is a stress dependent par-
ameter and χ is the Hayhurst equivalent stress given by
Pralong and Funk (2005):

χ ¼ α�σð1Þ þ β�τe � ð1� α � βÞ�σkk; if �σð1Þ > 0;
0; if �σð1Þ � 0:

�
ð17Þ

In the above equation, α and β are material parameters that
control the damage growth mechanism (a detailed discussion
on their selection is provided by Pralong and Funk (2005)),
�σð1Þ is the largest effective principal stress and �τe is the effect-
ive von Mises stress corresponding to the solid matrix of
porous ice. In this paper, we consider that failure occurs
due to tensile stresses only so that ice remains intact in com-
pression. Hence, damage only accumulates when �σð1Þ > 0.
Creep experiments on polycrystalline materials (including
metals and ice at high temperatures) illustrate that the rate
of creep damage growth increases drastically as we approach
full collapse. To be consistent with previous studies (Pralong
and Funk, 2005; Duddu andWaisman, 2012) we introduce a
stress dependent exponent of the form

kσ ¼
k1 þ k2�σ ii; for 0 � �σ ii � 1 MPa;
k1 þ k2; for �σ ii > 1 MPa;
0; for �σ ii < 0 MPa:

0
@ ð18Þ

2.5. Mechanical equilibrium
Assuming small deformations, the mechanical equilibrium
can be described by the standard viscoelastic boundary
value problem in the computational domain Ω as

σ ij;j þ bi ¼ 0; in Ω; ð19Þ

eemn ¼ 1
2
ðum;n þ un;mÞ � evmn in Ω; ð20Þ

σ ij ¼ Chd
ijmne

e
mn; in Ω; ð21Þ

σ ijnj ¼ �ti on Γt; ð22Þ

ui ¼ �ui on Γu; ð23Þ

where bi is the body forces vector; �ui denotes any prescribed
displacement conditions corresponding to free slip or zero
slip on the domain boundary Γu, �ti denotes any prescribed
traction conditions corresponding to seawater pressure on

the domain boundary Γt; and nj denotes the outward
normal to the boundary Γt. Equation (19) is the static equilib-
rium equation in solid mechanics, which resembles the sta-
tionary Stokes approximation from the fluid mechanics
point of view. The viscous strain evmn in Eqn (20) is calculated
from the evolution law in Eqn (15), which defines _evmn. In Eqn
(21), Chd

ijmn denotes the hydro-damage modified fourth-order
elasticity tensor, defined as

Chd
ijmn ¼ ðð1�DÞδkmδln �DhydδklδmnÞCijkl: ð24Þ

Using the relations Cijklδkl= (E/(1− 2ν))δij= 3κδij and
�σqq ¼ 3κeepp, the above equation can be derived from Eqn
(13) as follows:

σ ij ¼ ð1�DÞCijkle
e
kl � ρfg〈z〉Dδij;

¼ ð1�DÞCijkle
e
kl �

ρf g〈z〉D
3κ

Cijklδkl

¼ ð1�DÞCijkle
e
kl �

ρf g〈z〉D
3κeepp

eeppCijklδkl;

¼ ð1�DÞCijklδkmδ lne
e
mn �

ρfg〈z〉D
�σqq

Cijklδklδmne
e
mn

¼ ð1�DÞδkmδln �
ρfg〈z〉D

�σqq
δklδmn

� �
Cijkle

e
mn;

¼ ðð1�DÞδkmδ ln �DhydδklδmnÞCijkle
e
mn;

ð25Þ

where κ denotes the bulk modulus of elasticity and the
hydrostatic or hydraulic damage component Dhyd is
defined as

Dhyd ¼ ρfg〈z〉D
�σqq

: ð26Þ

Evidently, the hydraulic damage Dhyd is nonzero only when
there is some existing damage and is proportional to the ratio
of the effective fluid pore pressure PhD= ρfg〈z〉D and solid
matrix pressure �σqq ¼ 3κeepp. Subjected to plane strain
assumptions, the solution to the nonlinear boundary value
problem defined by Eqns (19–23) is obtained using the
Galerkin FEM detailed by Duddu and Waisman (2012);
Duddu and others (2013) and Duddu and Waisman (2013).
In the present finite element implementation, four-node
bilinear quadrilateral elements were used to discretize the
unknown displacement field and the four-point Gauss quad-
rature rule is used for integration. The internal state and
history variables (e.g. damage, viscous strains) are stored at
the quadrature points and an explicit forward Euler scheme
is used to update these variables in time. We note that choos-
ing higher order elements or finer resolutions is generally
recommended in case higher accuracy is required.

3. NUMERICAL EXAMPLES
In this section, we demonstrate the numerical results
obtained from the finite element simulation of surface and
basal crevasse propagation. First, we present a benchmark
example to demonstrate the capability of the model to accur-
ately calculate the hydraulic forces on the crevasse walls and
the resulting stress field in ice. Second, we investigate the
propagation of surface crevasses, as well as the simultaneous
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propagation of both surface and basal crevasses for different
boundary conditions.

3.1. Model geometry and parameters
We idealize the geometry of grounded marine-terminating
glaciers as rectangular slabs of ice in contact with water, as
shown in Figure 2. We apply a free slip boundary condition
in the horizontal direction at the bottom edge of the slab (as-
suming minimal friction from the bed) and in the vertical dir-
ection on the left edge of the slab (where the ice slab is
connected to the larger glacier). We apply a fixed (or zero
displacement) boundary condition in the horizontal direction
on the left edge of the slab. Assuming the influx of ice is in-
dependent of depth, this set of boundary conditions is trans-
lationally invariant in the horizontal direction and hence
independent of the inflow velocity. Furthermore, the choice
of zero displacement or velocity boundary condition is justi-
fied because we are interested in calculating the stress and
deformation rates defined by the displacement or velocity
gradients, thus, they are independent of the inflow velocity
or displacement condition at the left edge.

We denote the depth of the surface and basal crevasses by
ds and db respectively, and the initial ice thickness by H. The
initial notches play the role of pre-existing weaknesses or
starter cracks in linear elastic fracture mechanics and provide
the seeds for localized damage propagation. This assumption
prevents the growth of non-physical damage areas on the top
of the slab in areas where the FEM discretization may be
coarse to reduce the computational burden. Alternative
crack or damage initiation schemes can be employed (e.g.
seeding the glacier with random defects), but our scheme
(i.e. seeding crevasses using notches) allows us to easily
perform model sensitivity studies (Duddu and Waisman,
2013). Additionally, in all the following numerical examples,
once damage localizes near the initial notches, we allow
hydrostatic (or hydraulic) damage to occur only in the vicinity
of the crack path. The slab length L= 2500 m is set to five times
the ice thicknessH= 500 mand the initial surface or basal cre-
vasses (notches) are prescribed at midlength, to avoid edge
effects at the inflow and outflow boundaries. The depths of
the initial crevasses (notch) are set to 8% of the initial slab
thickness H. The piezometric head or hydraulic head in
surface crevasses hs is defined as the height of the water
columnmeasured from the top edge of the slab, consequently,
the water pressure at the bottom of the surface crevasse is pro-
portional to (hs+ ds). We specifically allow for hs > 0 to
examine the effect of a supra-glacial lake filling a crevasse, al-
though it simulates an unphysical example because we do not
model the lake nor the topography necessary to sustain the

lake. The piezometric head at the bottom of the basal crevasse
is assumed to be equal to the height of water level on the right
edge of the slab denoted by hw. All the relevant material and
model parameters listed in Table 1 are assumed from Duddu
and Waisman (2012) for ice at−10°C. The homogeneous ice
density ρi= 910 kg m−3 and water density ρf= 1000 kg m−3.
The value of the damage coefficient parameter B in Eqn (16),
controlling the damage rate, is varied in the numerical studies
so as to assess model sensitivity.

3.2. Benchmark simulation
To demonstrate the capability of the proposed damage
model to consistently calculate the hydraulic forces on
the crevasse walls, we consider a rectangular ice slab
(2500 m × 500 m) initialized with a surface and a basal cre-
vasse in two different approaches. In the first approach, the
crevasses are defined by notches and the hydraulic forces at
the finite element nodes lying on the crevasse walls are cal-
culated from the hydrostatic pressure distribution using the
line integral,

R
Γ P

hdΓ, as indicated in Figure 3. Thus, in the
first approach the geometrical features of the crevasses are
explicitly meshed and the corresponding results provide a
reference solution or benchmark. In the second approach,
the crevasses are defined by fully damaged elements by spe-
cifying D= 1 inside the crevasse zone and the hydraulic
forces at the finite element nodes lying on the crevasse
walls are calculated from the stress distribution using the
area integral,

R
Ωρfg〈z〉Dδ ijdΩ (as given by the second term

in Eqn (13)). Thus, in the second approach the geometrical
features of the crevasses are implicitly defined by the
damage variable and the results are compared with those
obtained from the first approach. The following parameters
were used in this study: crevasse depths ds= db= 25 m;
the piezometric head hs= 0 and hw= 0.5H. The total hy-
draulic forces calculated from both approaches on either
side of the crevasse are the same: 3126.9 kN for the
surface crevasse and 59 411.8 kN for the basal crevasse.
The horizontal stress distributions computed using the two
approaches, shown in Figure 4, are identical to within nu-
merical error. Thus, this benchmark investigation indicates
that our damage model is capable of accurately describing
the stress state of an ice slab with fully damaged crevasse
(i.e. when D= 1). This example also demonstrates the
main advantage of the continuum damage mechanics de-
scription that completely eliminates the need for remeshing
as the fracture propagates.

Fig. 2. Schematic drawing of the idealized grounded ice slab with
dimensions and boundary conditions.

Table 1. Values of mechanical and damage parameters for ice
at −10°C

Parameter Value Units

E 9500 MPa
ν 0.35 –

r 0.43 –

n 3.1 –

A 3.84 × 10−7 MPa−n s−1

α 0.21 –

β 0.63 –

Dcr 0.45 –

The parameter A is the viscosity coefficient retrieved from Duddu and others
(2013) by taking A= (3/2)KN; where KN is the viscosity coefficient defined by
Duddu and others (2013).
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3.3. Effect of hydrodamage on surface crevasse
propagation
We first conducted several simulations to investigate the
effect of hydrodamage on the depth ds to which surface cre-
vasses penetrate in relation to the seawater depth hw. We
consider three different values of hw/H= {0, 0.5, 0.8} and

take hs= 0 to activate hydraulic damage under wet condi-
tions. Figure 5 shows snapshots of damage contours (red
zones indicate completely damage ice) for hw/H= 0.8 and
damage coefficient B= 10−5 MPa−r s−1. These simulation
results emphasize the localized nature of crevasse propaga-
tion in glaciers driven by stress concentrations near pre-exist-
ing defects. Next, we conducted model sensitivity studies by
varying the value of the damage coefficient B= {10−3, 10−4,
10−5} MPa−r s−1 and the corresponding time steps used in
the analysis are dt= {0.1, 1, 10}s, respectively. The time
step is chosen sufficiently small (on the order of seconds) to
ensure accuracy and stability of the explicit time update
scheme used for computing damage and viscous strain evo-
lution. Crevasse depths were computed under dry (no hydro-
damage –NHD) and wet (hydrodamage –HD) conditions. In
Figure 6, the normalized surface crevasse depths (ds/H) are
plotted against simulation time (h) for different normalized
seawater depths (hw/H). Note that the depth of the surface
crevasse ds at a given time is measured as the vertical dis-
tance from the top of the slab to the farthest finite element
node where the damage exceeds the critical damage value,
that is, D >Dcr (Table 1). The following conclusions can be
drawn from Figure 6:

(1) Water-filled surface crevasses experience more damage
at any particular time and propagate to greater depths
(for a given color compare the solid and dashed curves
in Fig. 6), including full-depth fractures indicating
calving events (i.e. ds/H= 1); these results conform
with Nye zero-stress results in Weertman (1973) and
linear elastic fracture mechanics (LEFM) results in Van
der Veen (1998b);

(2) The value of the damage coefficient B does not signifi-
cantly change the final crevasse depth (compare the dif-
ferent colored dashed curves in Fig. 6), but it affects the
rate at which crevasses propagates; consequently, it
affects the time interval between calving events.
However, model predicted damage (or crevasse) propa-
gation rates are poorly calibrated by field or laboratory
experiments. This result also demonstrates that the
small strain assumption does not influence the conclu-
sions drawn from our modeling studies; because similar
crevasse penetration depths are retrieved for the case of
B= 10−3 (where the accumulated viscous strains are
small) and the case of B= 10−5 (where the accumulated
viscous strains are larger).

We next performed a sequence of simulations to investi-
gate the stability of marine-terminating glaciers in relation
to the piezometric head hs in surface crevasses. We consider
three different values of hs= {0, 25, 50} m (where hs >0 cor-
responds to the presence of a supraglacial lake) and recorded
the temporal evolution of surface crevasses for different sea-
water depths hw. In Figure 7, we plot the normalized
maximum (or final) crevasse depth dmax

s =H and the total
time (h) elapsed till maximum crevasse depth is attained as
a function of the normalized seawater depth hw/H, under
dry conditions and under wet conditions for three different
values of piezometric head hs. These simulations illustrate
that:

(1) Under dry conditions, through-thickness surface crevasse
propagation is not observed, regardless of the seawater
level (blue curve in Fig. 7a); whereas, under wet

Fig. 3. Hydraulic pressure distribution on the surface and basal
crevasses, assuming complete ice material failure (D= 1) of the
elements in the crevasse zone, which is represented by a notch in
this figure. The values of the hydraulic pressure Ph are given at the
bottom and top of the surface and basal crevasses.

Fig. 4. Snapshot of horizontal stress, σxx, contours in the linear
elastic configuration using two methods; (a) models crevasses as
notches and hydraulic forces are applied as nodal forces; (b)
represents the equivalent proposed damage mechanics technique
and (c) the stress σxx profile along the slab centerline where the
height of the material point is measured from the bottom of the slab.
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conditions through thickness surface crevasse propaga-
tion always occurs except when the seawater level is suf-
ficiently high (hw> 0.8, as indicated by green, red and
brown curves in Fig. 7). Thus, meltwater in surface cre-
vasses destabilizes the glacier by driving through thick-
ness crevasse propagation. These conclusions agree
with the Nye zero-stress model in Weertman (1973)
that water-filled surface crevasses are highly likely to
reach the bottom of the slab.

(2) An increase of seawater height generally decreases the
rate of crevasse propagation (more pronounced when
hw> 0.5 in Figs 6, 7), consequently, it increases the
total time elapsed till maximum crevasse depth is
attained. Thus, the seawater level has a stabilizing
effect on crevasse propagation as it applies a compres-
sive crack-closing pressure. These results provide a quali-
tative measure of the conditions that lead to faster versus
slower crevasse propagation, although the quantitative
damage propagation rate remains poorly calibrated.

The numerical Nye-zero depth is calculated as the depth
of the material point (from the top surface) at which the hori-
zontal tensile stress vanishes (σxx= 0) and the values were
recorded prior to damage propagation for all the simulations.
The final crevasse depths retrieved from our damage simula-
tions were always within 10% to those predicted by the Nye
zero-stress model.

3.4. Effect of hydrodamage on surface and basal
crevasse propagation
We next investigated the effect of hydrodamage on the sim-
ultaneous propagation of surface and basal crevasses. Unless
the ocean water level is sufficiently high (hw/H> 0.8), surface
crevasses always form in our simulation and it is not possible
to have isolated basal crevasses without surface crevasses.
This could be changed by setting a finite threshold for the
largest principal stress as opposed to using a zero threshold
as we did here. We find that, in accordance with the findings
of Nick and others (2010) and Bassis and Walker (2012),
basal crevasses do not propagate unless they are water filled.

Through finite element simulation, we estimated surface
and basal crevasse depths by varying the seawater height
hw/H= {0, 0.25, 0.6, 0.7, 0.8, 0.9} for two scenarios: (1)
only basal crevasse is water filled and surface crevasse is
dry, and (2) both surface and basal crevasses are water
filled. The plots of normalized maximum (or final) crevasse
depths (dmax

s and dmax
b ) versus the normalized seawater

Fig. 5. Snapshot of damage contours at different time steps for the isolated surface crevasse propagation model with hw/H= 0.8. These results
were simulated using B= 10−5 MPa−r s−1.

Fig. 6. The evolution of surface crevasse with time under different
values of near terminus water depth hw. The figures show
simulation results for different values of B, the parameter in Eqn
(16). The tag ‘HD’ in the legend means including Hydraulic
Damage and ‘NHD’ means No Hydraulic Damage.
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height are shown in Figures 8, 9 for the two scenarios, re-
spectively. In the case of a dry surface crevasse and water-
filled basal crevasse (Fig. 8), our results indicate that the
maximum total crevasse depth ðdmax

s þ dmax
b Þ decreases as

the seawater level increases until hw/H= 0.8, but then
increases as the seawater level further increases, hw/H> 0.8.
This is because the maximum surface crevasse depth
decreases as seawater level increases, whereas, the
maximum basal crevasse depth becomes significant only at
high seawater levels, when the water pressure is sufficient to
induce a tensile stress at the basal crack tips. Thus, our simu-
lation results in Figure 8 are in good agreement with those
published by Bassis and Walker (2012). In Figures 8, 9, we
plotted the time taken for the crevasses to reach the
maximum (or final) depth as function of hw/H. These results
show that the crevasses propagation times are smallest for
hw/H= 0 and hw/H= 0.9, indicating that the corresponding
crevasse propagation rates are the largest for hw/H= 0 and
hw/H= 0.9, which is attributed to the existence of higher
tensile stresses at the surface and basal crack tips, respectively.

An important point to note is that surface and basal cre-
vasses propagate to a greater depth (or height) when both
are water filled (compare blue dashed lines in Figures 8a
and 9a), thus indicating a mutually positive effect. To further
investigate the effect of water-filled surface crevasses on

basal crevasse propagation and vice-versa, we plot the tem-
poral evolution of surface and basal crevasses in Figure 10
for water level hw/H= 0.25. The results in Figure 10 illustrate
that the basal crevasse propagation is triggered when the
surface crevasse approaches the bottom of the slab and
alters the stress at the basal crevasse tip. The main conclusion
of our study is consistent with previous studies: glaciers with
dry surface crevasses are more stable than those with water-
filled surface crevasses, and the situation worsens when the
basal crevasses are water filled.

In this study, we did not exclusively investigate conditions
that enable the propagation of only a basal crevasse without
a surface crevasse. Because we assume that glacier ice has
zero tensile strength, surface crevasses will always form
while simulating an extending glacier and so it is not possible
to have isolated basal crevasses without surface crevasses.
However, the model can account for the tensile strength for
ice by specifying a stress threshold for damage initiation
(Pralong and Funk, 2005), which disables the formation of
surface crevasses at very low deformation rates. Similarly, in-
cluding a sliding law instead of a free-slip boundary condi-
tion would quantitatively alter our simulation results.
Nonetheless, the hydraulic damage methodology we have
developed is directly applicable to more complex geom-
etries, boundary conditions and rheologies.

Fig. 7. Final crevasse depths ratios dmax
s and corresponding simulation times for different values of hs. The tag ‘NHD’ means No Hydraulic

Damage. The points that are marked in the time plot with t→∞ are those showing no crevasse propagation at all i.e. dmax
s =H ¼ 0 on the left

plot.

Fig. 8. Final crevasses’ depths (dmax
s for surface and dmax

b for basal) and corresponding simulation times under different values of near terminus
water depth hw; in these simulations, only the basal crevasses are water filled while the surface crevasses are dry. These results were simulated
using B= 10−4 MPa−r s−1.
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4. CONCLUSION
In this paper, we demonstrated the viability of a continuum
damage approach to model the propagation of water-filled
crevasses. Using the poromechanics concept of effective
solid stress, a viscoelastic damagemodel is developed to simu-
late hydraulic fracture of glacier ice, within a Lagrangian finite
element framework. The advantages of using the proposed
damage mechanics approach over the LEFM approach are:
(1) the incorporation of a viscoelastic constitutive law to
model the time dependent mechanical behavior of ice, (2)
the elimination of adaptive remeshing or mesh moving proce-
dures to model crevasse propagation. Although the model is
developed for the small strain case assuming additive decom-
position of strain, it can be extended to the finite strain case as-
suming multiplicative decomposition of the deformation
gradient tensor (Keller and Hutter, 2014b).

Several numerical examples and sensitivity studies are
considered to analyze the effects of water-filled surface
and basal crevasses on the process of iceberg calving
from idealized grounded glaciers. The finite element simu-
lations considered different cases of ocean water levels,
presence of surface lakes and variable piezometric water
levels at basal crevasses. Several conclusions about the
crevasse propagation could be drawn from the numerical
results. The water-filled crevasses tend to propagate
further and faster than dry ones. Basal crevasses require a
sufficiently high water pressure to start propagating, which
is in accordance with the findings of previous studies.
However, in contrast to studies that ignore the feedback
between surface and basal crevasses, water-filled surface
and basal crevasses alter the stress state and interactively
stimulate crevasse propagation deeper into the glacier,
thus, speeding up the fracture process.
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Fig. 9. Final crevasses’ depths (dmax
s for surface and dmax

b for basal) and corresponding simulation times under different values of side water
pressure hw; in these simulations, both surface and basal crevasses are water filled. These results were simulated using B= 10−4 MPa−r s−1.
Note that final total crevasse depth is always larger when both basal and surfaces are water filled (compared blue dashed lines in Figures 8a
and 9a), thus indicating a mutually positive effect.

Fig. 10. Damage propagation for the case of hw/H= 0.25 from
Figure 9 (surface and basal crevasses are water filled). The top plot
shows crevasses propagation with time and the following are
snapshots of damage contours at different time steps. These results
were simulated using B= 10−4 MPa−r s−1.
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APPENDIX A
SIMPLIFIED UNIAXIAL DERIVATION OF
VISCOELASTIC DAMAGE MODEL WITH PORE
PRESSURE
In this Appendix, we illustrate that the viscoelastic damage
model used to describe a damaged Maxwell viscoelastic ma-
terial under a uniaxial stress state, thus, proving that it is suit-
able for representing the non-Newtonian fluid like behavior
of glacial ice with damage evolution. Assuming the uniaxial
macroscopic loading in the real stress state, the full stress
tensor σkl and the deviatoric stress tensor σdev

kl become

½σkl� ¼
σ11 0 0

0 0 0

0 0 0

2
64

3
75;

σdev
kl

h i
¼

2
3
σ11 0 0

0 � 1
3
σ11 0

0 0 � 1
3
σ11

2
666664

3
777775
; ðA1Þ

hence, the elastic strain component ee11 for undamaged ice is
given by

ee11 ¼ 1
E
σ11; ðA2Þ

where E is the Young’s modulus of undamaged ice and the
viscous strain rate in Eqn (5) can be written in the form

_ev11 ¼ 1
η
σ11; where η ¼ 2

3
Aðσ11Þðn�1Þ

� ��1

: ðA3Þ

Differentiating the elastic component with respect to time
and assuming small elastic deformations, we can add the
elastic and viscous components to write the total strain rate as

_e11 ¼ _ee11 þ _ev11 ¼ _σ11

E
þ σ11

η
: ðA4Þ

The above equation represents a 1-D Maxwell viscoelastic
element that can be represented by a spring with stiffness E
and a dashpot with viscosity η connected in series.

Including the effect of damage in the spring and dashpot
under dry conditions, we can write the elastic and viscous
strain rates as

_ee11 ¼ _σ11

ð1�DÞE ; ðA5Þ

_ev11 ¼ σ11

ð1�DÞnη : ðA6Þ

The total strain rate can now be expressed as

_e11 ¼ _σ11

Ed
þ σ11

ηd
; ðA7Þ

where the ‘damaged’ modulus Ed= (1−D)E and a dashpot
with ‘damaged’ viscosity ηd= (1−D)nη. Next, recalling
Eqn (13) upon including the effect of pore pressure Ph

under wet conditions we find the only non-zero component
of the stress tensor is σ11 ¼ ð1�DÞEee11 �DPh. Rewriting the

above equation and neglecting the contribution of damage
rate _D (small damage rate assumption), the elastic strain
rate then becomes

_ee11 ¼ _σ11 þD _P
h

Ed
; ðA8Þ

and using Eqn (14), the effective solid stress becomes

½�σkl� ¼

σ11

1�D
þ D
1�D

Ph 0 0

0
D

1�D
Ph 0

0 0
D

1�D
Ph

2
666664

3
777775
: ðA9Þ

The inclusion of pore-pressure leads to a 3-D effective stress
state. Because the deviatoric stress is unaffected by an add-
itional hydrostatic stress, the viscous strain rate _ev11 is un-
affected by pore-pressure Ph and so the total strain rate
becomes

_e11 ¼ _σ11 þD _P
h

Ed
þ σ11

ηd
: ðA10Þ

The damage evolution rate for ice under wet conditions
remains

_D ¼ B〈χ〉r

ð1�DÞkσ
; ðA11Þ

but the Hayhurst equivalent stress χ can now be written in the
form

χ¼

α
σ11þDPh

1�D
þβ

σ11

1�D
þð1�α�βÞσ11þ3DPh

1�D
; if

σ11þDPh

1�D
>0;

0; if
σ11þDPh

1�D
�0;

0
BB@

ðA12Þ
from which it is apparent that pore pressure increases χ and
allows damage to initiate under conditions experiencing a
lower tensile stress state.

APPENDIX B
PURELY VISCOUS UNIAXIAL MODEL
In the absence of elastic strains, the proposed model can be
proven to behave as a viscous material. The purely viscous
uniaxial model corresponds to taking the limit E→∞ in
Equation (A10). This leads to the relation

_ev11 ¼ σ11

ð1�DÞnη ; ðB1Þ

or, more intuitively

σ11 ¼ ð1�DÞnη _ev11: ðB2Þ
The only place pore pressure enters the model now is
through the damage metric defined in Eqn (A12).
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