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Abstract. Phytoliths contain occluded organic compounds
called phytC. Recently, phytC content, nature, origin, pale-
oenvironmental meaning and impact in the global C cycle
have been the subject of increasing debate. Inconsistencies
were fed by the scarcity of in situ characterizations of phytC
in phytoliths. Here we reconstructed at high spatial resolu-
tion the 3-D structure of harvested grass short cell (GSC)
phytoliths using 3-D X-ray microscopy. While this technique
has been widely used for 3-D reconstruction of biological
systems it has never been applied in high-resolution mode
to silica particles. Simultaneously, we investigated the loca-
tion of phytC using nanoscale secondary ion mass spectrom-
etry (NanoSIMS). Our data evidenced that the silica structure
contains micrometric internal cavities. These internal cavities
were sometimes observed isolated from the outside. Their
opening may be an original feature or may result from a be-
ginning of dissolution of silica during the chemical extrac-
tion procedure, mimicking the progressive dissolution pro-
cess that can happen in natural environments. The phytC that
may originally occupy the cavities is thus susceptible to rapid
oxidation. It was not detected by the NanoSIMS technique.
However, another pool of phytC, continuously distributed in
and protected by the silica structure, was observed. Its N/ C
ratio (0.27) is in agreement with the presence of amino acids.
These finding constitute a basis to further characterize the
origin, occlusion process, nature and accessibility of phytC,
as a prerequisite for assessing its significanc in the global C
cycle.

1 Introduction

When absorbing nutrients in the soil, plants roots also uptake
a significan amount of silicon (Si). The Si flu es recycled
by plants are substantial; for example, Si take up by tropi-
cal forests or grasslands can reach 2 to 10 times Si flu es
generated from the dissolution of soil silicates that are ex-
ported to stream water (e.g., Blecker et al., 2006; Struyf
and Conley, 2009; Cornelis et al., 2011; Alexandre et al.,
2011). Inside the plant, Si is transported in the sap and de-
posited inside the cells, in the cell walls and in extracellular
spaces of stems and leaves as micrometric hydrous amor-
phous silica particles called phytoliths. Upon plant decay,
part of the phytolith production can be incorporated into soils
or sediments and preserved for as long as millions of years
(Alexandre et al., 2011; Miller et al., 2012; Stromberg et al.,
2013). These fossil phytolith assemblages can be used for re-
constructing past vegetation and climate conditions via their
morphological and geochemical signatures (Piperno, 2006;
Alexandre et al., 2012). Phytoliths occlude small amounts
of organic compounds, firs evidenced by the production of
carbon (C) and nitrogen (N) during dry ashing (Jones and
Beavers, 1963). Later on, scanning transmission electron mi-
croscopy (STEM) and energy dispersive X-ray (EDX) anal-
yses of phytoliths in the plant tissues confirme that the
occluded organic compounds contained C, N and phospho-
rus (P) (Laue et al., 2007). By extension, these occluded com-
pounds are here called phytC. PhytC, which is assumed to be
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protected from natural oxidation by the siliceous structure,
has been the subject of increasing attention and debate.

Based on the assumption that phytC originated from the
photosynthesis of atmospheric CO; in the host plant, sev-
eral studies used phytC'*C and 8'3C signatures respectively
as a dating tool (Piperno and Becker, 1996; Piperno and
Stothert, 2003; McMichael et al., 2012) and a paleoenviron-
mental proxy (Kelly et al., 1991; Smith and White, 2004;
Carter, 2009; Webb and Longstaffe, 2010; Mclnerney et al.,
2011). However, very recently, '*C-AMS measurements of
phytC samples from modern grasses yielded ages of several
thousand years, which suggested that phytoliths may incor-
porate a substantial amount of old carbon, potentially from
the soil (Santos et al., 2010, 2012). Amino acids from soils
have been shown to be taken up by plants, and transported
in small proportions to roots, stems and shoots (Paungfoo-
Lonhienne et al., 2008; Whiteside et al., 2009, 2012; Gao et
al., 2010; Warren, 2012). Thus it is not inconsistent to assume
that C and N derived from these soil amino acids have been
trapped in phytoliths. Although the hypothesis still needs to
be verified it raises the question of the molecular nature of
phytC. Several techniques such as high-performance liquid
chromatography (HPLC), gas chromatography mass spec-
trometry (GC-MS), protein staining, micro-Raman analysis
and X-ray photoelectron spectroscopy (XPS) have been used
to characterize phytC and led to contradictory results, espe-
cially regarding the presence or not of amino acids (Harri-
son, 1996; Pironon et al., 2001; Smith and Anderson, 2001;
Elbaum et al., 2009; Watling et al., 2011). The problem is
that these methods were applied on phytolith concentrates
that were not proven to be completely devoid of extraneous
organic remains. Chemical extractions leading to high-purity
phytolith concentrates are indeed difficul to implement. Al-
though the absence of organic particles can be checked by
scanning electron microscopy (SEM) coupled with EDX
(Corbineau et al., 2013), the presence of extraneous organic
remains on the phytolith surface cannot be accurately de-
tected.

Differences in the efficien y of phytolith extraction pro-
tocols may also explain the inconsistencies in phytC quan-
tification Accurately quantifying the phytC is important for
the assessment of its significanc in the terrestrial C cycle.
Multiple studies have recently claimed that phytC may play
a role in atmospheric CO; sequestration and climate change
mitigation (Parr and Sullivan, 2005; Parr et al., 2010; Song
et al., 2014; Huang et al., 2014; Li et al., 2014; Zuo et al.,
2014), although the flu es of phytC from vegetation to soils
and the residence time of phytC in soils are still largely un-
known. PhytC content as high as 20 % dry weight was ob-
tained when using a phytolith extraction method based on
microwave digestion (Parr and Sullivan, 2014). This value
was more than 20 to 200 times higher than the values ob-
tained using a chemical method verifie to be 100 % effi
cient for removing extraneous organic particles (from 0.1 to
1 % dry weight; Smith and White, 2004). The difference was
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somewhat justifie by partial dissolution of phytC when us-
ing aggressive protocols. The assumption that phytC may be
located at different sites in the silica structure, with differ-
ent accessibility to oxidation, has been put forward (Parr and
Sullivan, 2014). This assumption supplemented a previous
one, widely found in the literature, that micrometric opaque
areas observed by natural light (NL) microscopy on some
phytoliths were holes containing the phytC (Prychid et al.,
2003; Piperno, 2006; Carter et al., 2009; Song et al., 2012;
Parr and Sullivan, 2014). No measurements were however
performed to support any of these hypotheses.

Finally, the debates on content, location, nature, origin
and paleoenvironmental meaning of phytC have been fed
by the scarcity of in situ characterizations of phytC in phy-
toliths, despite few seminal works (Harrison, 1996; Laue
et al., 2007). Here we reconstructed, at high spatial resolu-
tion, the 3-D structure of grass phytoliths using 3-D X-ray
microscopy. Simultaneously, we characterized the location
of phytC using nanoscale secondary ion mass spectrome-
try (NanoSIMS).

2 Material and methods

Grasses are among the main producers of phytoliths. The
leaves of Triticum durum wheat (TD-F-L), were harvested
in 2012 at the Genomics Research Centre in Fioren-
zuola d’Arda (Italy). Hundreds of grams were made available
to us for phytC investigation. Phytoliths were extracted from
50 g of dry leaves using a wet chemical protocol recently set
up for geochemical analysis of phytC. The protocol was de-
scribed in detail in Corbineau et al. (2013). The organic mat-
ter was oxidized with H,SO4, H,O,, HNO3 and KC1O3, and
potential remains on the phytolith surface were dissolved us-
ing KOH (pH of 11). The absence of residual extraneous or-
ganic particles was checked using SEM-EDX (Corbineau et
al., 2013). Dominant phytolith types were recognized accord-
ing to Madella et al. (2005) using NL microscopy at 600 x
and 1000x magnifications As expected, the grass short cell
group (GSC) and the bulliform cell group dominated the as-
semblage. These groups, which form in all grass epidermis,
also dominate phytolith assemblages produced by grasslands
and recovered from soils (e.g., Alexandre et al., 2011). Sev-
eral NL microscopy and SEM pictures, illustrating the com-
position of the TD-F-L phytolith assemblage were taken. For
the purpose of morphological comparison, pictures of fos-
sil GSC and bulliform phytoliths from available soil assem-
blages described in previous papers, were additionally taken.

The 3-D structure of the GSC phytoliths was reconstructed
by X-ray imaging at the micro-scale, using a 3-D X-ray mi-
croscope Zeiss Ultra XRM L 200. A few phytoliths, ran-
domly selected from the bulk sample, were deposited on the
inner surface of a bevel-cut Kapton tube of 50 pm internal di-
ameter. Five individual GSC phytoliths were recognized by
optical microscopy at 200 x magnificatio and their position
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located for 3-D visualization. The principle of the 3-D X-ray
microscopy technique is based on focusing the X-ray beam
on a rotating sample using an optical lens; then transmitted
X-rays are diffracted by a Fresnel zone plate on a scintilla-
tor in front of an optical device to produce a 200x magni-
fie image of the phytolith captured by a charge-coupled de-
vice (CCD) image sensor. Using a 1K x 1K detector, it leads
to a voxel size of 63 nm. The X-ray beam path is continu-
ously flushe with helium to minimize the absorption of X-
rays by air, the sample and the optics excepted. While this
technique has been widely used for 3-D reconstruction of bi-
ological systems it has never been applied in high-resolution
mode to silica particles. Analysis of the phytoliths proceeded
at 150 nm resolution for a 65 um fiel of view, in conven-
tional absorption contrast imaging mode at 8 keV (copper
rotating anode; power set at 40 kV and 30 mA). Using this
mode, the contrast was generated both from the different X-
ray attenuation coefficient of the chemical elements com-
posing the sample and from the density. A total of 901 X-ray
projections were recorded between —90 and +90° at an an-
gle step of 0.2° and an exposure time of 80's per view. After
20h of analysis, reconstruction of the phytolith volume was
performed using XMReconstructor (Zeiss Xradia software).
The resulting stack of 2-D grayscale slices was then exported
to Avizo Fire (FEI group) for further image processing.
NanoSIMS analyses were performed on cross sections
of TD-F-L phytoliths embedded in epoxy resin. One mil-
ligram of phytoliths was deposited on polytetrafluoroet y-
lene (PTFE) filter (9 mm i.d.) stuck onto double face tape.
Polypropylene (PP) tubes (10 mm i.d. and 15 mm long) were
placed on the tape, encircling the phytoliths. Epoxy resin
(Araldite 100/Hardener 16) was slipped into the tubes up to
3 mm height and left to dry for 3 h at 40 °C. Resin of 7mm
height was added and left to dry for 48 h at 40 °C. Those two
steps prevented the resin from leaking from the base of the
tube. Embedded samples were taken off the tubes and pol-
ished with diamond paste up to 0.1 um, until the PTFE fil
ter was completely removed and cross sections of phytoliths
were visible in NL microscopy. Samples were sawn into
4 mm thick blocks. Dozens of GSC phytoliths cross sections
to be analyzed with the NanoSIMS were located by SEM.
The NanoSIMS technique is based upon the sputtering of a
few atomic layers from the surface of a sample induced by a
primary ion bombardment. The primary ion impact triggers
a cascade of atomic collision. Atoms and atomic clusters are
ejected. During the ejection process, some atoms and clusters
are spontaneously ionized. These secondary ions are charac-
teristic of the composition of the analyzed area. They are sep-
arated according to their mass and an image of the intensity
of the secondary ion beam is made for a selected mass (http://
www.cameca.com/instruments- for-research/sims.aspx. Over
the past few years, the NanoSIMS technique has increasingly
been used in geosciences to investigate the elemental and iso-
topic composition of organic and inorganic materials (Her-
rmann et al., 2007; Hatton et al., 2012; Mueller et al., 2012,
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2013). The NanoSIMS technique however has only scarcely
been used for measuring secondary ion emission from amor-
phous silica. One study showed NanoSIMS images of a
thin section of a giant siliceous sponge spicule (several mil-
limeters in diameter). A micrometric proteinaceous scaffold,
which averaged 2 % C dry weight, could be detected in the
siliceous structure (Miiller et al., 2010). The NanoSIMS tech-
nique was also used for identifying silicificatio sites in rice
roots (Moore et al., 2011). Here, we analyzed the inten-
sities of [28Si]~, ['®O]~, [**C2]~ and [*CN]~ ions pro-
duced by selected areas of the GSC phytoliths polished cross
sections using a Cameca NanoSIMS 50. The section was
coated with 25 nm gold and introduced in the NanoSIMS.
A [Cs]T primary ion probe with 16kV primary ion im-
pact energy and a 8 kV secondary ion extraction voltage was
used. The best adjustment for obtaining secondary ion im-
ages of [28Si]~, ['°0]~, ['2C]~ and [2°CN]~ was the fol-
lowing: the selected phytolith surface were firs pre-sputtered
with a de-focused primary beam on a 60 um x 60 um area
for 3min. Then 256 x 256 pixel images were made using
a 2.2 pA primary ion current (primary diaphragm diameter
of 300 um) and a counting time of 10 ms per pixel for ar-
eas of 30 um x 30 um. Analyses with longer counting time
or larger primary diaphragm/higher primary beam intensity
were also tested. Secondary ion images of [28Si], ['®O]~,
['2C]~ and [*°CN]~ were processed using the ImagelJ soft-
ware (http://imagej.nih.gov/ij). Colors were assigned to dif-
ferent signal intensities, increasing from black to red. Images
of the [2°CN]~ /['2C]~ ratio were also created. Line scans
were drawn across the analyzed surfaces and ion intensity vs.
distance along the line were plotted.

For comparison with the NanoSIMS results, the C and N
contents of the bulk TD-F-L phytolith sample were measured
by chemiluminescence after combustion at 1350 °C (for C)
and 1000°C (for N). The C and N contents of the epoxy
resin were measured with an elemental analyzer (EA) after
combustion at 1350 °C.

3 Results

Three morphological categories of phytoliths, commonly
found in grasses, constituted the bulk sample. SEM pictures
of phytoliths placed on the aluminum mount illustrate these
categories in Fig. 1. SEM pictures of cross sections of the
same categories are shown in Fig. 2. For each category, the
mode of silica deposition is specifie below when it has
been previously evidenced in SEM, TEM, fluorescenc mi-
croscopy or NanoSIMS images of plant cross sections (Sang-
ster and Parry, 1969; Sowers and Thurston, 1979; Harrison,
1996; Currie and Perry, 2007; Law and Exley, 2011; Moore
et al.,, 2011). The firs phytolith category is constituted by
thin fragments of multi-cellular silica sheets, several tenths
of a micrometer long and wide but less than a few microme-
ters thick (Figs. 1a, b, 2a, b). These silica “skeletons” (Sang-
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Figure 2. SEM images of the thin gection of the TD-F-L wheat
phytolith types including silica sh&:'cgkq,%%'and GSC phytoliths
of the rondel type (c, d, ). GSC types show micrometric internal

cavities (IC).
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Figure 3. NL microscopy images of GSC phytolith types from the
wheat TD-F-L sample showing opaque areas (O).

Figure 3.

Two examples of reconstructed 3-D X-ray microscopy
volumes are presented in Figs. 4 and 5. The observed pat-
terns were common to the fve analyzed GSC particles. The
siliceous structure appeared porous at the sub-micrometer
scale (Figs. 4a and 5a). Inside the structure, areas of a few
micrometers in diameter, with significan ly lower X-ray ab-
sorption than the surrounding, were observed (Fig. 4a). 2-D
planes of the reconstructed volumes evidenced that these het-
erogeneities were the cavities several micrometers wide pre-
viously identifie on the cross sections by SEM. The cavities
were interconnected (Figs. 4b, 5b). Some particles showed
cavities isolated from the phytolith surface by a few microm-
eter thick silica wall (Fig. 4b). Other particles showed cav-
ities connected to the phytolith surface by small holes of
0.1 pm diameter only (Fig. 5b). These cavities appeared to be
fille with air (no X-ray absorption), although the high con-
trast in X-ray absorbance between silica and air may have
masked the presence of organic compounds.

The NanoSIMS results, common to the dozens of ana-
lyzed phytolith thin sections, are illustrated in Figs. 6-8.
Adjustments were done to fin the pre-sputtering duration
(3 min), the primary ion beam intensity (L1 =2kV), the pri-
mary diaphragm diameter (750 pm) and the duration of anal-
yses (11 min) appropriate for obtaining sufficien total ion
current (TIC) and avoid charging effects (Figs. 6a, 7a). When
the primary ion beam intensity was increased to L1 =4kV
(Fig. 8a), when the primary diaphragm diameter was de-
creased to 300 um (Fig. 8b), or when a succession of analy-
ses resulted in increasing the duration of sputtering (Fig. 8c),
a zone devoid of secondary ion signal appeared at the cen-
ter of the silica surface. This was probably due to charg-
ing (Mueller et al., 2012) and/or to topographic heterogene-
ity (Winterholler et al., 2008). As silica was more resistant
to polishing than the epoxy, silica surfaces were often con-
vex (Fig. 8). The tests conducted here emphasized the im-
portance of looking for the most effi ient adjustment (i.e.,
avoiding charging and topographic effects) before perform-
ing NanoSIMS analyses on silica surfaces.
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[28Si]~, ['®O]~, ['2C]~ and [2°CN]~ images clearly indi-
vidualized phytoliths from the epoxy resin. The [*2Si]~ and
['0]~ images and scan lines showed that phytoliths were
made of a continuous silica structure (Figs. 6 and 7) some-
times interrupted by central micrometric areas devoid of sil-
ica (Fig. 7). This is again in concordance with the central cav-
ities identifie in SEM and 3-D X-ray imaging. Carbon was
present in the cavities and in the silica structure itself. How-
ever when values of ['2C]™ intensity were similar in the cav-
ities and in the epoxy resin, they were 10 to 20 times lower
in the silica structure than in the epoxy resin (Figs. 6 and 7).
N was also present in the silica structure and [*°CN]~ in-
tensity was 3 to 4 times lower in the silica structure than in
the cavities or the epoxy (Figs. 6 and 7). Interestingly, the
[2°CN]~ /['?C]~ ratio ranged between 20 and 30 in the sil-
ica structure and between 5 and 10 in the cavities and the
epoxy. The silica structure was thus enriched in N by a fac-
tor of 4 to 8 relative to the surrounding epoxy. These fea-
tures were reproducible from a particle to another. Bulk C
and N contents in phytoliths, measured by chemilumines-
cence and EA (cf. Sect. 2), were 0.4 and 0.1 % dry weight
for phytoliths, and 68.8 and 2.8 % dry weight for the epoxy
resin, respectively. The N / C ratio was 0.27 for the phytoliths
and 0.04 for the epoxy resin. The bulk phytolith sample was
thus enriched in N relative to the epoxy resin by a factor
of 6.8, in agreement with N enrichments calculated from
the NanoSIMS data. This consistency strengthened the accu-
racy of the ['2C]~ and [2°°CN]~ relative intensities measured
with the NanoSIMS. Finally, [2°CN]~ /['*C]~ NanoSIMS
images clearly showed that organic compounds, with N con-
tent significantl higher than in the resin, were continuously
distributed (at the sub-micrometer scale) in the silica struc-
ture. On the contrary, cavities appeared to be fille with the
epoxy resin.

4 Discussion

4.1 PhytC locations in the silica structure of GSC
phytoliths

SEM, 3-D X-ray microscopy and NanoSIMS images showed
that the silica structure of GSC phytoliths was homogeneous
at the micrometric scale and systematically contained cen-
tral micrometric interconnected cavities. The fact that some
particles contained cavities isolated from the outside sug-
gests that the opening to the outside can be either original
or result from dissolution after the phytolith formation. Phy-
toliths often contain up to a few percent by dry weight of
aluminium (Al) by dry weight (Bartoli and Wilding, 1980;
Carnelli et al., 2004) co-precipitating with silica (Hodson and
Sangster, 1993). As Al dissolves in strong acids and in strong
bases, the phytolith chemical extraction procedure that in-
cluded HNOj3 and H,SO4 steps may have initiated phytolith
surficia dissolution and opened the few micrometer thick sil-
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ica wall between the cavities and the phytolith surface. The
procedure also included a fina alkaline step (KOH solution
at pH 11) that may also have increased the dissolution fea-
tures on the silica surfaces. As phytoliths were directly ex-
tracted from the plant, the surficia dissolution was revealed
here at its beginning. It is expected to reach higher degrees
over time in natural environments where multiple dissolu-
tion factors come into play (Iler, 1979). Large dissolution
features were indeed often observed on fossil phytoliths and
were quantifie to assess the degree of weathering of soil
phytolith assemblages (Alexandre et al., 1999; Oleschko et
al., 2004). To illustrate this point, SEM and NL microscopy
images of the entirety and cross sections of fossil monocel-
lular phytoliths collected from soils are shown in Fig. 9. The
phytolith types are characteristic of grass epidermis (GSC
types and Cuneiform bulliform types; Madella et al., 2005)

Biogeosciences, 12, 863—873, 2015

(Fig. 9a, b) and wood parenchyma (globular granulate type;
Madella et al., 2005) (Fig. 9¢c). The dissolution of silica has
made central depressions of several micrometers wide. The
particles appear empty inside, which is consistent with dis-
solution starting from the silica walls located between the
cavities and the phytolith surface, then slightly opening, or
increasing the opening of the cavities to the outside, and then
enlarging the cavities into dissolution depressions. Such dis-
solution depressions are not limited to GSC phytoliths. They
were observed on many types of monocellular phytoliths
from grasses and non-grasses extracted from soils and sed-
iments as illustrated in Fig. 9a5 (Acicular type), 9b2 and 9b3
(globular granulate). This implies that the inner part of all
these phytolith types was constituted by silica less dense than
the outer part, either due to phytC occlusion or to a lack of
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dissolved Si available for precipitation during the phytolith
formation.

Inside the internal cavities, no original organic com-
pounds could be detected by NanoSIMS. If initially present,
they may have been squeezed out and replaced by the
epoxy resin during the polishing step. On the contrary, the
[2°CN]~ /['>C]~ images clearly evidenced the presence of
organic compounds rich in N continuously distributed in

www.biogeosciences.net/12/863/2015/

the silica structure and clearly differentiated from the epoxy
resin. The absolute composition of [2°CN]~ and ['?C]~ was
not calculated. This would have required including standard
materials with known composition in the analyzed section.
However, the consistency of N enrichment of the organic
compound in the silica structure (measured by NanoSIMS)
with N enrichment of the bulk phytC (measured by chemi-
luminescence/EA) supports the claim that the organic com-
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Figure 8. SEM images of theigped®hed section
silica surfaces (Si) in the epoxy resin (r). Assoc
[28Si]~ images showing central areas devoid c
signal. (a) [Cs]t primary beam with L1=4
mary diaphragm (750 mm), 11 min; (b) [Cs]T pr
L1=2kV, D 1-2 primary diaphragm (300 pm), 1
primary beam with L1 =2kV, D1-1 primary diap
3 min analyses for 1, 2 and 3 successively.

pound measured by NanoSIMS is phytC. Finally, although
our data cannot be used to conclude the presence or absence
of any phytC in the internal cavities, they demonstrate that
the phytC is, in whole or in part, continuously distributed in
the silica structure.

4.2 Implications regarding phytC occlusion and phytC
accessibility

Evidence of the continuous distribution of phytC in the silica
structure, at the sub-micrometric scale, suggests that it had
been occluded since the early stage of silicification SEM,
environmental scanning electron microscope (ESEM) and
TEM-EDX analyses showed that silica firs precipitates in
the inner cell wall, probably triggered by the presence of
callose or lignin (Laue et al., 2007; Law and Exeley, 2011;
Zhang et al., 2013). Silica nanospheres are then organized in
a variety of structural motifs such as sheet-like, globular and
fibrilla bundles that, from the cell wall, infil the cell lumen
in a centripetal way (e.g., Kaufman et al., 1981; Sangster and
Parry, 1981; Perry et al., 1987; Laue et al., 2007; Zhang et al.,
2013), until most of the cell becomes silicifie (Motomura,
2004; Laue et al., 2007). As previously noted, an organic
template may participate to the silica formation Harrison,
1996; Laue et al., 2007). This organic template, progressively
trapped in the silica structure, may constitute the phytC evi-
denced by NanoSIMS in the phytoliths. Its N / C value (0.27)
is in the range of N / C values characteristic of amino acids.
Amino acids may originate either from the cell itself or from
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Figure 9. NL microscopy and SEMFiﬁ%zeigés of dissolution depres-
sions (DD) affecting fossil phytoliths from soils. (a) Grass epider-
mis monocellular phytoliths (cuneiform bulliform types and aci-
cular type) from Mascareignite (MSG 70, La Réunion, France)
(Crespin et al., 2008); NL microscopy phytolith surface (1, 2), SEM
phytolith volume (3) and polished section (4, 5). (b) Grass epi-
dermis monocellular phytoliths from a ferrugineous soil (Salitre,
Brazil) (Alexandre et al., 1999); NL microscopy phytolith. (¢) Phy-
toliths from palms and trees from a ferallitic soil (Dimonika, RDA)
(Alexandre et al., 1997); SEM globular granulate type volumes (1,
2) and polished section (3). (d) Opaque areas observed with NL
microscopy on bulliform cell phytoliths from MSG 70 (1, 2) and
Salitre (3, 4). Scale bars: 10 um.

the extra-cellular space. Different families of transporters
have been identifie for their import into plant cells (Tegeder,
2012). At the same time, amino acids entering the cell si-
multaneously to silica thanks to an invagination/vesicle for-
mation mechanism previously evidenced (Neumann and De
Figueiredo, 2002) may occur.

At the end of the cell silicification residual cell organic
compounds that were not already occluded may gather in
any remaining space and delimitate the micrometric central
cavities. This second pool of phytC should be rapidly ox-
idized when phytoliths start to dissolve after their deposi-
tion in litter, soil or sediment (Fig. 9). This suggests that this
phytC pool participates to a limited extent in long-term at-
mospheric CO, sequestration. These considerations rise the
need to further estimate the respective contributions to C con-
tents measured from bulk phytolith concentrates of (i) phytC
in the silica structure, (ii) phytC in the central cavities and
(iii) extraneous C that may remain on porous phytolith sur-
faces. This is a prerequisite for reliable assessments of the
significanc of phytC in atmospheric CO; sequestration. For
that purpose, phytC contents measured from phytolith assem-
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blages characterized by 3-D X-ray microscopy as dominated
by phytoliths with closed internal cavities or by phytoliths
with open cavities should be compared.

4.3 Reassessment of NL microscopy observations

Several studies have speculated that opaque areas observed
by NL microscopy in fossil phytoliths from soils and sedi-
ments were burnt organic remains indicative of past fir oc-
currence (Kealhofer and Penny, 1998; Elbaum et al., 2003;
Parr, 2006; Piperno, 2006). However, when observed by NL
microscopy, the empty dissolution depressions evidenced by
SEM on monocellular phytoliths from soils (Fig. 9a) also ap-
peared as opaque areas, especially when they were oriented
downwards (Fig. 9c). This is probably due to trapped air
in the dissolution depressions that caused an optical artifact
at the place where the air met the mounting medium. This
feature implies that opaque areas in fossil phytoliths should
not be considered as unequivocal evidence of burnt organic
compounds. Similarly, internal cavities may also appear as
opaque spots due to the occurrence of trapped air, indepen-
dent of the presence of organic compounds.

5 Conclusions

3-D X-ray microscopy reconstructions of GSC phytoliths
from harvested grasses, and SEM observations of their cross
sections, showed that the silica structure contains micromet-
ric internal cavities. These cavities were sometimes observed
isolated from the outside. Their opening may be an origi-
nal feature or may result from the silica dissolution during
the chemical extraction procedure, mimicking the beginning
of dissolution process that may happen in natural environ-
ments. The phytC that may originally occupy those cavities
is thus susceptible to rapid oxidation. It was not detected by
the NanoSIMS technique. On the contrary, another pool of
phytC, continuously distributed in and protected by the silica
structure was evidenced by NanoSIMS. Its N / C ratio (0.27)
is in agreement with the presence of amino acids. These find

ings constitute a basis to further characterize the origin, oc-
clusion process, nature and accessibility of phytC, necessary
for assessing its significanc in the global C cycle.
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