
WebGazer: Scalable Webcam Eye Tracking Using User Interactions

Alexandra Papoutsaki

Brown University
alexpap@cs.brown.edu

Nediyana Daskalova

Brown University
nediyana@cs.brown.edu

Patsorn Sangkloy∗

Georgia Institute of Technology
psangkloy3@gatech.edu

Jeff Huang

Brown University
jeff@cs.brown.edu

James Laskey

Brown University
jlaskey@cs.brown.edu

James Hays∗

Georgia Institute of Technology
hays@gatech.edu

Abstract

We introduce WebGazer, an online eye tracker that
uses common webcams already present in laptops
and mobile devices to infer the eye-gaze locations of
web visitors on a page in real time. The eye tracking
model self-calibrates by watching web visitors inter-
act with the web page and trains a mapping between
features of the eye and positions on the screen. This
approach aims to provide a natural experience to
everyday users that is not restricted to laboratories
and highly controlled user studies. WebGazer has
two key components: a pupil detector that can be
combined with any eye detection library, and a gaze
estimator using regression analysis informed by user
interactions. We perform a large remote online study
and a small in-person study to evaluate WebGazer.
The findings show that WebGazer can learn from
user interactions and that its accuracy is sufficient
for approximating the user’s gaze. As part of this
paper, we release the first eye tracking library that
can be easily integrated in any website for real-time
gaze interactions, usability studies, or web research.

1 Introduction

Eye tracking is a common method for understanding human
attention in psychology experiments, human-computer inter-
action studies, medical research, etc. Typical eye trackers use
an infrared video camera placed at a fixed distance from the
user, require explicit calibration and setup, and cost thousands
of dollars. Thus, the use of eye tracking technology has pri-
marily been confined to specialized labs with artificial tasks.
In essence, current eye trackers relinquish naturalistic studies
to more scalable technologies such as web analytics.

Eye tracking using consumer webcams and offline software
has been studied before and unsurprisingly has been found
to be less accurate than specialized equipment, negating its
utility in professional studies. However, several technological
advancements have recently arrived that justify webcams as
practical technologies. Over 65% of web browsers support the
HTML5 functions for accessing the webcam [Deveria, 2015],
typical laptop webcams support higher resolutions of capture,

∗Research conducted while at Brown University

and modern computers are fast enough to do eye tracking
for video in real time. Nevertheless, these advancements do
not solve the problem of poor accuracy due to diverse local
environments and human features.

We designed WebGazer, a new approach to browser-based
eye tracking for common webcams. WebGazer aims to over-
come the accuracy problems that webcams typically face, by
adopting user interactions to continuously self-calibrate during
regular web browsing. Webcam images during these user in-
teractions can be collected and used as cues for what the user’s
eyes look like. Future observations of the eyes can be matched
to similar past instances as WebGazer collects mappings of
eye features to on-screen gaze locations, allowing inference of
the eye-gaze locations even when not interacting.

The base WebGazer technology is compatible with three
open-source eye detection libraries for locating the bounding
box of the user’s eyes. The eye detectors that are evaluated
in this work are clmtrackr, js-objectdetect, and tracking.js,
but it can be generalized to include others. There are two
gaze estimation methods in WebGazer, one which detects
the pupil and uses its location to linearly estimate a gaze
coordinate on the screen, and a second which treats the eye
as a multi-dimensional feature vector and uses regularized
linear regression combined with user interactions. WebGazer
goes beyond using only clicks as user interaction data, to
also applying the cursor movements and the eye gaze-cursor
coordination delay as modifiers to the basic gaze estimation
model. This is where understanding user behavioral habits is
helpful in constructing the model.

We evaluate WebGazer through a remote online study with
76 participants and an in-lab study with 4 participants to com-
pare with a low cost commercial eye tracking device. In the
online study, we find that two of our regression models outper-
form existing approaches with an error of 175 and 210 pixels
respectively. Compared to the commercial eye tracking device
we discover comparable mean errors with an average visual
angle of 4.17◦. This demonstrates the feasibility of WebGazer
to approximate the gaze in diverse environments.

The two main contributions of this work are: 1)
the research, development, and evaluation of a real-time
browser-based auto-calibrated webcam eye tracker, WebGazer
(with source code and documentation publicly available at
https://webgazer.cs.brown.edu), 2) investigations of dif-
ferent gaze estimation models enhanced by user interactions.

2 Related Work

2.1 Webcam Eye Tracking

There have been few published attempts at using webcams
for eye tracking. Such methods typically involve an explicit
calibration phase and are unsurprisingly less accurate than
infrared eye trackers [Hansen and Pece, 2005]. One of the
first appearance-based methods used video images of mo-
bile cameras to train neural networks [Pomerleau and Baluja,
1993]. [Lu et al., 2011] introduced an adaptive linear regres-
sion model which needs sparse calibration but is sensitive to
head movement. [Lu et al., 2012] overcame this using syn-
thetic images for head poses, but need extensive calibration.

Another line of research uses image saliency to estimate
user gaze for calibration purposes [Sugano et al., 2010], but
saliency is only a rough estimate of where a user is looking.
[Alnajar et al., 2013] introduced a webcam eye tracker that
self-calibrates with pre-recorded gaze patterns, but still require
users to view “ground truth” gaze patterns. PACE is a desktop
application that performs auto-calibrated eye tracking through
user interactions [Huang et al., 2016]. TurkerGaze [Xu et al.,
2015] is a webcam based eye tracker deployed on Amazon
Mechanical Turk that predicts saliency on images. WebGazer
differs from these implementations by being the first browser-
based model to self-calibrate on real time via gaze-interaction
relationships which are readily available. WebGazer can be
incorporated into any website to perform gaze tracking al-
most instantaneously and without inhibiting the user’s natural
behavior through explicit calibration.

2.2 Gaze-Cursor Relationship

Lab studies involving eye tracking during web browsing
have been commonly used to track visual attention, and
our user interaction model partially builds on these findings.
Past research has found a correlation between gaze and cur-
sor positions [Chen et al., 2001; Guo and Agichtein, 2010;
Liebling and Dumais, 2014; Rodden et al., 2008]. Cursor
movements can determine relevant parts of the web page with
varying degrees of success [Shapira et al., 2006]. [Buscher
et al., 2008] used eye tracking features to infer user interest
and show that this can improve personalized search. [Buscher
et al., 2009] demonstrated the value of gaze information for
building models that predicted salient regions of web pages,
while [Cole et al., 2011] built reading models operating on eye
tracking data to investigate information acquisition strategies.

Another line of research primarily asks whether cursor
movements can be used as a substitute for eye tracking, but not
enhance it. An early study by [Chen et al., 2001] showed that
the distance between gaze and cursor was markedly smaller in
regions of the page that users attended. [Rodden et al., 2008]

and [Guo and Agichtein, 2010] identified a strong alignment
between cursor and gaze positions and found that the distance
between cursor and gaze positions was larger along the x-axis.
[Lagun and Agichtein, 2015] created a model that combines
user interactions and saliency to predict searchers’ attention.
Inferring the gaze location using webcams can be more power-
ful than the above approaches as the cursor can be idle for long
periods. Webcam video frames can inform gaze prediction
algorithms even when no user interactions take place.

3 WebGazer

We develop WebGazer, a self-calibrating client-side eye track-
ing library written entirely in JavaScript that trains various
regression models that match pupil positions and eye features
with screen locations during user interactions. WebGazer can
predict where users look within any device with a browser that
supports access to the webcam. A few lines of JavaScript can
integrate WebGazer in any website and perform eye tracking
once the user starts using the web page naturally.

WebGazer is relatively simple from a computer vision point
of view—it has no explicit 3D reasoning as found in more
sophisticated trackers [Hansen and Ji, 2010]. This simplicity
allows it to run in real time through browser JavaScript. Lack
of 3D reasoning would typically make brittle predictions, but
the primary novelty of WebGazer is being able to constantly
self-calibrate based on cursor-gaze relationships. Not only
does this eliminate the need for initial calibration sessions, but
it means users are free to move and WebGazer will learn new
mappings between pupil position, eye features, and screen
coordinates.

As WebGazer is agnostic about face and eye detection algo-
rithms, we incorporated and evaluated it using three different
facial feature detection libraries: clmtrackr [Mathias, 2014],
js-objectdetect [Tschirsich, 2012], and tracking.js [Lundgren
et al., 2014]. All three implement different vision algorithms
in JavaScipt. Js-objectdetect and tracking.js detect the face
and eyes and return rectangles that enclose them. Instead of
using the whole video frame we first perform face detection
for finer-scale eye detection on its upper half, speeding up
gaze prediction and suppressing false positives. Clmtrackr
performs a more realistic fitting of the facial and eye contour.
To provide consistent input for WebGazer, we use the smallest
rectangle that fits the eye contour.

3.1 Pupil Detection

Having detected the eye regions, WebGazer next identifies
the location of the pupil, making three assumptions: i) the
iris is darker than its surrounding area, ii) it is circular, and
iii) the pupil is located at its center. These assumptions are
not always true but in practice they hold often enough to get
real time results with reasonable accuracy. To identify the
pupil, we search over all offsets and scales for the region with
the highest contrast to its surrounding area. This exhaustive
search is made efficient by using a summed area table or
integral image.

3.2 Eye Features

The pupil location as a 2D feature can potentially fail to cap-
ture the richness of the eye’s appearance. An alternative is to
learn a mapping from pixels to a gaze location. For this we
extend TurkerGaze [Xu et al., 2015] and represent each eye
as a 6× 10 image patch. We follow up with grayscaling and
histogram equalization, resulting with a 120D feature that is
input into the linear regression algorithms described below.
TurkerGaze uses only clmtrackr but we apply these steps to all
three eye detection libraries. Unlike TurkerGaze, WebGazer
does not require users to stare at calibration points nor remain
motionless. It also does not perform offline post-processing as
its goal is live operation instead of image saliency prediction.

3.3 Mapping to Screen and Self-Calibration

To match the pupil locations and eye features to screen coor-
dinates, we must find a mapping between the 2D and 120D
vectors respectively and the gaze coordinates on the device.
This relationship is complex—it depends on the 3D position
and rotation of the head with respect to the camera and screen,
requiring careful calibration and expensive computation. We
instead rely on continual self-calibration through user interac-
tions that normally take place in web navigation.

For the self-calibration, we assume that when a user interac-
tion takes place then the gaze locations on the screen match the
coordinates of that interaction. [Huang et al., 2012] showed
that the gaze-cursor distance averages 74 pixels the moment a
user clicks. Since that distance can be task-dependent, we sim-
plify our analysis by assuming that the gaze and cursor align
perfectly during clicks. This assumption is general enough to
allow any website to use WebGazer for diverse environments
and tasks. Here we focus on clicks and cursor movements but
WebGazer can be extended to other types of user interactions.

Mapping Pupil Coordinates

Based on the previous assumption, we get a series of training
examples. Without loss of generality, we examine the x-axis
estimation case. We obtain N pupil location training examples
x = (x1, ..., xN) and their corresponding click observations
on the display t = (Dx1, ..., DxN). These are considered true
gaze locations. Using a simple linear regression model, we
obtain a function f(v) → Dx which given a pupil feature
vector v predicts the location of the gaze on the screen along
the x-axis. The function is f(v) = φ(x)Tw where φ(x) is a
basis function and w is a vector of weights that satisfy:

minimize
w

∑

xi∈x

||Dxi − f(xi)||
2

2
(1)

Mapping Eye Features

To match eye pixels to gaze locations, we implement a ridge re-
gression (RR) model [Hoerl and Kennard, 1970] that maps the
120D eye feature vector to the display coordinates (Dx, Dy)
for each click. With just a few clicks, this regularized linear
regression can produce relatively accurate predictions. In ad-
dition, its linearity keeps it simple and avoids overfitting due
to the regularization, leading to fast-performing evaluation at
run time.

Again without loss of generality, we consider the ridge
regression function for the x-coordinate prediction: f(v) →
Dx. This function is also f(v) = φ(x)Tw and again depends
on a vector of weights w which is estimated as:

minimize
w

∑

xi∈x

||Dxi − f(xi)||
2

2
+ λ||w||2

2
(2)

The last term λ acts as a regularization to penalize overfit-
ting. Here, we set λ to 10−5, the same value that the authors
of TurkerGaze used in their model.

The calculation of the weight vector, in matrix notation is:

w = (XTX + λI)−1XTY (3)

where X is the design matrix of eye features and Y is the
response vector of display coordinates.

Next, we build on the ridge regression model using research
on human vision and on the nature of user interactions.

Extra Samples within a Fixation Buffer
Human vision is governed by different types of eye movements
that when combined, allows us to examine and perceive targets
within our visual field. The two major types of eye movements
are saccades and visual fixations, where eyes stabilize on a
specific area for an average of 200–500ms [Rayner, 1998].
Perceiving information is activated during fixations, thus they
are traditionally used to gain insights into human attention.

In this study, we use the above concepts to inform the ridge
regression model. We extend our assumption that gaze and
cursor positions align when users click with the assumption
that a fixation has preceded the click. Given that, we keep
a temporal buffer that stores all eye features within 500ms.
When a click occurs, we examine in increasing temporal order
the predicted gaze coordinates against the ones corresponding
to the moment of the click. Consequently, we add all predic-
tions that occurred within 500ms and at most 72 pixels away
from the predicted gaze locations at the moment of the click
to the regression. These samples can potentially enrich the
accuracy of the predictions made by the ridge regression.

Sampling Cursor Movements
Different studies have shown that there is a strong correlation
between cursor and gaze locations when users move their
cursor intentionally, e.g. to click on a target [Hauger et al.,
2011]. When the cursor remains idle though, the distance
between them grows, making it a good signal only when active.

In our research, we explore the applicability of introducing
cursor behavior in the ridge regression model (RR+C). We
alter the ridge regression model by adding weights to the
samples by introducing to Equation 3 the diagonal matrix K
that contains the weights for each sample along the diagonal:

w = (XTKX + λI)−1XTKY (4)

We keep the same assumption as before: gaze and cursor
locations align when clicks occur. Click events are given a
full unit weight. Every time the cursor moves, we assign to
its corresponding position a weight of 0.5 and assume it corre-
sponds to the predicted gaze location. We decrease the weight
of each cursor position by 0.05 every 20ms. This allows a
cursor location to contribute to the regression model for at
most 200ms, a duration comparable to a fixation. Thus, when
the cursor is idle, this model falls back to the original simple
ridge regression (RR) where only clicks train WebGazer.

Combining Fixations and Cursor Movements
We also explore the combination of the two last models (sam-
pling within a fixation buffer and sampling cursor movements)
with the simple ridge regression (RR+F+C). As the evalua-
tion of WebGazer is based on the moments that clicks occur,
we wanted to have a more accurate and enhanced model that
would provide predictions even when the cursor remains idle.
As such, we build a regression model that matches gaze with
click locations, includes extra samples within a fixation buffer,
and uses cursor movements only when the cursor is moving.

4 Experiment Design

4.1 Remote Online Large-Scale Study

We conducted a remote online user study to evaluate the accu-
racy and feasibility of performing eye tracking with WebGazer.

A consent form was presented to the participants and a compat-
ibility test detected if their browsers could access the webcam.
Upon agreement, they were assigned two types of tasks. We-
bGazer was integrated in all task pages and each user was
uniquely identified. All parameters were reset between pages.

The first type of tasks emulated reading and interacting with
content, two typical behaviors in web pages. Participants had
to fill a quiz with 40 yes/no questions. The answers could be
given by selecting one of two radio buttons per question. Each
row included 3 questions that spanned across the whole width
of the display and resulted in a grid of 14 rows.

The second type of tasks included selecting a target as part
of a standard Fitts’ Law study using the multidirectional tap-
ping task suggested by the ISO9241-9 standard [Soukoreff
and MacKenzie, 2004] which measures usability. Participants
had to click on a circular target that appeared in 11 locations
on a circular grid as seen in Figure 1. The active target would
be shown in red color while the 10 inactive targets were gray.
The distance between two consecutive locations of the active
target was 512 pixels, while its radius was 12 pixels. For each
target selection task, participants had to successfully click on
the red target 40 times. Note that Figure 1 is a composite im-
age demonstrating the facial feature detection and predictions
made by different regression models. The camera video and
the predictions were never shown to the participants.

Figure 1: Composite image demonstrating the experimental
setup for the target selection task. Clmtrackr is used for facial
feature detection. Predictions from different regression models
are depicted with different colors. Users aim at the red target.

For both types of tasks, eye detection was performed with
one of the following facial feature detection libraries: clm-
trackr, js-objectdetect, and tracking.js. This resulted in six
trials, as both tasks were assessed using the three eye detec-
tion libraries. Each trial was introduced with a verification
page showing instructions for the upcoming task along with
the video captured by the users’ webcam so that they could
adjust their position and ambient lighting to ensure that their
face, eyes, and pupils were correctly captured. The quiz tasks
always preceded the target selection tasks. The order of the
facial feature detectors was uniformly and randomly selected.

After all the trials were completed, participants filled a
short demographic questionnaire inquiring their age, gender,

handedness, vision, any feedback, and optionally their emails
so that they could enter a raffle. Participants were free to move
and no chin-rest was used. This approach differs from the
traditional practices in research employing eye tracking as it
allows users to use eye tracking at the convenience of their
own space and while behaving naturally.

Participants

82 participants (40 female, 42 male), mainly college students
and young professionals, were recruited through university-
wide mailing lists, and entered a raffle for ten $50 Amazon
gift cards. They were between 18 to 42 years old (M = 25.6,
SD = 4.2); 39 had normal vision, 25 wore glasses, and 18
wore contact lenses. All participants used Google Chrome or
Firefox. The experiment lasted an average of 9.9 minutes.

Six participants were excluded due to technical issues. Over-
all there were 20,251 clicks, 18,657 predictions for the simple
linear regression and 19,545 for each ridge regression model.

4.2 In-Person Small-Scale Study

WebGazer’s ability to infer the gaze location is based on the
assumption that the gaze and cursor locations match during a
click. To evaluate this claim and assess the accuracy of We-
bGazer throughout the interaction of a user with a page, we ran
a smaller-scale study to gain a better insight on webcam eye
tracking and how it compares to commercial eye trackers. We
repeated the same procedures as with the remote large-scale
user study, but in a lab using Tobii EyeX, a 50Hz commercial
interaction eye tracker primarily used for development of in-
teractive applications. We recorded the predictions made by
Tobii EyeX and WebGazer throughout the duration of the user
study even when clicks were not occurring.

The experiment was conducted with a chin rest on a desktop
PC with Windows 7 and Google Chrome in a maximized
window. A Samsung SyncMaster 2443 24-inch monitor with
a resolution of 1920 by 1200 pixels was used with a Logitech
Full HD C920 USB webcam, from a distance of 59cm from
the user. We recruited 5 college students (2 female, 3 male)
that performed the same study as described earlier. Their ages
ranged from 19 to 30 years (M = 23, SD = 4.3). Four had
normal vision, and one wore contact lenses. The study lasted
7.2 minutes on average.

One participant was excluded due to technical problems.
Overall there were 962 clicks with 802 predictions derived
from the simple linear regression model and 866 from all the
rest. Predictions were tracked throughout the study, even when
the user would not interact with the page.

5 Results

5.1 Evaluating Predictions From Online Study

To measure the performance of WebGazer, we compute the
Euclidean distance between the location of a click and the cor-
responding predicted gaze location. This distance is measured
in pixels as we cannot control the positioning of the online
users or know the resolution of their monitors.

As part of the study we required that for a user to complete a
task, they would have to perform at least 40 clicks. This num-
ber increases when accidental clicks happen. We normalize
the results across all participants and map them to 50 clicks.

Quiz/ Target/ Quiz/ Target/ Quiz/ Target/ All Tasks/
Clmtrackr Clmtrackr Js-object. Js-object. Tracking.js Tracking.js Libraries

Model M SD M SD M SD M SD M SD M SD M SD

Linear 245.4 82.5 227.9 37.5 271.2 82.8 230.0 36.1 311.9 112.2 260.7 29.6 256.9 75.0
RR 207.6 87.5 165.8 71.7 248.5 80.8 197.3 58.8 309.8 111.7 275.1 47.1 232.4 92.3

RR+F 247.4 91.3 207.4 78.7 257.8 87.1 218.6 65.4 308.1 111.9 275.7 49.1 251.5 89.0
RR+C 118.7 55.4 104.5 55.1 167.3 67.8 160.7 54.6 258.7 115.8 251.8 55.8 174.9 91.6

RR+F+C 180.8 75.5 157.0 69.7 208.7 82.5 206.1 61.3 263.0 114.2 255.4 52.4 210.6 86.3

Table 1: Mean (M) and standard deviation (SD) of prediction errors measured in pixels across all regression models and
combinations of tasks and libraries. The mean is obtained from averaging across the 76 online participants.

Simple Linear vs. Ridge Regression

First, we compare the accuracy of the simple linear regression
model that maps the pupil location to display coordinates
against the ridge regression model that maps the 120D eye
feature vector. Across all clicks, the mean error from the
linear regression model is 256.9 pixels (SD = 75.0). Similarly,
the mean distance between the location of a click and the
prediction made by the ridge regression model is 233.4 pixels
(SD = 92.3). The means and standard deviations of each
combination of task type and eye detection library are reported
in Table 1.

We average the error across all clicks for each participant. A
Mann-Whitney U test showed that the mean error was greater
for the simple linear regression (p < 0.005).

Figure 2: Average Euclidean distance in pixels between the
click location and the predictions made by the simple linear
(solid blue) and the ridge regression model (dashed green).

Figure 2 shows the average Euclidean distance in pixels
across all 50 normalized clicks. We observe different error
trends across the two task types. Filling the quiz seems to
introduce more error with more clicks, perhaps because users
need to scroll to reach all questions and thus they move more.
On the other hand, when selecting targets, the error drops until
it stabilizes—no scrolling happens in this type of task.

As ridge regression has generally a lower error, we base our
subsequent analysis only on the ridge regression model that
matches eye feature vectors to display coordinates.

Comparison of All Ridge Regression Models

We compare the accuracy of all prediction models that use
ridge regression: the simple ridge regression (RR), the regres-
sion when adding extra samples within the fixation buffer
(RR+F), when sampling cursor activity outside of clicks
(RR+C), and when combining all the above (RR+F+C). Fig-
ure 3 shows the average Euclidean distance in pixels across all
clicks for all combinations of tasks, libraries, and regression
models. Again we observe the same upward trend for the
quiz task across all prediction models. On the other hand, for
the target selection task, we notice that for the clmtrackr and
js-objectdetect detection libraries, the error decreases during
the first half of the task and increases during the second half.
Performing the study online leaves room for the interpretation
of the observed variability. The speed of the external libraries
can have a significant effect on WebGazer’s ability to match
correctly frames and locations on screen. Head movement can
also affect the detected images that correspond to eye patches.

Note that WebGazer achieves a significant increase in the ac-
curacy of the predicted gaze. Sampling cursor activity (RR+C)
has the smallest average error of 174.9 pixels, followed by the
model that combines fixations and cursor activity (RR+F+C)
with an error of 210.6 pixels. Contrary to our expectations, the
error of WebGazer using extra samples within a fixation buffer
(RR+F) increased (M = 251.5 pixels). There are a couple of
factors that could have an effect, e.g. blinks within the fixation
buffer or temporal and spatial ranges being too lenient. The
number of extra samples within a fixation buffer also depended
on the performance of the eye detection library in conjunction
with the increased cost of extra training data.

5.2 In-Person Study Results

The in-person user study data was captured via log files from
the Tobii EyeX eye tracker and server logs for WebGazer. Both
datasets were parsed down to a time series of predictions and
grouped into 10 millisecond bins. The error was computed as
the average distance between each regression and Tobii EyeX
for the equivalent bin. Tracking.js data were excluded due to
performance issues running both eye trackers simultaneously.

Table 2 contains the mean prediction errors and standard
deviations measured in pixels for all 4 participants. We note
that the mean errors reported here are comparable with the
ones in Table 1 from the online study. The errors are naturally
higher as the population size differs significantly. The mean
errors are computed even when the user is not clicking. That
further supports our assumption for matching gaze and click
coordinates.

8 Acknowledgments

This research is supported by NSF grants IIS-1464061, IIS-
1552663, and the Brown University Salomon Award.

References

[Alnajar et al., 2013] Fares Alnajar, Theo Gevers, Roberto
Valenti, and Sennay Ghebreab. Calibration-free gaze esti-
mation using human gaze patterns. In Proc. ICCV, pages
137–144, 2013.

[Buscher et al., 2008] Georg Buscher, Andreas Dengel, and
Ludger van Elst. Eye movements as implicit relevance
feedback. In Proc. CHI Extended Abstracts, pages 2991–
2996, 2008.

[Buscher et al., 2009] Georg Buscher, Edward Cutrell, and
Meredith Ringel Morris. What do you see when you’re
surfing?: using eye tracking to predict salient regions of
web pages. In Proc. CHI, pages 21–30, 2009.

[Chen et al., 2001] Mon Chu Chen, John R. Anderson, and
Myeong Ho Sohn. What can a mouse cursor tell us more?:
correlation of eye/mouse movements on web browsing. In
Proc. CHI Extended Abstracts, pages 281–282, 2001.

[Cole et al., 2011] Michael J. Cole, Jacek Gwizdka, Chang
Liu, Ralf Bierig, Nicholas J. Belkin, and Xiangmin Zhang.
Task and user effects on reading patterns in information
search. Interacting with Computers, 23(4):346 – 362, 2011.

[Deveria, 2015] Alexis Deveria. Can I use getUserMedia/
Stream API. http://caniuse.com/#feat=stream, 2015. [On-
line; accessed 2014-10-08].

[Guo and Agichtein, 2010] Qi Guo and Eugene Agichtein.
Towards predicting web searcher gaze position from mouse
movements. In Proc. CHI Extended Abstracts, pages 3601–
3606, 2010.

[Hansen and Ji, 2010] Dan Witzner Hansen and Qiang Ji. In
the eye of the beholder: A survey of models for eyes and
gaze. IEEE TPAMI, 32(3):478–500, 2010.

[Hansen and Pece, 2005] Dan Witzner Hansen and
Arthur EC Pece. Eye tracking in the wild. Comput.
Vis. Image Und., 98(1):182–210, April 2005.

[Hauger et al., 2011] David Hauger, Alexandros Paramythis,
and Stephan Weibelzahl. Using browser interaction data
to determine page reading behavior. In User Modeling,
Adaption and Personalization, pages 147–158. 2011.

[Hoerl and Kennard, 1970] Arthur E Hoerl and Robert W
Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67,
1970.

[Huang et al., 2012] Jeff Huang, Ryen W. White, and Georg
Buscher. User see, user point: Gaze and cursor alignment
in web search. In Proc. CHI, pages 1341–1350, 2012.

[Huang et al., 2016] Michael Xuelin Huang, Tiffany C.K.
Kwok, Grace Ngai, Stephen C.F. Chan, and Hong Va Leong.
Building a personalized, auto-calibrating eye tracker from
user interactions. In Proc. CHI, 2016.

[Lagun and Agichtein, 2015] Dmitry Lagun and Eugene
Agichtein. Inferring searcher attention by jointly mod-
eling user interactions and content salience. In Proc. SIGIR,
pages 483–492, 2015.

[Liebling and Dumais, 2014] Daniel J Liebling and Susan T
Dumais. Gaze and mouse coordination in everyday work.
In Proc. UbiComp, pages 1141–1150, 2014.

[Lu et al., 2011] Feng Lu, Yusuke Sugano, Takahiro Okabe,
and Yoichi Sato. Inferring human gaze from appearance via
adaptive linear regression. In Proc. ICCV, pages 153–160,
2011.

[Lu et al., 2012] Feng Lu, Yusuke Sugano, Toshiya Okabe,
and Yuuki Sato. Head pose-free appearance-based gaze
sensing via eye image synthesis. In Proc. ICPR, pages
1008–1011, 2012.

[Lundgren et al., 2014] Eduardo Lundgren, Thiago Rocha,
Zeno Rocha, Pablo Carvalho, and Maira Bello. track-
ing.js: A modern approach for Computer Vision on the
web. http://trackingjs.com/, 2014. [Online; accessed 2015-
05-15].

[Mathias, 2014] Audun Mathias. clmtrackr: Javascript library
for precise tracking of facial features via Constrained Lo-
cal Models. https://github.com/auduno/clmtrackr, 2014.
[Online; accessed 2015-07-08].

[Pomerleau and Baluja, 1993] Dean Pomerleau and Shumeet
Baluja. Non-intrusive gaze tracking using artificial neural
networks. In AAAI Fall Symposium on Machine Learning
in Computer Vision, Raleigh, NC, pages 153–156, 1993.

[Rayner, 1998] Keith Rayner. Eye movements in reading and
information processing: 20 years of research. Psychologi-
cal bulletin, 124(3):372, 1998.

[Rodden et al., 2008] Kerry Rodden, Xin Fu, Anne Aula, and
Ian Spiro. Eye-mouse coordination patterns on web search
results pages. In Proc. CHI Extended Abstracts, pages
2997–3002, 2008.

[Shapira et al., 2006] Bracha Shapira, Meirav Taieb-Maimon,
and Anny Moskowitz. Study of the usefulness of known
and new implicit indicators and their optimal combination
for accurate inference of users interests. In Proc. SAC,
pages 1118–1119, 2006.

[Soukoreff and MacKenzie, 2004] R. William Soukoreff and
I. Scott MacKenzie. Towards a standard for pointing device
evaluation, perspectives on 27 years of fitts’s law research
in hci. Int. J Hum.-Comput. St., 61(6):751 – 789, 2004.

[Sugano et al., 2010] Yusuke Sugano, Yasuyuki Matsushita,
and Yoichi Sato. Calibration-free gaze sensing using
saliency maps. In Proc. CVPR, pages 2667–2674, 2010.

[Tschirsich, 2012] Martin Tschirsich. Js-objectdetect: Com-
puter vision in your browser - javascript real-time object de-
tection. https://github.com/mtschirs/js-objectdetect, 2012.
[Online; accessed 2015-08-15].

[Xu et al., 2015] Pingmei Xu, Krista A Ehinger, Yinda Zhang,
Adam Finkelstein, Sanjeev R Kulkarni, and Jianxiong Xiao.
Turkergaze: Crowdsourcing saliency with webcam based
eye tracking. arXiv preprint arXiv:1504.06755, 2015.

