
THE JOURNAL OF CHEMICAL PHYSICS 143, 124313 (2015)

Line mixing in parallel and perpendicular bands of CO2: A further test
of the refined Robert-Bonamy formalism

C. Boulet,1 Q. Ma,2 and R. H. Tipping3
1Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS (UMR8214) and Université Paris-Sud, Bât. 350,
Campus d’Orsay F-91405, France
2NASA/Goddard Institute for Space Studies and Department of Applied Physics and Applied Mathematics,
Columbia University, 2880 Broadway, New York, New York 10025, USA
3Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487-0324, USA

(Received 3 July 2015; accepted 10 September 2015; published online 30 September 2015)

Starting from the refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem.
Phys. 139, 034305 (2013)], we propose here an extension of line mixing studies to infrared absorp-
tions of linear polyatomic molecules having stretching and bending modes. The present formalism
does not neglect the internal degrees of freedom of the perturbing molecules, contrary to the energy
corrected sudden (ECS) modelling, and enables one to calculate the whole relaxation matrix starting
from the potential energy surface. Meanwhile, similar to the ECS modelling, the present formalism
properly accounts for roles played by all the internal angular momenta in the coupling process,
including the vibrational angular momentum. The formalism has been applied to the important case
of CO2 broadened by N2. Applications to two kinds of vibrational bands (⌃ ! ⌃ and ⌃ ! ⇧ ) have
shown that the present results are in good agreement with both experimental data and results derived
from the ECS model. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931587]

I. INTRODUCTION

The phenomenon of collisional transfer of intensity due
to line mixing has an increasing importance for atmospheric
monitoring and combustion diagnostics.1,2 Within the limits of
the impact approximation, all relevant information about the
collisional processes is contained in a frequency independent
relaxation matrix W, whose diagonal elements give the half-
widths (and shifts) of the various lines (when they are
isolated), while the o↵-diagonal elements correspond to line
interferences.1,3,4

For simple systems such as those consisting of diatom-
atom and diatom-diatom, accurate fully quantum calculations
based on the knowledge of interaction potential surface are
now feasible.5,6 Fully quantum calculations become unfeasible
for more complex systems due to large numbers of coupled
channels involved. With the recent exception of the classical
approach of S. Ivanov and co-workers,7 most of the previous
line mixing studies were based on semi-empirical fitting or
scaling laws, such as the energy corrected sudden (ECS)
model widely used in simulations of atmospheric spectra.1,8,9
On the other hand, based on classical collisional paths and
intermolecular potentials for molecular systems of interest,
semi-classical approaches to calculate the relaxation matrix
such as that developed by Cherkasov10 have existed for
years. The term “semi-classical” is somehow ambiguous. In
this paper, “semi-classical” means that the relative motion is
treated classically and the internal motion is treated quantum
mechanically. Within this category, we have recently extended
the Robert-Bonamy (RB) formalism to the calculation of the
whole W matrix.11,12 This formalism was first applied to the
isotropic Raman spectra of self-perturbed N2, for which a

comparison with benchmark quantum results was possible.12
The consequences of the classical path approximation were
carefully analyzed. The formalism has also been extended
to infrared (IR) spectra, allowing for the calculation of line
coupling for P and R lines.13 However, numerical calculations
were limited to the half-widths in the particular case of ⌃ ! ⌃
bands (no excited vibrational angular momentum), and it was
shown that line coupling significantly reduces the half-widths
when compared to the RB formulation.

In this paper, we extend the formalism to the calculation
of the W matrix for vibrational bands of any symmetry
(⌃ ! ⌃,⌃ ! ⇧,⇧ ! �, . . . ) and apply it to the particular
case of CO2 perturbed by N2. As it is now well known, the
analysis of the spectra of the current IR sounders have shown
that line mixing is important in air-broadened CO2 Q branches
and in the wings of the bands.2,14,15 For such a complex system,
up to now, no “first principle” calculation exists. For CO2 in a
He bath, Green16 has developed an IOS (infinite order sudden)
formalism which can predict results in good agreement with
data of various infrared bands and pure rotational Raman
spectra. Most of this success is due to including the vibrational
angular momentum into the set of coupled angular momenta.
For N2-broadening where the perturber molecular rotation
plays a significant role, the IOS approximation fails because
this motion has not been included in calculations. In order
to remedy the problem, the ECS model was developed by
introducing empirical adiabaticity factors. It should be noted
that, in their first versions, the basic cross sections of the IOS
and ECS formalisms were obtained from given intermolecular
potentials. However, in a further step, these basic cross sections
were considered as adjustable parameters. This is just the
case of the ECS model of Refs. 8 and 9 and the latter has
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been widely used in atmospheric simulations. Furthermore,
by assimilating the latter to atoms, the ECS model neglects
the internal degrees of molecular perturbers. In contrast, with
the present formalism, the rotation of the molecular perturbers
can be explicitly taken into account.

The present manuscript is organized in the following
way. In Section II, we outline the basic of theory. The
Subsection II A is devoted to a simplification treatment by
Green16 based on the fact that low lying bending modes are
still nearly linear. In Section III, we describe calculations of the
relaxation matrices in detail and present comparisons between
calculated results for di↵erent vibrational bands of CO2 and
measured data. Subsection III G is devoted to a proposed
method in order to circumvent both the limits of the semi-
classical scheme and possible inaccuracies of the potential.
By applying this method, we compare the present results with
those obtained from the “empirical” ECSmodel of Refs. 8 and
9. Since that ECS model correctly predicts the experimental
data, this comparison provides, in some sense, a comparison
with the experimental results. Section IV consists of a brief
conclusion.

II. THEORY

A. Outline of the relaxation operator W

Within the binary collisions and impact approximations,
the symmetrized spectral density F̃(!) can be written as

F̃(!) = � 1
⇡
Im
X

kl

p
⇢̃l d̃l

*
l
����� 1
! � L0 � iW̃

����� k
+p

⇢̃k d̃k, (1)

where |ki is a vector in the line space,f⇢k = exp
�
��Ei

k

�
/Z is

the density matrix element and Ei
k is the energy of the initial

level of line k, and Hdk is the reduced matrix element of the
dipole moment (in the case of IR absorption), as adopted by
BenReuven.3 Note that Eq. (1) has beenwritten in a symmetric
version12 of the formalism developed in Ref. 11. In the impact
limit, a matrix element of W̃ may be expressed in terms of
the average of the Liouville scattering operator Ŝ over the
internal degrees of the bath molecule. Following Ref. 11,⌦
S̃
↵
is expressed via a second order cumulant expansion of

the average. As shown in Refs. 11–13, the coupling and
consequently line mixing result from the non-diagonality of
the Liouville operator �iS1 � S2 in the line space.

Since the CO2 molecule is allowed to bend, we need to
introduce parity adapted wave functions16 given by

|⌫" jl2mi = N" (|⌫ jl2mi + " |⌫ j � l2mi) , (2)

where

|⌫ jl2mi ⌘ |⌫1⌫2l2⌫3i ⌦ | jl2mi. (3)

In the above expression, ⌫ is a short notation for the vibrational
quantum numbers ⌫1, ⌫2, and ⌫3, and l2 (= ⌫2,⌫2 � 2, . . .) is
the absolute value of the vibrational angular momentum. In
the above expression, for l2 = 0, " = 0 and N" = 1 and for
l2 , 0, " = ±1 and N" = 1/

p
2. We then follow Ben-Reuven’s

conventions by introducing a set of basis vectors in the line

space defined by

|ki ⌘ | f i, JMJi = |⌫f " f j f l2 f ,⌫i"i jil2i, JMJ �
=
X

mim f

(�1) ji�miC
�
j f jiJ,m f � miMJ

�
⇥ |⌫f " f j f l2 fm f ,⌫i"i jil2imi � . (4)

(In order to simplify notations, we also adopt a simple notation
“i” to represent all the quantum numbers ⌫i, "i, ji, and l2i.)

Subsequently, following procedures detailed in
Refs. 11–13, a matrix element of W̃ may be expressed in terms
on the average of the Liouville scattering operator over the
internal degrees of the bath molecule, expressed via a second
order cumulant expansion adapted to the symmetrized version
of the formalism,

W̃ f 0i0, f i =
nb⌫̄
2⇡c

⌅ +1

rc,min

2⇡(b db
drc

)drc

⇥
(
�i0i� f 0f� ⌧ f 0i0 ���e�is1(rc)�s2(rc)��� f i �)

, (5)

where b is the impact parameter and rc corresponds to the
point of closest approach. Note that we do not perform any
thermal average over the relative kinetic energy, by restricting
the calculation to its value for the mean relative velocity,
Ēkin =

4
⇡ kBT .

B. Fundamental approximations in determining
potential models

In principle, for a system consisting of an absorber with
excited bending modes (like CO2) and a linear bath molecule,
potential models should be written as17

V
⇣
~R(t)
⌘
=
X

L1K1L2L

U (L1L2L;K1; R (t))

⇥
X

m1m2M

C(L1L2L,m1m2M)

⇥DL1⇤
m1K1

(⌦a)DL2⇤
m20

(⌦b)Y⇤LM (! (t)) , (6)

where DL
mK (⌦) are rotation matrices. However, as explained

by Green,16 since low-lying bending modes are still nearly
linear, we can approximate the potential models by setting
K1 = 0 in Eq. (6). In addition, we will neglect any vibrational
dependence of potential parameters. This implies that we
have assumed that the potential model remains identical to
that between a CO2 molecule in a ⌃ state and a linear
perturber and it does not have any vibrational dependences
at all. In general, to neglect the vibrational dependences
is not acceptable in calculating the line shift because the
latter strongly depends on these vibrational dependences.
But we believe these simplification assumptions would have
negligible e↵ects on calculated half-widths.18

Then, let us consider potential matrix elements of
h⌫"0 j 0l2m0|V|⌫"jl2mi associated with the absorber molecule.
Since the potential is assumed not to act on the vibrational
quantum numbers, one has⌦
⌫"0j0l2m

0 | V| ⌫" jl2m
↵

=
1
2
(
⌦
j0l2m

0 | V| jl2mi + ""0hj0 � l2m0 |V| j � l2m
↵
). (7)
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Because V / DL1⇤
µ10

, one can easily show that

⌦
j0l2m0|V|jl2m

↵
= (�1)j+j0�L1 hj0 � l2m0|V|j � l2mi . (8)

With " = (�1)j+1 or (�1)j (depending on the type of vibrational
levels) and the fact that L1 is even for a symmetric linear
molecule, one obtains

⌦
⌫"0j0l2m

0 |V| ⌫"jl2m
↵
=

1
2

(
1 + (�1)�L1

) ⌦
j0l2m

0 |V| jl2m
↵

=
⌦
j 0l2m

0|V|jl2m
↵
. (9)

The above relation greatly facilitates calculations of the S2
matrix elements.

We note that because the potential does not have any
vibrational dependence, S1 is zero. As for S2, it can be written
as

S2 = S2,outer, i + S2,outer, f + S2,middle. (10)

In the present study, we will neglect imaginary parts of the
matrix elements of S2,outer,i and S2,outer,f. Calculations within
the RB formalism have shown that these imaginary parts are
of minor importance in the calculation of the half-widths,18
and hence in that of the real part of the W matrix. As for
the S2,middle term, both its diagonal and non-diagonal matrix
elements are real.

C. Matrices of S2,outer,i, S2,outer,f, and S2,middle
in the coordinate representation

In the present study, we will apply the formalism to two
IR vibrational bands of CO2, a ⌃ ! ⌃(l2i = l2 f = 0) stretching
band and a ⌃ ! ⇧(l2i = 0; l2 f = 1) bending one. Because in
both cases, the initial vibrational level is the ⌃ fundamental
one; the matrix elements of S2,outer,i are exactly those of a
linear molecular pair and they have been already given in
Ref. 13. We would like to note that because we only consider
the line coupling within a given vibrational band, the matrix
of S2,outer,i in the corresponding line space is diagonal. On
the other hand, with respect to S2,outer,f, it will depend on
l2 f ⌘ l2.

One can easily show that the matrix of S2,outer,f is also
diagonal within a vibrational band and its matrix elements are
given by

ReS f i, f i
2,outer, f (rc) =

r
⇡

2

X

L1L2

X

i2i
0
2

q
⇢̃i2 ⇢̃

0
i2
(2i2 + 1)

�
2i02 + 1

�
⇥C

�
i2i02L2,000

�2X
j0
f

⇣
2 j 0f + 1

⌘

⇥C
⇣
j f j 0f L1, l2 � l20

⌘2
FL100L20

⇥
⇣
! f f 0 + !i2i

0
2

⌘
. (11)

The symmetric one dimensional (1-D) Fourier transforms
FL1K1K

0
1L2K2K

0
2
(!) are defined in the Appendix.

In contrast with the S2,outer,i and S2,outer,f terms which are diagonal within a given band, the S2,middle term, which is real, is
always o↵-diagonal. It is this term that is responsible for the line coupling. The expression for its o↵-diagonal elements is given
by

S f 0i0, f i
2,middle (rc) = 2⇡(�1)1+J(�1) ji+ j0i

q
(2 j 0i + 1)(2 j 0f + 1)(2 ji + 1)(2 j f + 1)

⇥
X

L1L2

(�1)L1W
⇣
j 0i j
0
f ji j f , JL1

⌘
C
�
ji j 0iL1,000

�
C
⇣
j f j 0f L1, l2 � l20

⌘

⇥
X

i2i
0
2

q
⇢̃i2 ⇢̃

0
i2
(2i2 + 1)

�
2i02 + 1

�
C
�
i2i02L2,000

�2
FL100L200

*,
�
!i0i + ! f 0f

�
2

+ !i02i2
,! f i � ! f 0i0+- (12)

The two dimensional (2-D) Fourier transforms FL1K1K
0
1L2K2K

0
2
(!,!0) are also defined in the Appendix. Meanwhile, the expression

for the diagonal elements of S2,middle becomes

S f i, f i
2,middle (rc) = (�1)1+J

p
2⇡(2 ji + 1)(2 j f + 1)

⇥
X

L1L2

(�1)L1W
�
ji j f ji j f , JL1

�
C( ji jiL1,000)C( j f j f L1, l2 � l20)

⇥
X

i2i
0
2

q
⇢̃i2 ⇢̃

0
i2
(2i2 + 1)

�
2i02 + 1

�
C
�
i2i02L2,000

�2
FL100L200

⇣
!i02i2

⌘
. (13)

D. The sum rule and the detailed balance

In the more general fully quantum theory, the frequency
dependent relaxation matrix has to verify some fundamental
rules.3,19–21 One is the detailed balance relationship (written
here in a symmetrized form),

W̃lk(!) = W̃kl(!), (14)

where k ⌘ ⌫f " f j f l2 f  ⌫i"i jil2i and l ⌘ ⌫0f "
0
f j
0
f l
0
2 f

 ⌫0i"
0
i j
0
il
0
2i represent two coupled lines. Another is the sum

rule representing a relationship between the diagonal element
of W and a weighted sum of o↵-diagonal elements within the
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same columns defined by

W̃kk(!) = �
X

l,k

d̃l
d̃k

r
⇢̃l
⇢̃k

W̃lk(!). (15)

However, in order to obtain tractable formalisms, people
have to introduce approximations that may cause a breakdown
of these fundamental rules. Among all these approximations,
a very restrictive one is the impact approximation. Instead
of using o↵-energy shell scattering amplitudes in order to
account for incomplete collisions, it uses only “conventional”
S matrix, consequently leading to a frequency independent W
matrix. This approximation may lead to violations of the sum
rule property in some cases.20,22,23 More explicitly, it has been
shown that while the sum rule remains valid in the isotropic
Raman case,

W̃ (0)
kk = �

X

l,k

s
2 j 0i + 1
2 ji + 1

r
⇢̃l
⇢̃k

W̃ (0)
lk , (16)

it is no more valid in the IR absorption case since now,

W̃ (1)
kk , �

X

l,k

d̃l
d̃k

r
⇢̃l
⇢̃k

W̃ (1)
lk . (17)

In the above expressions, we have introduced the superscript
(0) and (1) of W̃lk to indicate the rank of transition operators
for the isotropic Raman and IR spectra, respectively.

Regarding the detailed balance principle, because we have
adopted the symmetrized formalism, it becomes automatically
valid since

W̃lk = W̃kl . (18)

Although initial correlations have been neglected, as well
as the average over the kinetic energy, one may expect
that inaccuracies caused by these neglects will be partially
compensated by adopting the symmetrized form of the theory.

There is another di�culty to be wary of that results from
the semi-classical approximation. As shown in our previous
work on the isotropic Raman spectra of N2,12 the calculated
W matrix does not exactly verify Eq. (16) since one has only

W̃ (0)
kk = �

X

l,k

s
2 j 0i + 1
2 ji + 1

W̃ (0)
lk . (19)

Indeed, the present classical path formalism assumes that
the molecules can make inelastic transitions without any
e↵ect on their translational energy. This approximation, very
common in semi classical theories, is justified if the inelastic
transitions involve energy changes which are small compared
with kBT . Then, small changes in translational energy cause
small changes in the trajectory. One will obtain Eq. (19)
from Eq. (16) by assuming that |Ei

l � Ei
k | ⌧ kBT , so that

⇢̃l/ ⇢̃k ⇡ 1.24 In some sense, Eq. (19) can be called as the
semi-classical approximation of Eq. (16).

These intrinsic weaknesses may limit the reliability of
the semi-classical formalism. Methods correcting for e↵ects
of inelasticity were analyzed in Ref. 12. Another procedure
to force the IR W matrix to verify exactly Eq. (15) will be
presented in Sec. III G.

III. CALCULATIONS OF THE RELAXATION MATRIX

A. The coupling strength factor

Before carrying out complicated calculations involving
collisional dynamics, it is worthwhile to do a simple and
helpful evaluation first. As shown in Eq. (12), contributions to
the o↵-diagonal elements between two coupled lines from a
specified correlation function of order L1 are proportional to a
factor

q
(2 j 0i + 1)(2 j 0f + 1)(2 ji + 1)(2 j f + 1)W

⇣
j 0i j
0
f ji j f , JL1

⌘

C
�
ji j 0iL1,000

�
C
⇣
j f j 0f L1, l2 � l20

⌘
. We call it as the coupling

strength factor between the two lines of j 0f  j 0i and j f  ji.
As shown in its definition, it contains information of the
angular momentum couplings between all angular momenta
of the absorber molecule. In cases of this factor is zero or
negligible, one can ignore the line coupling between them.
As shown in its definition, it is easy to calculate the coupling
strength factor because the calculation does not involve any
dynamics. However, the results would be very helpful to
determine in advance that among all possible coupled pairs,
which of pairs are required to be considered and which can be
simply ignored.

As example, in Fig. 1, we present values of the strength
factor with L1 = 2 for the R � R and R � P couplings in ⌃ ! ⌃
bands. For the R � R coupling, because values of the strength
factor are negative, we plot their absolute values between R(J)
and R(J + 2) lines with J = 0,2, . . . . As shown in the figure,
the values vary within a narrow region and after J � 8, they
reach at an asymptotic constant (�1.8750). On the other hand,
there is a completely di↵erent story for the R � P coupling. In
this case, there are two sets of calculated values consisting of
results between R(J) and P(J + 2) lines with J = 0,2, . . . and
that between R(J) and P(J) lines with J = 2,4, . . . . As shown in
the plot, starting from their maximum values (i.e., 1.4142 and
0.3499) reached at their lowest J = 0 and J = 2, respectively,
these values decrease very quickly and both of them become
less than 0.01 when J � 14, due to the W

⇣
j 0i j
0
f ji j f , JL1

⌘

coe�cient. This implies that significant R � P coupling could
only occur between those lines with J < 14. It is known1,8,9,16
that in comparison with the R � R and P � P coupling, the
R � P coupling is much weaker. Based on these discussions,

FIG. 1. The coupling strength factors with L1= 2 for R(J)�R(J+2),R(J)
�P(J+2), and R(J)�P(J) couplings in ⌃! ⌃ bands. They are plotted by },
�, and ⇥, respectively.
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one concludes that it is the strength factor, or more precisely, it
is the angular momentum couplings of the absorber molecule
that plays a crucial damping role in decoupling R and P
lines.

B. The potential and trajectory models

Next, before presenting dynamic calculations, we briefly
outline the potential and the trajectory models used in these
calculations. For the CO2 and N2 pair, people usually adopt
potential models consisting of the isotropic and anisotropic
parts. The isotropic part plays a decisive role in determining
collisional trajectories and usually takes a standard LJ (12-
6) form with two parameters �traj and "traj. Meanwhile, the
anisotropic part consists of a long-range leading quadrupole-
quadrupole interaction and a short-range atom-atom model
given by

Vatom�atom =
X

i2a

X

j 2b
4"i j

8><>:
�12

i j

r12i j
�
�6

i j

r6i j

9>=>;
=
X

L1K1L2L

X

n(i j)

X

wq

U
�
L1K1L2L,n(i j), wq

�
R(t)L1+L2+q+2w

⇥
X

m1m2m

C (L1L2L,m1m2m)

⇥DL1⇤
m1K1

(⌦a)DL2⇤
m20

(⌦b)Y⇤Lm (! (t)) , (20)

where "ij and �ij are parameters and rij are distances between
the i-th atom of the absorber molecule a and the j-th atom
of the bath molecule b. In the second line of Eq. (20), the
atom-atommodel is given in terms of the spherical expansions
where n(ij) runs over all pairs of i and j, q = 6 or 12, w
is the integer index from 0 to infinity, and the definition
of U

�
L1K1L2L,n(i j), wq

�
can be found in the literature.25,26

Since we do not intended to optimize potentials in the
present study, we select potential parameters available in the
literature. In the present study, we have used a potential
model determined by Bouanich27 by fitting experimental
data of the second virial coe�cients. The isotropic part
determines collisional trajectories and takes a standard LJ(12-
6) form with two parameters �traj and "traj, determined by
fitting the isotropic part of the atom-atom potential with a
LJ(12-6) form. Table I gives the potential parameters for the
CO2–N2 pair. According to our assumption on the potential,
these parameters are independent on the vibrational quantum
numbers.

We have chosen 4 as the cuto↵ for the tensor ranks
of L1 and L2 in the spherical expansion of the atom-atom
model. Thus, there are six correlations and six Fourier
transforms considered in the calculations and they are labeled
by (22) (i.e., L1 = 2, L2 = 2), (20), (40), (42), (24), and
(44), respectively. With respect to another cuto↵ for setting

the upper limit for w, in contrast with the standard RB
formalism, selecting a higher cuto↵ does not add more
computational burdens because the coordinate representation
has been introduced in developing the formalism.11–13 In the
present study, we have used the 20-th cuto↵ (i.e., to set 20 as
the maximum of 2w). The convergence of these cuto↵s has
been checked.

Finally, concerning the trajectory, we have adopted an
“exact” model. Of course, as outlined above, the trajectory
model is not really “exact” because in evaluating trajectories,
e↵ects from anisotropic interactions have been completely
ignored since trajectories are driven only by the isotropic part
of the potential. Meanwhile, in order to technically cover all
important trajectories well, we have selected 600 values for
rc with more dense points to depict nearly head-on collisions
than glancing collisions.

C. The calculated 2-D Fourier transforms

In the present study, main computation tasks are deriva-
tions of the correlation functions and their Fourier transforms.
After the 2-D Fourier transforms of FL100L200 (!,!0) are avail-
able, one can calculate the o↵-diagonal elements of S2 with
Eq. (12). As shown in Eq. (12), besides of the strength factor,
contributions to the o↵-diagonal elements of S2 from the poten-
tial components with specified tensor ranks of L1 and L2 are
determined by values of FL100L200

⇣
(!i0i + ! f 0f )/2 + !i02i2

,! f i

� ! f 0i0
⌘
. In order to quantitatively understand the role played

by them, it is necessary to provide profiles of these Fourier
transforms together with how the average energy gap defined
by (!i0i + ! f 0f )/2 and the frequency gap defined by! f i � ! f 0i0

would vary as the pair of interest varies. As clearly shown in
the above expressions, the averaged energy gap is a main part
of the first argument of FL100L200 and the frequency gap is their
second argument.

Based on the potential model, one can find the minimum
of the closest distance for the “exact” trajectories at T
= 296K is rc,min = 3.831Å. Because nearly head-on collisions
play a dominant role in the line coupling, we select a trajectory
with rc = 4.0 Å as example. Then, among all the Fourier
transforms, we consider the dominant one with L1 = 2 and
L2 = 0 and in Fig. 2, we present its three dimensional plot
F200000 (k, k 0) with the dimensionless arguments k = (rc!/⌫̄)
and k 0 = (rc!0/⌫̄) which are commonly used in numerical
calculations. This plot provides a complete picture about how
its magnitudes vary with the two variables k and k 0 at this
specified trajectory. As shown in Fig. 2, roughly speaking
after |k | > 12.5 or |k 0| > 22.5, magnitudes of F200000 (k, k 0)
would decrease to 10% of its perk value. This implies that
the magnitudes could still remain significant as long as
|k | < 12.5 and |k 0| < 22.5. For the specified conditions of
the plot (i.e., rc = 4.0 Å and T = 296 K), the value convert

TABLE I. Potential parameters of the CO2–N2 pair.

⇥(CO2) (esu) ⇥(N2) (esu)a "CN/kB (K) �CN (Å) "ON/kB (K) �ON (Å) "traj/kB (K) �traj (Å)

�4.02⇥10�26 �1.35⇥10�26 51.28 3.42 43.9 3.148 134.325 4.027

aValue of ⇥(N2) comes from Ref. 28 and that of ⇥(CO2) from Ref. 18.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
128.59.222.12 On: Tue, 10 Nov 2015 14:07:39



124313-6 Boulet, Ma, and Tipping J. Chem. Phys. 143, 124313 (2015)

FIG. 2. The 2-D Fourier transform F200000(k, k 0) (in
ps�2) at T= 296 K for a molecular pair of CO2–N2. The
calculation is based on the “exact” trajectory model with
rc = 4.0 Å.

from ! (in cm�1) to k (dimensionless) is k ⇡ 0.124 ⇥ !.
Then, we obtain two characteristic parameters of 100 cm�1
and 180 cm�1 as numerical measures such that, as long as
the first and second arguments of F200000 (!,!0) in Eq. (12)
are individually less than their measures, one must consider
the o↵-diagonal elements of S2. The latter implies that the
line coupling does occur. It is worth mentioning that in the
present study, the most part of discussions, including the
derivations of these two parameters, are carried out in the
frequency domain. But, it would be helpful to explain their
dynamical nature in the time domain. In fact, they represent
how an overlap between the same specified component
of V (~R(t)) and V (~R(t 0)) varies along a specified collision
trajectory.

For the CO2 molecule, the rotational constant B is around
0.4 cm�1. Let’s consider the R � R coupling in ⌃ ! ⌃ band
first. For the R(J) � R(J + 2) coupling, the averaged energy
gaps are ±4(J + 2)B and the frequency gaps are constant ±4B
(i.e., ±1.6 cm�1). At rc = 4.0 Å, 1.6 cm�1 corresponds to
k 0 = 0.2. Then, one can conclude that for the R � R coupling,
the coupling importance is solely determined by values of the
averaged gap and the latter is judged by the threshold around
100 cm�1. Based on these numbers, one expects that at least
up to J = 64, the o↵-diagonal elements of S2 between two R
lines remain significant.

For the R � P coupling, as explained above, mainly
due to the damping e↵ect from the strength factor, the
coupling between lines with J > 14 becomes negligible. In
this case, we only need to focus attention to lower J lines.
For R(J) � P(J + 2) coupling, the averaged energy gap and the
frequency gap are ±(2J + 3)B and ±2(2J + 3)B, respectively.
For coupled lines with J < 14, values of these two gaps are
much less than their thresholds 100 cm�1 and 180 cm�1. This
implies that the 2-D Fourier transforms would not add a new
restriction to the R � P coupling for such J values. Based
on these discussions, we can conclude that the o↵-diagonal
elements of S2 between R and P lines with J < 14 remain
significant.

Finally, because the rotational constant of CO2 is very
small, many rotational states are significantly populated (up
to J � 120 at room temperature). By considering this fact
together with those discussed above, one can draw two
conclusions. First of all, one must consider the line coupling
for CO2 lines. Second, the sizes of line spaces spanned by
coupled CO2 lines would be pretty large.

The procedure to evaluate of the matrix elements of
S2,outer,i and S2,outer,f is the same as that reported in our previous
works.11�13 Because the matrix of �S2 is a real and symmetric
matrix, one can easily obtain the matrix elements of exp(�S2)
by carrying out a unitary transform. Alternatively, there is a
subroutine F10ECF available in NAG which enables one to
directly calculate them.

In the present study, for the ⌃ ! ⌃ band, we have consid-
ered a (122 ⇥ 122) W matrix in a lines space constructed by
R(0), P(2), R(2), . . . , R(120), and P(122) lines. Meanwhile, for
the ⌃ ! ⇧ band, the (183 ⇥ 183)Wmatrix was constructed by
R(0), P(2), Q(2), . . . , R(120), P(122), and Q(122). In addition,
for isotropic Raman band, we have taken into account of
Q(0), Q(2), . . . , Q(118), and Q(120) lines and the size of

FIG. 3. Influence of line coupling on the calculated half-widths for the
R-branch in ⌃! ⌃ band. The experimental data are from Ref. 35.
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FIG. 4. Relaxation matrix elements of the Q(2) and Q(16) lines coupled to other Q(J0) transitions. They are presented in Figs. 4(a) and 4(b), respectively.

the calculated W matrix is 61 ⇥ 61. All of these calculated W
matrices will be provided in the supplementary material.37

D. Calculated diagonal elements of the relaxation
matrix W

Fig. 3 illustrates the influence of the line coupling (i.e., of
the non-diagonality of S2 within the line space) on calculated
half-widths for the R-branch in ⌃ ! ⌃ band. As expected
from previous works,12,13 calculated values are significantly
reduced by around 8% and become closer to measurements.
E↵ects of similar amplitude were obtained for other bands
with di↵erent symmetries. This corroborates once more the
importance of taking into account the non-diagonality of S2 in
the half-width calculation, illustrating one of the weaknesses
of the RB formalism.

With respect to the sum rule, while the semi-classical sum
rule (Eq. (19)) is exactly verified in the isotropic Raman case,
as previously observed for N2,12 in the case of IR absorption,
and within the semi-classical approximation, one can see that

W̃ (1)
kk , �

X

l,k

d̃l
d̃k

W̃ (1).
lk (21)

As has been noted previously,8,19,20,23 such defect could lead
to important artifacts in the calculation of the near wings of
vibrational bands.

FIG. 5. Intra-branch coupling; relaxation matrix elements between R(4) and
other R(J0) transitions.

E. Calculated o�-diagonal elements of the relaxation
matrix W

The o↵-diagonal elements coupling Q(2) and Q(16) lines
to the other Q(J0) lines in a ⌃ ! ⇧ band are compared with
similar elements for isotropic Raman di↵usion (l2i = l2 f = 0)
in Figs. 4(a) and 4(b), respectively. These figures demonstrate
the very significant dependence on the type of spectros-
copy (i.e., rank of the tensor coupling matter to radiation)
through the vibrational angular momentum involved in the
transitions.

In Fig. 5, we present o↵-diagonal elements between R(4)
and other R(J0) lines (i.e., the intra-branch coupling) obtained
for two bands with di↵erent symmetries. In Fig. 6, we present
similar results between R(4) and P(J0) lines (i.e., inter-branch
coupling). As shown in the figures, while the l2-dependence
is weak in the intra-branch coupling, it becomes strong in the
inter-branch coupling.

Now, we consider the coupling of R(16) to the other
R(J0) lines and the coupling of R(16) to P(J0) lines. These
results are presented in Figs. 7 and 8, respectively, and in
general, they are similar to those in Figs. 5 and 6. Note that
the inter-branch coupling at high J values is negligible that
is consistent with the conclusion previously draw from the
analysis of the strength factor. On the opposite (cf. Figs. 5
and 6), the di↵erence between the inter- and the intra-branch
couplings is smaller at low J values. The di↵erences between

FIG. 6. Inter-branch coupling; relaxation matrix elements between R(4) and
P(J0) lines.
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FIG. 7. Intra-branch coupling; relaxation matrix elements between R(16) and
other R(J0) lines.

inter- and intra-branch couplings at low and high J values are
also demonstrated in Figs. 9 and 10 in which the couplings of
Q(2) and Q(16) to all other lines in ⌃ ! ⇧ band are presented.
All of these properties have also been observed both within the
ECS approach,29 a semi-classical model,30 or a fully quantum
calculation31 (for simpler systems). By properly taking into
account of the coupling of various angular momenta involved,
the present model enables one to predict intra-branch as well
as inter-branch coupling elements. It is worth mentioning that
the full collapse of the various branches into a single feature
at very high perturber densities is a direct consequence of
inter-branch coupling.32,33

F. The sum rule

Finally, we present a comparison between calculated
diagonal elements and the results of the sum rules (Eq. (20))
for two di↵erent vibrational bands in Fig. 11. Although
o↵-diagonal elements depend on the vibrational angular
momentum, both the diagonal ones and the sum rules only
slightly depend on l2. As already discussed, the di↵erence
between the diagonal elements and the results derived from
the sum rule is a consequence of the impact approximation.

FIG. 8. Inter-branch coupling; relaxation matrix elements between R(16) and
P(J0) lines.

G. Comparison with ECS formalism

As outlined in the Introduction, the necessity of consider-
ing the line mixing in the atmospheric IR spectra of CO2 has
been firmly established. But, due to the complexity of the CO2-
air system, only approximate methods are available right now.
Among them, the ECS model is one of the most successful
approaches. Therefore, it would be helpful to compare the
present results with those obtained with the adjusted ECS
model of Refs. 8 and 9. We recall here the main features of the
ECS model. First of all, it must be pointed out that the ECS
formalism is developed within the Gordon’s convention4,12
based on an unsymmetrized formalism where the spectral
density F(!) is given by

F(!) = � 1
⇡
Im
X

kl

⇢kdkdlhl
����� 1
! � L0 � iW

����� ki, (22)

where ⇢k = (2 ji + 1) ⇢̃k is the population of the initial level of
line k and dk = Hdk/p(2 ji + 1) is the reduced dipole moment
as defined by Shafer and Gordon.4 Within the approximations
detailed in Ref. 8, the coupling between two allowed infrared
transitions of a given vibrational band with any symmetry is
given by

Wl,k = (�1)li+l f
�
2 j 0i + 1

�q�
2 j f + 1

� ⇣
2 j 0f + 1

⌘

⇥
X

L even,0

*,
ji L j 0i
li 0 �li

+- *,
j f L j 0f
�l f 0 l f

+-
8><>:
ji j f 1
j 0f j 0i L

9>=>; (2L + 1)Q (L) ⌦ ( ji,dc)
⌦ (L,dc)

, (23)

where ( ) and { } are 3J and 6J coe�cients, respectively,
li ⌘ l2i, and l f ⌘ l2 f . The adiabaticity factor ⌦ is written in
terms of a scaling length dc. They are defined in Ref. 8
together with the basic rates Q(L) which are expressed through
an exponential-power law. In addition, let’s emphasize that
this equation is used for downward transitions (defined by
ji0 < ji) only, and the upward ones are obtained from detailed
balance,

Wlk ⇢k = Wkl ⇢l . (24)

The parameters of the exponential-power law together with the
scaling length have been determined from fitting experimental
half-widths by using the sum rule,

Wkk = �
X

l,k

dl
dk

Wlk . (25)
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FIG. 9. Relaxation matrix elements between Q(2) and all the other lines in
⌃!⇧ band.

The optimized parameters, which are given in Refs. 8 and
9, can reproduce the input broadening data with an accuracy
around 10%. However, as already mentioned, the calculation
of the wings is extremely sensitive to the accuracy of the
sum rule which must be verified with an accuracy higher than
1%. The choice made in Ref. 8 was then to force the non-
diagonal elements to reproduce exactly the experimental half-
widths through a renormalization procedure detailed in that
reference. (Note that an alternative solution exists: replacing
the input broadening data by the results of the fit. But in that
case, isolated lines will be less correctly modeled since their
half-widths may di↵er from the experimental values by about
10%.)

Some di�culties exist when one wants to compare the
adjusted-ECS and present predictions.

(1) As it appears by comparing Eqs. (1) and (22), the
spectral density is not written within the same convention.
Assuming the equivalence of the two spectral densities,
Appendix A of Ref. 12 recalls how to retrieve the relation
between W̃lk (present theory) andWlk (ECS),

Wlk =

r
⇢l
⇢k

W̃lk . (26)

FIG. 10. Relaxation matrix elements between Q(16) and all the other lines in
⌃!⇧ band.

FIG. 11. Comparison between the diagonal elements of the relaxation matrix
with the results of the sum rule (Eq. (19)) for the R branches of two vibrational
bands of CO2.

(2) As shown above, in the impact limit, the sum rule
is not exactly verified, while in the ECS model, it is
automatically verified since the diagonal elements are
deduced from the sum rule (Eq. (25)).

(3) Finally, even if the intermolecular potential we used here
gives a reasonable description of the virial coe�cients,
its accuracy remains questionable as well as that of the
present theory itself.

To overcome these di�culties and perform a significant
comparison, by starting from the W̃lkmatrix elements, we have
used the following procedure.

(1) We assume that downward elements ( j 0i < ji) may be
obtained from the semi-classical approximation of Eq.
(26), namely,

Wlk =

s
2 j 0i + 1
2 ji + 1

W̃lk . (27)

(2) Then, upward elements Wlk were built from detailed
balance (Eq. (24)).

FIG. 12. Comparison between ECS and present results. Relaxation matrix
elements coupling Q(2) to the other Q(J0) lines.
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FIG. 13. Comparison between ECS and present results. Relaxation matrix elements coupling R(2) (a) to the other R(J0) lines; (b) to P(J0) lines; (c) to Q(J0) lines
in ⌃!⇧ band.

(3) Then, a renormalization procedure similar to that intro-
duced by Niro et al. in their ECS approach8 was used,
forcing the o↵-diagonal elements to reproduce exactly the
observed half-widths via the sum rule (Eq. (25)).

A meaningful comparison with the ECS model then
becomes possible since the two formalisms respect the
detailed balance, verify exactly the sum rule, and provide
exactly the same half-widths. Some comparisons are given
in Figs. 12–15. Fig. 12 shows a comparison between ECS
and present o↵-diagonal elements between Q(2) and Q(J0)
lines for isotropic Raman di↵usion and in ⌃ ! ⇧ band. Both
the rotational and l2 dependences are quite identical even if
di↵erences between the two formalisms may punctually exist
together with compensating e↵ects at the level of the sum
rule (since the half-widths resulting from the sum rule are
identical).

We now consider the coupling of R(2) to the other
branches in the two cases of ⌃ ! ⌃ and ⌃ ! ⇧ bands. The
conclusions already obtained from the analysis of Fig. 12 are
similar for Fig. 13(a). Figure 13(b) shows that the strong l2
dependence of the R � P coupling is quite identical in the
two approaches, and the same is true for R � Q coupling as it
appears in Fig. 13(c). Fig. 14 shows a similar agreement for
the coupling of R(16) to the other R(J0) illustrating the case of
high J values.

It should be noted that the l2 dependence is handled very
di↵erently in the two approaches. In an ECS o↵-diagonal W
element (Eq. (23)), the coupling between the angular momenta

appears in each L component via the product,

*,
ji L j 0i
li 0 �li

+- *,
j f L j 0f
�l f 0 l f

+-
8><>:
ji j f 1
j 0f j 0i L

9>=>; , (28)

where L is the order of the corresponding basic rates. In the
present theory, the coupling appears at an earlier step, via the
strength factor in the expression of the non-diagonal element of
S2,middle (Eq. (12)) with a similar product of 3j and 6J symbols
but with L replaced by L1 which is the rank of the component
of the intermolecular potential. Then, the exponentialization

FIG. 14. Comparison between ECS and present results. Relaxation matrix
elements coupling R(16) to the other R(J0) lines.
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FIG. 15. Comparison of first order line mixing coe�cients from ECS model and present theory with experimental values from Ref. 34 (m=�Ji for P lines and
m= Ji+1 for R lines) in ⌃! ⌃ band. (a) Initial calculation; (b) downward elements reduced by 5% and upward elements increased by 5%.

of �S2 is believed to lead to the good agreement observed
between the two approaches.

Finally, as shown in Fig. 15(a), there is also a reasonable
agreement between the theoretical first-order line mixing
coe�cients Yk predicted by the ECS and present models and
defined by

Yk = 2
X

l,k

dl
dk
⇥ Wlk

!k � !l
(29)

and also with those recently measured from multispectrum
analyses of laboratory spectra in ⌃ ! ⌃ bands.34 Of course,
some discrepancies appear at high J values which indicate
that the amplitudes of the downward cross sections are
a little bit too high and/or the amplitudes of the upward
ones are a little bit too small. This may be related to the
crudeness of the procedure used here in proceeding from the
symmetrized to the unsymmetrized form of the formalism, as
well as to approximations remaining in the present formalism,
which include neglect of the average over the relative kinetic
energy, uncertainties in the intermolecular potential, neglect of
energy exchange between translation and rotation. The great
sensitivity of the Rozenkranz parameters Yk at high J values
must be emphasized since it appears from Fig. 15(b) that
a very small variation (5%) of the non-diagonal elements
leads to mixing coe�cients in much better agreement with
the experiment. On the basis of the very reasonable agreement
observed between theWmatrices calculated by the present and
the adjusted-ECS models, one can ascertain that no significant
di↵erence would occur in the next step: the calculation of
synthetic CO2 spectra.

IV. CONCLUSION

We have presented an extension of the semi-classical
calculations of the relaxation matrix of Refs. 11 and 12 to all
types of IR bands. The parallel (⌃ ! ⌃) and the perpendicular
(⌃ ! ⇧) bands of CO2 have been successfully studied
and results are compared with previous ECS calculations
and experimental data. It has been shown that, as the
ECS approach, the present formalism properly includes the
vibrational angular momentum into the scheme of coupling
of angular momenta. The present formalism can be applied to
other IR vibrational bands (⇧ ! ⇧,⇧ ! �, . . . ) as well as to

anisotropic Raman spectra. Moreover, because the formalism
can consider the internal degree of molecular perturbers, it
can be applied, for example, to the case of CO2 perturbed by
H2O, which may have some influence in humid atmospheres.2
Another topic of interest in future studies is calculations
of the imaginary part of the relaxation matrix from known
potential energy surfaces. At present, some approaches to
pursue this question are in progress, such as a generalized
ECS formalism.36 However, to the best of our knowledge, no
calculations of the complex W matrix exist for complicated
molecular systems starting from the intermolecular potential.
Of course, the present formalism remains a semi-classical
approach, and consequently, it would be very worthwhile to
find solutions to force the formalism to verify fundamentals
rules.
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APPENDIX: CORRELATION FUNCTIONS
AND FOURIER TRANSFORMS

Starting from Eq. (5) defining the intermolecular poten-
tial, the S2 matrix elements may be expressed in terms of the
2-D correlation functions defined as11–13

GL1K1K
0
1L2K2K

0
2
(t, t 0) = 1

4⇡~2(2L1 + 1)2(2L2 + 1)2

⇥
X

L

(�1)L1+L2+L ⇥ (2L + 1)

⇥U (L1L2L;K1K2; R (t))
⇥U

�
L1L2L;K 01K

0
2; R (t 0)

�
PL [⇥ (t, t 0)] ,

(A1)

where ⇥ (t, t 0) is the angle between ~R(t) and ~R(t 0). As
explained in our previous works,11,13 it is better to use
their symmetric partners GL1K1K

0
1L2K2K

0
2
(⌧,⌧0) obtained by

changing the variables t and t0 to the variables ⌧ ⌘ t � t0 and
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⌧0 ⌘ 1/2(t + t0),

GL1K1K
0
1L2K2K

0
2
(⌧,⌧0) = GL1K1K

0
1L2K2K

0
2

✓
⌧0 +

⌧

2
,⌧0 � ⌧

2

◆
.

(A2)

The real parts of the diagonal elements of S2 can be expressed
in terms of symmetric 1-D Fourier transform, which are real
and symmetric functions of !, and defined by

FL1K1K
0
1L2K2K

0
2
(!) = 1p

2⇡

1⌅

�1

d⌧ei!⌧GL1K1K
0
1L2K2K

0
2
(⌧) ,

(A3)

where

GL1K1K
0
1L2K2K

0
2
(⌧) =

1⌅

�1

d⌧0GL1K1K
0
1L2K2K

0
2
(⌧,⌧0) . (A4)

For the o↵-diagonal elements of S2,middle, it is necessary
to introduce symmetric 2-D Fourier transforms defined by

FL1K1K
0
1L2K2K

0
2
(!,!0)

=
1
2⇡

⌅ 1

�1

⌅ 1

�1
d⌧d⌧0ei!⌧ei!

0⌧0GL1K1K
0
1L2K2K

0
2
(⌧,⌧0).

(A5)

We note that for simplifying notations, the same symbols
are used to represent the 2-D and 1-D correlation functions.
Readers can distinguish them by the number of arguments.
Because GL1K1K

0
1L2K2K

0
2
(⌧,⌧0) are even functions of ⌧ and ⌧0,

their Fourier transforms are real and they are even functions
of ! and !0.
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