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Since it was developed in 1979, the Robert-Bonamy (RB) formalism has been widely used in calcu-
lating pressure broadened half-widths and induced shifts for many molecular systems. However, this
formalism contains several approximations whose applicability has not been thoroughly justified.
One of them is that lines of interest are well isolated. When these authors developed the formal-
ism, they have relied on this assumption twice. First, in calculating the spectral density F(ω), they
have only considered the diagonal matrix elements of the relaxation operator. Due to this simplifica-
tion, effects from the line mixing are ignored. Second, when they applied the linked cluster theorem
to remove the cutoff, they have assumed the matrix elements of the operator exp(–iS1 – S2) can
be replaced by the exponential of the matrix elements of –iS1 – S2. With this replacement, effects
from the line coupling are also ignored. Although both these two simplifications relied on the same
approximation, their validity criteria are completely different and the latter is more stringent than
the former. As a result, in many cases where the line mixing becomes negligible, significant effects
from the line coupling have been completely missed. In the present study, we have developed a new
method to evaluate the matrix elements of exp(–iS1 – S2) and have refined the RB formalism such
that line coupling can be taken into account. Our numerical calculations of the half-widths for Ra-
man Q lines of the N2–N2 pair have demonstrated that effects from the line coupling are important.
In comparison with values derived from the RB formalism, new calculated values for these lines
are significantly reduced. A recent study has shown that in comparison with the measurements and
the most accurate close coupling calculations, the RB formalism overestimates the half-widths by
a large amount. As a result, the refinement of the RB formalism goes in the right direction and
these new calculated half-widths become closer to the “true” values. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4813234]

I. INTRODUCTION

Knowledge of molecular spectroscopy is essential for at-
mospheric sensing, combustion diagnostic, and other scien-
tific and engineering applications. Of all spectroscopic line
parameters, the accurate determination of pressure broadened
half-width and induced shift is the most difficult, and remains
as a challenge for experimentalists and theorists. With respect
to theoretical efforts starting from several decades ago, many
researchers have developed different lines shape theories cat-
egorizing in the purely classical method,1 the semi-classical
method,2,3 and the fully quantum approach.4 At present, the
close coupling method4 in the third category is the most accu-
rate one. Mainly due to larger numbers of coupling quantum
channels, the close coupling calculations are not feasible for
many molecular systems except for those consisting of two
linear molecules or even simpler ones. For more complicated
systems, one has to rely on semi-classical and purely classical
methods. Readers can find detailed explanations about these
approaches in a book.5

The first semi-classical pressure broadening theory was
proposed by Anderson2 in 1949 and later, it was more com-

prehensively presented by Tsao and Curnutte3 in 1962. Their
work is now commonly called as the ATC theory. Several
main refinements of the ATC theory, such as a better trajectory
description, a better perturbative treatment of the scattering
operator, and a consideration of more realistic potential mod-
els containing short range components, have been proposed
by many researchers in order to overcome its weaknesses.
One can find a detailed analysis of these improvements in
Ref. 6. Here, we only outline some of the major steps in the
evolution process.

In 1970, Herman and Tipping introduced a more real-
istic description of the trajectory for close collisions.7 That
model was later improved by Bonamy et al. by introducing
an approximate parabolic trajectory model.8 In 1975, Leavitt
and Korff showed that with an approximate re-summation of
the infinite series of the scattering operator, how the linked
cluster theorem9 for degenerate cases could lead to a bounded
exponential form of the interruption function.10 Later, a ma-
jor progress was made by Robert and Bonamy in 1979 such
that besides applying the linked cluster theorem to evaluate
the Liouville scattering operator, these authors also consid-
ered short range interactions by introducing an atom-atom
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potential model.11 Meanwhile, they were still able to keep an
analytical treatment of the interruption functions. These new
features are the backbone of the well-known Robert-Bonamy
(RB) formalism.

Then in 1992, Bykov et al. proposed a new way to
improve trajectory models by introducing “exact” trajecto-
ries determined by isotropic potentials and the latter can be
calculated with the classical mechanics.12 Later, their sug-
gestion was realized by Buldyreva et al.13 Of course, the
“exact” trajectory model is not really exact because in eval-
uating trajectories, effects from anisotropic interactions have
been completely ignored. But, given the fact that all other
models have suffered from this approximation and the “ex-
act” trajectory model is more accurate than others, the “ex-
act” model has become more common in recent years.
Despite that it requires more CPU time, thanks to advance of
computer power, the model has been adopted in most recent
calculations.

More recently, we have shown that there is a subtle
derivation error in developing the RB formalism.14 The er-
ror results from that with respect to the perturber states in
Hilbert space, the Liouville scattering operator is not diag-
onal and the diagonalization itself is a basic requirement to
apply the linked cluster theorem. We have proposed a modi-
fied version of the RB formalism based on a correct way to
apply the cumulant expansion.15 The latter is equivalent to
the linked cluster theorem, but its applications are more gen-
eral. Furthermore by introducing the coordinate representa-
tion, we have completely overcome a longstanding problem
of convergence commonly existing in most of theoretical cal-
culations of the half-width and shift due to adopting more
realistic potentials containing the short-range atom-atom
model.16

Despite all efforts to improve the RB formalism such as
adjusting the potential parameters, the current RB formalism
can yield reasonably good agreement with measurements for
some systems. However, a series of recent papers17,18 have
demonstrated that for simpler systems where results of the
close coupling calculations with more sophisticated poten-
tials are available, the RB formalism significantly overesti-
mates the half-widths. Because there is no room to make
potential adjustments, the large differences clearly mean
that the RB formalism itself contains some weaknesses. In
fact, until now the RB formalism still contains several main
assumptions whose applicability has not been thoroughly
justified.

In the present study, we have scrutinized one of the ma-
jor approximations, i.e., the isolated line approximation (or
sometimes called as the well separated line approximation).
We have found that in developing the RB formalism, Robert
and Bonamy have relied on this approximation twice. First, in
calculating the spectral density F(ω), they have only consid-
ered the diagonal matrix elements of the relaxation operator.
Due to this simplification, effects from the line mixing are
ignored. Second, when they applied the linked cluster theo-
rem to remove the cutoff appearing in the ATC theory, they
have assumed matrix elements of an exponential function of
the operator can be replaced by values of an ordinary expo-
nential function whose arguments are the matrix elements of

this operator. In other words, they have assumed that behavior
of an exponential of the operator looks like an ordinary func-
tion. With this replacement, effects from the line coupling are
ignored. It is worth mentioning that although both these two
simplifications rely on the same approximation, their validity
criteria are completely different and, as shown later, the latter
is more stringent than the former. As a result, in many cases
where the line mixing becomes negligible, effects on calcu-
lated half-widths and shifts from the line coupling remain im-
portant and they have been completely ignored.

The line mixing is a well known phenomenon.5 With the
binary collision approximation valid in atmospheric environ-
ments, its fundamental theory has been established in terms
of the relaxation operator in the line space of the absorber
molecule. Real and imaginary parts of its diagonal matrix el-
ements represent half-widths and shifts of the corresponding
lines. Meanwhile, its off-diagonal elements cause line colli-
sional interferences. For overlapping lines, no matter if the
overlaps result from their original frequency positions or from
high perturber pressures, the line mixing is one of the impor-
tant factors that can vastly alter the line shape.5 Within the
usual RB formalism, one cannot include the line mixing be-
cause the off-diagonal matrix elements of the relaxation oper-
ator have been assumed to be zero.

On the other hand, in modern line shape theories where
the Liouville scattering operator is given in terms of the ex-
ponential form, whether the latter results from the cumulant
expansion or some other ways, the line coupling does exist.
This subject has been studied by several researchers. Among
them, Cherkasov has pursued this study for more than three
decades.19 In developing his formalism, some practical dif-
ficulties have forced him to introduce an additional approx-
imation. In the present study, we have shown that with the
modified RB formalism where the cumulant expansion is cor-
rectly applied, one is able to avoid these difficulties. Without
introducing his approximation and without adding a restric-
tion to limit the number of coupled lines to be included, one
is able to correctly and effectively consider the line coupling
in practical calculations.

In Sec. II, we present how the refinement of the RB for-
malism is built in detail. In Sec. III, we apply the refined
formalism to the N2–N2 system and present calculated half-
widths of the Raman Q lines. Based on these numerical re-
sults, we explicitly demonstrate how important the effects on
calculated half-widths from the line coupling are. In Sec. IV,
we present discussions and conclusions.

II. THEORY

A. General formalism of the absorption coefficient
and the spectral density

It is well known that the absorption coefficient for radia-
tion caused by a gaseous sample with na absorber molecules
per unit volume in thermal equilibrium at temperature T is
related to the spectral density F(ω)

α(ω) = 4π2

3¯c naω(1 − e−β¯ω)F (ω). (1)
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Meanwhile, F(ω) is defined by

F (ω) = − 1
π
ImT ra

{
X† 1

ω − La − T rbath{M(ω) ρb}
ρaX

}
,

(2)

where X is the transition operator. With the binary collision
approximation valid for atmospheric pressures and the impact
approximation applicable for a frequency region around the
line centers, Trbath{M(ω)ρb} can be given by20

T rbath{M(ω)ρb} = nb ⟨m(0)⟩bath, (3)

where nb is the number density of the bath molecule, m(0)
is a binary-collision operator, and ⟨ · · · ⟩bath denotes aver-
ages over the internal degrees of the bath molecule as well
as averages over the translational degrees of the interact-
ing pair. Usually, ⟨m(0)⟩bath is called the relaxation operator.
Then, by following Ben-Reuven’s convention21 and introduc-
ing |if, JMJ ⟩⟩ defined by

|if, JMJ ⟩⟩ =
∑

mimf

(−1)jf −mf

×C(jijf J,mi − mfMJ )|imifmf ⟩⟩, (4)

the spectral density F(ω) can be expressed as

F (ω) = − 1
(2J + 1)π

Im
∑

if

∑

i ′f ′

X&J∗
i ′f ′ X

&J
if ρi

×⟨⟨i ′f ′, JMJ |
1

ω − La − nb⟨m(0)⟩bath
|if, JMJ ⟩⟩.

(5)

In the above expression, X&J
if is a simple notation for√

2ji + 1⟨i∥X&J∥f ⟩ where & indicates the parity of X21 and
the reduced matrix elements ⟨i∥X&J∥ f ⟩ result from

⟨imi |X&J
MJ

|fmf ⟩

= (−1)jf −mf C(jijf J,mi−mfMJ )

√
2ji + 1
2J + 1

⟨i∥X&J ∥f ⟩.

(6)

In 1979, based on the linked cluster theorem,9 Robert and
Bonamy had developed the RB formalism characterized by a
non-perturbative treatment of the Liouville scattering operator
Ŝ.11 Despite its popularity,5, 6 the RB formalism itself suffers
from severe weaknesses resulting from unjustified approxi-
mations. One of them is the assumption that lines of inter-
est are isolated. As mentioned above, they have relied on this
assumption twice. One occurs at this stage: they have only
considered the diagonal matrix elements of nb⟨m(0)⟩bath in
Eq. (5). The validity criterion of this simplification is matrix
elements of nb⟨m(0)⟩bath are significantly smaller than values
of the diagonal operator ω − La. In general, this criterion is
not too stringent and it is valid for many cases unless lines
positions become too close and/or the number density nb is
too high. In fact, as long as gaps between lines of interest are
much larger than their half-widths, one can consider the crite-
rion is valid and thus, at least in the intense absorption regions

near line centers, one can ignore effects from the line mixing
in calculations. However, we would like to mention that in
troughs in between transition lines and in far wings of vibra-
tional bands, the line mixing could strongly affect absorptions
even if gaps between lines are larger than their widths.5 In
the present study, we mainly focus our attention to situations
where the line mixing can be neglected. Then, F(ω) can be
simplified as

F (ω) = − 1
(2J + 1)π

Im
∑

if

∣∣X&J
if

∣∣2ρi

× 1
ω − ωif − nb⟨⟨if, JMJ |⟨m(0)⟩bath|if, JMJ ⟩⟩

.

(7)

B. Different ways in applying the cumulant expansion
and their consequences

In Fano’s notation, the relaxation operator ⟨m(0)⟩bath is
related to the Liouville scattering operator Ŝ (=SIS∗

F) by

⟨m(0)⟩bath = i

2π
⟨1 − Ŝ⟩bath. (8)

How to evaluate the matrix elements of Ŝ is a crucial step
in developing line shape theories. It is well known that the
cumulant expansion15 is a useful tool and has been widely ap-
plied in many physical problems. A key problem in applying
this method is to define an average usually denoted by ⟨ ⟩. Its
accepted definitions could be very general such as diagonal
matrix elements or something else. But the average must sat-
isfy the normalization condition ⟨I⟩ = 1 where I is an identity
operator. As shown in Appendix A, by applying the cumulant
expansion for the Liouville operator Ŝ, its average up to the
second order can be written as

⟨Ŝ⟩ =
〈

θ exp

(

− i

¯

∞∫

−∞

L1(t)dt

)〉

= exp(−iS1 − S2), (9)

where S1 and S2 are defined by Eqs. (A5) and (A6),
respectively.

Several years ago, by scrutinizing Robert and Bonamy’s
derivations, we have found that there is a subtle error in their
applying the linked cluster theorem.14 Because the core part
of the linked cluster theorem is equivalent to the cumulant
expansion, we prefer to present our discussions in terms of
the cumulant expansion. In order to remedy their mistake, we
have developed a correct way to apply the cumulant expan-
sion. The essential difference between these two applications
results from two different choices of the average required in
applying the cumulant expansion. With our choice, the aver-
age is defined as an average over the whole internal degrees in
the bath molecular line space. As a result, the operators of S1
and S2 appearing in the exponential function are independent
of states of the bath molecule. In contrast, the average defined
by them only covers a part of the internal degrees in the bath
molecular line space and thus, S1 and S2 depend on the both
molecular states. For clarity purpose, we distinguish these op-
erator symbols by adding the subscripts of RB or modRB
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accordingly. Then, one can describe their relations as

S1or2,modRB = ⟨S1or2,RB⟩i2 ≡
∑

i2

(2i2 + 1)ρi2S1or2,RB.

(10)
In other words, S1or2,modRB are averages of S1or2,RB over states
of the bath molecule.

There are significant consequences from this intrinsic dif-
ference. First of all, by starting from the correct choice of the
average but exactly following the same further steps as Robert
and Bonamy did, we have obtained different formulas for the
half-width and the shift.14 Within the RB formalism, the half-
width γ RB is given by

γRB = nb

2πc

+∞∫

0

vf (v)dv

+∞∫

0

2πbdb

×
〈
1 − cos[S1 + Im(S2)]e−Re(S2)

〉
i2
, (11)

where f(v) is the Maxwell-Boltzmann distribution function.
On the other hand, within the modified RB formalism, the
half-width γmodRB is given by

γ mod RB = nb

2πc

+∞∫

0

vf (v)dv

+∞∫

0

2πbdb

×
{
1 − cos[⟨S1⟩i2 + Im(⟨S2⟩i2 )]e−Re(⟨S2⟩i2 )

}
. (12)

Readers can find the formulas for the shift derived from the
original RB formalism and that from the modified RB formal-
ism in our work.14 Unfortunately, when we made this mod-
ification, we did not scrutinize their approach in evaluating
exp(–iS1 – S2) and simply adopted their assumption that one
needs only to consider diagonal matrix elements for any oper-
ators involved. As a result, without making full justification,
effects from the line coupling are completely ignored in both
Eqs. (11) and (12).

Recently, we have realized when one tries to accurately
evaluate the matrix of exp(–iS1 – S2), there is a more profound
consequence occurring. Because the operator (–iS1 – S2)
is off-diagonal in its original representation, a proper way
to evaluate matrix elements of exp(–iS1 – S2) is to diago-
nalize (–iS1 – S2) first. Then, by choosing a new represen-
tation constructed by a set of its eigenvectors, the matrix of
(–iS1 – S2) becomes diagonal. The advantage of being a di-
agonal matrix is that the matrix of exp(–iS1 – S2) is also di-
agonal. The latter’s diagonal elements are values of the ex-
ponential function whose arguments are just values of the
diagonal elements of (–iS1 – S2). Finally, by projecting the
eigenvectors into the original basis to carry out unitary trans-
formations between these two representation, one can obtain
exact matrix element values of exp(–iS1 – S2) without any
distortions.

Within the RB formalism, the size of (–iS1 – S2) is de-
termined by a product of the number of coupled absorber’s
lines and the number of bath molecular states labeled by i2.
As a result, the size of matrices required to diagonalize would
be very large. Consequently, both the number of the eigen-
vectors and the latter’s dimensions become very large too.

Besides, as shown in Eq. (11), in calculating the half-width
with the RB formalism, an additional procedure to perform
an average over the bath states i2 is required. During this pro-
cedure, one has to repeatedly project the eigenvectors into the
corresponding i2 axes. All these practices contain heavy com-
putational burdens. Furthermore, the operator of (–iS1 – S2)
depends on the impact parameter b (or the closest distance rc)
used to specify trajectories. This implies that during a course
to perform an average over the translational motion, the diag-
onalization and the projection procedures have to be carried
out many times. As a result, to consider the line coupling is
not feasible in practice.

On the other hand, within the modified RB formalism,
the size of –iS1 – S2 becomes much smaller because it is only
determined by the number of coupled lines. In addition, any
procedures involving the bath molecule are completely ob-
viated. Thus, with reasonable computational efforts, one is
able to effectively and accurately consider effects from the
line coupling. In summary, it is the correct choice in apply-
ing the cumulant expansion that allows us to overcome one of
longstanding weaknesses of the RB formalism.

As an example, we consider the Raman Q lines of the
N2–N2 pair. In carrying out the average over i2, if one takes
into account the states up to i2max = 40, the size of the matri-
ces required to diagonalize in the RB formalism would be 41
times larger than that in the modified RB formalism. (In our
numerical calculations presented later, we have chosen i2max

= 60.) Meanwhile, thanks to the fact that even Q( j) lines do
not coupled with odd Q( j) lines, the number of coupled lines
is reduced by a half. Then, if one considers the line coupling
among the even Q( j) lines up to jmax = 30, the sizes of matri-
ces in the RB and modified RB formalisms are 656 × 656 and
16 × 16, respectively. It is well known that numerical burden
to diagonalize a M × M matrix increases very quickly as M3

increases. Then, roughly speaking, in comparison with the RB
formalism, the computational burden required with the modi-
fied RB formalism is reduced by 68 900 times.

The original purpose to introduce the cumulant expan-
sion was to remove the cut-off appearing in the ATC the-
ory. However, the cumulant expansion brings other benefits
as well. One of them is to provide a room to take into ac-
count the line coupling. But, it is the correct way in apply-
ing the cumulant expansion that enables one to exploit this
benefit.

C. Expression for the half-width with including
the line coupling

After correctly applying the cumulant expansion, one
needs to accurately evaluate the matrix elements of
⟨⟨i′f′| exp(–iS1 –S2)|if ⟩⟩. At this stage, the first task is to con-
struct the whole matrix of –iS1 – S2 in the line space. The
job requires not only evaluations of its diagonal matrix el-
ements but also its off-diagonal elements as well. Expres-
sions for the former are available, but one needs to derive
new expressions for the latter. In this case, the size of this
matrix is determined by number of lines which are coupled to
each other through the operator –iS1 – S2. Symmetry con-
siderations enable one to reduce the size. In addition, one
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can drop very weakly coupled lines from consideration. In
general, we expect that sizes of matrices would be reason-
able, no more than several dozens. The next task is by diag-
onalizing the matrix constructed, to find its eigenvalues and
eigenvectors.

Let us assume that the eigenvalues and eigenvectors of
–iS1 – S2 are denoted by G(ηn) and |ηn⟩⟩ with n = 1, . . . , N
where N is the number of the coupled lines. Then, in terms of
G(ηn) and |ηn⟩⟩, ⟨⟨i′f′| exp(–iS1 –S2) |if⟩⟩ are given by

⟨⟨i ′f ′|e−iS1−S2 |if ⟩⟩ =
∑

n

⟨⟨i ′f ′|ηn⟩⟩eG(ηn)⟨⟨ηn|if ⟩⟩. (13)

In general, the operator of –iS1 – S2 is not Hermitian. As
a result, G(ηn) are complex consisting of real and imag-
inary parts ReG(ηn) and ImG(ηn). Similarly, ⟨⟨i′f′|ηn⟩⟩ and
⟨⟨ηn| if ⟩⟩ are complex too. For the diagonal matrix elements of
⟨⟨if | exp(–iS1 – S2)| if ⟩⟩, one can express their real part as

Re⟨⟨if |e−iS1−S2 |if ⟩⟩ =
∑

n

|⟨⟨if |ηn⟩⟩|2 cos[ImG(ηn)]eReG(ηn).

(14)
The expression for their imaginary part is not presented here.
Besides, it is easy to write down expressions for the off-
diagonal matrix elements ⟨⟨i′f′| – iS1 – S2|if⟩⟩ which are also
not presented here. Then, by carrying out averages over the
translational motion for the factor of {1 − ⟨⟨if | exp(–iS1 – S2)
|if⟩⟩}, the refined expression for the half-width is given by

γref = nb

2πc

+∞∫

0

νf (ν)dν

+∞∫

0

2πbdb

×
{

1 −
∑

n

|⟨⟨if |ηn⟩⟩|2 cos[ImG(ηn)]eReG(ηn)

}

. (15)

In the above expression, effects on the half-widths from the
line coupling are well included. Our numerical calculations
will demonstrate the necessity of adopting these new formu-
las. The expression for the shift is similar to Eq. (15), but is
not presented here.

III. NUMERICAL CALCULATIONS FOR RAMAN Q
LINES OF THE N2–N2 PAIR

As a sample to show effects from the line coupling, we
consider a system consisting of two linear molecules. Re-
cently, Thibault et al. have reported their study on comparison
of quantum, semi-classical and classical methods in calculat-
ing half-widths of the Raman Q lines for the N2–N2 pair.18

They have found that in comparisons with measurements and
values obtained from the close coupling calculations, results
derived from the RB formalism and also the modified RB for-
malism (excluding the line coupling) are overestimated by a
large amount. Because the potential model used by their cal-
culations is available,22 we can calculate the half-widths from
Eqs. (12) and (15). Then, by comparing our results with the
close coupling ones (in very good agreement with experimen-
tal data), we will be able to quantitatively access effects from
the line coupling. We would like to note that the potential en-
ergy surface used here and in Ref. 18 does not contain vibra-

tional dependences. Consequently, vibrational effects are ex-
cluded in these calculations. However, the previous studies18

have shown that to include the vibrational dependence has a
little influence on calculated results.

A. General expression for matrix elements
of a Liouville operator after applying
the cumulant expansion

Because consideration of the line coupling in the modi-
fied RB formalism is a new subject, we need to derive some
new formulas. We first introduce the unit vector |Ib⟩⟩ and the
density vector |ρb⟩⟩ in the line space of the bath molecule de-
fined by

|Ib⟩⟩ =
∑

i2m2

|i2m2i2m2⟩⟩,

|ρb⟩⟩ =
∑

i2m2

ρi2 |i2m2i2m2⟩⟩.
(16)

In terms of these two vectors, the average ⟨ ⟩ defined in ap-
plying the cumulant expansion can be explicitly expressed as

⟨Ô⟩ = ⟨⟨Ib|Ô|ρb⟩⟩, (17)

where Ô is a Liouville operator of interest. It is obvious
that the normalization condition ⟨Îb⟩ = 1 is satisfied. Then in
terms of the cumulant expansion, matrix elements of ⟨Ô⟩bath
in the line space of the absorber molecule can be expressed as

⟨⟨i ′f ′, JMJ |⟨Ô⟩bath|if, JMf ⟩⟩

= T rtrans{⟨⟨i ′f ′, JMJ ; Ib|Ô|if, JMJ ; ρb⟩⟩}, (18)

where

|if, JMJ ; Ib or ρb⟩⟩ = |if, JMJ ⟩⟩⊗ |Ib or ρb⟩⟩. (19)

In Eq. (18), Trtrans{} means the average over the transla-
tional motion. Finally, in order to fully exploit the rotation
invariance,21 one prefers to replace these matrix elements by
their averages over the quantum number MJ. It implies one
makes a replacement such that

⟨⟨i ′f ′, JMJ ; Ib|Ô|if, JMJ ; ρb⟩⟩

= 1
2J + 1

∑

MJ

⟨⟨i ′f ′, JMJ ; Ib|Ô|if, JMJ ; ρb⟩⟩. (20)

Eq. (20) is the starting point in the following derivations.

B. Matrix elements of ⟨L1(t)⟩, ⟨L1(t)L1(t′)⟩,
and ⟨L1(t)⟩⟨L1(t′)⟩ in the line space

In practice, by considering up to the second order of the
cumulant expansion, expressions for S1 and S2 are required.
As shown in Eqs. (A5) and (A6), one needs to explicitly know
what these ⟨L1(t)⟩, ⟨L1(t)L1(t′)⟩, and ⟨L1(t)⟩⟨L1(t′)⟩ terms are
first. With the choice of the average defined by Eq. (17), these
terms are Liouville operators in the line space of the absorber
molecule and contain a classical parameter used to specify the
trajectory. With Eqs. (4), (16), and (20), an explicit expression



034305-6 Ma, Boulet, and Tipping J. Chem. Phys. 139, 034305 (2013)

for the matrix elements of ⟨L1(t)⟩ can be written as

⟨⟨i ′f ′, JMJ |⟨L1(t)⟩| if, JMJ ⟩⟩

= ⟨⟨i ′f ′, JMJ ; Ib |L1(t)| if, JMJ ; ρb⟩⟩

= 1
2J + 1

∑

i2m2

ρi2

∑

i ′2m
′
2

∑

(m)

(−1)jf −mf+j ′
f −m′

f

×C(j ′
i j

′
f J,m

′
i − m′

fMJ )C(jijf J,mi − mfMJ )

×⟨⟨i ′m′
if

′m′
f , i

′
2m

′
2i

′
2m

′
2|L1(t)|imifmf , i2m2i2m2⟩⟩,

(21)

where a summary notation (m) means summations over all
magnetic quantum numbers associated with the absorber
molecule and a summation over MJ as well. In terms of ma-
trix elements in Hilbert space, the expression for the matrix
elements of L1(t) is presented in Appendix B. With Eq. (B1),
one can rewrite Eq. (21) as

⟨⟨i ′f ′, JMJ |⟨L1(t)⟩| if, JMJ ⟩⟩

=
∑

i2

(2i2 + 1)ρi2{⟨i ′i2|Viso(t)|ii2⟩δj ′
i ji

δf ′f

−⟨f i2|Viso(t)|f ′i2⟩δjf j ′
f
δi ′i}. (22)

We note that in Eq. (22), the Kronecker delta δj ′
i ji

means the
angular moment j′i must equal to the angular moment ji, mean-
while the Kronecker delta δi′i means all the quantum numbers
associated with the state of i′ must equal to their correspond-
ing partners associated with the state of i. Based on Eq. (22),
one obtains the expressions for the matrix elements of S1 as

⟨⟨i ′f ′, JMJ |S1|if, JMJ ⟩⟩

=
∑

i2

(2i2 + 1)ρi2

{

δj ′
i ji

δf ′f
1
¯

∞∫

−∞

dt⟨i ′i2|Viso(t)|ii2⟩

−δjf j ′
f
δi ′i

1
¯

∞∫

−∞

dt⟨f i2|Viso(t)|f ′i2⟩
}

. (23)

With Eq. (23), one can conclude that only the isotropic part of
potentials makes contributions to them and in cases that lines
of interest belong to the same vibrational bands, these matrix
elements are always diagonal. Because the potential model
used in the present study does not depend on the vibrational
quantum numbers, the S1 term disappears.

Similarly, with respect to matrix elements associated with
⟨L1(t)L1(t′)⟩, one has

⟨⟨i ′f ′, JMJ |⟨L1(t)L1(t ′)⟩|if, JMJ ⟩⟩

= 1
2J + 1

∑

i2m2

ρi2

∑

i ′2m
′
2

∑

(m)

(−1)jf −mf+j ′
f −m′

f

×C(j ′
i j

′
f J,m

′
i − m′

fMJ )C(jijf J,mi − mfMJ )

×⟨⟨i ′m′
if

′m′
f , i

′
2m

′
2i

′
2m

′
2|L1(t)L1(t ′)|imifmf , i2m2i2m2⟩⟩.

(24)

In Eq. (24), the matrix elements of L1(t)L1(t′) in the line space
become more complicated. Their derivations are presented

in Appendix B and their expressions are given by Eq. (B3).
As shown in Eq. (B3), these matrix elements consist of four
terms. The first two terms solely depend on the final states or
the initial states of lines, respectively. Meanwhile, the other
two terms depend both on the final and initial states. Because
derivations of the expression are complicated, we prefer to
present the deriviations separately for these terms. In the lit-
erature, people usually label the first two terms by the sub-
scripts “outer,i” and “outer,f,” respectively, and label a com-
bination of the last two terms by the subscript of “middle.”
As an example, we consider the first term labeled as ⟨⟨i′f′,JMJ

|⟨L1(t)L1(t′)⟩| if,JMJ⟩⟩outer,i. With Eqs. (24) and (B3), we have

⟨⟨i ′f ′, JMJ |⟨L1(t)L1(t ′)⟩|if, JMJ ⟩⟩outer,i

=
δj ′

i ji
δf ′f

2ji + 1

∑

i2m2

ρi2

∑

mi

⟨i ′mii2m2|V̂ (t)V̂ (t ′)|imii2m2⟩.

(25)

With Eq. (25), one can conclude that this term would be di-
agonal as long as their initial states of lines of interest belong
to the same vibrational bands. In other words, it only causes
the line mixing between lines whose initial states belong to
different bands. With respect to the second term ⟨⟨i′f′,JMJ

|⟨L1(t)L1(t′)⟩|if,JMJ⟩⟩outer,f, its expression is the same as
Eq. (25), except for exchanges between i and f′, between i′

and f, and between t and t′. Meanwhile, one can conclude that
this term only causes the line mixing between lines whose fi-
nal states belong to different bands.

Concerning the combination term labeled by middle, we
have

⟨⟨i ′f ′, JMJ |⟨L1(t)L1(t ′)⟩|if, JMJ ⟩⟩middle

= − 1
2J + 1

∑

i2m2

ρi2

∑

i ′2m
′
2

∑

(m)

(−1)jf −mf+j ′
f −m′

f

×C(j ′
i j

′
f J,m

′
i − m′

fMJ )C(jijf J,mi − mfMJ )

× {⟨i ′m′
i i

′
2m

′
2|V̂ (t)|imii2m2⟩⟨fmf i2m2|V̂ (t ′)|f ′m′

f i
′
2m

′
2⟩

+ (t ↔ t ′)}. (26)

In contrast with the first two terms which are diagonal for
lines within the same bands, this term is always off-diagonal.
This implies that no matter if lines of interest belong to the
same or to different bands, this term can always cause the line
coupling.

Finally, we consider the matrix elements of ⟨⟨i′f′,JMJ

|⟨L1(t)⟩⟨L1(t′)⟩| if,JMJ⟩⟩. It has been known for years that
only isotropic potentials make contributions to these
matrix elements. In addition, these contributions ex-
actly cancel out contributions to the matrix elements of
⟨⟨i′f′,JMJ|⟨L1(t)L1(t′)⟩| if,JMJ⟩⟩ from the isotropic potentials.
As a result, when one calculates the matrix elements of S2
from Eq. (A6), one only needs to consider contributions to
⟨⟨i′f′,JMJ|⟨L1(t)L1(t′)⟩| if,JMJ⟩⟩ from anisotropic potentials and
simply neglects the term of ⟨⟨i′f′,JMJ|⟨L1(t)⟩⟨L1(t′)⟩| if,JMJ⟩⟩.
Given the fact that the isotropic potentials can be treated as or-
dinal functions and matrix elements associated with them are
always diagonal in the line space, the above claim should also
be applicable here. For simplicity, we do not introduce new
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notations for the anisotropic part of potentials, rather than re-
mind the readers to keep in mind that when one calculates the
matrix elements of S2, the potentials mean their anisotropic
parts only.

C. Matrices of S2,outer,i, S2,outer,f, and S2,middle
in the coordinate representation

As further steps, one needs to evaluate the matrix ele-
ments of S2,outer,i, S2,outer,f, and S2,middle based on anisotropic
potentials. The research history on this subject shows that one
could encounter convergence problems when the short-range
site-site potential models are considered. In these cases, to
adopt higher cut-offs in the spherical expansion of potentials
and to consider all contributions including couplings between
terms in the same tensor categories requires very much te-
dious work and numerical evaluations of a large number of
resonance functions so that one may not be able to obtain

converged results. As a result, to obtain converged results
could become a formidable obstacle in practical calculations
of these matrix elements.

In order to completely overcome the convergence prob-
lems, one can introduce the coordinate representation by
choosing the orientations of the pair of molecules as the ba-
sis set in Hilbert space; i.e., |δ(,a − ,aα)⟩ ⊗ |δ(,b − ,bα)⟩
where ,aα and ,bα represent orientations of the absorber and
bath molecules specified by α, respectively.16, 23 In contrast,
with the standard representation, the basis set is constructed
from |i mi⟩ ⊗ |i2m2⟩, the product of the states of two inter-
acting molecules. The advantage in choosing the coordinate
representation results from a fact that with this representation,
the potential becomes a diagonal operator and its matrix ele-
ments become multi-dimensional integrations whose angular
parts can be evaluated analytically.

With the coordinate representation, one is able to write
the matrix elements of S2,outer,i as

S
i ′f ′,if
2,outer,i(rc) =

1
¯2

∞∫

−∞

dt

t∫

−∞

dt ′⟨⟨i ′f ′, JMJ |⟨L1(t)L1(t ′)⟩|if, JMJ ⟩⟩outer,i

=
δj ′

i ji
δf ′f

¯2(2ji + 1)

∞∫

−∞

dt

t∫

−∞

dt ′
∑

i2m2

ρi2

∑

mi

∑

i ′′m′′
i

∑

i ′2m
′
2

e
i(ωi′ i′′+ωi2 i

′
2
)t
e
−i(ωii′′+ωi2 i

′
2
)t ′

×
∫

d,α

∫
d,β⟨i ′mii2m2|α⟩Vα(R(t))⟨α|i ′′m′′

i i
′
2m

′
2⟩⟨i ′′m′′

i i
′
2m

′
2|β⟩Vβ (R(t ′))⟨β|imii2m2⟩, (27)

where ωii ′′ = [E(a)(i) − E(a)(i ′′)]/¯, ωi2i
′
2
= [E(b)(i2)

− E(b)(i ′2)]/¯, and |α⟩ is a shorthand notation for the basis
set in the coordinate representation of the molecular pair
and the subscript α of Vα represents the potential evaluated
at a specified orientation labeled by α. The inner products
⟨i mi i2 m2|α⟩ represent a transformation between two
basis sets of these two representations and are nothing
but products of the complex conjugates of the absorber

molecular wave functions at the orientation ,aα and the
complex conjugates of the bath molecular wave functions
at the orientation ,bα . Similarly, one is able to obtain the
expression for Si ′f ′,if

2,outer,f which is the same as Eq. (27) except
for making exchanges between the quantum numbers i and
f′, between i′ and f, and making switches between t and t′.
Meanwhile with Eq. (26), one can obtain an expression for
Si ′f ′,if
2,middle as

S
i ′f ′,if
2,middle(rc) =

1
¯2

∞∫

−∞

dt

t∫

−∞

dt ′⟨⟨i ′f ′, JMJ |⟨L1(t)L1(t ′)⟩|if, JMJ ⟩⟩middle

= − ¯−2

2J + 1

∞∫

−∞

dt

∞∫

−∞

dt ′
∑

i2m2

ρi2

∑

i ′2m
′
2

∑

(m)

e
i(ωi′ i+ωi′2 i2

)t
e
i(ωff ′+ωi2 i

′
2
)t ′

× (−1)jf −mf+j ′
f −m′

f C(i ′f ′J,m′
i − m′

fMJ )C(if J,mi − mfMJ )

×
∫

d,α

∫
d,β⟨i ′m′

i i
′
2m

′
2|α⟩Vα(R(t))⟨α|imii2m2⟩⟨fmf i2m2|β⟩Vβ(R(t ′))⟨β|f ′m′

f i
′
2m

′
2⟩. (28)

It is worth mentioning that as one considers the line mixing
occurring among lines within the same bands, expressions for
the matrix elements of S2,outer,i and S2,outer,f can be simplified

further. It is obvious that among lines within the same bands,
both their initial and final vibrational quantum numbers are
identical. This implies that one can replace δj ′

i ji
by δi′i in the
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expression for Si ′f ′,if
2,outer,i and replace δjf j ′

f
by δff ′ in S

i ′f ′,if
2,outer,f .

As a result, the matrices of both these two terms are diagonal.
But, this simplicity does not apply for the matrix of S2,middle

which remains as an off-diagonal matrix even within the same
bands. With respect to this non diagonality of S2,middle, similar
conclusions have been reported previously.8, 24, 25

For systems consisting of two linear molecules, formulas
used to evaluate the diagonal matrix elements of the S2,outer,i,

S2,outer,f, and S2,middle terms are already available.16 Therefore,
one only needs to derive a new expression for the off-diagonal
matrix elements of S2,middle. Detailed derivations are provided
in Appendix C and the general expression for S

i ′f ′,if
2,middle is

given by Eq. (C9).
For the Q lines of the N2–N2 pair where ωi′i = ωf ′f, one is

able to simplify Eq. (C9) further. By introducing the function
GL1L2 (t, t

′) defined in Ref. 16, Eq. (C5) can be expressed as

S
i ′f ′,if
2,middle(rc) = (−1)jf+j ′

f

√
(2j ′

i + 1)(2j ′
f + 1)(2ji + 1)(2jf + 1)

×
∑

L1L2

(−1)1+J+L1W (j ′
i j

′
f jijf , JL1)C(jij ′

iL1, 000)C(j ′
f jf L1, 000)

×
∑

i2i
′
2

(2i2 + 1)(2i ′2 + 1)ρi2C
2(i2i ′2L2, 000)

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′e

i(ωi′ i+ωi′2 i2
)(t−t ′)

GL1L2 (t, t
′). (29)

Then, by manipulating the two dimensional integrations over t and t′, introducing the correlation functions FL1L2 (t) and their
Fourier transforms HL1L2 (ω) defined in Ref. 16, one can rewrite Eq. (29) as

S
i ′f ′,if
2,middle(rc) =

√
2π (−1)jf+j ′

f

√
(2j ′

i + 1)(2j ′
f + 1)(2ji + 1)(2jf + 1)

×
∑

L1L2

{(−1)1+J+L1W (j ′
i j

′
f jijf , JL1)C(jij ′

iL1, 000)C(j ′
f jf L1, 000)}

×
∑

i2i
′
2

(2i2 + 1)(2i ′2 + 1)ρi2C
2(i2i ′2L2, 000)HL1L2 (ωi ′i + ωi ′2i2

). (30)

We emphasize that Eq. (30) of Si ′f ′,if
2,middle is valid only for the Q

lines. For other cases, i.e., infrared absorption lines in P and
R branches, one has to use Eq. (C9) instead.

Because S2,middle is the only term responsible for the
off-diagonal matrix elements of S2, one can determine from
Eq. (30) whether the line coupling could occur or not. In cases
that the products of C(ji j′i L1,000) C(j′f jf L1,000) are zero,
there are no contributions to the line coupling between the
lines of f′ ← i′ and f ← i through the Fourier transforms
HL1L2 (ω) with the specified L1. Therefore, the selection rules
of these two Clebsch-Gordan coefficients play a crucial role
in determining the line coupling. For the N2–N2 system, the
tensor ranks L1 and L2 of the Fourier transforms HL1L2 (ω)
must be even.16 As a result, the line coupling only occurs for
those pairs of lines both whose initial quantum numbers (i.e.,
ji and j′i) and whose final quantum numbers (i.e., jf and j′f) have
the same evenness or oddness. In addition, because functions
of HL1L2 (ω) with lower L1 are usually more important than
those with higher L1, the closer between ji and j′i and between
jf and j′f are, the stronger the line coupling is.

D. Matrices of –S2 and exp(–S2) for Raman Q lines
of the N2–N2 pair

In the present study, because the S1 term is zero, the
operator of –iS1 – S2 can be replaced by –S2. In addition,

the imaginary parts of S2,outer,i and S2,outer,f cancel out ex-
actly for Q lines in the rigid rotor limit.18 Then, because
S2,middle is real, the whole matrix of –S2 becomes a real
one. As explained above, its off-diagonal matrix elements
solely come from contributions from S2,middle. As a result,
it is the S2,middle terms that plays a crucial role to determine
whether the isolated line approximation is applicable or not
here.

Before carrying out numerical calculations, we can draw
several conclusions from Eq. (30). If one chooses 4 as
the cut-off for L1 and L2, there are six Fourier transforms
HL1L2 (ω) associated with different values of L1 and L2.
Among these functions, H22(ω) contains contributions from
the leading quadrupole–quadrupole interaction between two
N2 molecules and thus, is the most important one. In prac-
tical calculations, instead of ω one uses a dimensionless pa-
rameter k ≡ ω(rc/ν̄) where ν̄ is the mean velocity. In order
to match results reported in Ref. 18, our numerical calcula-
tions are carried out at T = 298 K and at this temperature, the
mean velocity is around 6.712 × 104 cm/s. We note that be-
cause H22(ω) is associated with specified trajectories, it also
depends on the parameter rc. In Fig. 1, we present the pro-
file of H22(k, rc) as a two-dimensional function of k and rc. As
shown in the figure, its larger magnitudes occur only at a small
rc region. Although the magnitudes of H22(k, rc) decrease as
k increases, but roughly speaking, they still remain noticeable
until at least k is beyond 14 or so. On the other hand, if ω is
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FIG. 1. Fourier transform ofH22(k, rc) (in ps−2) at T= 298 K for the N2–N2
pair as a two dimensional function of k (dimensionless) and rc (in Å).

given in cm−1, its corresponding k value is about 0.1ω. This
implies that the Fourier transform of HL1L2 (ωi ′i + ωi ′2i2

) in
Eq. (30) could make noticeable contributions to the off-
diagonal matrix of S2 unless its arguments of ωi ′i + ωi ′2i2

are
beyond 140 cm−1 or so. Given the fact that the rotational con-
stant of N2 is only about 2 cm−1 and values of ωi ′2i2

could be
as small as zero, there is no reason to claim the line coupling
can be ignored. Because j values of two coupled lines must
at least differ by 2, the minimum of their initial energy gaps
is 4(2j + 3) cm−1. Based on these numbers, it is obvious that
there are many coupled lines whose energy gaps are less than
140 cm−1. As a result, the off-diagonal matrix elements of
–S2 are not negligible at all, and one must consider the line
coupling for the Raman Q lines of the N2–N2 pair.

For the Raman Q transitions, one can simply label lines
by a number of Q( j) (= ji = jf). As explained above, the line
coupling occurs only among lines with the same evenness or
the oddness of Q( j). As a result, the matrix of –S2 in the
line space consists of two sub-matrices. One is constructed by
lines with even Q( j) values and another with odd Q( j) values.
In our numerical calculations, we have set 31 as the maxi-
mum of Q( j). Then, both these two sub-matrices are 16 × 16
matrices whose sizes are very reasonable to deal with. In the
present study, we have adopted the “exact” trajectory model.
In order to cover all important trajectories well, we have se-
lected 700 points of rc with more dense points to depict nearly
head-on collisions because the latter play a dominant role in
calculating the half-width and shift. The potential model in-
cluding its isotropic part used in our calculations is the same
one22 used by Thibault et al. in their recent work.18

In the following, we present some samples to show cal-
culated matrices of –S2 and exp(–S2). According to our cal-
culation, the minimum of the closest distance at T = 298 K
is rc,min = 3.42664 Å. As a sample to represent nearly head-
on collisions, we select a matrix of –S2 with rc = 3.67734 Å.
For explanation purpose, we only explicitly present a smaller
sub-matrix of –S2 constructed by the first 8 coupled lines with
Q( j)= 0, 2, 4, 6, 8, 10, 12, and 14. As shown in Matrix 1, this
8 × 8 matrix is real and asymmetric. In addition, in compari-
son with the diagonal matrix elements, the most near-by off-
diagonal elements are comparable. This clearly demonstrates
the isolated line approximation is not applicable here and the
necessity to consider the line coupling. Finally, because we
have set 4 as the cut-off for L1 and L2 in the calculations, the
line coupling occurs only between lines whose Q( j) values
differ from each other by no more than 4. If one chooses 2
as the cut-off, there is no coupling between lines whose Q( j)
differences are beyond 2. In this case, the two sub-matrices
will be tri-diagonal.

Matrix 1: A sub-matrix of −S2 associated with even Q(j).

−14.1192 5.9477 0.3832 0 0 0 0 0

5.8249 −10.3909 5.7690 0.2221 0 0 0 0

0.3648 5.5228 −10.8162 5.5545 0.1302 0 0 0

0 0.1993 5.1939 −9.9161 4.9012 0.0739 0 0

0 0 0.1064 4.4496 −8.3002 4.0079 0.0396 0

0 0 0 0.0539 3.4982 −6.5061 3.1225 0.0190

0 0 0 0 0.0259 2.5924 −4.8986 2.3701

0 0 0 0 0 0.0114 1.8560 −3.6083

.

If one applies the isolated line approximation in evaluat-
ing the operator exp(–S2), the matrix of exp(–S2) becomes di-
agonal. By adopting values of the exponential function whose
arguments are the diagonal elements of –S2 in Matrix 1, one

can easily construct the matrix of exp(–S2) which is presented
in Matrix 2. We note that it is this kind of diagonal matrices
that is used in calculating half-widths and shifts with the RB
formalism.
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Matrix 2: A sub-matrix of exp(−S2) with even Q(j) in the isolated line approximation.

0.00000 0 0 0 0 0 0 0

0 0.00003 0 0 0 0 0 0

0 0 0.00002 0 0 0 0 0

0 0 0 0.00005 0 0 0 0

0 0 0 0 0.00025 0 0 0

0 0 0 0 0 0.00149 0 0

0 0 0 0 0 0 0.00746 0

0 0 0 0 0 0 0 0.02710

.

Matrix 3: A sub-matrix of exp(−S2) associated with even Q(j).

0.02587 0.05518 0.06669 0.06758 0.05946 0.04442 0.02267 0.01151

0.05410 0.11592 0.14144 0.14546 0.13073 0.10056 0.06269 0.02821

0.06263 0.13547 0.16868 0.17899 0.16818 0.13738 0.09238 0.04504

0.05931 0.13020 0.16726 0.18612 0.18678 0.16632 0.12414 0.06728

0.04730 0.10606 0.14244 0.16929 0.18555 0.18464 0.15685 0.09644

0.03077 0.07104 0.10134 0.13131 0.16087 0.18326 0.18144 0.12916

0.01530 0.03670 0.05646 0.08124 0.11330 0.15046 0.17692 0.14879

0.00516 0.01291 0.02153 0.03444 0.05451 0.08383 0.11647 0.11680

.

Next, we present results obtained from the new method.
Because the sub-matrix of –S2 is a real asymmetric matrix,
to construct the unitary transform required in Eq. (13) is not
straightforward. There is a subroutine F10ECF available in
NAG which enables one to directly calculate the matrix ex-
ponential exp(–S2). In Matrix 3, we present the sub-matrix
of exp(–S2) where the matrix of –S2 is given in Matrix 1.
Matrix 3 provides true values of the matrix elements of
exp(–S2). By comparing Matrix 2 and Matrix 3, it is obvi-
ous that these two matrices completely differ from each other.
The big differences convincingly demonstrate the necessity
to consider the line coupling in evaluating the matrix of
exp(–S2). Furthermore, the diagonal elements of Matrix 3 are
significantly larger than the diagonal elements of Matrix 2.
As shown in Eq. (12), these diagonal matrix elements appear
as a factor of 1 – exp(–S2) in the integrand of the half-width.
Based on this argument, we are sure that due to ignoring the
line coupling, the current RB formalism significantly overesti-
mates the half-widths of these Raman Q lines. This prediction
will be fully verified later.

So far, we only present samples of the 8 × 8 sub-matrices
derived from a specified trajectory. In order to provide a whole
picture, we go back to the results derived from 16 × 16 sub-
matrices associated with Q( j) = 0, 2, . . . , 30. With excluding
and including the line coupling, we have calculated the func-
tion of 1 – exp(–S2(rc)) for each of the four selected Q lines
with Q( j) = 0, 4, 12, and 20 and we present their profiles in
Fig. 2. As shown in the figure, effects on these profiles from
the line coupling are important. More explicitly, in regions
with small rc values, magnitudes of 1 – exp(–S2(rc)) derived
from excluding the line coupling are significantly larger than

those including the line coupling. As rc increase, their gaps
become narrower, and finally disappear. This implies that the
line coupling mainly occurs for nearly head-on collisions and
its effects become less important or even negligible for glanc-
ing collisions.

Because magnitudes of the factor b(db/drc) appearing
in the integrand of the half-width significantly increase as
rc decreases, this factor would further enhance the gaps of
1 – exp(–S2(rc)) shown in Fig. 2. In order to fully demon-
strate whole effects on calculated half-widths from the line

FIG. 2. Two sets of profiles of 1 – exp(–S2(rc)) associated with four Raman
Q lines of N2–N2 are plotted. They are obtained from the modified RB for-
malism without and with the line coupling and are plotted by dotted-dashed
and solid lines, respectively. Different colors distinguish these Q lines with
Q( j) = 0 (black), 4 (red), 12 (green), and 20 (blue).
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FIG. 3. The same as Fig. 2 except for two sets of profiles of the integrand
b(db/drc)[1 – exp(–S2(rc))] associated with three selected Q lines with Q( j)
= 4 (black), 12 (red), and 20 (green).

coupling, we present two sets of profiles of the integrand
(i.e., b(db/drc)[1 – exp(–S2(rc))]) associated with the three
Q lines with Q( j) = 4, 12, and 20 in Fig. 3. As shown in
the figure, magnitudes of the integrand without the line cou-
pling, especially at a small rc region, are significantly larger
than those derived from including the line coupling. Without
any doubt, the plots indicate that by taking into account the
line coupling, calculated half-widths would be significantly
reduced.

E. Matrix of the relaxation operator and calculated
half-widths

After all the matrix elements ⟨⟨i′f′ | exp(–S2(rc)) | if⟩⟩ are
available, it is easy to calculate not only the diagonal matrix
elements of the relaxation operator ⟨m(0)⟩bath denoted by W
later but also its off-diagonal elements as well. Because the
matrix elements of exp(–S2(rc)) for the N2-N2 isotropic Ra-
man Q lines are real, a simpler expression used to calculate
the matrix elements of W can be expressed as

Wi ′f ′, if = nbν̄

2πc

+∞∫

rc,min

2π
(
b
db

drc

)
drc

× {δi ′iδf ′f − ⟨⟨i ′f ′|e−S2(rc)|if ⟩⟩}. (31)

By constructing two sub-spaces associated with even and
odd Q( j) lines and setting their up limits as Q( j)= 30 and 31,
respectively, we have calculated two 16 × 16 sub-matrices of
W. Here, we present the W matrix with even Q( j) in Matrix 4.
As is well known,5 the relaxation matrix should verify the de-
tailed balance principle that connects upward and downward
transitions and the so-called sum rule. For isotropic Raman Q
lines, the sum rule claims that weighted sums of the matrix
elements of W over columns are zero. The weighting factor
of [(2j′i + 1)/(2ji + 1)]1/2 is necessary introduced here be-
cause we have adopted Ben Reuven’s conventions instead of
Gordon’s.26 All these points will be discussed in a forthcom-
ing paper. In the present study, our main focus is to consider
the diagonal elements of W because the latter are only the
calculated half-widths.

Matrix 4: A 16 × 16 sub-matrix of the relaxation operator associated with even Q(j).

75.44 −10.22 −4.59 −3.34 −2.72 −2.18 −1.69 −1.23 −0.83 · −0.00 −0.00
−10.05 61.80 −12.22 −7.78 −6.20 −4.96 −3.83 −2.80 −1.89 · −0.00 −0.00
−4.27 −11.63 56.75 −12.16 −8.80 −6.90 −5.31 −3.88 −2.64 · −0.01 −0.00
−2.92 −6.89 −11.13 53.94 −12.77 −8.99 −6.77 −4.95 −3.39 · −0.01 −0.00
−2.19 −5.07 −7.42 −11.25 52.78 −12.92 −8.70 −6.24 −4.29 · −0.01 −0.00
−1.59 −3.66 −5.24 −7.13 −10.90 51.77 −12.83 −8.23 −5.57 · −0.02 −0.00
−1.09 −2.49 −3.55 −4.72 −6.41 −10.32 50.50 −12.71 −7.74 · −0.04 −0.01
−0.68 −1.57 −2.23 −2.96 −3.94 −5.60 −9.72 48.76 −12.64 · −0.07 −0.01
−0.39 −0.89 −1.28 −1.70 −2.27 −3.16 −4.84 −9.22 46.44 · −0.14 −0.02

· · · · · · · · · · · ·
−0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.01 −0.01 −0.02 · 22.60 −9.46
−0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 · −5.41 19.07

.

In Fig. 4, we present the new values of calculated half-
widths together with those derived from the modified RB
formalism without the line coupling. For comparison, we
also present results derived from the close coupling method18

and from two different measurements.27 As demonstrated by
Thibault et al.’s recent work,18 calculated results both from
the RB formalism and from the modified RB formalism over-
estimate the half-widths by large amounts. In contrast, by tak-
ing into account the line coupling, our new calculated val-

ues are reduced by about 15%. Thus, one can conclude that
effects on calculated half-widths from the line coupling are
important and our refinement of the RB formalism goes in
the right direction. Of course, there are still large differences
between the new results and measurements or values pre-
dicted by the close coupling method. This implies that af-
ter conquering the line coupling obstacle, it is necessary to
continue efforts in refining and improving the RB formalism
further.
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FIG. 4. Comparison of calculated half-widths and measurements for the Ra-
man Q lines of the N2–N2 pair. Theoretically calculated half-widths from the
modified RB formalism without and with the line coupling are plotted by +
and -, respectively. Calculated values from the close coupling method18 are
given by ◦. Meanwhile, two different measured results27 are plotted by ! and
×, respectively.

IV. DISCUSSIONS AND CONCLUSIONS

First of all, we would like to point out that one needs
to distinguish the line mixing and the line coupling. De-
spite they share a common connection with applying the iso-
lated line approximation, the line mixing and the line cou-
pling describes different concepts. In the present study, the
line mixing is associated with the approximation to deal
with the resolvent operator 1/(ω – La – ⟨m(0)⟩bath) appear-
ing in the spectral density F(ω) as shown in Eq. (5). Be-
cause the relaxation operator ⟨m(0)⟩bath is off-diagonal in the
line space, the denominator of the resolvent operator (i.e., ω

– La – ⟨m(0)⟩bath) is off-diagonal too which causes difficul-
ties in calculations. Meanwhile, the line coupling arises from
how to calculate matrix elements of the Liouville scattering
operator Ŝ which is given in terms of an exponential form, no
matter through the cumulant expansion in Eq. (9) or by some
other way.19

Because the necessity to consider the line mixing and
the line coupling have different criteria and the latter is more
stringent than the former, in many situations the line mixing
seldom occurs and the line coupling occurs very often or even
almost always. As a result, to completely ignore the line cou-
pling in developing line shape theories could cause more se-
rious errors than that from ignoring the line mixing. In the
present study, we focus our attention on effects on calculated
half-widths from the line coupling only. However, as a sub-
sequent outcome of the study shown in Matrix 4, the whole
matrix elements of the relaxation operator are available. In a
forthcoming study, we will investigate several topics related
to these matrix elements, such as the detailed balance princi-
ple and the sum rules.

It is well known that to consider the line coupling is
a longstanding problem in developing theories, and so far
there are several methods proposed to overcome this chal-
lenge. Among them, the most important one is developed by
Cherkasov through his continued contributions to this sub-
ject for more than three decades. Here, we briefly explain
Cherkasov’s formalism19 and outline differences between his

method and ours. In developing his formalism, Cherkasov did
not apply the cumulant expansion, but based on the usual per-
turbation expansions he directly put the scattering operator
into the exponential form in an “ad hoc” way. Because the
operators appearing in the exponential form depend on states
of the bath molecule, he faced the same difficulties as that oc-
curring in the RB formalism. In order to overcome these dif-
ficulties, he separated the relaxation operator into two parts:
with respect to states of the bath molecule, one part is diago-
nal and another is off-diagonal. Then, by considering the sec-
ond part as a perturbation and omitting the non-commutative
feature between these two parts, he obtained an approximate
expression for the relaxation operator in which only the first
part appears in an exponential function and the second part
appears linearly. As a result, one only needs to diagonalize
smaller matrices associated with the first part whose dimen-
sion is only equal to the dimension of the line space of the ab-
sorber molecule. By comparing Cherkasov’s formalism and
our method, the latter’s advantages are obvious. With our ap-
proach, one does not need to introduce the additional approx-
imations to avoid his difficulties because any operations in-
volving the bath molecule have been completely obviated.
Besides, our method benefits from the cumulant expansion
which has a sounder basis to deal with the perturbative ex-
pansion of the scattering operator.

The new method presented here is applicable for other
linear molecular systems. There are many systems such as the
N2 and CO mixtures,17 CO2–Ar, C2H2–Ar, CO–Ar, HCl–Ar,
HF–Ar28 in which the RB formalism significantly overesti-
mates the half-widths. Therefore, it is worth carrying out these
calculations by applying the present method used here. Be-
sides, it is worth to extend this method in considering effects
from the line coupling on calculated shifts.

With respect to more complicated molecular systems in-
volving symmetric-top and asymmetric top molecules, to ap-
ply the new method would not be straightforward. For the
H2O–N2 system, a lot of values of the half-width and shift
listed in HITRAN come from theoretically calculated results
with the RB formalism. For this important system, we expect
that effects from the line coupling on calculated half-widths
would not be small. Unfortunately, so far, there is lack of
systematic investigations on this subject. Based on our con-
siderations, for H2O lines in the same vibrational bands, the
S2,middle term is still the only source responsible for the off-
diagonal matrix elements of S2. In this case, a new feature is
that the leading correlation functions with L1 = 1 make ma-
jor contributions to the off-diagonal elements. In contrast, it
is well known that the correlation functions with odd L1 don’t
make any contributions to diagonal elements of S2,middle at all.
This indicates that one needs to carefully determine the cou-
pling selection rules which are more complicated than that
applicable for the N2–N2 system. Furthermore, the numbers
of strong H2O lines in the same main bands are more likely
beyond one thousand. As a result, to determine groups of cou-
pled lines is not an easy job. But, thanks to the selection rules
applying not only to the angular quantum number j but also
to other indices ka and kc, the numbers of lines in the same
coupling groups would still remain reasonable. Meanwhile,
for H2O lines belonging to different bands, the line coupling
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caused by intramolecular resonances (such as Coriolis, Fermi,
Darling-Dennsion, and more complex resonances) could also
occur.29 In this case, besides the S2,middle term, both S2,outer,i
and S2,outer,f can make contributions to the off-diagonal matrix
elements of S2.

Finally, as shown in Fig. 4, the new calculated half-
widths of the Raman Q lines still do not match measure-
ments or values obtained with the most accurate close cou-
pling method. However, we do not consider the differences
as bad signs for our current refinement effort. In our opin-
ion, there are other weaknesses remaining in the RB for-
malism and among them, the most severe one is to treat the
translational motion and the internal motion separately. More
specifically, exchanges of their energies and angular momen-
tums are not considered during collisional processes and colli-
sion trajectories are assumed to be independent of anisotropic
potential models. It is understandable that one has to adopt
this approximation because there are no alternatives available
right now. But, we expect that these simplifications would
bear a large uncertainty at least at the same level as that re-
sulting from ignoring the line coupling. Besides, so far the
third and higher orders of the perturbative expansion of the
scattering operator have not been taken into account. There-
fore, we consider the remaining gaps shown in Fig. 4 as room
for further refinements.
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APPENDIX A: THE CUMULANT EXPANSION

It is well known that the cumulant expansion is a very
useful tool in solving many physical problems. In order to ap-
ply this method in specified problems, an essential step is to
define the so called average ⟨ ⟩ accordingly. Besides the av-
erage must satisfy the normalization condition ⟨I⟩ = 1, the
choice of the average has considerable freedom. The average
could be chosen as the diagonal matrix element of operators
in a specified representation or something else. In addition, re-
sults of the average could be either ordinary numbers or quan-
tum operators.

For the pressure broadening problem, one can apply the
cumulant expansion in evaluating the matrix elements of the
Liouville scattering operator Ŝ whose perturbation expression
is given by

Ŝ = 1− i

¯

∞∫

−∞

L1(t)dt −
1
¯2

+∞∫

−∞

L1(t)dt

t∫

−∞

L1(t ′)dt ′ + · · ·

= θ exp

⎛

⎝− i

¯

∞∫

−∞

L1(t)dt

⎞

⎠ , (A1)

where L1(t) is a Liouville operator associated with the Hilbert
interaction operator V̂1(t) (≡ ei(Ha+Hb)t/¯ V e−i(Ha+Hb)t/¯) and
the symbol θ is the time ordering operator. By properly defin-
ing the average ⟨ ⟩, the average of Ŝ can be expressed as

〈

θ exp

(

− i

¯

∞∫

−∞

L1(t)dt

)〉

= exp

〈

θ exp

(

− i

¯

∞∫

−∞

L1(t)dt

)

− 1

〉

c

= exp

⎧
⎨

⎩− i

¯

∞∫

−∞

⟨L1(t)⟩cdt

− 1
¯2

+∞∫

−∞

t∫

−∞

⟨L1(t)L1(t ′)⟩cdtdt ′ + · · ·

⎫
⎬

⎭ , (A2)

where ⟨ ⟩c is the so called cumulant average. A cumulant av-
erage is not the average defined, but it is related to the latter.
For example, the first two cumulant averages in Eq. (A2) are
given by

⟨L1(t)⟩c = ⟨L1(t)⟩ ,
(A3)

⟨L1(t)L1(t ′)⟩c = ⟨L1(t)L1(t ′)⟩ − ⟨L1(t)⟩⟨L1(t ′)⟩.
Thus, up to the second order in Eq. (A2), the average of Ŝ can
be written as

〈

θ exp

⎛

⎝− i

¯

∞∫

−∞

L1(t)dt

⎞

⎠
〉

= exp(−iS1 − S2), (A4)

where S1 and S2 are defined by

S1 =
1
¯

∞∫

−∞

⟨L1(t)⟩dt, (A5)

and

S2 =
1
¯2

{ +∞∫

−∞

t∫

−∞

⟨L1(t)L1(t ′)⟩dtdt ′

−
+∞∫

−∞

t∫

−∞

⟨L1(t)⟩⟨L1(t ′)⟩dtdt ′
}

, (A6)

respectively.

APPENDIX B: MATRIX ELEMENTS OF THE LIOUVILLE
OPERATORS L1(t) AND L1(t)L1(t′) IN HILBERT SPACE

In the following, we present derivations of the matrix
elements of the Liouville operators L1(t) and L1(t)L1(t′) in
Hilbert space. For the N2–N2 pair, the absorber states and the
pertuber states are denoted by |imi⟩ and |i2m2⟩, respectively.
In terms of the bases in Hilbert space, the matrix elements of
the Liouville operator L1(t) can be written as

⟨⟨i ′m′
if

′m′
f , i

′
2m

′
2i

′
2m

′
2 |L1(t)| imifmf , i2m2i2m2⟩⟩

= ⟨i ′m′
i i

′
2m

′
2|V̂ (t)|imii2m2⟩δf ′m′

f ,fmf
δi2m2,i

′
2m

′
2

−⟨fmf i2m2|V̂ (t)|f ′m′
f i

′
2m

′
2⟩δimi ,i ′m

′
i
δi ′2m′

2,i2m2 , (B1)
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where δimi ,i ′m
′
i
represents δii ′δmim

′
i
. Similarly, the matrix ele-

ments of L1(t)L1(t′) can be written as

⟨⟨i ′m′
if

′m′
f , i

′
2m

′
2i

′
2m

′
2|L1(t)L1(t ′)|imifmf , i2m2i2m2⟩⟩

= {⟨i ′m′
i i

′
2m

′
2|V̂ (t)|i ′′m′′

i i
′′
2m

′′
2⟩δf ′m′

f ,f
′′m′′

f
δi ′′′2 m′′′

2 ,i ′2m
′
2

−⟨f ′′m′′
f i

′′′
2 m

′′′
2 |V̂ (t)|f ′m′

f i
′
2m

′
2⟩δi ′′m′′

i ,i
′m′

i
δi ′2m′

2,i
′′
2m

′′
2
}

×{⟨i ′′m′′
i i

′′
2m

′′
2|V̂ (t ′)|imii2m2⟩δf ′′m′′

f ,fmf
δi2m2,i

′′′
2 m

′′′
2

−⟨fmf i2m2|V̂ (t ′)|f ′′m′′
f i

′′′
2 m

′′′
2 ⟩δimi ,i ′′m

′′
i
δi ′′2m′′

2 ,i2m2}.

(B2)

After carrying out some algebraic works, one can rewrite
Eq. (B2) as

⟨⟨i ′m′
if

′m′
f , i

′
2m

′
2i

′
2m

′
2|L1(t)L1(t ′)|imifmf , i2m2i2m2⟩⟩

= ⟨i ′m′
i i2m2|V̂ (t) V̂ (t ′)|imii2m2⟩δf ′m′

f ,fmf
δi ′2m′

2,i2m2

+⟨fmf i2m2|V̂ (t ′) V̂ (t)|f ′m′
f i2m2⟩δi ′m′

i ,imi
δi ′2m′

2,i2m2

−⟨i ′m′
i i

′
2m

′
2|V̂ (t)|imii2m2⟩⟨fmf i2m2|V̂ (t ′)|f ′m′

f i
′
2m

′
2⟩

−⟨fmf i2m2|V̂ (t)|f ′m′
f i

′
2m

′
2⟩⟨i ′m′

i i
′
2m

′
2|V̂ (t ′)|imii2m2⟩.

(B3)

As shown by Eq. (B3), the matrix elements of L1(t)L1(t′) con-
sist of four terms.

APPENDIX C: EXPRESSION FOR THE MATRIX
ELEMENTS OF S2,middle

Starting from the general expression for Si ′f ′,if
2,middle given

by Eq. (28), we present detailed derivations here. First of all,
based on the general expression for the interaction,16

V (R⃗(t)) =
∑

L1L2L

u(L1L2L;R(t))
∑

m1m2m

C(L1L2L,m1m2m)

×YL1M1 (,a)YL2M2 (,b)Y ∗
Lm(ω(t)). (C1)

The integration over ,α in Eq. (28) is given by
∫
d,α⟨i ′m′

i i
′
2m

′
2|α⟩Vα(R(t)) ⟨α|imii2m2⟩

=
∑

L1L2L

∑

µ1µ2M

u(L1L2L,R(t))C(L1L2L,µ1µ2M)

×
{∫

d,aαY
∗
j ′
i m

′
i
(,aα)Yjimi

(,aα)YL1µ1 (,aα)

}

×
{∫

d,bαY
∗
i ′2m

′
2
(,bα)Yi2m2 (,bα)YL2µ2 (,bα)

}

Y ∗
LM (ωα(t)).

(C2)

Then, by analytically carrying out the integrations over ,aα

and ,bα , Eq. (C2) can be written as

∫
d,α⟨i ′m′

i i
′
2m

′
2|α⟩Vα(R(t)) ⟨α|imii2m2⟩

= 1
4π

∑

L1L2L

√
(2j ′

i + 1)(2ji + 1)(2i ′2 + 1)(2i2 + 1)
(2L1 + 1)(2L2 + 1)

u(L1L2L,R(t))

×C(jij ′
iL1, 000)C(i2i ′2L2, 000)

∑

µ1µ2M

(−1)mi+m2C(L1L2L,µ1µ2M)

×C(jij ′
iL1,−mim

′
iµ1)C(i2i ′2L2,−m2m

′
2µ2)Y ∗

LM (ωα(t)). (C3)

With respect to the integration over ,β in Eq. (28), one can obtain a result similar to Eq. (C3). Then, one can rewrite Eq. (28)
as

S
i ′f ′,if
2,middle(rc) = − ¯−2

16π2(2J + 1)

∑

i2m2

ρi2

∑

i ′2m
′
2

∑

(m)

(2i2 + 1)(2i ′2 + 1)

×
∑

L1L2L

∑

L′
1L

′
2L

′

√
(2j ′

i + 1)(2j ′
f + 1)(2ji + 1)(2jf + 1)

(2L1 + 1)(2L2 + 1)(2L′
1 + 1)(2L′

2 + 1)

×C(jij ′
iL1, 000)C(j ′

f jf L
′
1, 000)C(i2i ′2L2, 000)C(i ′2i2L

′
2, 000)

×
∞∫

−∞

dt

∞∫

−∞

dt ′e
i(ωi′ i+wi′2 i2

)t
e
i(ωff ′+wi2 i

′
2
)t ′
u(L1L2L,R(t))u(L′

1L
′
2L

′, R(t ′))

× (−1)jf+j ′
f+mi−mf C(j ′

i j
′
f J,m

′
i − m′

fMJ )C(jijf J,mi − mfMJ )

×
∑

µ1µ2M

∑

µ′
1µ

′
2M

′

(−1)m2+m′
2C(L1L2L,µ1µ2M)C(L′

1L
′
2L

′, µ′
1µ

′
2M

′)

×C(jij ′
iL1,−mim

′
iµ1)C(j ′

f jf L
′
1,−m′

fmfµ
′
1)C(i2i ′2L2,−m2m

′
2µ2)

×C(i ′2i2L
′
2,−m′

2m2µ
′
2)Y

∗
LM (ωα(t))Y ∗

L′M ′ (ωβ(t ′)). (C4)
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In Eq. (C4), there are thirteen magnetic quantum numbers of which only five are independent. By carrying out summations over
four independent ones, the expression of Eq. (C4) can be simplified as

S
i ′f ′,if
2,middle(rc) = (−1)jf+j ′

f

√
(2j ′

i + 1)(2j ′
f + 1)(2ji + 1)(2jf + 1)

×
∑

L1L2

(−1)1+J+L1W (j ′
i j

′
f jijf , JL1)C(jij ′

iL1, 000)C(j ′
f jf L1, 000)

×
∑

i2i
′
2

(2i2 + 1)(2i ′2 + 1)ρi2C
2(i2i ′2L2, 000)

¯−2

16π2(2L1 + 1)(2L2 + 1)

×
∑

L

(−1)L1+L2+L
∑

M

∞∫

−∞

dt

∞∫

−∞

dt ′e
i(ωi′ i+ωi′2 i2

)t
e
i(ωff ′+ωi2 i

′
2
)t ′

× u(L1L2L,R(t))u(L1L2L,R(t ′))Y ∗
LM (ωα(t))YLM (ωβ(t ′)). (C5)

Because in general ωi′i ̸= ωf′f, our previous method16 used in
deriving the diagonal matrix elements of S2,outer,i, S2,outer,f, and
S2,middle is not applicable here and one has to separately carry
out the integrations over t and t′ in Eq. (C5). First of all, we
rewrite the integrations as

∑

M

(−1)M
∞∫

−∞

dt e
i(ωi′ i+ωi′2 i2

)t
u(L1L2L,R(t))YL−M (ω(t))

×
∞∫

−∞

dt ′ e
i(ωff ′+ωi2 i

′
2
)t ′
u(L1L2L,R(t ′))YL−M (ω(t ′)).

(C6)

Then, in terms of the Fourier transforms .L1L2LM (ω) defined
by

.L1L2LM (ω) = 1√
2π

∞∫

−∞

dt eiωt u(L1L2L,R(t))YLM (ω(t)),

(C7)

the first integration in Eq. (C6) can be expressed as
∫ ∞

−∞
dt e

i(ωi′ i+ωi′2 i2
)t
u(L1L2L,R(t))YL−M (ω(t))

=
√
2π .L1L2L−M (ωi ′i + ωi ′2i2

). (C8)

Similarly, the second integration is given by√
2π .L1L2LM (ωff ′ + ωi2i

′
2
). Finally, the expression for

the off-diagonal matrix elements of S2,middle can be written as

S
i ′f ′,if
2,middle(rc) = (−1)jf+j

′
f

√
(2j ′

i+1)(2j ′
f+1)(2ji+1)(2jf+1)

×
∑

L1L2

(−1)1+J+L1W (j ′
i j

′
f jijf , JL1)C(jij ′

iL1, 000)C(j ′
f jf L1, 000)

×
∑

i2i
′
2

(2i2 + 1)(2i ′2 + 1)ρi2C
2(i2i ′2L2, 000)

1
8π¯2(2L1 + 1)(2L2 + 1)

×
∑

L

(−1)L1+L2+L
∑

M

(−1)M.L1L2L−M (ωi ′i + ωi ′2i2
).L1L2LM (ωff ′ + ωi2i

′
2
). (C9)
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