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The refinement of the Robert-Bonamy formalism by considering the line coupling for linear
molecules developed in our previous studies [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys.
139, 034305 (2013); 140, 104304 (2014)] have been extended to asymmetric-top molecules. For
H2O immersed in N2 bath, the line coupling selection rules applicable for the pure rotational band
to determine whether two specified lines are coupled or not are established. Meanwhile, because
the coupling strengths are determined by relative importance of off-diagonal matrix elements versus
diagonal elements of the operator −iS1 − S2, quantitative tools are developed with which one is
able to remove weakly coupled lines from consideration. By applying these tools, we have found
that within reasonable tolerances, most of the H2O lines in the pure rotational band are not coupled.
This reflects the fact that differences of energy levels of the H2O states are pretty large. But, there
are several dozen strongly coupled lines and they can be categorized into different groups such that
the line couplings occur only within the same groups. In practice, to identify those strongly cou-
pled lines and to confine them into sub-linespaces are crucial steps in considering the line coupling.
We have calculated half-widths and shifts for some groups, including the line coupling. Based on
these calculations, one can conclude that for most of the H2O lines, it is unnecessary to consider
the line coupling. However, for several dozens of lines, effects on the calculated half-widths from
the line coupling are small, but remain noticeable and reductions of calculated half-widths due to
including the line coupling could reach to 5%. Meanwhile, effects on the calculated shifts are very
significant and variations of calculated shifts could be as large as 25%. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4883058]

I. INTRODUCTION

The modeling of the atmosphere from satellite-based,
balloon-based, and Earth-based instruments requires spectro-
scopic parameters of atmospheric molecules, especially those
of the water vapor molecule. It is obvious that the accuracy of
the latter’s parameters is essential for users’ applications. In
order to meet the accuracy requirement for the H2O molecule,
the H2O spectroscopic databases have been updated many
times.1,2 In these updating processes, the theoretically calcu-
lated pressure broadened half-widths and induced shifts with
the Robert-Bonamy (RB) formalism3 have played an impor-
tant role.

Mainly due to its practical importance, a lot of ef-
forts have been made for years in order to improve the RB
formalism.4–7 Despite all these efforts, the RB formalism still
contains several basic assumptions whose applicability was
not thoroughly justified. A series of recent papers8,9 have
demonstrated that for simpler systems where results of the
close coupling calculations10 with sophisticated potentials are
available, the RB formalism significantly overestimates the
half-widths.

Recently, by scrutinizing one of the main approximations
(i.e., the isolated line approximation) in the RB formalism, we

have found that this approximation has been applied twice by
these authors in developing their formalism.11,12 First, in cal-
culating the resolvent operator 1/(ω − L0 − iW ), they have
only considered the diagonal matrix elements of the relax-
ation operator W. This implies that they have neglected a
required basis change within the linespace. Due to this sim-
plification, effects from the line mixing are ignored. Second,
when they applied the linked cluster theorem to remove the
cutoff, they have assumed matrix elements of the operator of
exp(−iS1 − S2) can be replaced by the exponential of the ma-
trix elements of the operator −iS1 − S2. The latter means
that they have neglected other required basis change at this
stage as well. (We note that in order to unambiguously rep-
resent what happens in the second simplification procedure,
we have proposed in Refs. 11 and 12 to name the second ba-
sis change and its consequences as the line coupling. Readers
must be careful to distinguish the difference between the line
coupling and the line mixing to avoid confusion.) With this
replacement, effects from the line coupling are also ignored.
We have found that the criterion of the second assumption is
so stringent, that for many molecular systems of interest in
atmospheric applications, it cannot be satisfied. As a result,
significant effects from the line coupling are completely ig-
nored in applying this approximation. In order to remedy this
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problem, we have developed a new method to evaluate the
matrix elements of the exponential of the operator and have
refined the RB formalism such that the line coupling can be
well taken into account. In our previous works,11, 12 we have
applied this method to simple linear molecular systems: Ra-
man Q lines of the auto-perturbed N2 molecule and infrared
P and R lines of C2H2 immersed in N2. In comparison with
calculated half-widths derived from the RB formalism, new
calculated values for these lines are significantly reduced and
become closer to the measurements.

Our main goal now is to improve the accuracy of calcu-
lated half-widths and shifts for the water vapor molecule. Be-
cause H2O is an asymmetric-top molecule and it has a much
more complicated spectra than linear molecules, to study the
line coupling for H2O lines immersed in N2 is more diffi-
cult. By developing and testing tools, our previous studies on
the linear molecular systems served as a preparation of the
present investigation. In addition, in our previous works we
have ignored imaginary parts of all items involved in calcu-
lations. As a result, we have not considered effects on calcu-
lated shifts from the line coupling and consequently we could
not draw quantitative conclusions about these effects. In the
present study, by including all the imaginary parts in calcu-
lations, we have calculated the induced shifts of H2O lines
with the line coupling. It turns out that effects on the shifts
are more significant than on the half-widths.

The paper is arranged as follows. In Sec. II, the main
frame of the formalism with the line coupling applicable for
asymmetric-top molecules such as H2O is presented. In this
section, the main topics are derivations of expressions for the
off-diagonal matrix elements of S2,middle in terms of the two-
dimensional (2D) Fourier transforms and discussions of the
latters’ profiles. Besides, because spectra of asymmetric-top
molecules are more complicated than that of linear molecules
and, consequently, to determine whether two lines of inter-
est are coupled through the line coupling or not becomes a
challenge. By considering symmetry properties of the D ma-
trices appearing in the expressions for S2,middle and analyzing
the profiles of the main 2D Fourier transforms introduced, the
coupling selection rules are established with which one is able
to identify groups consisting of strongly coupled lines. After
developing all necessary tools, in Sec. III we present numer-
ical calculations of the half-widths and shifts for H2O lines
in the pure rotational band broadened by N2. By selecting one
group consisting of strongly coupled 5 lines, detailed analyses
of the matrix elements for both the operator of −S2 and the
operator of exp(−S2) are presented. For this group and other
eight sample groups, calculated half-widths and shifts with
the line coupling are presented together with that obtained
without the line coupling. In Sec. IV, we present discussions
and conclusions.

II. THEORY

A. Diagonal matrix elements of the S2 terms in the
coordinate representation

With the RB formalism and other line shape theories,
people usually only consider the Liouville scattering Ŝ opera-

tor up to its second-order expansions consisting of two terms
S1 and S2. As expected, evaluating S2 is more difficult than
S1 and this is the main subject to investigate effects from the
line coupling.

In our previous studies, we have presented general ex-
pressions for the matrix elements of S2,outer,i, S2,outer,f, and
S2,middle in the coordinate representation.11 These expres-
sions are also applicable for more complicated molecules, but
will not be presented here. In addition, the diagonal prop-
erty of S2,outer,i and S2,outer,f within the same bands is also
valid for asymmetric-top molecules. Meanwhile, the S2,middle

term remains as an off-diagonal matrix. For asymmetric-top
molecules immersed in a linear molecule bath, the explicit ex-
pressions for the diagonal matrix elements of S2,outer,i, S2,outer,f,
and S2,middle have been derived in a previous work.13 Here, we
briefly outline some derivation procedures.

For a system consisting of one asymmetric-top and one
linear molecule, the potential models are usually given in
terms of a spherical tensor expansion as13

V (R⃗(t)) =
∑

L1K1L2L

U (L1L2L;K1;R(t))

×
∑

m1m2m

C(L1L2L,m1m2m)DL1∗
m1K1

("a)

×DL2∗
m20("b)Y ∗

Lm(ω(t)). (1)

By introducing 2D correlation functions GL1K1K
′
1L2 (t, t

′) de-
fined as

GL1K1K
′
1L2 (t, t

′)

= (−1)K1+K ′
1

4π¯2(2L1 + 1)2(2L2 + 1)2
∑

L

(−1)L1+L2+L(2L+ 1)

×U (L1L2L;K1;R(t))U (L1L2L;K ′
1;R(t

′))PL(cos$t,t ′ ),

(2)

and by changing their variables t and t′ to new variables of
τ ≡ t − t′ and τ ′ ≡ 1

2 (t + t′) (i.e., t = τ ′ + 1
2τ and t′ = τ ′

− 1
2τ reversely), one obtains 2D symmetric correlation func-

tions GL1K1K
′
1L2 (τ, τ

′) defined by

GL1K1K
′
1L2 (τ, τ

′) = GL1K1K
′
1L2

(
τ ′ + τ

2
, τ ′ − τ

2

)
. (3)

The great advantages of these new functions result from
their symmetry properties. In contrast with the original
GL1K1K

′
1L2 (t, t

′), the new GL1K1K
′
1L2 (τ, τ

′) are even functions
over the variables τ and τ ′. Then, by carrying out an integra-
tion of them from −∞ to ∞, one obtains one-dimensional
correlation functions,

GL1K1K
′
1L2 (τ ) =

∫ ∞

−∞
dτ ′GL1k1K

′
1L2 (τ, τ

′). (4)

Finally, in terms of FL1K1K
′
1L2 (ω), the Fourier transforms of

these one-dimensional correlation functions, one is able to
obtain explicit expressions for diagonal matrix elements of
ReS2,outer,i, ReS2,outer,f, and S2,middle which is real. Because
GL1K1K

′
1L2 (τ ) are even, FL1K1K

′
1L2 (ω) are real. With respect

to ImS2,outer,i and ImS2,outer,f, their expressions are given in
terms of the Hilbert transforms of FL1K1K

′
1L2 (ω). Alterna-
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tively and more wisely, one can introduce the causal one-
dimensional correlation functions whose values have been set
to zero for τ < 0 and find their complex Fourier transforms.14

The latter’s real and imaginary parts are just the Fourier
transforms FL1K1K

′
1L2 (ω) and the subsequent Hilbert trans-

forms, respectively. In practice, with the coordinate repre-
sentation one can easily and accurately evaluate these cor-
relation functions whose numbers are well limited. Mean-
while, based on the sampling theory, the continuous Fourier
transforms are converted into their corresponding discrete
Fourier transforms. With the fast Fourier transforms (FFT),15

the latter can be easily obtained. These very effective meth-
ods have been used in calculating N2 broadened half-widths
and induced shifts of H2O lines based on sophistical poten-
tial models and the “exact” trajectory model5 in our previous
works.13, 14

B. Off-diagonal matrix elements of the S2,middle term

For systems consisting of one asymmetric-top and one
linear molecule, one needs to derive new expressions for
the off-diagonal matrix elements of S2,middle. In Appendix,
we present main steps in deriving expressions for the off-
diagonal matrix elements of S2,middle. The derivations yield
a primitive expression given by Eq. (A8) that serves as
the starting point here. It turns out that the technique used
to introduce the 2D correlation functions and their sym-
metric partners is also helpful here. However, due to in-
terweaving variations of the variables t and t′, one has to
replace (2L+ 1)PL(cos$t,t ′ )/4π in Eq. (2) by their orig-
inal expression of

∑
M Y ∗

LM (θα(t),φα(t))YLM (θβ(t ′),φβ(t ′)).
In other words, one prefers to rewrite the 2D correlation func-
tions GL1K1K

′
1L2 (t, t

′) as

GL1K1K
′
1L2 (t, t

′) = (−1)K1+K ′
1

¯2(2L1 + 1)2(2L2 + 1)2
∑

LM

(−1)L1+L2+L

×U (L1L2L;K1;R(t))U (L1L2L;K ′
1;R(t

′))Y ∗
LM (θα(t),φα(t))YLM (θβ(t ′),φβ(t ′)). (5)

Then, in terms of these 2D correlation functions, the expression given by (A8) can be concisely expressed as

S
i ′f ′,if
2,middle(rc) = (−1)ji+j

′
i

√
(2j ′

i + 1)(2j ′
f + 1)(2ji + 1)(2jf + 1)

×
∑

L1K1K
′
1L2

(−1)1+J+L1W (j ′
i j

′
f jijf , JL1)D(ν ′

ij
′
i τ

′
i νijiτi ;L1K1)D(νf jf τf ν ′

f j
′
f τ ′

f ;L1K
′
1)

×
∑

i2i
′
2

(2i2 + 1)(2i ′2 + 1)ρi2C
2(i2i ′2L2, 000)

×
∫ ∞

−∞
dt

∫ ∞

−∞
dt ′e

i(ωi′ i+ωi′2 i2
)t
e
i(ωff ′+ωi2 i

′
2
)t ′
GL1K1K

′
1L2 (t, t

′). (6)

Furthermore, in order to exploit the advantages of the 2D symmetric correlation functions defined by Eq. (3), the integrations
over t and t′ in Eq. (6) can be expressed as

∫ ∞

−∞

∫ ∞

−∞
dtdt ′e

i(ωi′ i+ωi′2 i2
)t+i(ωff ′+ωi2 i

′
2
)t ′
GL1K1K

′
1L2 (t, t

′)

=
∫ ∞

−∞

∫ ∞

−∞
dτdτ ′e

i

(
(ωi′ i+ωf ′f )

2 +ωi′2 i2

)
τ+i(ωf i−ωf ′ i′ )τ ′

GL1K1K
′
1L2 (τ, τ

′). (7)

Except for necessary modifications resulting from con-
sidering asymmetric-top molecules, this expression is very
similar to that obtained in our previous study for infrared
P and R lines of linear molecules because the line cou-
pling could also occur between lines in different branches.
As a result, after making the modifications, all the proce-

dures, including the introduction of the 2D Fourier trans-
forms, developed previously in evaluating the off-diagonal
matrix elements of S2,middle for linear molecules are also ap-
plicable for asymmetric-top molecules. Here, we only present
the final expression for the off-diagonal matrix elements of
S2,middle as
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S
i ′f ′,if
2,middle(rc) = 2π (−1)ji+j ′

i

√
(2j ′

i + 1)(2j ′
f + 1)(2ji + 1)(2jf + 1)

×
∑

L1K1K
′
1L2

(−1)1+J+L1W (j ′
i j

′
f jijf , JL1)D(ν ′

ij
′
i τ

′
i νijiτi ;L1K1)D(νf jf τf ν ′

f j
′
f τ ′

f ;L1K
′
1)

×
∑

i2i
′
2

(2i2 + 1)(2i ′2 + 1)ρi2C
2(i2i ′2L2, 000)FL1K1K

′
1L2

(
ωi ′i + ωf ′f

2
+ ωi ′2i2

,ωf ′i ′ − ωf i

)
, (8)

where FL1K1K
′
1L2 (ω,ω′) are the 2D Fourier transforms of

GL1K1K
′
1L2 (τ, τ

′) defined by

FL1K1K
′
1L2 (ω,ω′)

= 1
2π

∫ ∞

−∞

∫ ∞

−∞
dτdτ ′eiωτ eiω

′τ ′
GL1K1K

′
1L2 (τ, τ

′). (9)

The expression given by Eq. (8) is used to carry out numerical
calculations for asymmetric-top molecules immersed in the
linear molecule bath.

C. Sample profiles of the 2D symmetric correlation
functions and their 2D Fourier transforms

In the present study, we consider the line coupling within
the pure rotational band of the H2O molecule immersed in N2

bath. We adopt the potential model by Gamache and Laraia16

used in their calculations of the half-widths and shifts for
the HITRAN database. This is a typical complicated model
containing a short-range interaction modeled by the site-site
model.

With the RB formalism, the site-site model has to be
transformed into its spherical expansion form first. During
this process, one needs to introduce two kinds of cut-offs.13

The first is a cut-off to set the upper limits for tensor ranks
L1 and L2. The second is a cut-off to limit expansion terms
whose inverse powers of R(t) are not beyond certain num-
bers. In the present study, in order to evaluate the diagonal
matrix elements of S2, we have chosen 4 as the upper limits
for L1 and L2 and selected 20th order cut-off to guarantee the
convergence. With the current choice of 4, the number of the
one-dimensional correlation functions is 132. Thanks to their
symmetries, there are only 39 independent ones.

With respect to evaluations of the off-diagonal matrix ele-
ments of S2,middle, the corresponding 2D correlation functions
are required. Based on our previous works,11, 12 we know that
contributions to these off-diagonal matrix elements mainly
come from nearly head-on collisions. This implies that among
all the 2D correlation functions selected above, those having
large magnitudes in regions with small closest distances are
more important than others. Besides, due to symmetry restric-
tions, contributions from the 2D correlation functions with
L1 = 2 are either zero or completely canceled out in calcu-
lations. Based on these considerations, we have only consid-
ered those 2D correlations associated with three main inde-
pendent ones labeled by (L1,K1K

′
1L2) = (1000), (1002), and

(3220), respectively. Among them, the 2D correlation func-

tions of (1000) and (1002) are the two main contributors. It is
worth mentioning that the two leading one-dimensional cor-
relation functions with L1 = 1 do not make any contributions
to the diagonal matrix elements of S2,middle.

Recall that all these 2D correlation functions are associ-
ated with specified collisional trajectories. Usually, the latter
are labeled by the closest distance rc (or the impact parameter
b). As a result, they are also functions of rc. With the coordi-
nate representation, it is easy to calculate these 2D symmet-
ric correlation functions. For shortening the paper, we do not
present their profiles here. After these functions are available,
one can evaluate their corresponding 2D Fourier transforms
with the same tools developed previously.12 Usually, when
people carry out practical calculations, they prefer to use di-
mensionless variables in resonance functions, and we follow
their common custom here. Thus, for the 2D Fourier trans-
forms, instead of ω and ω′, we use dimensionless variables
k ≡ ωrc/ν̄ and k′ ≡ ω′rc/ν̄, where ν̄ is the mean velocity. We
note that no explicit thermal average has been performed in
the present study.

In order to show their profiles, we select the Fourier
transforms of F1000(k, k′) and F1002(k, k′) at T = 296 K and
choose two specified trajectories at rc = 3.7 Å and 4.5 Å rep-
resenting a nearly head-on collision and a collision between
nearly head-on and glancing collisions. (Based on the poten-
tial model used here, one can determine rc,min, the minimum
of the closest distance, for the “exact” trajectory model at T
= 296 K is 3.5224 Å.) In Figs. 1 and 2, we present the three-
dimensional profile of F1000(k, k′) at rc = 3.7 Å and its con-
tour plot. These two figures demonstrate that F1000(k, k′) has
four peaks whose heights are located at (4, 0), (−4, 0), (0,
10), and (0, −10) in the k and k′ coordinates. In addition,
their slopes along the k axis are deeper than their slopes along
the k′ axis. Roughly speaking, its magnitudes become neg-
ligible beyond the region of |k| ≤ 12 and |k′| ≤ 20. For rc
= 3.7 and T = 296 K, the value converts from ω (in cm−1)
to k (dimensionless) are k ≈ 0.092 × ω. As a result, the
above region can be also described as |ω| ≤ 130 cm−1 and |ω′|
≤ 217 cm−1.

Similarly, we present the three-dimensional plot and the
contour plot of F1002(k, k′) at 3.7 Å in Figs. 3 and 4. As shown
in the figures, it contains two peaks narrowly located at (0.75,
0) and (−0.75, 0) and its magnitudes are roughly limited in
the region of |k| ≤ 4 and |k′| ≤ 3 (i.e., |ω| ≤ 43 cm−1 and |ω′|
≤ 33 cm−1). In comparison with F1000(k, k′), it is obvious that
the magnitudes of F1002(k, k′) are significant smaller and are
confined in the narrower region. Therefore, one can conclude
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FIG. 1. The 2D Fourier transform F1000(k,k′) (in ps−2) at rc = 3.7 Å and T
= 296 K for a molecular pair of H2O–N2. The calculation is based on the
“exact” trajectory model.

that for nearly head-on collisions, F1000(k, k′) is more impor-
tant than F1002(k, k′).

Furthermore, in order to show their profiles for collisions
between nearly head-on and glancing collisions, we present
the three-dimensional plots for F1000(k, k′) and F1002(k, k′) at
rc = 4.5Å and T = 296 in Figs. 5 and 6. In comparison with
F1000(k, k′) at rc = 3.7Å, the heights of F1000(k, k′) at rc = 4.5
Å are reduced by one order and its occupancy region is also
reduced by five times. The latter is limited within |k| ≤ 3
and |k′| ≤ 5 or alternatively, within |ω| ≤ 27 cm−1 and
|ω′| ≤ 45 cm−1 that results from the converting formula of
k ≈ 0.112 × ω applicable at rc = 4.5 Å. This implies be-
yond nearly head-on collisions, F1000(k, k′) fades away very
quickly.

In contrast, the heights of F1002(k, k′) are only slightly re-
duced and its occupancy region slightly increases (i.e., within
|k| ≤ 4.5 and |k′| ≤ 4 or within |ω| ≤ 40 cm−1 and |ω′|
≤ 36 cm−1). This implies beyond nearly head-on collisions,
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FIG. 2. The same as Fig. 1 except for the contour plot of F1000(k, k′) at rc =
3.7 Å.
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FIG. 3. The same as Fig. 1 except for the 2D Fourier transformF1002(k, k′) at
rc = 3.7 Å.

F1002(k, k′) declines slowly. In addition, in comparison with
F1000(k, k′), both its magnitudes and occupancy region of
F1002(k, k′) are larger. As a result, it becomes the major source
responsible for the off-diagonal matrix elements.

D. Selection rules in determining coupled H2O lines

For linear molecules, such as N2 and C2H2, when one
considers the line coupling, it is easy to determine their cou-
pled lines.11, 12 Usually, numbers of their intense lines are very
limited and there are no couplings between the lines with
even and odd j values. As a result, one only needs to di-
vide the whole linespace into two sub-spaces constricted by
even j lines and odd j lines, respectively. In addition, we know
that for all the N2 and C2H2 lines, the line coupling always
happens and the effects are important. For asymmetric-top
molecules, such as H2O, to consider the line coupling has dif-
ferent features. First of all, to determine groups consisting of
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FIG. 5. The same as Fig. 1 except for F1000(k, k′) at rc = 4.5 Å.

coupled lines is not as simple as that for linear molecules.
Second, as demonstrated later, although the line coupling
could still happen between H2O lines, it would happen less
often and it more likely happens less intensively.

However, based on the following considerations,
one is able to find reasonable ways to identify groups of
coupled lines. With Eq. (8), one can conclude that mag-
nitudes of the off-diagonal matrix elements of S2,middle

between two lines of interest are mainly determined by
two factors. One is the coupling strength factor defined by√
(2j ′

i + 1)(2j ′
f + 1) (2ji + 1) (2jf + 1)W (j ′

i j
′
f jijf , JL1)

D(ν ′
ij

′
i τ

′
i νijiτi ;L1K1)D(νf jf τf ν ′

f j
′
f τ ′

f ;L1K
′
1) and another

is FL1K1K
′
1L2 (

ωi′ i+ωf ′f
2 + ωi ′2i2

,ωf ′i ′ − ωf i). In cases that one
of these factors is zero or negligible, one can ignore the line
coupling between these two lines.

First of all, one can check whether the strength fac-
tor that contains a product of the two D matrices has non-
zero values. For explanation convenience, we ignore the vi-
brational quantum numbers and rewrite the D matrix as
D(j ′

k′
ak

′
c
jkakc ;LK). There are rules to determine whether there

is non-zero coupling between two states j ′
k′
ak

′
c
and jkakc through

theD(j ′
k′
ak

′
c
jkakc ;LK) matrix. For example, the rule associated

with L = 1 and K = 0 is similar to the selection rule of the
H2O transitions; ,j (≡ j′ − j) = 0, ± 1, ,ka (≡ k′

a − ka)
= ± 1, ± 3, · · · , and ,kc (≡ k′

c − kc) = ± 1, ± 3, · · · .
In the present study, we choose the rule with L = 1 and K
= 0 as the selection rule because the symmetric correlation
functions with (1000) and (1002) are the dominant compo-
nents responsible for the off-diagonal matrix elements. In ad-
dition, because magnitudes of D(j ′

k′
ak

′
c
jkakc ; 10) decrease very

quickly as ,ka and/or ,kc increase, we add ,ka = ± 1 and
,kc = ± 1 as an extra restriction. Then, by enforcing these
restrictions on the D matrices of D(j ′

ik′
ai k

′
ci
jikaikci ;L1K1) and

D(jf kaf kcf j
′
f k′

af k
′
cf
;L1K1) associated with their initial and fi-

nal states of two specified lines jf kaf kcf ← jikaikca and j ′
f k′

af k
′
cf

← j ′
ik′

ai k
′
ci
, one can determine whether they can be coupled

or not. More specifically, both their initial and final angular
moments must satisfy j′i − ji = 0, ±1 and j′f − jf = 0, ±1.
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FIG. 6. The same as Fig. 1 except for F1002(k, k′) at rc = 4.5 Å.

Meanwhile, their initial ka and kc quantum numbers must sat-
isfy k′

ai − kai = ± 1 and k′
ci − kci = ± 1 and their final ka

and kc quantum numbers must satisfy k′
af − kaf = ± 1 and

k′
cf − kcf = ± 1 as well. In terms of the indices τ i ≡ kai − kci

and τ f ≡ kaf − kcf, the τ i values of their initial states and also
the τ f values of their final states for two coupled lines must
have the same evenness or oddness. Here, it is worth mention-
ing that due to the dipole transition selection rule, for each of
the transition lines of H2O, its τ i and τ f values always have
the same evenness and oddness. Finally, after enforcing this
selection rule, there are no more restrictions required from
W (j ′

i j
′
f jijf , JL1).

Armed with the selection rules, we have screened all pairs
of H2O lines in the pure rotational band listed in HITRAN
20081 and obtained a complete list of the coupled pairs. Most
of lines have several coupled partners, but some lines are only
coupled with one line. By tracing all connections through
the line coupling, it turns out that the whole linespace is di-
vided into two completely isolated sub-linespaces: one con-
sists of lines with even τ i (or τ f) values and another consists
of odd τ i (or τ f) values. Within a given sub-linespaces, all
lines are connected. Their connections could be established
directly through the line coupling between them or not di-
rectly through a series of couplings with other intermediate
lines. Meanwhile, there are no connections existing between
lines that belong to different sub-linespaces. Given the fact
that there are 1639 H2O lines listed and sizes of the two sub-
linespaces are roughly the same, one has to take further steps
to reduce the number of lines to be considered. One of them
is to calculate the coupling strength factor first. Because the
off-diagonal elements are simply proportional to its values,
one can effectively rule out many weakly coupled pairs from
considerations.

Then, by examining the second factor, one can develop a
screening tool to easily and effectively identify strongly cou-
pled lines. From profiles of F1002(k, k′) and F1000(k, k′) de-
scribed in Sec. II C, one knows that non-negligible contribu-
tions to the off-diagonal elements of S2,middle from these func-
tions come only from the relatively narrow regions of k and
k′ (or alternatively, ω and ω′). Besides, the energy levels of
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TABLE I. Group 1 of coupled H2O lines.

Lines (1) 1587 ←1578 (2) 1578 ←1569 (3) 1569 ←15510 (4) 15510 ←15411 (5) 15411 ←15312

F (cm−1) 195.902 156.215 112.281 115.999 164.422
Ei (cm−1) 3629.096 3471.881 3360.600 3244.601 3080.179

H2O states and the frequencies of H2O lines are accurately
known with which one can easily calculate the averaged en-
ergy gap of ωi′ i+ωf ′f

2 (denoted later by (,Ei + ,Ff)/2) and
the frequency gap of ωf ′i ′ − ωf i (denoted later by ,F) for
two coupled lines. Because the energy gaps between different
H2O states are pretty large, both these two gaps have seldom
chances to be small.

Careful readers may notice that the first argument of
FL1K1K

′
1L2 is not the averaged energy gap alone, but contains

another term of ωi ′2i2
. The latter represents a difference of the

energy levels between two N2 states. For L2 = 0, it is easy to
show ωi ′2i2

= 0. For L2 = 2, values of ωi ′2i2
vary from negative

to positive with different weights, but ωi ′2i2
= 0 happens with

a dominant chance.17 Therefore, one can ignore this term and
simply use the averaged energy gap to represent the first argu-
ment. Thus, by introducing one cut-off to limit the averaged
energy gap and another cut-off for the frequency gap, one can
effectively exclude weakly coupled lines. To apply these cut-
offs looks like to cut weak bonds between two coupled lines.
Consequently, a lot of lines are excluded from the sub-spaces
and the latter are broken into isolated groups.

Of course, there could be a convergence problem occur-
ring in applying the cut-offs. More specifically, one has to
verify calculated results would change only slightly as less
stringent cut-offs are selected. We will return to this subject
later. In summary, by carrying out the procedures mentioned
above, one can identify groups consisting of strongly coupled
lines, and at least for the pure rotational band, the sizes of
these groups are very limited. Then, one can calculate the ma-
trix elements of −S2(rc) within the sub-spaces, and by using
tools to calculate the exponential of a matrix, one can cor-
rectly evaluate the matrix elements of exp{−S2(rc)}. Thus,
the most difficult task in considering the line coupling for H2O
lines becomes tractable.

E. Diagonal matrix elements of the relaxation operator

It is well known that the relaxation operator W con-
tains all dynamical information of collisional processes. In the
present study, we do not consider the whole matrix of the re-
laxation operator, rather focus attention on its diagonal matrix
elements whose real and imaginary parts represent the pres-
sure broadened half-widths and induced shifts, respectively.
In terms of diagonal matrix elements of the exponential of the
operator −iS1(rc) − S2(rc), the expression for the diagonal el-

ements of the relaxation operator W is given by11,12

Wif,if = nbν̄

2πc

+∞∫

rc,min

2π
(
b
db

drc

)

× drc{1− ≪ if |e−iS1(rc)−S2(rc)|if ≫}, (10)

where nb is the number density of the bath molecules. For
H2O lines in the pure rotational band, S1(rc) is zero. Then,
with Eq. (10), one can conclude that the most important step
in calculating the half-width and shift is to evaluate the diago-
nal matrix elements of ⟨⟨ if | exp{−S2(rc)} | if ⟩⟩. In fact, the es-
sential difference between the usual method (without the line
coupling) and the new method results from how to evaluate
matrix elements for the exponential of matrix. For the former,
by assuming the isolated line approximation, one simply re-
places ⟨⟨ if | exp{−S2(rc)} | if ⟩⟩ by exp{− ⟨⟨ if | S2(rc) | if ⟩⟩}.
For the latter, by using tools to calculate the exponential of a
matrix, one can correctly evaluates them without making this
approximation.

III. SAMPLE CALCULATIONS FOR H2O LINES
BROADENED BY N2

We present some tests of calculated half-widths and shifts
of H2O lines immersed in N2 bath. By checking the cou-
pling strength factor value and the two gap values for all cou-
pled pairs in the pure rotational band, one can identify those
strongly coupled pairs. The larger the strength factor is and
the smaller the two gaps are, the stronger the coupling be-
tween them.

A. A sample group of coupled H2O lines

For example, we have found that for the pair of 1569
←15510 and 15510 ←15411, the strength factor is 1.0067
and the averaged energy gap and the frequency gap are
114.14 cm−1 and 3.72 cm−1, respectively. Although the en-
ergy gap is pretty large, it still remains in the region of ef-
ficiency of F1002(ω, ω′) with small rc values. By comparing
with other pairs, its three coupling parameters indicate the off-
diagonal elements of S2,middle between these two lines could
be pretty large. Besides, their half-widths are in the interme-
diate range. This implies that the diagonal matrix elements of
S2 are not too large. The latter is also important because what
really matters for causing the line coupling is a comparison

TABLE II. The strength factor and the averaged energy and the frequency gaps for coupled lines.

Coupled lines Lines 1 and 2 Lines 2 and 3 Lines 3 and 4 Lines 4 and 5

Strength factor − 0.8302 − 1.0243 1.0667 0.8298
|,Ei + ,Ef |/2 (cm−1) 176.06 134.25 114.14 140.21
|,F| (cm−1) 39.69 43.93 3.72 48.42
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between the diagonal elements and the off-diagonal elements
of the S2 matrices. Based on these considerations, we expect
that this pair could be strongly coupled.

After the core pair is selected, one needs to define a group
consisting of the core pair and other coupled lines. By choos-
ing the two cut-offs which are less stringent, other lines could
be either coupled with 1569 ←15510 or coupled with 15510
←15411. One can choose proper cut-offs such that at least
one more coupled line is added. After completing this step,
the group consists of the two core lines in the first-order hier-
archy and new members in the second-order hierarchy. Then,
for each of the new members, one finds their coupled lines
in the third-order hierarchy and adds them in the group. One
continues this procedure until there are no more lines allowed
by the cut-offs. It is obvious that the size of groups depends
on the cut-offs. The less stringent the cut-offs are, the larger
the size is. In practice, one needs to adjust the two cut-offs
such that the number of lines in the group remains tractable.
For the current case, we have found that by setting |,Ei

+ ,Ef |/2 < 180 cm−1 and |,F| < 100 cm−1, the group con-
sists of 5 lines. Here, in order to include one more line (i.e.,
1587 ←1578) in the group, we have intentionally chosen the
large value of 180 cm−1 as the first cut-off. After all the cou-
pled lines are selected, the sub-linespace constructed by the
selected lines is completed isolated from the remaining lines-
pace and all following calculations are carried out within this
isolated 5 × 5 sub-linespace. As shown later, it is unnecessary
to include more lines in this group.

In Table I, we present the list of lines in this group includ-
ing their frequencies and energy values of their initial states.
Meanwhile, we also present the coupling parameters for all
coupled pairs in Table II. With Table II, one can judge which
of pairs have strong bonds and which have weak bonds. For
example, the strongest bond occurs between Line 3 and Line
4 and the weakest two bonds occur between Line 1 and Line
2 and between Line 4 and Line 5. Numerical tests will verify
this claim later.

In order to show matrices of –S2 associated with nearly
head-on collisions, we select the one at rc = 3.7 Å and present
it in Matrix 1. This is a complex asymmetric 5 × 5 matrix
whose non-zero off-diagonal elements match the couplings
between lines shown in Table II. The two largest off-diagonal
elements (i.e., 1.1598 + i0 and 1.3886 + i0) are at the third
row and the fourth column (3,4) and at the fourth row and
the third column (4,3). This is well consistent with the largest
strength factor (i.e., 1.0667) and the two smallest gaps (i.e.,
114.14 cm−1 and 3.72 cm−1) between Line 3 and Line 4. On
the other hand, the smallest off-diagonal elements are at (1,2)
and (2,1), and at (4,5) and (5,4). Given the fact that the cou-
pling parameters between Line 1 and Line 2 (i.e., − 0.8302,
176.06 cm−1, and 39.69 cm−1) and those between Line 4 and
Line 5 (i.e., 0.8298, 140.21 cm−1, and 48.42 cm−1) are less
favorable to provide strong couplings, they are well expected.
Finally, with respect to the diagonal elements, one can con-
clude that their imaginary parts are much smaller than their
real parts.

Matrix 1.Thematrix of − S2 at rc = 3.7Å for the group in Table I.
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1.2084+ i0.2168 −0.1808+ i0 0+ i0 0+ i0 0+ i0

−0.2133+ i0 −1.9845+ i0.1555 −0.5381+ i0 0+ i0 0+ i0

0+ i0 −0.5829+ i0 −3.0569 − i0.7546 1.1598+ i0 0+ i0

0+ i0 0+ i0 1.3886+ i0 −2.9071 − i0.2495 0.3927+ i0

0+ i0 0+ i0 0+ i0 0.4190+ i0 −1.6804+ i0.1884

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Now, the task is to calculate the exponential of −S2. In the present study, where both the calculated half-widths and shifts
are considered, the matrices of −S2 are complex. The method adopted consists of several steps. The first step is by diagonalizing
the matrix −S2, one finds its complex eigenvalues and complex right (or left) eigenvectors. From the former, one constructs a
diagonal matrix D and from the latter, one constructs a right eigenvector matrix XR whose columns represent the corresponding
eigenvectors. Then, one finds the inverse matrix XR

−1. After all these D, XR, and XR
−1 are available, the exponential of the

matrix −S2 is given by

e−S2 = XRe
DX−1

R . (11)

Matrix 2.Thematrix of exp(−S2) at rc = 3.7Å for the group in Table I.
∣∣∣∣∣∣∣∣∣∣∣∣∣

0.2962+ i0.0651 −0.0385 − i0.0071 0.0071 − i0.0005 0.0022 − i0.0003 0.0002 − i0.0000

−0.0454 − i0.0084 0.1566+ i0.0199 −0.0553+ i0.0139 −0.0254+ i0.0065 −0.0041+ i0.0005

0.0091 − i0.0007 −0.0599+ i0.0150 0.0856 − i0.0626 0.0731 − i0.0382 0.0208 − i0.0048

0.0033 − i0.0004 −0.0330+ i0.0085 0.0875 − i0.0457 0.1064 − i0.0342 0.0513 − i0.0015

0.0004 − i0.0000 −0.0057+ i0.0008 0.0266 − i0.0062 0.0547 − i0.0016 0.1947+ i0.0355

∣∣∣∣∣∣∣∣∣∣∣∣∣



244301-9 Ma, Boulet, and Tipping J. Chem. Phys. 140, 244301 (2014)

Matrix 3. The matrix of Re{−S2} at rc = 3.7 Å for group 1.
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.2917+ i0.0642 0+ i0 0+ i0 0+ i0 0+ i0

0+ i0 0.1358+ i0.0213 0+ i0 0+ i0 0+ i0

0+ i0 0+ i0 0.0343 − i0.0322 0+ i0 0+ i0

0+ i0 0+ i0 0+ i0 0.0529 − i0.0135 0+ i0

0+ i0 0+ i0 0+ i0 0+ i0 0.1830+ i0.0349

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

In Matrix 2, we present the calculated matrix exp(−S2).
As a reference, in Matrix 3, we present the matrix adopted in
the RB formalism without considering the line coupling. It is
a diagonal matrix whose diagonal elements equal to exponen-
tials of the diagonal elements of −S2. By comparing Matrix
2 and Matrix 3, it is obvious that these two matrices are com-
pletely different.

Because the main subjects of the present study are calcu-
lated half-widths and shifts, one needs to focus attention on
the diagonal elements of Matrix 2 and Matrix 3. By compar-
ing them, one can conclude that the real parts of elements in
Matrix 2, especially the third and fourth ones, are larger than
their partners in Matrix 3. Given the fact that {1 − Re[⟨⟨ if
| exp(−S2) | if ⟩⟩]} appear as a main part of the integrand in
Eq. (10), one can expect that by considering the line coupling,
calculated half-widths would be reduced.

In order to more clearly show how these differences
would affect the calculated half-widths and shifts, we calcu-
late two factors of {1 − Re[⟨⟨ if | exp(−S2) | if ⟩⟩]} and − Im[⟨⟨
if | exp(−S2) | if ⟩⟩]} as functions of rc for Lines 2, 3, and 4.
By carrying out the calculations with and without consider-
ing the line coupling, we obtain two sets of functions for each
of the factors and present their profiles in Figs. 7 and 8, re-
spectively. As shown in Figs. 7 and 8, effects on their profiles
from the line coupling are significant for Lines 3 and 4. More

FIG. 7. Profiles of 1 − Re{⟨⟨ if | exp(−S2(rc)) | if ⟩⟩} associated with the
three H2O lines are plotted. They are obtained from the modified RB for-
malism with and without the line coupling and are plotted by three solid
and dotted–dashed curves, respectively. Lines 2, 3, and 4 (i.e., 1578 ←1569,
1569 ←15510, and 15510 ←15411) are distinguished by black, red, and green
colors.

explicitly, magnitudes of the first factor with the line coupling
are smaller than that without the line coupling. Meanwhile,
magnitudes of the second factor with the line coupling are
larger than that without the line coupling. As rc increase, their
gaps become narrower, and finally disappear. With respect to
Line 2, the differences of the profiles are less noticeable. In
summary, one should expect that for Line 3 and 4, it is ne-
cessity to consider the line coupling in evaluating the matrix
of exp(−S2). In contrast, one does not need to consider the
coupling for Line 2 at all.

Finally, after the diagonal elements ⟨⟨ if | exp(−S2(rc))
| if ⟩⟩ as functions of rc are available, one can easily calcu-
late the half-widths and shifts for the five lines. In Table III,
we list these calculated half-widths γ cp (in cm−1 atm−1) and
shifts δcp (in 10−3 cm−1 atm−1) together with γ nocp and δnocp
derived from the RB formalism without the line coupling. As
a reference, relative differences |,γ /γ nocp| and |,δ/δnocp| are
also presented. With Table III, one can conclude that for Line
3 and Line 4, by considering the line coupling, the calculated
half-widths are reduced by 4.5% and 5.1%, and meanwhile,
their calculated shifts increase by 16.9% and 25.5%, respec-
tively. These numbers demonstrate that effects on the calcu-
lated shifts are significantly larger than the calculated half-
widths.

Finally, we would like to check whether the cut-offs
used to define the group are suitable enough to yield con-
verged results or not. One can easily check this by con-
sidering a sub-group only consisting of Line 3 and Line 4.
Within the reduced 2 × 2 sub-linespace, we have repeated

FIG. 8. The same as Fig. 7 except for −Im{⟨⟨ if | exp(−S2(rc)) | if ⟩⟩}.



244301-10 Ma, Boulet, and Tipping J. Chem. Phys. 140, 244301 (2014)

TABLE III. Calculated half-widths and shifts of lines in the group listed in Table I.

Lines γ nocp. γ cp |,γ /γ nocp| (%) δnocp × 103 δcp × 103 |,δ/δnocp| (%)

1587 ←1578 0.0460 0.0458 0.4 − 6.025 − 6.071 0.8
1578 ←1569 0.0652 0.0645 0.9 − 2.262 − 2.209 2.4
1569 ←15510 0.0807 0.0770 4.5 7.773 9.084 16.9
15510 ←15411 0.0750 0.0711 5.1 3.464 4.418 25.5
15411 ←15312 0.0553 0.0550 0.7 − 3.453 − 3.458 0.1

previous calculations, but we do not present the calculations
here except for providing some final results. For Line 3,
γ cp = 0.0775 cm−1 atm−1, |,γ /γ nocp| = 4.0%, δcp = 8.889
× 10−3 cm−1 atm−1, and |,δ/δnocp| = 14.4%. For Line 4,
γ cp = 0.0715 cm−1 atm−1, |,γ /γ nocp| = 4.7%, δcp = 4.344
× 10−3 cm−1 atm−1, and |,δ/δnocp| = 25.4%. By compar-
ing these numbers with those listed in Table IV, they are
reasonably close. Therefore, one can conclude that for this
group, the listed values in Table III are well converged and
those obtained from the more reduced sub-linespace are also
acceptable.

B. Results derived from other sample groups

We have considered dozens of groups containing strongly
coupled lines. Based on our experience, strongly coupled
lines, especially those with large j values are more likely to
have small frequency gaps and relatively large average en-
ergy gaps. For the groups with low j values, their averaged
energy gaps are smaller than that for the groups with high j
values. This is favorable in causing the line couplings. How-
ever, the former usually have larger half-widths and larger di-
agonal elements of −S2 that work against the line couplings.
The net effect results from the competition of these two
factors.

Meanwhile, the sizes of the groups depend on the cut-
offs used and also depend on their members’ j values. If one
applies the same cut-offs, groups consisting of lines with low
j values have more members than that with high j values. This
is well expected because energy level differences between dif-
ferent H2O states with low j values are smaller. However, as
it has been explained above, for these groups one can ap-
ply more stringent cut-offs to limit their members. Finally,
we have found that the groups to be considered could contain
lines in different branches and lines could have three or more
coupled partners. As a result, these groups have different sizes
and have different coupling patterns. These features cause a
difficulty of presentations to cover more sample groups with
limited spaces.

Fortunately, as demonstrated in Sec. III A, by removing
weakly coupled lines from the group, calculated results do
not change too much. This convergence check enables one to
simplify the presentation. In addition, because the potential
model used here is not exact and there are other uncertain-
ties existing in these semi-classical calculations, it is not our
intention to provide accurate results and to cover all groups
in the present study. Therefore, we prefer to use the sim-
plest way to present results derived from these sample groups.
More specifically, we have chosen eight typical groups with
their j values covering a wide range from j = 3 to j = 18 and
have decided to present results derived from their sub-groups

TABLE IV. Calculated half-widths and shifts of lines in other sample groups.

Grp Parameters Lines Freq. γ nocp γ cp |,γ /γ nocp| (%) δnocp × 103 δcp × 103 |,δ/δnocp| (%)

2 0.9252, 312←303 36.604 0.1075 0.1061 1.2 3.552 3.958 11.4
37.70, 2.19 321←312 38.791 0.1042 0.1027 1.3 4.464 4.907 9.9

3 − 1.0059, 523←514 47.053 0.1020 0.1007 1.3 2.054 2.276 10.8
54.68,15.25 532←523 62.301 0.0988 0.0974 1.4 1.864 2.020 8.4

4 1.0191, 633←624 58.775 0.1002 0.0972 1.3 1.553 1.841 18.5
59.32, 1.09 624←615 59.868 0.0985 0.0954 1.3 0.003 0.250 N/A

5 0.9536, 734←725 59.947 0.0998 0.0985 1.3 0.767 0.892 16.3
69.07,18.25 725←716 78.196 0.0922 0.0907 1.7 − 0.062 0.064 N/A

6 0.5886, 918←827 193.479 0.0598 0.0586 2.0 − 0.924 − 1.058 14.5
121.68,2.33 927←836 195.806 0.0785 0.0776 1.1 − 2.450 − 2.583 5.4

7 − 0.8265, 1055←946 383.821 0.0747 0.0737 1.3 3.306 3.424 3.6
116.45,16.40 1046←937 400.222 0.0844 0.0836 1.0 2.004 2.112 5.4

8 1.0885, 1459←14410 102.562 0.0821 0.0799 2.7 4.703 5.412 15.1
110.30,15.48 1468←1459 118.045 0.0804 0.0781 2.9 5.891 6.665 13.1

9 1.0689, 18711←18612 129.381 0.0710 0.0686 3.5 10.870 11.953 10.0
129.53, 0.30 18612←18513 129.677 0.0663 0.0637 4.1 4.681 5.484 17.2
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with 2 × 2 sub-spaces only consisting of their core pairs in
Table IV where all the quantities listed are given in the same
units as those in Tables II and III. In the second column of
Table IV labeled as parameters, the coupling strength factor,
the averaged energy, and the frequency gaps of the groups
are listed. As shown in the table, all the frequency gaps of
the eight groups are below 20 cm−1, and meanwhile their av-
eraged energy gaps, especially those with high j values, are
much higher.

With the results listed in Table IV, one can conclude that
effects on the calculated half-widths are small, but remain no-
ticeable in the range from 1% to 4%. Meanwhile, variations
of the calculated shifts are significant and some of them are
above 15%. These conclusions are consistent with those in
Sec. III A. We note that for the lines of 624←615 in Group 4
and for the line of 725←716 in Group 5, because their δnocp
values are too small, values of |,δ/δnocp| lose their meaning-
fulness. In addition, we would like to note that by including
more lines in these groups, the variations of |,γ /γ nocp| and
|,δ/δnocp| would increase, but the changes would not be too
large.

Finally, it is worth mentioning that because the reduc-
tions and variations reported in Tables III and IV are derived
from the potential model16 which is less accurate, once more
accurate potentials become available and are used in calcula-
tions, these numbers could change. Therefore, it is better to
treat these numbers as tentative.

IV. DISCUSSIONS AND CONCLUSIONS

Many papers have been devoted to the line mixing for
molecular lines of interest in atmospheric applications. But,
few of them explicitly carry out numerical calculations for
the H2O lines. The paper by Lam18 in 1977 is one of the most
important. Lam considered a linespace limited to the 11 H2O
lines located in the microwave region. The non-diagonality of
the Liouville scattering operator Ŝ within the linespace was
taken into account, following an approximate procedure in-
troduced by Dillon et al.19 Since the perturber was the N2

molecule, the potential was limited to the dipole-quadrupole
interaction and the trajectories were assumed to be straight
lines.

With the terminology adopted in the present study,11,12

the line mixing and the line coupling are two different con-
cepts within the same linespaces, but they are closely related
to each other. The former concerns the non-diagonality of
the relaxation operator W appearing in the resolvent operator
1/(ω − L0 − iW ) and the latter concerns the non-diagonality
of the operator −iS1 − S2 appearing in the exponential oper-
ator of exp(−iS1 − S2). Besides, the selection rules to deter-
mine the line mixing and the line coupling are the same. In the
RB formalism and other formalisms where the Liouville scat-
tering operator Ŝ is given in terms of the cumulant expansions
or other exponential forms, to consider the line coupling is a
prior step for considering the line mixing. In fact, after calcu-
lations of the whole matrix elements of exp(−iS1 − S2) are
completed, one can easily derive the whole matrix elements
of the relaxation operator W. Therefore, with the method de-
scribed above, we can easily check Lam’s work.

In principle, as one considers the line coupling for lines
located in the microwave region, one needs to take into ac-
count of both the positive-frequency lines and the negative-
frequency lines. Indeed as is known from Ben-Reuven,20

positive and negative resonances are coupled by inelastic col-
lisions. A careful analysis has shown that no efficient cou-
plings exist between the 11 positive lines considered by Lam
and their negative partners that corroborate his treatment.

In spite of his simplifying treatments of the potential and
trajectory models, his four conclusions (see p. 374 of Ref.
18) are confirmed by the present work, regarding either the
mixing selection rules or the weakness of the off-diagonal el-
ements mixing some of these lines. However, by using our
formalism and checking values of the line coupling param-
eters for those pairs considered by him, we have found that
none of them are in favor of the line coupling. More specifi-
cally, among all the 11 lines, the strongest coupling happens
between 414 ← 321 and 423 ← 330 and its three coupling pa-
rameters are −0.4786, 74.39 cm−1, and 2.26 cm−1. In addi-
tion, these lines have large half-width values. Indeed, we have
found that reductions of the calculated half-widths for the two
lines mentioned above are less than 0.5% and variations of the
shifts are less than 3%. As a result, the group considered by
him is not a candidate to have significant effects. His conclu-
sions are correct, but the applicability is limited. One should
not apply it everywhere without exception.

Because the main targets of the present work are calcu-
lated half-widths and shifts, we draw conclusions on these
subjects. First of all, with respect to the half-width, one can
conclude that for most of the H2O lines in the pure rota-
tional band, effects from the line coupling are small or neg-
ligible. This implies that for most of the H2O lines, one does
not need to consider the line coupling at all. However, the
above claim does not apply for a certain number of lines, or
more explicitly, for several dozens of lines. For the latter, re-
ductions of their calculated half-widths due to the line cou-
pling are noticeable and can reach above 5% or a little bit
more.

Second, with respect to the calculated shift, the situation
is quite different. In general, for most of the H2O lines in the
pure rotational band, effects from the line coupling are small
or negligible. This means again that one does not need to con-
sider the line coupling for them. However, for several dozens
of lines or a little more, effects from the line coupling are very
significant and variations of calculated shifts can reach±25%
or even more. Fortunately, based on their coupling parameters
and their j values, one can determine their identities.

In summary, our conclusions of the half-widths and shifts
are different: the calculated shifts are more sensitive to the line
coupling than the half-widths. It is well known that the imag-
inary parts of the diagonal elements of −S2 are almost one
order smaller than the real parts. Thus, in comparison with
the off-diagonal elements, the former are comparable or even
less and the latter are much larger. As a result, with respect
to the real off-diagonal elements, relative differences of the
imaginary parts and of the real parts are completely differ-
ent. It turns out that the real off-diagonal elements of −S2
not only affect the real parts of the exponentials exp(−S2),
but also the imaginary parts. Meanwhile, in both cases, the
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effects are more or less closely related to the relative differ-
ences mentioned above. Therefore, it is not surprising that the
line coupling could cause larger effects on calculated shifts.
Besides, values of shifts are much smaller than widths. In cal-
culating the shift where the Hilbert transforms are involved
and the latter are odd functions, there are a lot of cancella-
tions happening and the final values result from small differ-
ences among large items involved. As a result, slight changes
of values of these items could yield a large difference.

So far, we have only considered H2O lines in the pure ro-
tational band. It is worth to extend this study to other bands,
especially the ν2 band. Indeed, we expect that for this band,
effects from the line coupling may be at least as significant
as those for the pure rotational band. Moreover, there was a
paper by Brown et al.,21 where line mixing measurements for
two pairs in the ν2 band were reported. One consists of two P
branch lines (i.e., 101 ← 212 and 212 ← 303) and another con-
sists of two R branch lines (i.e., 303 ← 212 and 212 ← 101).
Based on the present work, one can easily verify that these au-
thors have made good selections for their measurements be-
cause these doublets are strongly coupled. For the first pair,
the three coupling parameters are −0.9705, 57.88 cm−1, and
1.24 cm−1. Meanwhile, for the second pair, the parameters are
−0.9705, 55.27 cm−1, and 0.87 cm−1. (We note that because
we have used the wavefunctions derived in the pure rotational
band to calculate the coupling strength factors, their exact
values may slightly differ from that provided above.) In gen-
eral, their measured results for N2 broadened half-widths and
shifts are consistent with our expectations. However, more
quantitative comparisons require one to carry out numerical
calculations.

Finally, our current formalism is applicable within the
same band. For H2O lines belonging to different bands, the

line coupling caused by intramolecular resonances (such as
Coriolis, Fermi, Darling-Dennsion, and more complex reso-
nances) could also occur.22 In this case, besides the S2,middle

term, both S2,outer,i and S2,outer,f can make contributions to the
off-diagonal elements of S2. More work is required to extend
to these complicated cases.
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APPENDIX: DERIVATION OF EXPRESSIONS FOR THE
OFF-DIAGONAL ELEMENTS OF S2,middle

As shown in our previous work, by applying the cumulant
expansion on the Liouville scattering Ŝ operator and introduc-
ing basic vectors in the linespace defined by

|if, JMJ ⟩⟩ =
∑

mimf

(−1)jf −mf C(jijf J,mi − mfMJ )|

× imifmf ⟩⟩, (A1)

one is able to derive general expressions for the matrix ele-
ments of S2,outer,i, S2,outer,f, and S2,middle. Here, we show how to
derive a more explicit expression for the off-diagonal matrix
elements of S2,middle. The derivation starts from their general
expression given by

S
i ′f ′,if
2,middle(rc) =

1
¯2

∞∫

−∞

dt

∞∫

−∞

dt ′ ≪ i ′f ′, JMJ |⟨L1(t)L1(t ′)⟩|if, JMJ ≫middle

= − 1
¯2(2J + 1)

∞∫

−∞

dt

∞∫

−∞

dt ′
∑

i2m2

ρi2

∑

i ′2m
′
2

∑

(m)

e
i(ωi′ i+ωi′2 i2

)t
e
i(ωff ′+ωi2 i

′
2
)t ′

×
∫

d"α

∫
d"β⟨i ′m′

i i
′
2m

′
2|α⟩Vα(R(t))⟨α|imii2m2⟩

× ⟨fmf i2m2|β⟩Vβ (R(t ′))⟨β|f ′m′
f i

′
2m

′
2⟩. (A2)

For the H2O molecule, wavefunctions of its rotational states are well known. With a simple notation, they are denoted by
|ji τ i mi⟩, where τ i = kai − kci or simply by |i mi⟩. By following the convention adopted by Zare,23 Bunker and Jenson,24 the
H2O wavefunctions at specified orientation labeled by α can be expressed as

⟨α|imi⟩ =
√
2ji + 1
8π2

∑

k

U νi ji
kτi

(−1)mi−kD
ji
−mi−k("aα). (A3)

Meanwhile, for the bath molecule of N2, the expression for its wavefunctions is given by

⟨α|i2m2⟩ = Yi2m2 ("bα). (A4)
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With Eq. (1) and Eqs. (A3) and (A4), the integration over "α in Eq. (A2) can be expressed as
∫

d"α⟨i ′m′
i i

′
2m

′
2|α⟩Vα(R(t))⟨α|imii2m2⟩

=
√
(2ji + 1)(2ji ′ + 1)

8π2

∑

k′k

U ν ′
i j

′
i

k′τ ′
i
U νi ji
kτi

∑

L1L2L

∑

n

∑

µ1µ2m

U (L1L2L; n;R(t))C(L1L2L,µ1µ2m)

× (−1)mi−k

[∫
d"aαD

j ′
i

m′
i k

′("aα)D
ji
−mi−k("aα)DL1∗

µ1n
("aα)

]

×
[∫

d"bαY
∗
i ′2m

′
2
("bα)Yi2m2 ("bα)D

L2∗
µ20 ("bα)

]
Y ∗
Lm(ωα(t)). (A5)

After analytically carrying out the integrations over "aα and "bα , Eq. (A5) can be written as
∫

d"α⟨i ′m′
i i

′
2m

′
2|α⟩Vα(R(t))⟨α|imii2m2⟩

=
√
(2j ′

i + 1)(2ji + 1)(2i ′2 + 1)(2i2 + 1)
∑

L1K1L2L

(−1)K1

(2L1 + 1)(2L2 + 1)

×C(i ′2i2L2, 000)U (L1L2L;K1;R(t))D(ν ′
ij

′
i τ

′
i νijiτi ;L1K1)

∑

M1M2M

(−1)mi+m2

×C(L1L2L,M1M2M)C(j ′
i jiL1,m

′
i − miM1)C(i ′2i2L2,m

′
2 − m2M2)Y ∗

LM (ωα(t)). (A6)

In the above expression, the D matrix is defined by

D(ν ′j ′τ ′νjτ ;KL) =
∑

k

(−1)kU ν ′j ′

kτ ′ U νj
k−KτC(j ′jL, kK − kK). (A7)

Similarly, one can obtain a similar expression for the integration over "β in Eq. (A2). Then, with replacing the integrations
over "α and "β in Eq. (A2) by these two expressions and carrying out summations over all the independent magnetic quantum
numbers except for M, one is able to rewrite Eq. (A2) as

S
i ′f ′,if
2,middle(rc) = (−1)ji+j ′

i

√
(2j ′

i + 1)(2j ′
f + 1)(2ji + 1)(2jf + 1)

×
∑

L1K1K
′
1L2

(−1)1+J+L1W (j ′
i j

′
f jijf , JL1)D(ν ′

ij
′
i τ

′
i νijiτi ;L1K1)D(νf jf τf ν ′

f j
′
f τ ′

f ;L1K
′
1)

×
∑

i2i
′
2

(2i2 + 1)(2i ′2 + 1)ρi2C
2(i2i ′2L2, 000)

(−1)K1+K2

¯2(2L1 + 1)2(2L2 + 1)2

×
∑

L

(−1)L1+L2+L
∑

M

∫ ∞

−∞

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′e

i(ωi′ i+ωi′2 i2
)t
e
i(ωff ′+ωi2 i

′
2
)t ′

×U (L1L2L;K1;R(t))U (L1L2L;K ′
1;R(t

′))Y ∗
LM (θα(t),φα(t))YLM (θβ(t ′),φβ(t ′)). (A8)
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